

Volumetric Medical Data Visualization for **Collaborative VR Environments**

- Roland Fischer, Kai-Ching Chang, René Weller, Gabriel Zachmann
 - University of Bremen, Germany
 - rfischer@cs.uni-bremen.de

EuroVR 2020 – Scientific Track 25-27 November, Valencia, Spain

Motivation

 In medicine, CT images and 3D visualizations mostly viewed in 2D, alone/co-located

Medical Visualization [Siemens Healthineers]

Details

Results

Conclusion

Motivation

- In medicine, CT images and 3D visualizations mostly viewed in 2D, alone/co-located
- Future: general trend to use
 VR and telepresence

Introduction

Previous Work

Overview

Medical Visualization [Siemens Healthineers]

VR in Medicine [Arch Virtual]

Motivation

- In medicine, CT images and 3D visualizations mostly viewed in 2D, alone/co-located
- Future: general trend to use
 VR and telepresence
- Goal: integrate volume rendering into game engine to view 3D visualizations in VR with remote colleagues

Medical Visualization [Siemens Healthineers]

VR in Medicine [Arch Virtual]

Vision: Volume Rendering in collaborative VR [shutterstock/Gorodenkoff]

Details

Results

• Volume rendering for medical visualization: lacks VR/multi-user support [Berger18, Jung19]

Details

Results

- Volume rendering for medical visualization: lacks VR/multi-user support [Berger18, Jung19]
- Volume rendering in Unreal Engine 4: rudimentary, not designed for medical data [Brucks16]

Details

- Volume rendering for medical visualization: lacks VR/multi-user support [Berger18, Jung19]
- Volume rendering in Unreal Engine 4: rudimentary, not designed for medical data [Brucks16]
- VR simulators in medicine
 - Visualization-focused: only single-user [Maloca18, Magdics18, Scholl19]

[Scholl19]

Details

Results

- Volume rendering for medical visualization: lacks VR/multi-user support [Berger18, Jung19]
- Volume rendering in Unreal Engine 4: rudimentary, not designed for medical data [Brucks16]
- VR simulators in medicine
 - Visualization-focused: only single-user [Maloca18, Magdics18, Scholl19]
 - Collaboration-focused: no volume rendering [Paiva18, Christensen18, Chheang19]

[Scholl19]

[Chheang19]

Details

Results

Novel system combining 3D medical visualization and multi-user VR

Details

Results

Conclusion

- Custom Direct Volume Rendering (DVR) in Unreal Engine 4

Novel system combining 3D medical visualization and multi-user VR

- Custom Direct Volume Rendering (DVR) in Unreal Engine 4
 - Real-time performance
 - Multiple lighting techniques

Novel system combining 3D medical visualization and multi-user VR

- Custom Direct Volume Rendering (DVR) in Unreal Engine 4
 - Real-time performance
 - Multiple lighting techniques

Novel system combining 3D medical visualization and multi-user VR

Shared virtual environment, collaborative inspection & interaction

Details

Introduction

Previous Work

Overview

Introduction

Previous Work

Overview

Introduction

Previous Work

S CUROVR 2020 CONFERENCE

Introduction

Previous Work

Details

Results

Conclusion

Introduction

Previous Work

Details

Results

Conclusion

• Preprocessing of CT data

Introduction

Previous Work

Overview

Details

Results

Conclusion

- Preprocessing of CT data
 - Window blending similar to [Mandell17] enables combination of transfer functions

- Preprocessing of CT data
 - Window blending similar to [Mandell17] enables combination of transfer functions
 - Creation of sequence maps/3D textures for single texture import

- Preprocessing of CT data
 - Window blending similar to [Mandell17] enables combination of transfer functions
 - Creation of sequence maps/3D textures for single texture import
- Runtime: shader-based raymarching

Details

Results

- Preprocessing of CT data
 - Window blending similar to [Mandell17] enables combination of transfer functions
 - Creation of sequence maps/3D textures for single texture import
- Runtime: shader-based raymarching
 - Proxy mesh with view-aligned planes, like [Brucks16]

Details

Results

- Preprocessing of CT data
 - Window blending similar to [Mandell17] enables combination of transfer functions
 - Creation of sequence maps/3D textures for single texture import
- Runtime: shader-based raymarching
 - Proxy mesh with view-aligned planes, like [Brucks16]
 - Supports multiple dynamic light sources

Details

Results

- Optimizations:
 - Empty space skipping via octree increases performance

Details

Results

- Optimizations:
 - Empty space skipping via octree increases performance
 - Jittering, super sampling reduce artifacts

Details

Results

- Optimizations:
 - Empty space skipping via octree increases performance
 - Jittering, super sampling reduce artifacts
- Multiple local lighting techniques

Details

Results

- Optimizations:
 - Empty space skipping via octree increases performance
 - Jittering, super sampling reduce artifacts
- Multiple local lighting techniques
 - Shadow rays

Details

Results

- Optimizations:
 - Empty space skipping via octree increases performance
 - Jittering, super sampling reduce artifacts
- Multiple local lighting techniques
 - Shadow rays
 - Blinn-Phong

