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A B S T R A C T

Collision detection is a fundamental problem in many fields of com-
puter science, including physically-based simulation, path-planning
and haptic rendering. Many algorithms have been proposed in the
last decades to accelerate collision queries. However, there are still
some open challenges: For instance, the extremely high frequencies
that are required for haptic rendering. In this thesis we present a
novel geometric data structure for collision detection at haptic rates
between arbitrary rigid objects. The main idea is to bound objects
from the inside with a set of non-overlapping spheres. Based on such
sphere packings, an “inner bounding volume hierarchy” can be con-
structed. Our data structure that we call Inner Sphere Trees supports
different kinds of queries; namely proximity queries as well as time
of impact computations and a new method to measure the amount
of interpenetration, the penetration volume. The penetration volume is
related to the water displacement of the overlapping region and thus,
corresponds to a physically motivated force. Moreover, these penalty
forces and torques are continuous both in direction and magnitude.

In order to compute such dense sphere packings, we have devel-
oped a new algorithm that extends the idea of space filling Apol-
lonian sphere packings to arbitrary objects. Our method relies on
prototype-based approaches known from machine learning and leads
to a parallel algorithm. As a by-product our algorithm yields an ap-
proximation of the object’s medial axis that has applications ranging
from path-planning to surface reconstruction.

Collision detection for deformable objects is another open chal-
lenge, because pre-computed data structures become invalid under
deformations. In this thesis, we present novel algorithms for effi-
ciently updating bounding volume hierarchies of objects undergoing
arbitrary deformations. The event-based approach of the kinetic data
structures framework enables us to prove that our algorithms are opti-
mal in the number of updates. Additionally, we extend the idea of ki-
netic data structures even to the collision detection process itself. Our
new acceleration approach, the kinetic Separation-List, supports fast
continuous collision detection of deformable objects for both, pair-
wise and self-collision detection.

In order to guarantee a fair comparison of different collision de-
tection algorithms we propose several new methods both in theory
and in the real world. This includes a model for the theoretic run-
ning time of hierarchical collision detection algorithms and an open
source benchmarking suite that evaluates both the performance as
well as the quality of the collision response.
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Finally, our new data structures enabled us to realize some new
applications. For instance, we adopted our sphere packings to define
a new volume preserving deformation scheme, the sphere-spring sys-
tem, that extends the classical mass-spring systems. Furthermore, we
present an application of our Inner Sphere Trees to real-time obsta-
cle avoidance in dynamic environments for autonomous robots, and
last but not least we show the results of a comprehensive user study
that evaluates the influence of the degrees of freedom on the users
performance in complex bi-manual haptic interaction tasks.
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Z U S A M M E N FA S S U N G

Die Erkennung und Behandlung von Kollisionen zwischen virtuel-
len 3D-Objekten sind ein zentrales Problem in zahlreichen Gebieten
der Informatik. Sie werden beispielsweise bei physikalisch-basierten
Simulationen benötigt, aber auch für die Pfadplanung in der Robo-
tik oder zur Berechnung von Rückstellkräften beim haptischen Ren-
dering. Algorithmen zur Kollisionserkennung sind seit Jahrzehnten
verfügbar, allerdings stellen die ständig zunehmende Szenenkomple-
xität als auch höhere Anforderungen an die Interaktion ständig neue
Herausforderungen dar, zumal die Kollisionserkennung in vielen An-
wendungen das Performance-Bottleneck bildet.

Im Rahmen dieser Arbeit wurde eine neuartige geometrische Da-
tenstruktur entwickelt, welche sehr schnelle Kollisionserkennung er-
möglicht und dabei unabhängig von der Szenenkomplexität arbeitet,
die sogenannten Inner Sphere Trees (ISTs). Die Grundidee ist relativ
einfach: Anstatt wie die meisten herkömmlichen Verfahren, die Ober-
flächengeometrie zur Berechnung einer Hüllkörperhierarchie zu ver-
wenden, wird bei den ISTs eine innere Hierarchie auf Basis von dich-
ten Kugelpackungen erzeugt. Diese neue Datenstruktur erlaubt ne-
ben der Berechnung klassischer Kontaktinformationen, wie der mini-
malen Distanz oder des Kollisionszeitpunktes, auch erstmals die Ap-
proximation des Schnittvolumens. Das Schnittvolumen kann als Ver-
drängungsvolumen betrachtet werden und lässt sich somit als phy-
sikalisch plausibles Maß für Rückstellkräfte interpretieren. Die Ste-
tigkeit des Schnittvolumens in Verbindung mit einer neuen Berech-
nungsmethode für stetige Normalenvektoren garantiert eine stabile
Kollisionsbehandlung.

Eine wesentliche Herausforderung bei der Entwicklung der ISTs
stellte die Berechnung der Kugelpackungen dar. Dazu wurde ein neu-
es Verfahren entwickelt, welches die Idee der raumfüllenden apol-
lonischen Kugelpackungen auf beliebige Objekte erweitert. Dieses
neue Verfahren verwendet einen prototyp-basierten Ansatz der voll-
ständig parallelisierbar ist und sich an Methoden aus dem Bereich
des Maschinenlernens anlehnt. Als Nebenprodukt berechnet der Al-
gorithmus zusätzlich eine Approximation der Medial-Axis, welche
beispielsweise zur automatisierten Skeletterstellung in Animationen
benötigt wird.

Ein weiteres Problem im Bereich der Kollisionserkennung ist die
Behandlung deformierbarer Objekte: Vorberechnete Beschleunigungs-
datenstrukturen werden ungültig, sobald sich ein Objekt verformt. Im
Rahmen dieser Arbeit wurden neue Algorithmen zur effizienten Ak-
tualisierung von Hüllkörperhierarchien entwickelt. Sie basieren auf
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der Idee der kinetischen Datenstrukturen, welche prinzipiell kontinu-
ierliche Veränderungen auf die Behandlung weniger diskreter Events
reduzieren. Dadurch gelang der Beweis, dass die kinetischen Hüllkör-
perhierarchien optimal in der Anzahl der Aktualisierungsoperationen
sind. Darüber hinaus lässt sich das Prinzip der kinetischen Daten-
strukturen auch auf die Kollisionserkennung selbst erweitern. Die so
entstandene kinetische Separation-Liste erlaubt kontinuierliche Kollisi-
onserkennung inklusive der Detektion von Selbstkollisionen in Echt-
zeit.

Nach mehreren Jahrzehnten intensiver Forschung im Bereich der
Kollisionserkennung gibt es heute eine Vielzahl unterschiedlicher Ver-
fahren. Ein fairer Vergleich verschiedener Algorithmen muss diver-
se Merkmale berücksichtigen, wie zum Beispiel die Verwendung un-
terschiedlicher Eindringmaße und/oder verschiedener Datenstruktu-
ren. Im Rahmen dieser Arbeit wurde ein zweiteiliges Benchmark-
Verfahren entwickelt, welches beidem Rechnung trägt. Zunächst er-
laubt ein Performance-Benchmark einen praxisrelevanten Vergleich
der Geschwindigkeiten unterschiedlicher Kollisionserdetektionsver-
fahren, während der Qualitäts-Benchmark die Korrektheit der berech-
neten Kräfte und Drehmomente evaluiert. Darüber hinaus wurde ein
neues Modell zur theoretischen Analyse der Laufzeit hierarchischer
Datenstrukturen entwickelt.

Die im Rahmen dieser Arbeit entwickelten Datenstrukturen und
Algorithmen dienen als Grundlage für zahlreiche neue Anwendun-
gen, von denen exemplarisch drei vorgestellt werden: Zunächst dient
das Konzept der kugelpackungsbasierten Leeraumrepräsentation als
Ausgangspunkt für die Entwicklung eines neuartigen, volumenerhal-
tenden Deformationsschemas, der sogenannten Sphere-Spring Syste-
me. Das zweite Beispiel zeigt die Anwendung der ISTs im Bereich
der Echtzeit-Kollisionsvermeidung autonomer Roboter. Die dritte An-
wendung beinhaltet die Implementation eines Haptik-Demonstrators
welcher erstmalig die gleichzeitige haptische Interaktion zweier Be-
nutzer in einer komplexen virtuellen Umgebung mit zahlreichen 3D
Objekten erlaubt. Mit Hilfe dieses Demonstrators wurde in einer um-
fangreichen Benutzerstudie der Einfluss der Freiheitsgrade auf die
Leistung in komplexen haptischen Aufgaben untersucht.
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Part I

T H AT WA S T H E N , T H I S I S N O W





1
I N T R O D U C T I O N

The soul of the world
Ignites a brand new day
Let the morning sun proclaim
A brand new start
A brand new way

Anne Clark
The Hardest Heart

1972
1

2012
2

Interactive tennis simulations through the ages.

The degree of realism of interactive computer simulated environ-
ments has increased significantly during the past decades. Stunning
improvements in visual and audible presentations are obvious. Real-
time tracking systems that were hidden in a handful of VR laborato-
ries just a few years ago can be found in every child’s room today.
These novel input technologies, like Nintendo’s Wii, Sony’s Move or
Microsoft’s Kinect have opened a completely new, more natural way
of interaction in 3D environments to a wide audience.

