
1

ObjectObject--SpaceSpace InterferenceInterference DetectionDetection
on on ProgrammableProgrammable Graphics HardwareGraphics Hardware

Alexander Greß and Gabriel ZachmannAlexander Greß and Gabriel Zachmann

University of BonnUniversity of Bonn

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

MotivationMotivationMotivation

CollisionCollision detectiondetection isis a fundamental a fundamental tasktask inin
VirtualVirtual PrototypingPrototyping
HapticHaptic renderingrendering ((forceforce--feedbackfeedback))
PhysicallyPhysically--basedbased simulationsimulation
((rigidrigid bodiesbodies etc.)etc.)
MedicalMedical trainingtraining//planningplanning systemssystems

CollisionCollision detectiondetection performanceperformance
isis criticalcritical forfor

ResponsiveResponsive VR VR systemssystems
RealReal--timetime simulationsimulation
NaturalNatural interactioninteraction

NeedNeed of of hardwarehardware acceleratedaccelerated algorithmsalgorithms

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

Previous WorkPreviousPrevious WorkWork

CollisionCollision detectiondetection in in graphicsgraphics hardwarehardware
imageimage--spacespace algorithmsalgorithms::

RECODE RECODE [[BaciuBaciu et al. 1999]et al. 1999]
CInDeRCInDeR [[Knott,PaiKnott,Pai 2003]2003]
CULLIDE CULLIDE [[GovindarajuGovindaraju et al. 2003]et al. 2003]

and and furtherfurther imageimage--spacespace methodsmethods

restrictedrestricted to to objectsobjects of of certaincertain shapeshape and and connectivityconnectivity

HierarchicalHierarchical collisioncollision detectiondetection
OBBsOBBs [Gottschalk et al. 1996][Gottschalk et al. 1996]

DOPsDOPs, , AABBsAABBs [Zachmann 1998, 2002][Zachmann 1998, 2002]

ConvexConvex surfacesurface decompositiondecomposition [[EhmannEhmann et al. 2001]et al. 2001]

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

Programmable Graphics Hardware (GPU)Programmable Graphics Hardware (GPU)Programmable Graphics Hardware (GPU)

parallel architecture of GPU:parallel architecture of GPU:
multiple multiple vertex programvertex program / / fragment programfragment program
execution unitsexecution units

vertex and fragment programs are designed to run with vertex and fragment programs are designed to run with
an arbitrary number of execution unitsan arbitrary number of execution units
scalability to future scalability to future GPUsGPUs

all calculations in floating pointall calculations in floating point
(up to 32 bits precision)(up to 32 bits precision)

SIMD instruction setSIMD instruction set

high floating point throughputhigh floating point throughput

2

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

GPU architecture overviewGPU architecture overviewGPU architecture overview
CPU

vertex program unit 1
…

vertex program unit n

fragment program unit 1
...

fragment program unit n

GPU non-temporary memGPU mem GPU execution units

vertex program
uniform parameters

fragment program
uniform parameters

vertex cache

vertex element array

vertex array(s)

color buffer(s)

texture(s)

occlusion count

CPU

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

Our GoalOurOur GoalGoal

CollisionCollision detectiondetection on on currentcurrent graphicsgraphics hardwarehardware

usingusing programmableprogrammable graphicsgraphics hardwarehardware (GPU)(GPU)

utilizingutilizing itsits SIMD SIMD capabilitiescapabilities
and high and high floatingfloating point point throughputthroughput
((usingusing floatingfloating point point texturestextures forfor storagestorage))

implementingimplementing an an hierarchicalhierarchical algorithmalgorithm

exactexact interferenceinterference detectiondetection in in objectobject--spacespace

no no requirementsrequirements on on shapeshape, , topologytopology, , connectivityconnectivity