Details

Results

- Optimizations:
 - Empty space skipping via octree increases performance
 - Jittering, super sampling reduce artifacts
- Multiple local lighting techniques
 - Shadow rays
 - Blinn-Phong
 - Volumetric local ambient occlusion

• Lobby system for multiple parallel rooms

Details

Results

Conclusion

- Lobby system for multiple parallel rooms
- Immersive shared environment
 - High quality virtual OP

Details

Results

Conclusion

- Lobby system for multiple parallel rooms
- Immersive shared environment
 - High quality virtual OP
 - VR and non-VR users can mix

Details

Results

Conclusion

- Lobby system for multiple parallel rooms
- Immersive shared environment
 - High quality virtual OP
 - VR and non-VR users can mix
- Static mesh avatars (head/hands) instead of inverse kinematics for robustness

Details

Results

- Lobby system for multiple parallel rooms
- Immersive shared environment
 - High quality virtual OP
 - VR and non-VR users can mix
- Static mesh avatars (head/hands) instead of inverse kinematics for robustness
- Locomotion via teleport + room-scale

Details

Results

- Lobby system for multiple parallel rooms
- Immersive shared environment
 - High quality virtual OP
 - VR and non-VR users can mix
- Static mesh avatars (head/hands) instead of inverse kinematics for robustness
- Locomotion via teleport + room-scale
 - Visual teleportation effect reduces confusion

Details

Results

- Separate interaction metaphors VR/non-VR
 - Motion controller/mouse + keyboard

Details

Results

- Separate interaction metaphors VR/non-VR
 - Motion controller/mouse + keyboard
- Shared 3D CT visualization

Details

Results

- Separate interaction metaphors VR/non-VR
 - Motion controller/mouse + keyboard
- Shared 3D CT visualization
 - Grab, rotate, move

✓ Springer

- Separate interaction metaphors VR/non-VR
 - Motion controller/mouse + keyboard
- Shared 3D CT visualization
 - Grab, rotate, move
- Dynamic switching of lighting modes and selected transfer functions

シン Springer

Details

Results

- Separate interaction metaphors VR/non-VR
 - Motion controller/mouse + keyboard
- Shared 3D CT visualization
 - Grab, rotate, move
- Dynamic switching of lighting modes and selected transfer functions
- 2D CT images on virtual monitor

Springer

Details

Results

Introduction

Previous Work

Overview

Results: VR Environment with 3D Visualization

Shadow rays

Introduction

Previous Work

Overview

Blinn-Phong

Local ambient occlusion

Results

Results: DVR Transfer Functions

Bone

Introduction

Previous Work

Overview

Bowel and skin

Soft tissue + bone + bowel and skin

Results

Results: Visualization Comparison

Ours

Introduction

Previous Work

Overview

RadiAnt DVR

Details

Results

Results: Performance

System Specification

Item	Details	
Screen Resolution	1920x1080	
CPU	Intel Core i7 4790	
GPU	Nvidia Titan V	
RAM	32 GB	
OS	Windows 10	
Engine	Unreal Engine 4.22	

New multi-user VR system for medical data visualization

Details

Results

Conclusion

- New multi-user VR system for medical data visualization
- Custom direct volume renderer for Unreal Engine 4

- New multi-user VR system for medical data visualization
- Custom direct volume renderer for Unreal Engine 4
 - High visual quality
 - Real-time performance, > 100 Hz with 317 slices

- New multi-user VR system for medical data visualization
- Custom direct volume renderer for Unreal Engine 4
 - High visual quality
 - Real-time performance, > 100 Hz with 317 slices
- Immersive shared 3D environment with interactive volume CT data

- New multi-user VR system for medical data visualization
- Custom direct volume renderer for Unreal Engine 4
 - High visual quality
 - Real-time performance, > 100 Hz with 317 slices
- Immersive shared 3D environment with interactive volume CT data
- Well suited for collaborative planning and assessment in VR, according to preliminary user feedback

Include dynamic clipping planes

- Include dynamic clipping planes
- Add volumetric drawing/annotations

Details

Results

Conclusion

- Include dynamic clipping planes
- Add volumetric drawing/annotations
- Enable dynamic adjustment of transfer functions

Details

Results

- Include dynamic clipping planes
- Add volumetric drawing/annotations
- Enable dynamic adjustment of transfer functions
- Conduct formal user study

Details

Results

Thank you Questions?

Image References

- 1. Kalshetti et al.; 2018; Antara: An Interactive 3D Volume Rendering and Visualization Framework
- 2. Bartz and Preim; 2011; Visualization of Segmented Anatomical Structures
- 3. Geert Ariën (https://www.geertarien.com/blog/2017/08/30/blinn-phong-shading-using-webgl/)
- 4. Florian Cassayre (https://cg.cassayre.me/2019/05/09/ambient-occlusion-prototype.html)
- VR icon by Milan Gladiš from the Noun Project (<u>https://thenounproject.com/search/?q=vr&i=597665</u>) Room icon by Batibull from the Noun Project (<u>https://thenounproject.com/term/room/2072696/</u>)