However, an immersive experience in interactive virtual environ-
ments requires not only realistic sounds, graphics and interaction
metaphors, but also a plausible behaviour of the objects that we inter-
act with. For instance, if objects in the real world interact, i. e. if they
collide, they may bounce off each other or break into pieces when
they are rigid. In case of non-rigidity, they deform. Obviously, we
expect a similar behaviour in computer simulated environments.

In fact, psychophysical experiments on perception have shown, that
we quickly feel distracted by unusual physical behaviour [O’Sullivan
et al., 2003], predominantly by visual cues [Reitsma and O’Sullivan,
2008]. For instance, O’Sullivan and Dingliana [2001] showed that a

1 Pong, c©Atari, 1972

2 Grand Slam Tennis 2, c©Electronic Arts, 2012
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4 introduction

time delay between a collision and its response reduce the percep-
tion of causality significantly. Fortunately, further experiments sug-
gest that we do not compute Newtons’ laws of motion exactly when
interacting with the world, but judgements about collision were usu-
ally made by heuristics based on the objects’ kinematic data [Gilden
and Proffitt, 1989]. Consequently, it is sufficient to provide physically
plausible instead of physically correct behaviour [Barzel et al., 1996].

However, in a computer generated world, objects are usually rep-
resented by an abstract geometric model. For instance, we approxi-
mate their surfaces with polygons or describe them by mathematical
functions, like NURBS. Such abstract representations have no physi-
cal properties per se. In fact, they would simply float through each
other. Therefore, we have to add an appropriate algorithmic handling
of contacts.

In detail, we first have to find contacts between moving objects. This
process is called collision detection. In a second step, we have to resolve
these collisions in a physically plausible manner. We call this the col-
lision response.

This fundamental technique is not restricted to interactive physical-
ly-based real-time simulations that are widely used in computer graph-
ics [Bouma and Vanecek, 1991], computer games [Bishop et al., 1998],
virtual reality [Eckstein and Schömer, 1999] or virtual assembly tasks
[Kim et al., 1995]. Actually, it is needed for all those tasks involving
the simulated motion of objects that are not allowed to penetrate one
another. This includes real-time animations [Cordier and Thalmann,
2002] as well as animations in CGI movies [Lafleur et al., 1991], but
also applications in robotics where collision detection helps to avoid
obstacles [Chakravarthy and Ghose, 1998] and self-collisions between
parts of a robot [Kuffner et al., 2002]. Moreover, it is required for path
planning [LaValle, 2004], molecular docking tasks [Turk, 1989] and
multi-axis NC-machining [Ilushin et al., 2005] to name but a few.

This wide spectrum of different applications to collision detection
is an evidence that there has been already spent some research on
this topic. Actually, hundreds, if not thousands, of different research
papers has been written about solutions to collision detection prob-
lems. For instance, a Google-Scholar query for the phrase "collision
detection" lists more than 44 000 results.

Obviously, this raises several questions:

• What makes the detection of collisions so difficult that there has
been spent so much work on it?

• Is there still room for improvements? Or has everything already
been told about this topic?

In the next section, we will answer these questions and outline our
contributions to the field of collision detection that are presented in
this thesis.
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Figure 1.1: The intersection of two Chazelle polyhedra is a worst case for
collision detection algorithms.

1.1 contributions

Actually, it turns out that finding collisions between geometric objects
is a very complicated problem. In most of the applications mentioned
above, collision detection is, due to its inherent complexity, the com-
putational bottleneck. Just think of two objects in a polygonal surface
representation, each of them is modelled of n polygons. A brute-force
approach for a collision detection algorithm could be to simply test
each polygon of one object against each polygon of the other object.
This results in a complexity of O(n2). Actually, if the objects are of
bad shape it is possible to construct configurations with O(n2) collid-
ing polygons (see Figure 1.1)3. These cases seem to be artificial and
may not happen very often in practically relevant situations. In fact,
in Chapter 6 we present a new theoretic model to estimate the average
running-time of collision detection algorithms by tracking only a few
simple parameters. For many real-world scenarios we could prove
a complexity of O(n logn). However, collision detection algorithms
have to handle also worst cases correctly. Thus, the theoretical com-
plexity of most collision detection algorithms is in the worst case in
O(n2).

Most collision detection algorithms are based on some clever data
structures that provide an output sensitive acceleration of collision
detection queries. In Chapter 2, we give an overview of classical and
recent developments in this field.

Usually, these data structures are built in a time consuming pre-
processing step. Unfortunately, if the objects are not rigid, i. e. the
objects deform over time, these pre-computed data structures become
invalid and must be re-computed or updated. Almost all previous col-
lision detection approaches did this on a per-frame basis, this means,
they update their underlying data structures before each collision
query. Obviously, this is very time consuming and is one reason for

3 By the way, Chazelle’s polyhedron also has other interesting properties: for instance,
it requires O(n2) additional Steiner points for its tetrahedrization.
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(a) Minimum distance (b) Penetration depth

(c) Penetration volume (d) Time of Impact

Figure 1.2: Different penetration measures.

the restriction of deformable objects to a relatively low object resolu-
tion.

In Chapter 3 we present several new methods that are able to up-
date such acceleration data structure independently of the query fre-
quency. Moreover, we prove a lower bound of O(n logn) on the num-
ber of necessary updates, and we show that our new data structures
do not exceed this lower bound. Consequently, our data structures
are optimal in the number of updates.

However, finding collisions is only one side of the coin. As men-
tioned above, collisions must also be resolved during the collision
handling process. In order to compute physically plausible collision
responses, some kind of contact data is required that must be deliv-
ered by the collision detection algorithm. Basically, there exist four
different kinds of contact information that can be used by different
collision response solvers: we can either track the minimum distances
between pairs of objects, we can determine the exact time of impact, we
can define a minimum translational vector to separate the objects, the
so-called penetration depth, or we can compute the penetration volume
(see Figure 1.2). We will discuss the advantages and disadvantages of
the different penetration measures in more details in Chapter 2.

According to [Fisher and Lin, 2001a, Sec. 5.1], the penetration volume
is “the most complicated yet accurate method” to define the extent
of intersection. However, to our knowledge, there are no algorithms
to compute it in real-time for reasonably, i. e. more than a dozen of
polygons, as yet.

In Chapter 5 we contribute the first data structure, the so-called
Inner Sphere Trees, that yields an approximation of the penetration
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volume for objects consisting of hundreds of thousands of polygons.
Moreover, we could not only achieve visual real-time, but our data
structure is also applicable to haptic rendering. Actually, integrating
force feedback into interactive real-time virtual environments causes
additional challenges: for a smooth visual sensation, update-rates of
30Hz are sufficient. But the temporal resolution of the human tactile
sense is much higher. In fact, haptic rendering requires update fre-
quency of 1000Hz for hard surfaces to be felt realistic [Mark et al.,
1996].

Our Inner Sphere Trees gain their efficiency from filling the objects’
interior with sets of non-overlapping spheres. Surprisingly, there does
not exist any algorithm that could compute such sphere packings yet.
Consequently, we have developed a new method that we present in
Chapter 4. Basically, it extends the idea of space-filling Apollonian
sphere packings to arbitrary objects. Therefore, we used a prototype-
based approach that can be easily parallelized. It turns out that our
new algorithm has some amazing side-effects: for instance, it yields
an approximation of an object’s medial axis in nearly real-time.

In Chapter 7 we present some applications of our new data struc-
tures that were hardly realizable without them. More precisely, we
propose a new method to simulate volume preserving deformable
objects, the Sphere-Spring systems, that are based on our sphere pack-
ings. Moreover, we applied our Inner Sphere Trees to real-time colli-
sion avoidance for autonomous moving robots. Finally, we have im-
plemented a haptic workspace that allows simultaneous bi-manual
haptic interaction for multiple users in complex scenarios. We used
this workspace to investigate the influence of the degrees of freedom
of haptic devices in demanding bi-manual haptic tasks.

However, our data structures are still not an all-in-one solution
that is suitable for every purpose. They also have their drawbacks;
e. g. our Inner Sphere Trees are, until now, restricted to watertight
objects. Hence, also other collision detection approaches have their
right to exist. However, a programmer who wants to integrate colli-
sion detection into his application still has to choose from hundreds
of different approaches. Obviously, this is almost impossible without
studying the literature for years. But even for experts it is hard to
judge the performance of collision detection algorithms correctly by
reading research papers, because almost every researcher presents
his results with only certain, well chosen, scenarios. As a remedy, we
have developed a standardized benchmarking suite for collision de-
tection algorithms that we present in Chapter 6. It allows a fair and
realistic comparison of different algorithms for a broad spectrum of
interesting contact scenarios and many different objects. Moreover,
we included a benchmark to compare also the quality of the forces
and torques of collision response schemes.
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Objects in the rear view mirror
may appear closer than they are

Meat Loaf

In this chapter we will provide a short overview on classical and
recent research in collision detection. In the introduction, we already
mentioned the general complexity of the collision detection problem
due to its theoretical quadratic running-time for polygonal models
like Chazelle’s polyhedron (see Figure 1.1).

