
A Framework for Transparent Execution of
Massively-Parallel Applications on CUDA and OpenCL

Jörn Teuber1, Rene Weller1, Gabriel Zachmann1

1University of Bremen, Germany; {jteuber,weller,zach}@cs.uni-bremen.de

Abstract
We present a novel framework for the simultaneous development for different massively parallel platforms. Cur-
rently, our framework supports CUDA and OpenCL but it can be easily adapted to other programming languages.
The main idea is to provide an easy-to-use abstraction layer that encapsulates the calls of own parallel device code
as well as library functions. With our framework the code has to be written only once and can then be used
transparently for CUDA and OpenCL. The output is a single binary file and the application can decide during
run-time which particular GPU-method it will use. This enables us to support new features of specific platforms
while maintaining compatibility. We have applied our framework to a typical project using CUDA and ported it
easily to OpenCL. Furthermore we present a comparison of the running times of the ported library on the different
supported platforms.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology
and Techniques—Device independence

1. Introduction

The single core performance of CPUs stagnates widely
since many years. On the other hand, the demand for
larger scenes with increasing details, accurate physics
simulation, marker less tracking devices and many
other expectations on modern VR applications requires
more and more computational power. Obviously, the
solution is an increasing degree of parallelization.
While the parallelization of CPUs progresses relatively
slowly, current GPUs offer an exhaustive number of
parallel processing units. Unfortunately, it is often not
trivial to parallelize tasks or algorithms. Hence, a lot
of research has been spent in the development of new
algorithms that are better suited for parallel execution.

Especially in the academic world, such algorithms
are often implemented only as a proof-of-concept. To
do this, researches often choose NVIDIA’s CUDA pro-
gramming language [NBGS08] because it is easy to
use, it offers sophisticated tools for debugging and pro-
filing and it has great community support. Moreover,
a lot of libraries exist that allow rapid application de-
velopment and the features of new GPU generations
are integrated immediately. Unfortunately, programs

developed in CUDA are restricted to work only on
NVIDIA GPUs [LNOM08]. Obviously, software com-
panies that sell their products to a broader audience
need a different API.

Here, OpenCL [SGS10], a platform-independent
standard for parallel programming, defined by the
Khronos Group, is usually the method of choice. How-
ever, porting code from CUDA to OpenCL requires
the replacement of standard libraries, for instance
for parallel sorting or image processing, and the re-
implementation of large parts of the code.

We present a novel method to overcome these, often
time consuming, limitations. Our new wrapper frame-
work for CUDA/OpenCL supports an easy work-flow
for porting CUDA to OpenCL code and supports plat-
form independent development from the start. To do
that we implemented an easy to use common interface
that encapsulates the calls of parallel device code as
well as library functions. The resulting single binary
includes both CUDA as well as OpenCL code, and the
application can decide during run-time which partic-
ular GPU-method it will use. This enables us to sup-
port new features that are supported much earlier by

Submission 28 / CUDA/OpenCL Wrapper

Figure 1: Class diagram of our wrapper. The GPUWrapper class is a singleton and the central wrapper for all host-
code-calls while DevMem<T> wraps the memory access. Objects of DevMem are created by the GPUWrapper. The
GPUUser class provides access to the used GPGPU-Implementation to all instances of the DevMem template.

CUDA while maintaining compatibility. In addition, it
allows us to perform comparisons between CUDA and
OpenCL, and between execution on the GPU and on
the CPU regarding their respective performance very
easily. We have applied our framework to an extensive
CUDA library for the parallel computation of sphere
packings [WZ10].

2. Related Work

In the past there were several projects to enable de-
velopers to port CUDA to OpenCL. The most re-
cent one, CU2CL [GSFM13], is an attempt at an au-
tomated translator for CUDA code to OpenCL code.
It translates given .cu files, the .cpp file equivalent for
CUDA code, into several C++ and OpenCL files to use
with OpenCL. This automatic conversion requires all
CUDA API calls to be encapsulated into functions in
.cu files, which is not the common way of using CUDA.
Also the intended result of CU2CL is just the code
for OpenCL, CUDA can not directly be used side-by-
side. Hence, the programmers have to avoid the most
recent CUDA features that are not yet supported by
OpenCL and moreover, it does not support external li-
brary calls.

