

A Comparative Evaluation of Three Skin Color Detection Approaches

Dennis Jensch, Daniel Mohr, Clausthal University

Gabriel Zachmann, University of Bremen

Motivation

- Long-term goal: marker-less hand tracking
 - Real-time estimation of pose and human hand
 - Skin segmentation helps to
 - localize hand very fast (if robust)
 - match hand temlates very fast

- Further applications
 - Detect person/adult images (e.g. filtering in search engines)
 - Face detection
 - Many more...

Challenges of Skin Segmentation

Different ethnic groups

Skin color in the background

Camera limitations

Illumination conditions

Motivation **Approaches Evaluation Method** Conclusions Results

Approaches Considered in the Following

- RehgJones [M. J. Jones and J. M. Rehg, IJCV 1999]
 - Learn skin color distribution from a manually labeled dataset
- HybridClustering [D. Mohr and G. Zachmann, CAIP 2007]
 - Combined color and image space clustering
 - Classification is done region-wise (opposed to pixel-wise)
- NeuralGasColorClustering
 - Inspired by HybridClustering with two modifications
 - Replace EM by Matrix Neural Gas
 - Replace the way the number of clusters is determined

RehgJones

- Learn skin color distribution offline
 - Dataset randomly chosen from World Wide Web
 - ~ 1 billion pixels
 - Manually labeled as skin / non-skin
 - Color distributions for skin and non-skin

$$P(rgb|skin) = \frac{s[rgb]}{T_S}$$
 $P(rgb|\neg skin) = \frac{s[\neg rgb]}{T_N}$

- Image classification:
 - Per pixel

$$\frac{P(rgb|skin)}{P(rgb|\neg skin)} \ge \Theta$$

Θ controls offset between false positive and false negatives

HybridClustering

- Learn a rough skin direction vector offline
- Online classification:
 - Cluster the image in color space
 - Hierarchical EM
 - Smoothing of clusters in image space

- Classify image clusters as skin / non-skin
- Reproject to image space

- + Keep image regions together
- Depends on convergence behavior of EM

NeuralGasColorClustering

- Tries to improve uponHybridClustering
- EM algorithm
 - sensitive to initialization
- Hierarchical clustering to determine number of clusters
 - Could choose wrong number of clusters
- Image edges as cluster quality measure
 - Is this really the best option?

- NeuralGasColorClustering
- Matrix Neural Gas
 - Less sensitive to initialization
- Successively test different number of clusters
 - Slower but expected to perform better
- Test 3 different measures
 - Border Length
 - Border Edges
 - Color Space Compactness

Quality Measures for Cluster in NeuralGasColorClusters

- Border Length
 - + Penalize unsharp borders
 - Penalizes long contours

- + Penalized edges across objects
- Sensitive to edge noise and missing edges
- Color Space Compactness
 - + Penalized bad color distribution
 - Clusters can be distorted

Ground Truth Data

- 15 data sets
 - Background
 - Simple
 - Complex
 - Skin colored

 Illumination: most images contain underexposed, normal exposed and overexposed regions

Cases Possible after Segmentation

- Correctly classified pixels
 - 1. True Negatives (TN)
 - non-skin
 - 2. True Positives (TP)
 - skin
- Wrongly classified pixels
 - 3. False Negatives (FN)
 - skin classified as non-skin
 - 4. False Positives (FP)
 - non-skin classified as skin

The Receiver Operating Characteristic Curve

ROC curve captures relation between

- True Positive Rate =
$$\frac{TP}{TP+FN}$$

■ False Positive Rate =
$$\frac{FP}{FP+TN}$$

Main Result: Overall Segmentation Quality

- HybridClustering performs best on average
- NeuralGasColorSpaceClustering surprisingly has worst quality
 - Color Space Compactness yields better result compared to the other cluster quality measures

The 3 most different data sets for detailed analysis

Simple background

Complex background

Skin colored background

Individual Segmentation Quality: Data Sets

 HybridClustering yields best results with high acceptance threshold even for red-door dataset

Individual Segmentation Quality: Approaches

RehgJones

- Moderate variation between different data sets
- Except red-door dataset

HybridClustering

Moderate variation between different data sets

High variation between different data sets

Cluster Quality Measures

- Color Space Compactness yields by fast highest number of clusters
- ⇒ High number of clusters yields better segmentation results
- ⇒ Better use too many than not enough clusters

Computation Time

Approach	Time (ms)	Std. Dev (ms)
RehgJones	1.23	0.06
HybridClustering	508	442
NeuralGasColorClustering - BL	45 013	2 458
NeuralGasColorClustering - BE	45 886	2 635
NeuralGasColorClustering - CSC	45 460	2 961

Conclusion

- Compared the three skin segmentation approaches (RehgJones, HybridClustering, NeuralGasColorClustering
- Method of evaluation:
 - Ground truth dataset of about 500 images
 - ROC curve analysis
- Main result: HybridClustering performs best on average
- Detailed analysis reveals high variance between individual datasets
- Apparently, cluster-based segmentation algorithms better use too many cluster than too few

Future Work

- Further investigate hypothesis about relation between number of clusters and overall segmentation quality
- Evaluate further skin segmentation approaches e.g. [Sigal et al., CVPR 2000]
- Extend ground truth dataset
- Integrate image space smoothing in NeuralGasColorClustering

Thanks for your attention!

Questions?