However, this is an artificial example, and in most real world cases
there are only very few colliding polygons. Hence, the goal of colli-
sion detection algorithms is to provide an output sensitive running-
time. This means, they try to eliminate as many of the O(n2) primi-
tive tests as possible, for example by early exclusion of large parts of
the objects that cannot collide. Consequently, the collision detection
problem can be regarded as a filtering process.

Recent physics simulation libraries like PhysX [NVIDIA, 2012], Bul-
let [Coumans, 2012] or ODE [Smith, 2012] implement several levels of
filtering in a so-called collision detection pipeline.

Usually, a scene does not consist only of a single pair of objects, but
of a larger set of 3D models that are typically organized in a scene-
graph. In a first filtering step, the broad phase or N-body culling, a fast
test enumerates all pairs of potentially colliding objects (the so-called
potentially collision set (PCS)) to be checked for exact intersection in
a second step, that is called the narrow phase. The narrow phase is
typically divided into two parts: first a filter to achieve pairs of poten-
tially colliding geometric primitives is applied and finally these pairs
of primitives are checked for collision. Depending on the scene, more
filtering levels between these two major steps can be used to further

9
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speed-up the collision detection process [Zachmann, 2001]. Figure 2.1
shows the design of CollDet [Zachmann et al., 2005], a typical colli-
sion detection pipeline. All data structures that are developed for this
work have been integrated into the CollDet framework.

However, the chronological order of the collision detection pipeline
is only one way to classify collision detection algorithms, and there
exist much more distinctive factors. Other classifications are e. g. rigid
bodies vs. deformable objects. Usually, the filtering steps rely on geo-
metric acceleration data structures that are set up in a pre-processing
step. If the objects are deformable, these pre-calculated data struc-
tures can become invalid. Consequently, deformable objects require
other data structures or, at least, additional steps to update or re-
compute the pre-processed structures. Additionally, deformable ob-
jects require a check for self-collisions. Some of these methods are
described in Section 2.5.

Another distinctive feature is the representation of the geometric
objects. Especially in computer graphics, the boundary of objects is
usually approximated by polygons. Hence, most collision detection al-
gorithms are designed for polygonal objects. However, in CAD/CAM
applications also curved surfaces representations like non-uniform ra-
tional B-splines (NURBS) play an important role. For instance Page
and Guibault [2003] described a method based on oriented bounding
boxes (OBBs) escpecially for NURBS surfaces. Lau et al. [2002] de-
veloped an approach based on axis aligned bounding boxes (AABBs)
for inter-objects as well as self-collision detection between deformable
NURBS. Greß et al. [2006] also used an AABB hierarchy for trimmed
NURBS but transferred the computation to the GPU. Kim et al. [2011]
proposed an algorithm based on bounding coons patches with offset
volumes for NURBS surfaces. Another object modelling technique of-
ten used in CAD/CAM is the constructive solid geometry (CSG). Objects
are recursively defined by union, intersection or difference operations
of basic shapes like spheres or cylinders. In order to detect collisions
between CSG objects, Zeiller [1993] used an octree-like data structure
for the CSG tree. Su et al. [1999] described an adaptive selection strat-
egy of optimal bounding volumes for sub-trees of objects in order to
realize a fast localization of possible collision regions.

Point clouds become more and more popular due to cheap depth-
cameras that can be used for 3D scanning like Microsoft’s Kinect
[Izadi et al., 2011]. One of the first approaches to detect collision be-
tween point clouds was developed by Klein and Zachmann [2004].
They use a bounding volume hierarchy in combination with a sphere
covering of parts of the surface. Klein and Zachmann [2005] proposed
an interpolation search approach of the two implicit functions in a
proximity graph in combination with randomized sampling. El-Far
et al. [2007] support only collisions between a single point probe and
a point cloud. For this, they fill the gaps surrounding the points with
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Figure 2.1: The typical design of a collision detection pipeline.

AABBs and use an octree for further acceleration. Figueiredo et al.
[2010] used R-trees, a hierarchical data structure that stores geometric
objects with intervals in several dimensions [Guttman, 1984], in com-
bination with a grid for the broad phase. Pan et al. [2011] described
a stochastic traversal of a bounding volume hierarchy. By using ma-
chine learning techniques, their approach is also able to handle noisy
point clouds. In addition to simple collision tests, they support the
computation of minimum distances [Pan et al., 2012].

This directly leads to the next classification feature: The kind of in-
formation that is provided by the collision detection algorithm. Actu-
ally, almost all simulation methods work discretely; this means, they
check only at discrete points in time whether the simulated objects
collide. As a consequence, inter-penetration between simulated ob-
jects is often unavoidable. However, in order to simulate a physically
plausible world, objects should not pass through each other and ob-
jects should move as expected when pushed or pulled. As a result,
there exists a number of collision response algorithms to resolve inter-
penetrations. For example, the penalty-based method computes non-
penetration constraint forces based on the amount of interpenetration
[Stewart and Trinkle, 1996]. Other approaches like the impulse-based
method or constraint-based algorithms need information about the
exact time of contact to apply impulsive forces [Kim et al., 2002c].

Basic collision detection algorithms simply report whether or not
two objects intersect. Additionally, some of these approaches provide
access to a single pair of intersecting polygons or they yield a set of
all intersecting polygons. Unfortunately, this is not sufficient to pro-
vide the information required from most collision response schemes.
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Hence, there also exist methods that are able to compute some kind
of penetration depth, e. g. a minimum translational vector to separate
the objects. More advanced algorithms provide the penetration vol-
ume. Especially in path-planning tasks, but also in constraint-based
simulations, it is helpful to track the minimum separation distance be-
tween the objects in order to avoid collisions. Finally, the continuous
collision detection computes the exact point in time when a collision
happens between two object configurations. Section 2.3 provides an
overview over algorithms that compute these different penetration
measurements. Usually, the more information the collision detection
algorithm provide, the longer is its query time.

More classifications of collision detection algorithms are possible.
For instance, real-time vs. offline, hierarchical vs. non-hierarchical,
convex vs. non-convex, GPU-based methods vs. CPU, etc. This al-
ready shows the great variety of different approaches.

Actually, collision detection has been researched for almost three
decades. A complete overview over all existing approaches would fill
libraries and thus is far beyond the scope of this chapter. So, in the
following, we will present classic methods that are still of interest, as
well as recent directions that are directly related to our work. As a
starting point for further information about the wide field of collision
detection we refer the interested reader to the books by Ericson [2004],
Coutinho [2001], Zachmann and Langetepe [2003], Eberly [2003], Van
Den Bergen [2004], Bicchi et al. [2008] or Lin et al. [2008] and the sur-
veys by Jimenez et al. [2000], Kobbelt and Botsch [2004] Ganjugunte,
Lin and Gottschalk [1998], Avril et al. [2009], Kockara et al. [2007],
Gottschalk [1997] Fares and Hamam [2005], Teschner et al. [2005] and
Kamat [1993].

2.1 broad phase collision detection

The first part of the pipeline, called the broad-phase, should provide
an efficient removal of those pairs of objects that are not in collision.
Therefore, objects are usually enclosed into basic shapes that can be
tested very quickly for overlap. Typical basic shapes are axis aligned
bounding boxes (AABB), spheres, discrete oriented polytopes (k-DOP) or
oriented bounding boxes (OBB) (see Figure 2.2).

The most simple method for the neighbour finding phase is a brute-
force approach that compares each object’s bounding volume with all
others’ bounding volumes. The complexity of this approach is O(n2),
where n denotes the number of objects in the scene. Woulfe et al.
[2007] implemented this brute-force method on a Field-Programmable
Gate Array (FPGA) using AABBs. However, even this hardware-based
approach cannot override the quadratic complexity.

Moreover, Edelsbrunner and Maurer [1981] have shown, that the
optimal algorithm to find intersections of n AABBs in 3D has a com-
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(a) AABB (b) Sphere (c) 8-DOP (d) OBB

Figure 2.2: Different bounding volumes

plexity of O(nlog2n+ k), where k denotes the number of objects that
actually intersect. Two main approaches have been proposed to take
this into account: spatial partitioning and topological methods.

Spatial partitioning algorithms divide the space into cells. Objects
whose bounding volumes share the same cell are selected for the nar-
row phase. Examples for such spatial partitioning data structures are
regular grids [Zachmann, 2001], hierarchical spatial hash tables [Mir-
tich, 1998a], octrees [Bandi and Thalmann, 1995], kd-trees [Bentley
and Friedman, 1979] and binary space partitions (BSP-trees) [Nay-
lor, 1992]. The main disadvantage of spatial subdivison schemes for
collision detection is their static nature: they have to be rebuilt or up-
dated every time the objects change their configuration. For uniform
grids such an update can be performed in constant time and grids are
perfectly suited for parallelization. Mazhar [2009] presented a GPU
implementation for this kind of uniform subdivision. However, the
effectiveness of uniform grids lacks if the objects are of widely vary-
ing sizes. Luque et al. [2005] proposed a semi-adjusting BSP-tree that
does not require a complete re-structuring, but adjusts itself while
maintaining desirable balancing and height properties.