A project more similar to ours was Swan [HDF11],
which combined a translator for CUDA kernels to
OpenCL kernel code with a common API encapsu-
lating the CUDA and OpenCL APIs. Unfortunately
this project was discontinued in 2010 and not updated
since then. To our knowledge there are no other cur-
rent projects providing transparent access to CUDA
and OpenCL.

There are several papers comparing the perfor-
mance of CUDA and OpenCL, mostly for very specific
use cases. [KDH10] for instance investigated a Monte
Carlo simulation of a quantum spin system while
[MS14] considered text encryption using the GPU, to
name a few. Both papers observed that OpenCL is
slightly slower than CUDA. [LCMH14] on the other
hand used CUDA, OpenCL and GLSL to accelerate
skeletal animations and found that all three methods
yielded a comparable performance.

3. Our Approach

The basic idea of our approach is to maintain a single
wrapper class that encapsulates all CUDA/OpenCL
related functions. This class has a simple and general
interface that allows the handling of both parallel pro-
gramming languages simultaneously. The output is a
single binary for both CUDA and OpenCL. The appli-
cation can decide at runtime, which library to use. Also
it is reusable and may enable other programs to pro-
vide both OpenCL and CUDA support.

We start with a short recap of the GPU programming
terminology. GPGPU is the abbreviation for general
purpose computation on graphics processing units.
It is used to refer to any kind of computing on the
GPU outside of computer graphics, from re-purposed
shaders to CUDA and OpenCL. The processor on
which the program is started, i.e. the CPU, is called
the Host while the processor that is used for the mas-
sively parallel algorithm is called device. This can be a
GPU, but also a CPU or an accelerator card in the case
of OpenCL. Kernels are the programs that are being
run in parallel on the device.

Submission 28 / CUDA/OpenCL Wrapper

void main()
{

// initialize with CUDA as GPGPU method if available, or OpenCL if not
if(GPUWrapper::getCUDADeviceCount() > 0)

GPUWrapper::init(GPCUDA);
else

GPUWrapper::init(GPOpenCL);
GPUWrapper* gpu = GPUWrapper::getSingletonPtr();

// generate random numbers on the host
float host_array[1000000];
std::generate(host_array, host_array+1000000, rand);

// create a new array on the device and copy the array to the device
DevMem<float>* device_array = gpu->copyToDev(host_array, 1000000);

// sort the array and download it from the device
gpu->sort(device_array);
device_array->copyToHost(host_array);

return 0;
}

Figure 2: Simple example program using our wrapper for sorting a random array.

Our approach consists of three main components
(See Figure 1).

• GPUWrapper class: This class builds the core of
our approach. It realizes the main interface for the
developers, including initialization and platform-
independent access to the massively parallel func-
tions and libraries.

• DevMem class: A template class to handle the mas-
sively parallel data structures.

• GPUUser class: This class implements the real map-
ping to the particular platform. Actually, this class is
used only internally and not directly accessed by the
developer.

In the following, we will describe the functionality
of all these components in more details. The GPUWrap-
per class is the central wrapper for both OpenCL and
CUDA, the functionality of which are implemented in
the same-named classes. The GPUWrapper class is a
singleton which has to be initialized by the user with
the information about the GPGPU method and device
to use. We use the singleton pattern here to provide
universal access to the initialized GPUWrapper. Actu-
ally, all CUDA API functions can be accessed every-
where in the code but the access to OpenCL devices is
restricted to only a single device at the same time.

The DevMem template encapsulates the different
models of pointer to device memory. It also provides
the basic member functions like memSet and copy-
ToHost. Other important methods for GPGPU like

scan, sort or reduce are provided by GPUWrapper
and than delegated to the Thrust library for CUDA or
boost::compute for OpenCL.

The GPUUser class consists simply of static point-
ers to objects of the CUDA and the OpenCL classes,
which are set by GPUWrapper during initialization.
This provides all instances of DevMem access to CUDA
and OpenCL. A template inheriting from a class with
static variables is a common pattern to provide all in-
stances of the template with access to those static mem-
ber variables.