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

Bounding Volume TreeBounding Volume TreeBounding Volume Tree

inner nodes:inner nodes: bounding volumesbounding volumes
((AABBAABBss in our approach)in our approach)

leaf nodes:leaf nodes: trianglestriangles

Simultaneous traversal of two trees:Simultaneous traversal of two trees:
all pairs of nodes (all pairs of nodes (SSii, , TTii) are considered,) are considered,
where where SSii is a node of tree is a node of tree SS andand
TTii is a node of tree is a node of tree TT on the same hierarchy levelon the same hierarchy level
for a pair of inner nodes (for a pair of inner nodes (SSii, , TTii) their child nodes) their child nodes
have to be checked only if the bounding volumes have to be checked only if the bounding volumes
((BVsBVs) corresponding to) corresponding to SSii and and TTii overlapoverlap

Our traversal scheme:Our traversal scheme:
breadthbreadth--first strategy (to exploit parallelism)first strategy (to exploit parallelism)

E F GD

CB

A

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

Simultaneous overlap testing of multiple BVsSimultaneous overlap testing of multiple Simultaneous overlap testing of multiple BVsBVs

Central task of the breadthCentral task of the breadth--first traversal:first traversal:
given: given: list L, tree node Tlist L, tree node T
determine: determine: list of those nodes from L that overlap with Tlist of those nodes from L that overlap with T

PseudocodePseudocode::
overlappingChildrenoverlappingChildren (list (list LL, , nodenode T): listT): list

list list L‘L‘;;
forfor allall nodesnodes S S fromfrom list list LL dodo

forfor allall childrenchildren SSii of S of S dodo
ifif SSii and T and T overlapoverlap thenthen

L‘.appendL‘.append(S(Sii););
returnreturn L‘L‘;;

3

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

Simultaneous overlap testing of multiple BVsSimultaneous overlap testing of multiple Simultaneous overlap testing of multiple BVsBVs

Idea: implement as fragment programIdea: implement as fragment program
thereoreticallythereoretically, all overlap tests could be executed in , all overlap tests could be executed in
parallel as they are independent of each otherparallel as they are independent of each other
parallel execution requires a data structure that allows parallel execution requires a data structure that allows
direct access to elements (arrays); lists are unsuitabledirect access to elements (arrays); lists are unsuitable
arrays can be represented on the graphics hardware by arrays can be represented on the graphics hardware by
(floating(floating--point) texturespoint) textures

make loop make loop vectorizablevectorizable by using arrays instead of listsby using arrays instead of lists

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

Simultaneous overlap testing of multiple BVsSimultaneous overlap testing of multiple Simultaneous overlap testing of multiple BVsBVs

Naïve approach: Naïve approach: use arrays with NULLuse arrays with NULL--elementselements

overlappingChildrenoverlappingChildren ((arrayarray aa, , nodenode T): T): arrayarray

arrayarray a‘a‘;;
forfor allall nodesnodes SSjj fromfrom arrayarray aa dodo

forfor allall childrenchildren SSj,ij,i of of SSjj dodo
ifif SSj,ij,i and T and T overlapoverlap thenthen

a‘ a‘ [2j+i][2j+i] := := SSj,ij,i;;
elseelse

a‘ a‘ [2j+i][2j+i] := := NULL;NULL;
returnreturn a‘a‘;;

vectorizablevectorizable, but unsuitable for parallel execution by a fragment , but unsuitable for parallel execution by a fragment
program where one execution unit is assigned for each output program where one execution unit is assigned for each output
array elementarray element

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

Simultaneous overlap testing of multiple BVsSimultaneous overlap testing of multiple Simultaneous overlap testing of multiple BVsBVs

I J KH

ED

M N OL

GF

10 11 1 0 1 0

input:

Solution: Solution: tightlytightly--packed arrayspacked arrays

1.1. Calculate overlap counts for the childrenCalculate overlap counts for the children
of all nodes contained in the input arrayof all nodes contained in the input array
(i.e. 1 if there is an overlap, 0 otherwise)(i.e. 1 if there is an overlap, 0 otherwise)

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

+

+

Simultaneous overlap testing of multiple BVsSimultaneous overlap testing of multiple Simultaneous overlap testing of multiple BVsBVs