In contrast to space partitioning approaches, the topological meth-
ods are based on the position of an object in relation to the other
objects. The most famous methods is called Sweep-and-Prune [Cohen
et al., 1995]. The main idea is to project the objects’ bounding volume
on one or more axis (e. g. the three coordinate axis (x,y,z)). Only those
pairs of objects whose projected bounding volumes overlap on all axis
have to be considered for the narrow phase. Usually, this method does
not conduct any internal structure but starts from scratch at each col-
lision check.

Several attempts have been proposed to parallelize the classical
Sweep-And-Prune approach. For instance, Avril et al. [2010b] devel-
oped an adaptive method that runs on multi-core and multithreaded
architectures [Avril et al., 2010a] and uses all three coordinate axes.
Moreover, they presented an automatic workload distribution based
on off-line simulations to determine fields of optimal performance
[Avril et al., 2011]. Liu et al. [2010a] ported the Sweep-and-Prune ap-
proach to the GPU using the CUDA framework. They use a principal
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component analysis to determine a good sweep direction and com-
bine it with an additional spatial subdivision.

Tavares and Comba [2007] proposed a topological algorithm that is
based on Delaunay triangulations instead of Sweep-And-Prune. The
vertices of the triangulation represent the center of mass of the objects
and the edges are the object pairs to be checked in the narrow phase.

However, even if all these algorithms are close to the optimal solu-
tion proved by Edelsbrunner and Maurer [1981], in accordance to
Zachmann [2001], they are profitable over the brute-force method
only in scenarios with more than hundred dynamically simulated
objects. This is due to the high constant factor that is hidden in the
asymptotic notation. Maybe this is also why much more research is
spent on the acceleration of the narrow phase.

2.2 narrow phase basics

While the broad phase lists pairs of possible colliding objects, the
objective of the narrow phase is to determine exact collision checks
between these pairs.

A brute force solution for the narrow phase could simply check all
geometric primitives of one object against all primitives of the other
object. Surely this would, again result in a quadratic complexity. Due
to the fast evolution of modern graphics hardware, objects can consist
of millions of polygons today, and a quadratic running time is not an
option. Consequently, more intelligent algorithms are required.

Actually, the narrow phase can be divided into two phases by itself.
In a first phase, non-overlapping parts of the objects are culled, in
a second step, an accurate collision detection is performed between
pairs of geometric primitives that are not culled in the first phase.

Instead of data structures that partition the world-space in the
broad phase, in the narrow phase, most often object partitioning tech-
niques are used for the culling stage. The common data structures
for this task are bounding volume hierarchies (BVHs). The technique of
bounding volumes, known from the previous section (Figure 2.2), is
recursively applied to a whole object. This results in a tree-like struc-
ture. Each node in such a tree is associated to a bounding volume
that encloses all primitives in its sub-tree (see Figure 2.3).

Usually, a BVH is constructed in a pre-processing step that can
be computationally more or less expensive. During running-time a
simultaneous recursive traversal of the BVHs of two objects allows a
conservative non-intersection pruning: if an intersection is detected in
the root of the BVH, the traversal proceeds by checking the bounding
volumes of the root node’s children and so on until the leaf nodes are
reached and an exact collision test between the geometric primitives
can be performed. Non-overlapping BVs are discarded from further
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Level 1

Level 2

Level 3

Figure 2.3: The BVH principle: Geometric objects are divided recursively
into subsets of their geometric primitives (left) and each node
on the tree realizes a bounding volume for all primitives in its
sub-tree (right).

consideration. The whole traversal algorithm results in a bounding
volume test tree (BVTT) (see Figure 2.4).

Usual BVs for the BVHs are spheres [Hubbard, 1996; Quinlan, 1994],
AABBs [Ponamgi et al., 1995; van den Bergen, 1998] and their memory
optimized derivative called BoxTree [Zachmann, 2002] that is closely
related to kd-Trees, k-DOPs [Klosowski et al., 1998; Zachmann, 1998],
a generalization of AABBs, OBBs [Albocher et al., 2006; Barequet et al.,
1996; Gottschalk et al., 1996] or convex hull trees [Ehmann and Lin,
2001]. Additionally, a wide variety of special BVs for special appli-
cations has been developed. For instance spherical shells [Krishnan
et al., 1998b], swept spheres [Larsen et al., 1999], spheres that are cut
by two parallel planes called slab cut balls [Larsson and Akenine-
Möller, 2009], quantised orientation slabs with primary orientations
(QuOSPO) trees [He, 1999] that combine OBBs with k-DOPs, or com-
binations of spherical shells with OBBs that was proposed by Krish-
nan et al. [1998a] for objects that are modelled by Bezier patches.

The optimal bounding volume should

• tightly fit the underlying geometry

• provide fast intersection tests

• be invariant undergoing rigid motion

• not use too much memory
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Figure 2.4: The simultaneous recursive traversal of two BVHs (red and blue)
during the collision check results in a bounding volume test tree
(purple).

• be able to be build automatically and fast

Unfortunately, these factors are contradictory. For example, spheres
offer very fast overlap and distance tests and can be stored very mem-
ory efficiently, but they poorly fit flat geometries. AABBs also offer
fast intersection tests, but they need to be realigned after rotations.
Or, if no realignment is used, a more expensive OBB overlap test is
required. But in this case, the tighter fitting OBBs could be used di-
rectly. However, they also require more memory. Convex hulls offer
the tightest fit among convex BVs, but the overlap test is very complex
and their memory consumption depends on the underlying geome-
try.

Consequently, choosing the right BVHs is always a compromise
and depends on the scenario. Basically, the quality of BVH-based al-
gorithms can be measured by the following cost function which was
introduced by Weghorst et al. [1984] to analyze hierarchical methods
for ray tracing and it was later adapted to hierarchical collision detec-
tion methods by Gottschalk et al. [1996]:

T = NvCv +NpCp with (2.1)

T = Total cost of testing a pair of models for intersection

Nv = Number of BV Tests

Cv = Cost of a BV Test

Np = Number of Primitive Tests

Cp = Cost of a Primitive Test

In addition to the shape of the BV, there are more factors that affect
the efficiency of a BVH, including the height of the hierarchy, that can
but must not be influenced by its arity or the traversal order during
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collision queries. The first two factors have to be considered already
during the construction of the BVH.

Basically, there exist two major strategies to build BVHs: bottom-
up and top-down. The bottom-up approach starts with elementary
BVs of leaf nodes and merges them recursively together until the
root BV is reached. A very simple merging heuristic is to visit all
nearest neighbours and minimize the size of the combined parent
nodes in the same level [Roussopoulos and Leifker, 1985]. Less greedy
strategies combine BVs by using tilings [Leutenegger et al., 1997].

However, the most popular method is the top-down approach. The
general idea is to start with the complete set of elementary BVs, then
split that into some parts and create a BVH for each part recursively.
The main problem is to choose a good splitting criterion. A classi-
cal splitting criterion is to simply pick the longest axis and split it
in the middle of this axis. Another simple heuristic is to split along
the median of the elementary bounding boxes along the longest axis.
However, it is easy to construct worst case scenarios for these simple
heuristics. The surface area heuristic (SAH) tries to avoid these worst
cases by optimizing the surface area and the number of geometric
primitives over all possible split plane candidates [Goldsmith and
Salmon, 1987]. Originally developed for ray tracing, it is today also
used for collision detection. The computational costs can be reduced
to O(n logn) [Wald, 2007; Wald and Havran, 2006] and there exists
parallel algorithms for the fast construction on the GPU [Lauterbach
et al., 2009]. Many other splitting criteria were compared by Zach-
mann [2000].

In addition to the splitting criterion, also the choice of the BV af-
fects the performance of the hierarchy creation process. Even if this is
a pre-processing step, extremely high running times are undesirable
in many applications. Computing an AABB for a set of polygons or a
set of other AABBs is straight forward. Also k-DOPs can be computed
relatively easy. But the only optimal solution for OBB computation is
in O(n3) and very hard to implement [O’Rourke, 1984]. Chang et al.
[2011] presented a close to optimal solution based on a hybrid method
combining genetic and Nelder-Mead algorithms. Other heuristics like
principal component analysis [Jolliffe, 2002] are not able to guarantee
a desired quality in all cases. On the other hand, very complicated
BVs, like the convex hull, can be computed efficiently in O(n logn)
[Kallay, 1984]. With OBBs, also the computation of a minimum enclos-
ing sphere turns out to be very complicated. Welzl [1991] formulated
it as a linear programming problem.

However, the choice of spheres as BVs also points to another chal-
lenge: the set of elementary BVs. For AABBs, OBBs or k-DOPs, usu-
ally a single primitive or a set of adjacent primitives are enclosed
in an elementary BV. For spheres this is not an optimal solution, be-
cause proximate primitives, often represented by polygons, usually
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form some kind of flat geometry that poorly fits into a sphere. There-
fore, Bradshaw and O’Sullivan [2004] presented a method based on
the medial axis to group also distant spheres in the same elementary
BV.

The influence of the trees’ branching factor is widely neglected in
the literature. Usually, most authors simply use binary trees for colli-
sion detection. But due to Zachmann and Langetepe [2003] the opti-
mum can be larger. Mezger et al. [2003] stated that, especially for de-
formable objects, 4-ary trees or 8-ary could improve the performance.
This is mainly due to fewer BV updates. However, we will return to
this topic in Section 2.5.