Figure 2 shows a typical example how to use our ap-
proach: We start with the initialization of an GPUUser
object, define some device data using our DevMem tem-
plate class and finally, do our massively parallel com-
putations on this data.

So far, our wrapper can automatically handle only
code on the host side, but not the kernel code. This
means, the kernel code has to be converted manu-
ally. Luckily, the porting of the kernels from CUDA to
OpenCL is mostly straight-forward text replacement as
long as no advanced CUDA specific methods are used.
In our case, we just had to make minor adjustments,
which were mostly due to the different memory ad-
dressing models of CUDA and OpenCL and the fact
that OpenCL uses plain C while CUDA allows more
C++-like code.

The method of kernel calls differs significantly be-

Submission 28 / CUDA/OpenCL Wrapper

tween CUDA and OpenCL. NVIDIA uses a compiler
extension to make CUDA kernel calls to be as similar to
normal function calls as possible. OpenCL kernels on
the other hand are runtime-compiled for every device
(with the option to save and load compiled kernels at
runtime) and called by supplying an OpenCL function
with the handle of the kernel and other information.
This dissimilarity leads to a necessary deviation from
good wrapper design, which is the Kernel class, objects
of which can only be created by the OpenCL class. For-
tunately, NVIDIA suggests to use small wrapper func-
tions for the kernel calls anyway, so by just extending
those, the main host code does not change. You can see
one of those wrapper functions in Figure 3.

4. Application

We applied our method to a library that computes
space filling sphere packings for arbitrary 3D ob-
jects [WZ10]. Originally, the library was developed in
CUDA but industrial partners have the demand to run
it also on systems without NVIDIA GPUs and even
without dedicated graphics cards at all. The library re-
lies on typical library calls for sorting and scanning
but it additionally contains different individual kernels
and different data structures.

We will provide a short recap on the basic idea of
the sphere packing algorithm to enable a better judg-
ment of its complexity: The main idea is to generate
a greedy sphere packing, i.e., to insert successively
the largest possible sphere into the object considering
the already inserted spheres. The major challenge is to
find the position of this largest spheres. Here, the au-
thors provided a simple heuristic that is similar to tech-
niques that are often used in machine-learning algo-
rithms: A so-called prototype is initially inserted at an
arbitrary position inside the object and then this proto-
type is iteratively moved, depending on its minimum
distance to the surface (see Fig. 4). In order to avoid
local minima, the authors do not use a single proto-
type but many of them that move independently and
hence, can be easily parallelized. In order to acceler-
ate the distance computations the library contains dif-
ferent implementations of discrete distance fields (see
[TWZG13] for more details). Algorithm 1 provides a
short overview on the main steps in pseudo code.

5. Results

We have applied our semi-automatic CUDA/OpenCL
version to the above mentioned sphere packing library.
The porting of the complete library took only a half
day for the adjustment of the CUDA kernels code.
Additionally, we tested the performance of the com-
piled dual-executable on an PC with Intel I7 CPU and

Algorithm 1: computeSpherePacking(3D object O)

while O not densly filled do
while Not converged do

In parallel Insert new prototypes
In parallel Move protoypes

In parallel Sort prototypes with respect to
distance
In parallel Insert new spheres
In parallel Update discrete distance field

(a) (b)

(c) (d)

Figure 4: Visualization of the prototype convergence:
(a) Place the prototype P randomly inside the object,
(b) calculate the closest point on the surface and the
distance d, (c) move P away from the closest point, and
(d) repeat this until the prototype converges.

a NVIDA GTX 680 GPU with 8 GByte of memory.
The CUDA code was executed on the GPU exclusively
whereas the OpenCL code was compiled for the CPU
as well as for the NVIDIA GPU and the built in Intel
graphics adapter. We tested different 3D objects and
filled them with different numbers of spheres.

Figure 5 shows the results of our tests. In all our test
cases the CUDA and the OpenCL-GPU version have
a very similar performance. In our first test case, the
OpenCL-CPU version is slower than all GPU versions,
which is expected. We recognized a speed-up of about
an order of magnitude with the GPU version for the
NVIDIA GPU. Even the built-in Intel GPU runs up to
a factor of two faster than the CPU version.