10 11 1 0 1 0

1 1 2 1

+ + + +

2 3

5

+

2.2. Build a tree by summing up overlap countsBuild a tree by summing up overlap counts
corresponds to a corresponds to a mipmip--mapmap; total size ; total size O(nO(n))

4

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

+

+

Simultaneous overlap testing of multiple BVsSimultaneous overlap testing of multiple Simultaneous overlap testing of multiple BVsBVs

10 11 1 0 1 0

1 1 2 1

+ + + +

2 3

5

+

4th 5th3rd2nd1st

3.3. Successively construct the output arraySuccessively construct the output array

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

+

Simultaneous overlap testing of multiple BVsSimultaneous overlap testing of multiple Simultaneous overlap testing of multiple BVsBVs

10 11 1 0 1 0

1 1 2 1

+ + + +

2 3

+

2nd 3rd1st2nd1st

3.3. Successively construct the output arraySuccessively construct the output array

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

Simultaneous overlap testing of multiple BVsSimultaneous overlap testing of multiple Simultaneous overlap testing of multiple BVsBVs

10 11 1 0 1 0

1 1 2 1

+ + + +

2nd 1st1st1st1st

3.3. Successively construct the output arraySuccessively construct the output array

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

Simultaneous overlap testing of multiple BVsSimultaneous overlap testing of multiple Simultaneous overlap testing of multiple BVsBVs

10 11 1 0 1 0

I J KH M N OL

output:

3.3. Successively construct the output arraySuccessively construct the output array

5

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

The overall simultaneous traversal schemeTheThe overalloverall simultaneoussimultaneous traversaltraversal schemescheme

PseudocodePseudocode using a queue:using a queue:
traverse (traverse (nodenode S, S, nodenode T):T):

queuequeue qq;;
arrayarray aa := { S };:= { S };
q.insertq.insert((aa, T);, T);

whilewhile qq isis notnot emptyempty dodo
{{

((aa, T) := , T) := q.topq.top;;
q.popq.pop;;
forfor allall childrenchildren TTii of T of T dodo
{{

arrayarray a‘a‘ := := overlappingChildrenoverlappingChildren((aa, T, Tii););
q.appendq.append((aa‘‘, T, Tii););

}}
}}

E F GD

CB

A

5 6 74

32

1

S: T:

5 6 74

32

1

DEFG DEFG DEFG DEFG

BC BC

A

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

The overall simultaneous traversal schemeTheThe overalloverall simultaneoussimultaneous traversaltraversal schemescheme

PseudocodePseudocode using using 2D arrays2D arrays::
traverse (traverse (nodenode S, S, nodenode T):T):
arrayarray aa := { S };:= { S };
arrayarray bb := { (:= { (aa, T) };, T) };

whilewhile bb isis notnot emptyempty dodo
bb := := overlappingChildPairsoverlappingChildPairs((bb););

overlappingChildPairsoverlappingChildPairs ((arrayarray bb):): arrayarray
arrayarray b‘b‘;;
forfor allall ((aajj, , TTjj)) fromfrom arrayarray bb dodo

forfor allall childrenchildren TTj,ij,i of of TTjj dodo
{{

arrayarray aajj‘‘ := := overlappingChildrenoverlappingChildren((aajj, T, Tii););
b‘ b‘ [2j+i] := ([2j+i] := (aajj‘‘, T, Tii););

}}
returnreturn b‘b‘;;

E F GD

CB

A

5 6 74

32

1

S: T:

5 6 74

32

1

DEFG DEFG DEFG DEFG

BC BC

A

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

The overall simultaneous traversal schemeTheThe overalloverall simultaneoussimultaneous traversaltraversal schemescheme

Subroutine Subroutine overlappingChildPairsoverlappingChildPairs()()::
is is vectorizablevectorizable as an array is used for input/output and as an array is used for input/output and
there are no other dependencies between iterationsthere are no other dependencies between iterations
its subroutine its subroutine overlappingChildrenoverlappingChildren()() is is –– as described as described ––
executed by a fragment programexecuted by a fragment program