During running-time, the performance of the BVH depends on the
traversal order. Usually, a simultaneous recursive traversal of both
BVHs is applied. The easiest way to do this is via the depth-first-
search (DFS). Gottschalk [2000] additionally proposed a breath-first-
search (BFS) traversal using a queue. For complex objects with many
polygons and hence deep trees, the DFS can lead to a stack over-
flow. However, on modern CPUs with large stack sizes, the DFS is
much faster. O’Sullivan and Dingliana [1999] proposed a best-first-
search method for sphere trees. It simply descends into sub-trees with
largest BV-overlap first. However, to our experience, the time to keep
a priority queue often exceeds its advantages.

The final step in the collision detection pipeline is the primitive test.
Most often the surfaces of the objects are represented by polygons or,
more specific, triangles. A general polygon-polygon intersection test
is described by Chin and Wang [1983]. For the special case of tri-
angles, there exists a wide variety of fast intersection tests, e. g. by
Möller [1997] or Tropp et al. [2006]. Even today new optimized app-
roaches are proposed for special cases: for instance Chang and Kim
[2009] described a triangle test that takes into account that many in-
termediate computation results from an OBB test can be reused for
the triangle intersection. Many fast intersection tests are implemented
by Held [1998] and Schneider and Eberly [2002].

Another important class of geometric primitives are convex poly-
topes. Not only because they are widely used in physically-based
simulations, but also from an historical point of view: some of the
first collision detection algorithms are based on them. Moreover, they
can be used as both, geometric primitives and bounding volumes. Ac-
tually, there exist two main approaches for convex polytopes: feature-
based algorithms and simplex-based algorithms.

The first feature-based method was proposed by Lin and Canny
[1991]. Features of a convex polyhedron are vertices, edges and faces.
The Lin-Canny algorithm performs a local search on these features us-
ing a pre-computed Voronoi diagram Voronoi [1908]. The convexity
guarantees that local minima are avoided. Furthermore, the algorithm
uses spatial and temporal coherence between two distinctive queries:
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usually, objects do not move too much between two frames of a physi-
cally based simulation. Hence, the closest feature in the current frame
is close to the closest feature from the next frame. A major drawback
of the algorithm is that it cannot handle intersections. In this case it
runs in an endless loop. V-Clip [Mirtich, 1998b], an extension of the
classical Linn-Canny method, eliminates this serious defect.

The best known simplex-based algorithm was developed by Gilbert
et al. [1988]. Instead of using Voronoi diagrams, the GJK-algorithm is
based on Minkowski differences. In addition to the boolean collision
detection that simply reports whether two objects collide or not, the
GJK-algorithm also returns a measure of interpenetration [Cameron,
1997]. Moreover, it achieves the same almost constant time complexity
as Lin-Canny. A stable and fast implementation of the enhanced GJK
algorithms was presented by Van den Bergen [1999].

Both kinds of algorithms are designed for convex polyhedra. How-
ever, by using a convex decomposition of well-behaved concave poly-
hedrons, they can be also extended to other objects [Chazelle, 1984].
But finding good convex decompositions is not straight-forward and
still an active field of research [Hachenberger, 2007; Lien and Amato,
2008].

2.3 narrow phase advanced : distances , penetration depths

and penetration volumes

For physically-based simulations a simple boolean answer at discrete
points in time whether a pair of objects intersects or not is often not
sufficient. Usually, some kind of contact information is required to
compute repelling forces or non-intersection constraints.

As long as a pair of objects rests in a collision-free configuration,
a simple way to characterize the extent of repelling forces is to use
the minimum distance between them. However, collisions are often
unavoidable due to the discrete structure of the simulation process.
Therefore, a penetration measure is required for configurations where
the objects overlap. Some authors proposed a minimum translational
vector to separate the objects. This is often called the penetration depth.
The most complicated, but also the only physically plausible inter-
penetration measure is the penetration volume [O’Brien and Hod-
gins, 1999] that corresponds directly to the amount of water being
displaced by the overlapping parts of the objects. Last but not least,
it is possible to compute the exact point in time between two discrete
collision checks, this is called continuous collision detection. In fact, it is
not a measure for the amount of inter-penetration, but the techniques
that are used for its computation are very similar to other penetration
depth computations.
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2.3.1 Distances

The Lin-Canny-algorithm, described in the previous section, is al-
ready an example for minimum distance computations. Tracking of
the closest features directly delivers the required distances. Actually,
computing minimum distances can be performed in a very similar
way as conventional boolean collision detection using BVHs.

The traditional recursive BVH traversal algorithm described above,
tests whether two BVs – one from each BVH – overlap. If this is the
case, the recursion continues to their children. If they do not, the re-
cursion terminates. If two leaves are reached, a primitive intersection
test is performed.

The simple recursive scheme can be modified easily for minimum
distance computations: just the intersection test of the primitives has
to be replaced by a distance computation between the primitives and
the intersection test between the BVs by a distance test between the
BVs. During the traversal, an upper bound of the distance between
two primitives is maintained in a variable δ. This variable can be
initialized with ∞ or the distance between any pair of primitives. δ
has to be updated if a pair of primitives with a smaller distance is
found.

Obviously, BVs with larger distances than δ can be culled, because
if the BV have a larger distance, this must be also true for all enclosed
primitives. This is exactly a way most authors using BVHs imple-
mented their algorithms, e. g. Larsen et al. [1999] used swept-sphere
as BVs together with several speed-up techniques, Quinlan [1994] pro-
posed sphere trees, Van den Bergen [1999] used AABBs in combina-
tion with the GJK-based Minkowski difference or Lauterbach et al.
[2010] implemented OBB trees running on the GPU. Johnson and Co-
hen [1998] generalized basic BVH-based distance computation in a
framework for minimum distance computations.

Actually, all these approaches can be interrupted at any time and
deliver an upper bound of the minimum distance. Other approaches
are able to additionally provide a lower-bound, like the spherical
sector representation presented by Bonner and Kelley [1988], or the
inner-outer ellipsoids by Ju et al. [2001] and Liu et al. [2006].

Another alternative for distance computations are distance fields
[Fuhrmann et al., 2003] that can be also combined with BVHs [Fun-
fzig et al., 2006].

However, all these approaches use the euclidean distance between
the objects. Other authors also proposed different metrics like the
Hausdorff-distance that defines the maximum deviation of one object
from the other object [Tang et al., 2009b; Yoon et al., 2004]. Zhang
et al. [2007b] used a so-called DISP distance, that is defined as the
maximum length of the displacement vector over every point on the
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model at two different configurations. This metric can be used for
motion planning tasks [LaValle, 2006].

A local minimum distance for a stable force feedback computation
was proposed by Johnson et al. [2005]. They used spatialized normal
cone pruning for the collision detection. The normal cone approach
differs from prior works using BVHs because it searched for extrema
of a minimum distance formulation in the space of normals rather
than in Euclidean space.

2.3.2 Continuous Collision Detection

Computing repelling forces on the separating distance can lead to vi-
sual artefacts in physically-based simulations, e. g. when the objects
bounce away before they really are in visual contact. Moreover, if the
objects move too fast, or the time step between two collision queries
is too large, the objects could pass through each other. To avoid er-
rors like this tunneling effect, it would be better to really compute the
exact time of impact between a pair of objects [Coumans, 2005]. Sev-
eral techniques have been proposed to solve this continuous collision
detection problem, which is sometimes also called dynamic collision de-
tection.

The easiest way is to simply reuse the well researched and sta-
ble algorithms known from static collision detection. Visual inter-
active applications usually require updating rates of 30 frames per
second, i. e. there are about 30 milliseconds of time between two
static collision checks. Recent boolean collision detection algorithms
require only a few milliseconds depending on the objects’ configura-
tion. Hence, there is plenty of time to perform more than one query
between two frames. A simple method, the so called pseudo-continuous
collision, realizes exactly this strategy:, it performs static collision de-
tection with smaller time steps [Held et al., 1996]. Even with a higher
sampling frequency, it is however still possible to miss contacts be-
tween thin objects.

The conservative advancement is another simple technique that avoids
these problems. The objects are repeatedly advanced by a certain time-
step that guarantees a non-penetration constraint [Mirtich, 2000]. Usu-
ally, the minimum distance is used to compute iteratively new upper
bounds for the advancement [Zhang et al., 2006]. Conservative ad-
vancement is also perceived as a discrete ancestor of the kinetic data
structures that we will review in the next chapter.

Another method is to simply enclose the bounding volumes at the
beginning and at the end of a motion step by a swept volume. This
can be done very efficiently for AABBs [Eckstein and Schömer, 1999].
Coming and Staadt [2008] described a velocity-aligned DOP as swept
volume for underlying spheres as BVs, and Redon et al. [2002] pro-
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posed an algorithm for OBBs. Taeubig and Frese [2012] used sphere
swept convex hulls. Also ellipsoids are an option [Choi et al., 2009].