Surprisingly, in our second scenario (see Fig. 5,
right), the CPU outperforms both GPU versions at
the beginning of the algorithm, when the number of
spheres is small. In this scenario we changed the reso-

Submission 28 / CUDA/OpenCL Wrapper

void countMemory(int nrTriangles, ObjectOnDevice *object,
DevMem<unsigned int>* cellsPerTriangle)

{
if(GPUWrapper::getSingletonPtr()->getType() == GPCuda)
{

uint numThreadsPerBlock, numBlocks;
computeGridSize(nrTriangles, blockSize, &numBlocks, &numThreadsPerBlock);

countMemoryKernel<<< numBlocks, numThreads >>>(object->m_uiNumTriangles,
object->m_dVertices->getCUDA(), object->m_dVertexIndices->getCUDA());

}
else if(GPUWrapper::getSingletonPtr()->getType() == GPOpenCL)
{

static Kernel* spKernel = NULL;
if(spKernel == NULL)

spKernel = GPUWrapper::getSingletonPtr()->getRawOpenCL()->createKernel(
"countMemoryKernel", "ExplicitGrid_kernels.cl");

spKernel->execute(nrTriangles, blockSize, object->m_uiNumTriangles, getGridConfigOCL(),
object->m_dVertices->getOCL(), object->m_dVertexIndices->getOCL());

}
}

Figure 3: Example of a user-defined wrapper function for custom kernel calls. This has to be implemented by the
application’s programmer for every custom kernel. If CUDA is used, the kernel is called with the respective CUDA
syntax. In the case of OpenCL, the kernel is loaded from a file into a static pointer and executed using a variadic
method of the kernel class.

lution of the discrete distance map while maintaining
the number of prototypes. Basically, in the convergence
step of Algorithm 1, each prototype checks all grid cells
in the discrete distance field that could possibly con-
tain the closest point on the surface. If we increase the
resolution of the discrete distance field, this results in
a higher number of cells that has to be visited and con-
sequently, to an increasing workload per prototype, i.e.
per thread. On the GPU, the threads on a warp are exe-
cuted in lock-step, whereas the CPU can schedule new
threads at any time. Consequently, we have a worse
degree of parallelization on the GPU and therefore a
worse core utilization than on the CPU.

Actually, we were already aware of this problem but
we did not anticipate the magnitude of the impact on
the timings. So, the porting of the sphere packing to
OpenCL provided us also new insights about oppor-
tunities to further optimize the algorithm.

6. Conclusion and Future Work

We presented a new wrapper approach which enables
programmers to develop massively parallel algorithms
for CUDA and OpenCL simultaneously or to port their
CUDA algorithms to OpenCL or vice versa very eas-
ily. Our semi-automatic wrapper is easy to use and it
supports platform specific libraries as well as kernel

code written by the application programmers. We used
our wrapper to port a complex library from CUDA to
OpenCL. In addition, we present the running times
of that library that allow a comparison of the respec-
tive performances of massively-parallel implementa-
tions on CUDA, OpenCL/GPU, and OpenCL/CPU.
Our measurements show a very similar running time
of CUDA vs. OpenCL on the GPU with OpenCL on the
CPU being slower by about an order of magnitude in
case of optimized parallelization.

In conclusion, the additional work of porting a pro-
gram from CUDA to OpenCL can be held low. In this
paper, we presented such a software architecture that
is easy to implement. Having thus the opportunity to
run your code on different platforms and paralleliza-
tion APIs at any time during the development process
helps a lot to gain insights into how your code per-
forms on those vastly different different platforms.

In the future we would like to extend our wrap-
per to support more external libraries and we will re-
lease it under an open-source license as we believe
that this might be useful to other people. Furthermore,
some parts of the kernel code still have to be ported
manually. A complete automatic conversion between
CUDA and OpenCL kernel code would be an interest-
ing project for the future.