Idea: implement as vertex programIdea: implement as vertex program
the input array can be specified using vertex the input array can be specified using vertex array(sarray(s))
the output array must be written to vertex the output array must be written to vertex array(sarray(s), too), too

requires the new requires the new ARB_super_bufferARB_super_buffer
OpenGLOpenGL extensionextension

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

Implementation detailsImplementation detailsImplementation details

Mapping of data structures to GPU memory:Mapping of data structures to GPU memory:
one call of one call of overlappingChildPairsoverlappingChildPairs()() corresponds to rendering corresponds to rendering nn
lines of lengths lines of lengths mm00 … m… mnn--11 into a 2D buffer, where into a 2D buffer, where nn is the is the
length of array length of array bb and and mmjj is the length of array is the length of array aajj

the nodes of tree the nodes of tree SS, which are referenced by the elements of , which are referenced by the elements of
arrays arrays aajj, are stored in sets of 1D textures (up to three textures , are stored in sets of 1D textures (up to three textures
per hierarchy level)per hierarchy level)
the nodes of tree the nodes of tree TT, which are referenced by the elements of, which are referenced by the elements of
array array bb, are stored in vertex arrays (one per hierarchy level), are stored in vertex arrays (one per hierarchy level)
the lengths of the arrays the lengths of the arrays aajj, which are determined inside the , which are determined inside the
subroutine subroutine overlappingChildrenoverlappingChildren()(), are written to an additional , are written to an additional
vertex array (using vertex array (using ARB_super_bufferARB_super_buffer extension)extension)
transformation matrixes for trees transformation matrixes for trees SS and and TT can be passed to the can be passed to the
fragment and vertex program units as program parametersfragment and vertex program units as program parameters

6

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

Implementation detailsImplementation detailsImplementation details

Hardware limitations:Hardware limitations:
the number of nodes for each hierarchy level (and therefore the the number of nodes for each hierarchy level (and therefore the
number of triangles of a single mesh) may not be larger than number of triangles of a single mesh) may not be larger than
the max. allowed texture size the max. allowed texture size MM (usually (usually MM=2048)=2048)

larger meshes have to be split into multiple sublarger meshes have to be split into multiple sub--meshes with meshes with
max. max. MM triangles eachtriangles each

Possible optimizations:Possible optimizations:
avoid unnecessary calls of avoid unnecessary calls of overlappingChildPairsoverlappingChildPairs()() when array when array
bb contains only empty arrays contains only empty arrays aajj (can be determined by querying (can be determined by querying
an occlusion count using the an occlusion count using the ARB_occlusion_queryARB_occlusion_query extension)extension)
by using 2D textures of height by using 2D textures of height MM for every hierarchy level for every hierarchy level ii
and packing multiple 2D arrays into these textures,and packing multiple 2D arrays into these textures,
MM/2/2ii meshes can be processed simultaneously by ameshes can be processed simultaneously by a
single batch (i.e. a single single batch (i.e. a single overlappingChildPairsoverlappingChildPairs()() call)call)

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

Conclusions and Future WorkConclusionsConclusions and Future and Future WorkWork

SummarySummary::
hierarchical collision detection using programmable hierarchical collision detection using programmable
graphics hardwaregraphics hardware
all calculations done in objectall calculations done in object--space, not imagespace, not image--spacespace
no requirements on shape, topology, connectivityno requirements on shape, topology, connectivity

OngoingOngoing and and futurefuture workwork::
inin--depthdepth performanceperformance analysisanalysis of of ourour implementationimplementation
thethe usageusage of of boundingbounding volumesvolumes otherother thanthan AABBsAABBs
and of and of enhancedenhanced treetree traversaltraversal schemesschemes areare to to bebe
evaluatedevaluated

University of Bonn University of Bonn Computer Graphics GroupComputer Graphics Group

Questions?QuestionsQuestions??