The swept volumes guarantee conservative bounds for their under-
lying primitives and consequently the swept BVHs can be traversed
similarly to the discrete BVHs. However, an additional continuous
collision test for the primitives is required to achieve the exact time
of impact. Actually, these tests (and in fact, also the tests between the
BVs) depend on the trajectories of the primitives that are usually not
known between two simulation steps. Often, a simple linear interpo-
lation is used to approximate the in-between motion [Wong, 2011].
For a pair of triangles this yields six face-vertex and nine edge-edge
tests. Each of these elementary tests require to solve a cubic equation.
This is computationally relatively costly. Therefore, some authors ad-
ditionally proposed feature-based pre-tests, like the subspace filters
by Tang et al. [2011] or additional BVs like k-DOPs for the edges
[Hutter, 2007].

However, more accurate but also more complicated interpolation
schemes have been described as well. Canny [1984] proposed quater-
nions instead of euler angels but still got a 6D complexity. Screw mo-
tions are often used [Kim and Rossignac, 2003] because they can be
also computed by solving cubic polynomials. Redon et al. [2000] com-
bined them with interval arithmetic. Zhang et al. [2007d] defined Tay-
lor models for articulated models with non-convex links. Von Herzen
et al. [1990] used Lipschitz bounds and binary subdivision for para-
metric surfaces.

There exists a few other acceleration techniques, e. g. Kim et al.
[2009a] implemented a dynamic task assignment for multi-threaded
platforms, or Fahn and Wang [1999] avoids BVHs by using a regular
grid in combination with an azimuth elevation map. However, con-
tinuous collision detection is still computationally too expensive for
real-time applications, especially, when many complex dynamic ob-
jects are simulated simultaneously.

2.3.3 Penetration Depth

The minimum distance is not a good measure to define repelling
forces, and computing the exact time of impact using continuous colli-
sion detection is too time consuming for real-time applications. Con-
sequently, researches have developed another penetration measure:
the penetration depth. In fact, it is not entirely correct to speak about
the penetration depth, because there exist many different, partly con-
tradictorily, definitions. A widely used definition describes it as the
distance that corresponds to the shortest translation required to sepa-
rate two intersecting objects [Dobkin et al., 1993].

The same authors also delivered a method for their computation
based on a Dobkin and Kirkpatrick hierarchy and Minkowski dif-
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ferences. They derived a complexity of O(n2) for convex and O(n4)
for non-convex polyhedral objects consisting of n polygons. Cameron
[1997] presented a similar approach for convex objects that can addi-
tionally track the minimum distance in non-intersection cases. Espe-
cially the computation of the Minkowski difference is very time con-
suming and difficult. Therefore, several approximation schemes have
been developed: for instance van den Bergen [2001] described an ex-
panding polytope algorithm that yields an polyhedral approximation
of the Minkowski difference. Agarwal et al. [2000] proposed an ap-
proximation algorithm based on ray-shooting for convex polyhedra.
Kim et al. [2002b] implicitly constructed the Minkowski difference by
local dual mapping on the Gaussian map. Additionally, the authors
enhanced their algorithm by using heuristics to reduce the number
of features [Kim et al., 2002d, 2004c]. Other approximations rely on
discretized objects and distance fields [Fisher and Lin, 2001b].

Some authors computed local approximations of the penetration
depth if the objects intersect in multiple disjoint zones. Therefore,
penetrating zones were partitioned into coherent regions and a local
penetration depth was computed for each of these regions separately.
Redon and Lin [2006] computed a local penetration direction for these
regions and then used this information to estimate a local penetra-
tion depth on the GPU. Je et al. [2012] presented a method based on
their continuous collision detection algorithm using conservative ad-
vancement [Tang et al., 2009a]: they constructed a linear convex cone
around the collision free configuration found via CCD and then for-
mulated a projection of the colliding configuration onto this cone as
a linear complementarity problem iteratively.

Also other metrics have been proposed for the characterization of
penetrating objects: for instance, Zhang et al. [2007a] presented an
extended definition of the penetration depth that also takes the rota-
tional component into account, called the generalized penetration depth.
It differs from the translational penetration depth only in non-convex
cases, and the computation of an upper bound can be reduced to the
convex containment problem if at least one object is convex [Zhang
et al., 2007c]. Gilbert and Ong [1994] defined a growth distance that uni-
fies the penetration measure for intersecting but also disjoint convex
objects: basically, it measures how much the objects must be grown
so that they were just in contact. Also an algorithm for the compu-
tation of the growth distance was presented [Ong et al., 2000]. Zhu
et al. [2004] used a gauge function [Hoang, 1998] instead of the eu-
clidean norm do define pseudo-distances for overlapping objects and
they presented a constrained optimization-based algorithm for its cal-
culation.

The year dates of the publications presented in this subsection al-
ready show, that penetration depth computation is recently a very ac-
tive field of research. This is mainly because computing penetration
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depth is still computationally very expensive and becomes practically
relevant only on very fast machines. However, using the classical pen-
etration depth still has another serious drawback: the translational
vector is not continuous at points lying on the medial axis. This re-
sults in flipping directions of the contact normals when used directly
as penalty force vector. Moreover, it is not straight forward to model
multiple simultaneous contacts. Tang et al. [2012] tried to avoid these
problems by accumulating penalty forces along the penetration time
intervals between the overlapping feature pairs using a linear CCD
approach.

2.3.4 Penetration Volume

Compared to other penetration measures, the literature on penetra-
tion volume computation is sparse. More precisely, there exist only
two other algorithms apart from our approach: one method, proposed
by Hasegawa and Sato [2004], constructs the intersection volume of
convex polyhedra explicitly. For this reason, it is applicable only to
very simple geometries, like cubes, at interactive rates.

The other algorithm was developed by Faure et al. [2008] simulta-
neously to our Inner Sphere Trees. They compute an approximation of
the intersection volume from layered depth images on the GPU. This
approach is applicable to deformable geometries but restricted to im-
age space precision. And apart from that, it is relatively slow and it
cannot provide continuous forces and torques for collision response.

2.4 time critical collision detection

Despite the computational power available, the performance of colli-
sion detection algorithms is still critical in many applications, espe-
cially if a required time budget must never be exceeded. This prob-
lem arises in almost all interactive real-time applications where frame
rates of at least 30 fps are needed for a smooth visual feedback. Con-
sequently, only 30 msec remain for rendering and physically-based
simulation. For the rendering step, there exists the technique of levels-
of-details (LOD) to reduce the workload of the graphics pipeline [Lue-
bke, 2003]. The main idea is to store geometric data in several decreas-
ing resolutions and choose the right LOD for rendering according to
the distance from the viewpoint. Similar techniques can also be ap-
plied to the physically-based simulation: more precisely, the collision
detection step. Hence, this so-called time-critical collision detection re-
duces the computation time at the cost of accuracy.

Typically, time-critical collision detection methods rely on simpli-
fications of the complex objects like the visual LOD representations.
This can be done either explicitly or implicitly. Moreover, they of-
ten use a frame-to-frame coherence because in physically-based sim-
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ulations there should be usually no discontinuities, and hence the
contact information between two collision checks does not differ too
much.

For instance, the BVTT derived from a simultaneous BVH traversal
(see Figure 2.4 in the previous section) holds in each node the result of
the query between two BVs. Those BV pairs where the traversal stops
build a list in the BVTT, the separation list [Chen and Li, 1999]. In case
of high coherence, the traversal does not have to be restarted at the
roots of the BVHs for each query, but this list can be directly re-used.
Ehmann and Lin [2001] called this the generalized front tracking. Lin
and Li [2006] enhanced this method by defining an incremental al-
gorithm that priorities the visiting order: dangerous regions where
collisions will happen with a high probability are prioritized.

These are, however, just examples for coherence. In fact, the clas-
sical simultaneous BVH traversal lends itself well to time-critical col-
lision detection: the traversal can simply be interrupted when the
time budget is exhausted. This was first proposed by Hubbard [1996]
who additionally used a round-robin order for the collision checks.
This approach was later extended by O’Sullivan and Dingliana [1999],
Dingliana and O’Sullivan [2000] and O’Sullivan and Dingliana [2001]:
like Hubbard [1996] they also used an interruptible sphere tree traver-
sal but added a more appropriate collision response solution to Hub-
bard’s elementary response model. A similar method can also be
adopted for deformable objects [Mendoza and O’Sullivan, 2006]. An-
other extension using sphere trees with a closest feature map to avoid
over estimations of the contact information was presented by Giang
and O’Sullivan [2005, 2006].

Klein and Zachmann [2003a] described an average case approach
for time-critical traversals (ADB-trees): for each pair of BVs they com-
puted the probability that an intersection of the underlying primi-
tives will occur. Coming and Staadt [2007] presented an event-based
time-critical collision detection scheme relying on stride-scheduling
in combination with kinetic Sweep-and-Prune and an interruptible
GJK version.