Submission 28 / CUDA/OpenCL Wrapper

0 1 2 3 4 5

0

20

40

60

80

#Spheres/10000

Se
co

nd
s

Low Resolution Distance Map

CUDA
OpenCL NVIDIA
OpenCL Intel CPU
OpenCL Intel GPU

0 1 2 3 4 5

0

5

10

15

20

#Spheres/10000

Se
co

nd
s

High Resolution Distance Map

CUDA
OpenCL NVIDIA
OpenCL Intel CPU
OpenCL Intel GPU

0 1 2 3 4 5

1

3

5

7

9

#Spheres/10000

X
/C

U
D

A

Relative TimingsOpenCL NVIDIA
OpenCL Intel CPU
OpenCL Intel GPU

Figure 5: Performance of sphere packing algorithm with different resolutions of the discrete distance map for the
dragon model (bottom right). In case of a low resolution we have a high degree of parallelization and both GPU
versions outperform the CPU version by a factor of 5 (upper left). In case of a high resolution, the degree of paral-
lelization decreases and the CPU version is faster, at least in early stages of the algorithm (upper right).

References
[GSFM13] GARDNER M., SATHRE P., FENG W.-C., MAR-

TINEZ G.: Characterizing the Challenges and Evaluating
the Efficacy of a CUDA-to-OpenCL Translator. Parallel
Computing (October 2013). 2

[HDF11] HARVEY M. J., DE FABRITIIS G.: Swan: A tool for
porting cuda programs to opencl. Computer Physics Com-
munications 182, 4 (2011), 1093–1099. 2

[KDH10] KARIMI K., DICKSON N. G., HAMZE F.: A per-
formance comparison of cuda and opencl. arXiv preprint
arXiv:1005.2581 (2010). 2

[LCMH14] LIU S., CHEN G., MA C., HAN Y.: Gpgpu accel-
eration for skeletal animation-comparing opencl with cuda
and glsl. Journal of Computational Information Systems 10, 16
(2014), 7043–7051. 2

[LNOM08] LINDHOLM E., NICKOLLS J., OBERMAN S.,
MONTRYM J.: Nvidia tesla: A unified graphics and com-
puting architecture. IEEE micro, 2 (2008), 39–55. 1

[MS14] MAHAJAN S., SINGH M.: Performance analysis
of efficient rsa text encryption using nvidia cuda-c and
opencl. In Proceedings of the 2014 International Conference

on Interdisciplinary Advances in Applied Computing (New
York, NY, USA, 2014), ICONIAAC ’14, ACM, pp. 31:1–
31:6. URL: http://doi.acm.org/10.1145/2660859.
2660941, doi:10.1145/2660859.2660941. 2

[NBGS08] NICKOLLS J., BUCK I., GARLAND M., SKADRON
K.: Scalable parallel programming with cuda. Queue 6, 2
(2008), 40–53. 1

[SGS10] STONE J. E., GOHARA D., SHI G.: Opencl: A par-
allel programming standard for heterogeneous computing
systems. Computing in science & engineering 12, 1-3 (2010),
66–73. 1

[TWZG13] TEUBER J., WELLER R., ZACHMANN G., GUTHE
S.: Fast sphere packings with adaptive grids on the gpu.
In In GI AR/VRWorkshop (Würzburg, Germany, September
2013). 4

[WZ10] WELLER R., ZACHMANN G.: Protosphere: A gpu-
assisted prototype guided sphere packing algorithm for ar-
bitrary objects. In ACM SIGGRAPH ASIA 2010 Sketches
(New York, NY, USA, 2010), SA ’10, ACM, pp. 8:1–8:2.
URL: http://cg.in.tu-clausthal.de/research/
protosphere, doi:http://doi.acm.org/10.1145/
1899950.1899958. 2, 4

http://doi.acm.org/10.1145/2660859.2660941
http://doi.acm.org/10.1145/2660859.2660941
http://dx.doi.org/10.1145/2660859.2660941
http://cg.in.tu-clausthal.de/research/protosphere
http://cg.in.tu-clausthal.de/research/protosphere
http://dx.doi.org/http://doi.acm.org/10.1145/1899950.1899958
http://dx.doi.org/http://doi.acm.org/10.1145/1899950.1899958

