

Improved CNN-based Marker Labeling for Optical Hand Tracking

Janis Rosskamp¹, Rene Weller¹, Thorsten Kluss², Jaime L. Maldonado C²., Gabriel Zachmann¹

¹University of Bremen, Computer Graphics and Virtual Reality, Germany ²University of Bremen, Cognitive Neuroinformatics, Germany

> EuroVR 2020 – Scientific track 25-27 November - Valencia, Spain

- Accurate hand tracking for
 - Physically-based grasping
 - Medical training
 - Human-to-robot transfer
 - Trajectories of finger motion
 - Heatmaps of contact points

Verschoor et al. 2018

Cyberglove

RGB

Mueller et al., 2018

Active Markers

Pavllo et al., 2018

- Sub-millimeter accuracy
- Less invasive than active markers
- Challenges: Occlusions require relabeling

PathFileType		4 (X	/Y/Z)	C:/U	C:/Users/studl0/golubev-hand-trackin								
Dat	DataRate Cam		raRate	Num	NumFrames		NumMarkers		Units		OrigData		
30	30 450	28	cm 30	0	450								
Fra	me # Tim	e	Unlabe	led 1	660			Unla	bele	ed 10	561		
	X1	Y1	Z1 X2	Y2	Z2	ХЗ	¥3	Ζ3	X4	¥4	Z4	X5	Y5
0	0 48.	8657	155.63	2 111	.994	47.9	9975	156.	13	114.	.748	49.8	3799
1	0.03333	33	48.889	2 155	.763	111	.924	48.0	074	156.	.278	114	.656
2	0.06666	67	48.928	7 155	.87	111	.869	48.0	506	156.	.394	114	.595
3	0.1 48.	9924	155.97	7 111	.833	48.3	1249	156.	477	114.	.585	49.9	9951
4	0.13333	3	49.004	4 156	.068	111	.782	48.1	287	156.	.596	114	.506
5	0.16666	7	49.027	9 156	.179	111	.722	48.1	459	156.	.713	114	.446
6	0.2 49.	0587	156.25	2 111	.691	48.3	1701	156.	789	114.	.403	50.1	1329
7	0.23333	3	49.110	7 156	.336	111	.657	48.2	04	156.	.877	114	.371
8	0.26666	7	49.168	3 156	.389	111	. 65	48.2	806	156.	.925	114	.375
9	0.3 49.	2779	156.40	4 111	.713	48.3	395	156.	928	114.	.437	50.3	3643
10	0.33333	3	49.396	5 156	.447	111	.755	48.5	19	156.	962	114	.48
11	0.36666	7	49.544	6 156	.527	111	.784	48.6	47	157.	.029	114	.509
12	0.4 49.	6932	156.59	7 111	.819	48.8	8046	157.	122	114.	.536	50.1	7336
13	0.43333	3	49.832	9 156	.703	111	.838	48.9	494	157.	.23	114	.558
14	0.46666	7	50.003	6 156	.818	111	.864	49.1	166	157.	.354	114	.601
15	0.5 50.	1768	156 93	1 111	914	49.3	3097	157.	466	114.	. 642	51.2	2354
16	0.53333	3			49.4	4926	157.	609	114.	. 675	51.3	8995	152.
17	0.56666	7			49.6	5966	157.	.777	114.	. 695	51.5	5983	152.
18	0.6						51.7	7564	152.	.719	103	60.2	2852

- Sparse marker sets
 - Real-time inverse kinematics (Maycock et al., 2015)
 - Gaussian mixture models (Alexanderson et al., 2017)
- Labeling of dense marker sets (Han et al., 2018)

- Improvement of current state-of-the-art labeling
 - Modified depth images
 - Retraining of CNN

- Find projection axis for orthographic projection
- Splatting to preserve relative depth

• Values along the axis are normalized between [0.1,1] (depth value)

- Idea: Use random projection axis (Han et. al)
 - eigenvalues of covariance matrix)

• Generate 10 random images and select the one with highest spatial spread (highest

- Idea: Multiple marker matches and select best match
 - Generate multiple random projection axis and images
 - Match all images and select the one with lowest matching cost

- Idea: Create an image with high spatial spread
 - Get principal axes of the 3D point cloud
 - Use principal axis with lowest eigenvalue as projection axis

- Idea: Similar images independent of hand pose
 - Projection axis perpendicular to the palm's orientation
 - Palm orientation from rigid markers

- Training set¹ of 168691 frames provided by Han et al.
- VGG-style neural network
- Retraining of provided CNN¹ for PCA & PalmP for improved results
 - 137357 frames for training & 31.334 frames for validation
 - Improves accuracy up to 20 percent p

¹ https://github.com/Beibei88/Mocap_SIG18_Data

		•		•	
	\frown		n	tc	
J	U			L)	

Layer id	Туре	Filter shape	Input size		
1	Conv + BN + ReLU	$64 \times 3 \times 3$	$1 \times 52 \times 52$		
2	Conv + BN + ReLU	$64 \times 3 \times 3$	$64 \times 50 \times 50$		
3	Maxpool	2×2	$64 \times 48 \times 48$		
4	Conv + BN + ReLU	$128 \times 3 \times 3$	$64 \times 24 \times 24$		
5	Conv + BN + ReLU	$128 \times 3 \times 3$	$128 \times 22 \times 22$		
6	Conv + BN + ReLU	$128 \times 3 \times 3$	$128 \times 20 \times 20$		
7	Maxpool	2×2	$128 \times 18 \times 18$		
8	Reshape	N/A	$128 \times 9 \times 9$		
9	FC + ReLU	2048×10368	10368		
10	FC	2048×57	2048		
11	Reshape	N/A	57		

Han et al., 2018

Accuracy: labels

Accuracy: frames

• How many images can be used for the Multi method?

- Current state-of-the-art labeling up to 40 percent points improved
- Multiple methods depending on use-case
 - Multi: Independent of marker set but multiple CNN passes are necessary
 - PCA: Independent of marker set and fast
 - PalmP: Prior knowledge required (in our case the palm)