Other authors created the LOD explicitly. For example, Otaduy and
Lin [2003] presented a dual hierarchy for both, the multi-resolution
representation of geometry and its BVH using convex hulls. A sim-
ilar approach, called clustered hierarchy of progressive meshes was
developed by Yoon et al. [2004] for very large scenes that require out-
of-core techniques. James and Pai [2004] used the reduced models
not only for fast collision detection, but also presented a deformation
method based on their bounded deformation trees.
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2.4.1 Collision Detection in Haptic Environments

Almost all collision detection approaches described above are primar-
ily designed to work in at least visual real-time. As mentioned in
the introduction, for a smooth visual sensation update-rates of 30Hz
are sufficient, whereas haptic rendering requires an update frequency
of 1000Hz for a realistic haptic sensation. Moreover, detailed contact
information has to be provided for a realistic perception.

None of the previously described methods, especially those com-
puting penetration depths or times of impact, can be accelerated by
a factor of 30 out of the box for reasonable scene complexities in
haptic environments. Consequently, collision detection for haptics of-
ten makes further simplifications in order to guarantee the high fre-
quency, but also to compute plausible forces.

2.4.1.1 3 DOF

In the early times of haptic human-computer history, the beginning
1990s [Salisbury et al., 2004], a major simplification affected both, the
design of haptic hardware interfaces and the collision detection: in-
stead of simulating the complex interaction of rigid bodies, only a
single point probe was used for the interaction. This required only
the computation of three force components at the probe’s tip. As a
result, many 3 DOF haptic devices, like the SensAble Phantom Omni
Massie and Salisbury [1994], entered the market and also a lot of re-
search was done on 3 DOF haptic rendering algorithms.

One of the first algorithms for this problem was presented by Zilles
and Salisbury [1995]. They proposed the usage of a two different
points: one represents the real position of the probe’s tip, whereas
the second, they call it god object, is constrained to the surface of the
polygonal object. A spring-damper model between these points de-
fines the force. Ruspini et al. [1997] extended this approach by sweep-
ing a sphere instead of using a single point in order to avoid the
god object slipping into a virtual object through small gaps. Ho et al.
[1999] also took the movement of the god object into account by using
a line between its last and its recent position. BVHs can be used for
accelerating the collision detection. For example, Gregory et al. [1999]
developed a hybrid hierarchical representation consisting of uniform
grids and OBBs.

Also algorithms for other than polygonal object representations
have been proposed: Thompson et al. [1997] developed an algorithm
that is applicable for 3 DOF rendering of NURBS surfaces without
the use of any intermediate representation. Gibson [1995] and Avila
and Sobierajski [1996] described approaches for volumetric represen-
tations. More recent works also included the GPU for faster collision
detection using local occupancy maps [Kim et al., 2009b].
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Figure 2.5: The Voxmap-Pointshell approach for 6 DOF haptic rendering
uses two different data structures: A voxelization (left) and a
point-sampling of the objects’ surface (right).

2.4.1.2 6 DOF

Many applications, like training or virtual prototyping, require inter-
action with complex virtual tools instead of just a single point probe
to assure a sufficient degree of realism. As soon as the haptic probe
includes 3D objects, the additional rendering of torques becomes im-
portant. Also, simultaneous multiple contacts with the environment
may occur. This significantly increases the complexity of the collision
detection but also of the collision response. Generally, a complete 6

DOF rigid-body simulation, including forces and torques, has to be
performed in only one millisecond.

For very simple objects, consisting of only a few hundred polygons,
the traditional collision approaches described above can be used. Or-
tega et al. [2007] extended the god-object method to 6 DOF haptic
rendering using continuous collision detection to derive the position
and orientation of the god object. However, they cannot guarantee
to meet the time budget, therefore they use an asynchronous update
processes. Kolesnikov and Zefran [2007] presented an analytical ap-
proximation of the penetration depth with additional considerations
of the rotational motion.

Despite simplifications of temporal constraints, most often geomet-
ric simplifications were used. Many 6 DOF haptic rendering app-
roaches are based on the Voxmap Pointshell (VPS) method [McNeely
et al., 1999]. The main idea is to divide the virtual environment into
a dynamic object, that is allowed to move freely through the virtual
space and static objects that are fixed in the world. The static environ-
ment is discretized into a set of voxels, whereas the dynamic object is
described by a set of points that represents its surface (see Figure 2.5).
During query time, for each of these points it is determined with a
simple boolean test, whether it is located in a filled volume element
or not. Today, voxelization can be efficiently computed using the GPU
[Dong et al., 2004; Pantaleoni, 2011; Schwarz and Seidel, 2010].
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Many extension for the classical VPS algorithms have been pro-
posed: for instance, the use of distance fields instead of simple boolean
voxmaps [McNeely et al., 2005] or an additional voxel hierarchy for
the use of temporal coherences [McNeely et al., 2006] since also recent
computer hardware can perform only a few thousand intersection
tests in one millisecond. Prior and Haines [2005] described a proxim-
ity agent method to reduce the number of collision tests for multiple
object pairs in collaborative virtual environments. Renz et al. [2001]
presented extensions to the classic VPS, including optimizations to
force calculation in order to increase its stability. Barbič and James
[2007] developed a distance-field-based approach that can handle con-
tacts between rigid objects and reduced deformable models at haptic
rates. Later they extended their approach to cover also deformable
versus deformable contacts [Barbič and James, 2008]. Ruffaldi et al.
[2008] described an implicit sphere tree based on an octree that repre-
sents the volumetric data. However, even these optimizations cannot
completely avoid the limits of VPS, namely aliasing effects and the
huge memory consumption.

Other authors use level-of-detail techniques to simplify the com-
plexity of large polygonal models [Liu et al., 2010b]. Otaduy and
Lin [2005] presented a sensation preserving simplification algorithm
and a collision detection framework that adaptively selects a LOD.
Later, they added a linearized contact model using contact clustering
[Otaduy and Lin, 2006]. Another idea is to combine low-resolution
geometric objects along with texture images that encode the surface
details [Otaduy et al., 2004]. Kim et al. [2003] also clustered contacts
based on their spatial proximity to speed up a local penetration depth
estimation using an incremental algorithm. Johnson et al. [2005] ap-
proximated the penetration depth by extending their normal cone
approach. Glondu et al. [2010] developed a method for very large en-
vironments using a neighbourhood graph: for objects that are closer
to the haptic probe they used the LOD.

2.5 collision detection for deformable objects

Figure 2.6: Deformable objects like cloth require special algorithms, because
pre-computed data structures become invalid after the deforma-
tion. Moreover, collision between parts of the object itself may
happen.
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Usually, collision detection algorithms rely on pre-computed data
structures like BVHs. This works fine, as long as the geometry of
the objects does not change, i. e. if the objects are rigid. However,
our world consists not only of rigid objects but includes a lot of de-
formable objects, like cloth (see Figure 2.6). Consequently, a realistic
simulation should also be able to handle deformable models. Beside
cloth simulation, popular deformable applications include character
animation, surgery simulation and fractures.

An additional challenge for collision detection of deformable ob-
jects is the possibility that parts of one object intersect other parts
of the same object, the so-called self-collisions. Actually, BVHs can be
easily employed to find self-collisions by simply checking the BVH of
an object against itself and rejecting collisions between adjacent prim-
itives [Volino and Thalmann, 1995]. Additionally, techniques like hi-
erarchies of normal cones [Provot, 1997] or power diagrams [Guibas
et al., 2002] can be used for further acceleration.

Since BVHs have proven to be very efficient for rigid objects, and
moreover, they can be easily extended to self-collision detection, re-
searchers also want to use them for deformable objects. As the BVHs
become invalid after deformations, several approaches have been pub-
lished to handle this problem: the easiest method is to rebuild the
BVH from scratch after each deformation. Unfortunately, it turns out
that a complete rebuild is computationally too expensive. Even mod-
ern GPU acceleration can not guarantee real-time performance for
BVH construction in reasonably complex scenes [Lauterbach et al.,
2009]. Some authors reduced the rebuild to interesting regions. For
example, Smith et al. [1995] used a lazy reconstruction of an octree
for all primitives in the overlap region, or they keep a more com-
plex data structure like a full octree and simply reinsert all primitives
in the leaves in each frame [Ganovelli and Dingliana, 2000]. Other
approaches completely avoided hierarchies but used regular spatial
subdivision data structures like uniform grids [Turk, 1989; Zhang and
Yuen, 2000]. Spatial hashing helps to reduce the high memory require-
ments of uniform grids [Teschner et al., 2003]. However, choosing
the right grid size remains an unsolved problem due to the inherent
"teapot in a stadium" problem [Haines, 1988].

Another method is to avoid the complete rebuild by simply up-
dating the BVs of a pre-computed BVH after deformations. van den
Bergen [1998] stated that updating is about ten times faster compared
to a complete rebuild of an AABB hierarchy, and as long as the topol-
ogy of the object is conserved, there is no significant performance
loss in the collision check compared to rebuilding. Basically, there
exist two main techniques for updating a BVH: bottom-up and top-
down. Bottom-up updates start by refitting the BVs of the primitives
and merge them upwards to the root of the tree. This can be done effi-
ciently for AABB trees [Volino and Thalmann, 1995] and sphere trees
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Figure 2.7: Different updating strategies for BVHs.

