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Motivation

* Various methods to model the gravitational field exist with different advantages and
disadvantages

* Triggered by the development of the GRASS surface gravimeter for the ESA Hera mission (See talk
by B. Ritter in MITM7 on Thursday), an international collaboration was formed to compare three
different gravitation computation methods

* Here, focus was laid small, irregular Solar System bodies, with measurements on the surface
(largest error, surface gravimeter)

* Thus far, only homogeneous case considered, inhomogeneous case presented today (+ongoing)
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Credit: MeilRenhelter, Hermann, et al (2022) IEEE Aerospace Conference (AERO). IEEE.
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Comparing 3 Methods

Polyhedral Method

Mascons: Sphere

Mascons: Spherical

(PM) Packing (MSP) coordinates (MASC)
* Closed form analytical * Non-uniform sphere * Divides the shape into
solution for gravitation of packing subvolumes of adjustable size

polyhedral by Werner &
Scheeres (1996)

e Original form demands
constant density p

* Found most precise in
homogeneous case (e.g.
cube), but expensive
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Credit: Werner & Scheeres (1997)

e Space-filling for an
infinite number of
spheres

* A natural choice
between accuracy and
performance

e Fast computation with easy
parallelization

(Srinivas et. al., 2017)

using spherical coordinates.

* Assigns a specific density to
each partial volume.

e Sums over all the mass
elements (parallel
implementation) to calculate
the gravity coefficients and
acceleration at specific points

Credit: Pdtzold and Andert, et al., 2016
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Experiment 1. Sphere with central Core

* Approximate perfect spheres with two UV-sphere (328,328 facets), core at center.
r=1,000 m and a density of 1.0g/cm3. Inner sphere r=100 m and a density of 0.5 g/cm?

* PM error always <100 %, as UV-sphere lies inside

* Mascons overshoot locally >100 %

Case | Method Min. [%] | Mean [%] | Max. (%] o %]
I PM 99.993143 99.995461 99.997864 | 0.000942
*  MASC vs. MSP shows completely different behaviour, MSP 800k | 99.542132 | 99.996047 | 100.345711 | 0.117449
MSP has Iargest spread MASC 64.8k | 99.994138 99.995459 100.004137 | 0.001201
—~1 1 2.79401 2.79414  99.99314 99.99786 99.99414 100 100.00414  99.54213 100 100.34571
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(a) Analytic solution. (b) Solution with polyhedral (c) Relative error between solu-
method. tions.

(a) MASC with core at center. (b) MSP with core at center.
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* Approximate perfect spheres with two UV-sphere (328,328 facets), core off-center (X—r | Y—r)
r=1,000 m and a density of 1.0g/cm3. Inner sphere r=100 m and a density of 0.5 g/cm?3

* PM error always <100 %, as UV-sphere lies inside, PM (and MASC) indifferent of core position!

* Spread for MSP smaller (mean comparable, but worse agreement here)
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(a) Analytic solution.
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(b) Solution with polyhedral
method.

(c) Relative error between solu-
tions.

MASC with core
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(¢) MSP with moved core.
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Case | Method Min. [%] | Mean [%] | Max. [%] | o [%]
II | PM 99.993143 | 99.995461 | 99.997864 | 0.000942
* Mascons overshoot locally (>100 %)
MSP 800k | 99.590773 | 99.995998 | 100.307859 | 0.111008
MASC 64.8k | 99.994137 | 99.995459 | 100.004158 | 0.001201
B . B B
2.7937 279453 2.79356 279446 99.99314 99.99786 99.99414 100.00414 9959077 100 100.30786
[ 107 (B 10 %) (%]




Ongoing and Future Work: Experiment 3

* Regolith Layer on Bennu as inhomogeneity (10 m
surface with some smoothing at core shape.

* Make inhomogeneities increasingly complex.
7.73653 8.8745 99.07161

* Kept total mass of Bennu constant

* Density: Starting from total mass 7.8%10710 kg,

density for homogeneous 1266 kg/m?3
Introduced density contrast for regolith -250 kg/m?3

[z 107 %)

B - B T = =

100 100.298 91.74658 100 109.46586

(assumed)
* Readapted core density to 1301 kg/m?3 to keep

* % % % * total mass of Bennu constant.

' * % * * (a) PM, gravitational acceleration. (b) MSP, relative error.

R OVAL DBSERVATORY OF Method Min. [%] | Mean [%] | Max. [%] o [%]

BELGIUM
MSP 800k 99.071611 99.962896 | 100.297938 | 0.102459
MASC 64.8k | 91.746583 | 100.651412 | 109.46586 | 2.289015
EPSC 2022 — Noeker, MeiRenhelter et al. — Session TP13

[%]

(c) MASC, relative error.
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Thank you!

More information on homogeneous density gravitation computation comparison:

MeiRenhelter, H., Noeker, M., Andert, T., Weller, R., Haser, B., Karatekin, O., Ritter, B., Hofacker, M., Machado, L.
& Zachmann, G. (2022, March).

Efficient and Accurate Methods for Computing the Gravitational Field of Irreqular-Shaped Bodies.
In 2022 IEEE Aerospace Conference (AERO) (pp. 1-17). IEEE.
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(a) (b)

Figure 6.1: (a) Icosphere (b) and UV-sphere. The number of facets for the icosphere grows by a factor 4
per subdivision, thus the precise number of facets cannot be chosen arbitrarily. On the contrary, the
UV-sphere subdivision is controlled by spherical coordinates, and thus the latitudinal and longitudinal
subdivision has a larger adaptability. From Meiflenhelter et al. (2022)