[Brown et al., 2001]. However, during a collision query usually not all
of these BVs are visited. Hence a lot of work is potentially spent on
updates that are not required. A simple strategy to reduce the num-
ber of updated BVs is to update them on-line, when they are really
visited during a traversal. This requires the traversal of all primitives
placed under a BV. This is the typical top-down approach [Larsson
and Akenine-Möller, 2001]. Of course, this raises the question: Which
of both methods is better?

Basically, the performance of deformable collision detection algo-
rithms can be derived by a simple extension of the cost function for
rigid objects (see Equation 2.2):

T = NvCv +NpCp +NuCu with (2.2)

T = Total cost of testing a pair of models for intersection

Nv = Number of BV Tests

Cv = Cost of a BV Test

Np = Number of Primitive Tests

Cp = Cost of a Primitive Test

Nu = Number of BV Updates

Cu = Cost of a BV Update

Usually, Nu is higher for the bottom-up update than for the top-
down approach. On the other hand, Cu is higher for the top-down
method. Consequently, there is no definite answer to the question.
Actually, according to Larsson and Akenine-Möller [2001], if many
deep nodes in a tree are reached, it gives a better overall performance
to update the AABBs in a tree bottom-up. In simple cases, however,
with only a few deep nodes visited in a collision test, the top-down
update performs better. As a compromise, the authors proposed a
hybrid updating strategy: for a tree with depth n, initially the first n2
should be updated bottom-up. The lower nodes should be updated
top-down on the fly during collision traversal (see Figure 2.7). Mezger
et al. [2003] accelerated the update by omitting the update process
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for several time steps. Therefore, the BVs are inflated by a certain
distance, and as long as the enclosed polygon does not move farther
than this distance, the BV does not need to be updated.

If specific information about the underlying deformation scheme or
the geometric objects is available, additional updating techniques can
be used for further acceleration. For instance, Larsson and Akenine-
Möller [2003] proposed a method for morphing objects, where the
objects are constructed by interpolation between some morphing tar-
gets: one BVH is constructed for each of the morph targets so that
the corresponding nodes contain exactly the same vertices. During
running-time, the current BVH can be constructed by interpolating
the BVs. Spillmann et al. [2007] presented a fast sphere tree update for
meshless objects undergoing geometric deformations that also sup-
ports level-of-detail collision detection. Lau et al. [2002] described a
collision detection framework for deformable NURBS surfaces using
AABB hierarchies. They reduce the number of updates by searching
for special deformation regions. Guibas et al. [2002] used cascade
verification in a sphere tree for deformable necklaces. Sobottka et al.
[2005] extended this approach to hair simulation using AABBs and
k-DOPs [Sobottka and Weber, 2005].

Refitting BVHs works as long as the objects do not deform too
much, this means, when the accumulated overlap of the refitted BVs
is not too large. This problem arises for example in simulations of frac-
turing objects. In this case, a complete or partial rebuilt of the BVH
may increase the running-time significantly. Larsson and Akenine-
Möller [2006] proposed an algorithm that can handle highly dynamic
breakable objects efficiently: they start a refitting bottom-up update
at the BVs in the separation list and use a simple volume heuristic to
detect degenerated sub-trees that must be completely rebuilt. Otaduy
et al. [2007] used a dynamic restructuring of a balanced AVL-AABB
tree. Tang et al. [2008] described a two-level BVH for breakable objects
based on mesh connectivity and bounds on the primitives’ normals.

2.5.1 Excursus: GPU-based methods

Popular methods for real-time simulation of deformable objects like
mass-spring systems [Leon et al., 2010; Mosegaard et al., 2005], but
also multi-body simulations [Elsen et al., 2006; Tasora et al., 2009],
can be easily parallelized. Consequently, they are perfectly suited for
modern GPU architectures. Hence, it is obvious to develop also colli-
sion detection schemes that work directly on the graphics hardware
instead of copying data back and forth between main memory and
GPU memory.

Actually, GPU-based algorithms have been proposed for all parts of
the collision detection pipeline: the broad-phase Le Grand [2008]; Liu
et al. [2010a], the narrow-phase Chen et al. [2004]; Greß et al. [2006]
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and even for the primitive tests [Govindaraju et al., 2005b; Wong and
Baciu, 2005].

The first approaches relied on the fixed-function graphics pipeline
of at least OpenGL 1.6 and used image space techniques. For instance,
Knott and Pai [2003] implemented a ray-casting algorithm based on
frame buffer operations to detect static interferences between poly-
hedral objects. Heidelberger et al. [2004] described an algorithm for
computation of layered depth images using depth and stencil buffers.

Later, the fixed function pipelines had been replaced by programm-
able vertex and fragment processors. This also changed the GPU col-
lision detection algorithms: for example, Zhang and Kim [2007] per-
formed massively-parallel pairwise intersection tests of AABBs in a
fragment shader. Kolb et al. [2004] used shaders for the simulation of
large particle systems, including collisions between the particles.

Today, GPU processors are freely programmable via APIs such as
OpenCL or CUDA. This further improved the flexibility of GPU-
based collision detection algorithms, like the approach by Pan and
Manocha [2012] that uses clustering and collision-packet traversal or
the method based on linear complementary programming for convex
objects by Kipfer [2007].

Moreover, several special hardware designs to accelerate collision
detection were developed [Atay et al., 2005; Raabe et al., 2005]. With
the Ageia PhysX card [Davis et al., 2003] one special hardware card
even managed to enter the market. But due to increasing performance
and flexibility of GPUs it seems that special physics processing hard-
ware has become obsolete.

2.6 related fields

Figure 2.8: Ray tracing supports a wide variety of optical effects like reflec-
tions, refractions and shadows.

Of course, data structures for the acceleration of geometric queries
are not restricted to collision detection. They are also widely used in
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ray tracing (see Section 2.6.1), object recognition [Selinger and Nel-
son, 1999], 3D audio rendering [Tsingos et al., 2007; Wand, 2004] or
occlusion [Yilmaz and Gudukbay, 2007; Zhang et al., 1997], view frus-
tum [Clark, 1976] and backface culling [Zhang and Hoff, 1997]. More-
over they accelerate visibility queries including hierarchical z-Buffers
[Greene et al., 1993] and back-to-front [Fuchs et al., 1980] or front-to-
back [Gordon and Chen, 1991] rendering via BSP-Trees. Geometric
hierarchies help to index [Günther, 1989; Six and Widmayer, 1992]
and search [Park and Ryu, 2004] geometric databases efficiently, and
they improve hardware tessellation [Munkberg et al., 2010].

This small selection of very different applications and the large
number of already presented data structures just for the field of colli-
sion detection in the previous sections suggests that there is an almost
uncountable number of different approaches available. A perfect geo-
metric data structure would be one that can process every imaginable
geometric search query optimally. Unfortunately, such a data struc-
ture does not – and maybe can not – exist. Quite the contrary, much re-
search is spent on finding optimal data structures for each small sub-
problem. However, maintaining dozens of different optimized data
structures in a simple virtual environment with ray tracing, sound
rendering and collision detection could also be very inefficient due to
memory waste and the computational cost of hierarchy updates. Con-
sequently, there is also a counter movement that proposes the use of
more general data structures [Günther et al., 2009].

2.6.1 Excursus: Ray-tracing

Basically, ray-tracing is a rendering technique that realizes global il-
lumination for perfect reflections. Instead of scan converting all poly-
gons in the scene, as traditional renderers like OpenGL and DirectX
do, a ray of light is traced backward from the eye through the scene. If
the ray hits an object, an additional ray is shot to the light sources and
moreover, reflected and refracted rays are further traced recursively
[Whitted, 1980]. Consequently, the main challenge when tracing rays
is to find intersections between these rays and the scene. This problem
is closely related to collision detection where two objects are checked
for intersection. Therefore, also the geometric acceleration data struc-
tures are very similar.

A complete overview of all existing data structures for ray-tracing
is far beyond the scope of this excursus. As a starting point we would
like to refer the interested reader to the books and surveys of Han-
rahan [1989], Arvo and Kirk [1989], Shirley and Morley [2003] and
Suffern [2007]. In the following, we will shortly point out similarities
and differences between ray-tracing and collision detection and dwell
on the open challenges.
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Almost all data structures that were proposed for collision detec-
tion had been earlier applied to ray-tracing. This includes non hierar-
chical data structures like uniform grids [Amanatides and Woo, 1987;
Fujimoto et al., 1986], as well as bounding volume hierarchies [Kay
and Kajiya, 1986; Rubin and Whitted, 1980]. However, a ray has to be
tested for intersection with the whole scene, whereas during the colli-
sion detection process objects are checked for collision with other ob-
jects in the same scene. Therefore, the data structures for ray-tracing
are usually used at a scene level, while collision detection uses them
on an object level. Consequently, other spatial subdivision data struc-
tures that are rarely used in collision detection, like octrees [Samet,
1989; Whang et al., 1995] and kd-trees [Fussell and Subramanian,
1988], that were originally developed for associative searches [Bent-
ley, 1975], became more popular for ray-tracing [Wald and Havran,
2006].

However, these data structures are primarily designed for static
scenes. If objects in the scene move or deform, the data structures
have to be updated or rebuilt. As in collision detection for deformable
objects, it is still a challenge to find the right updating strategy and a
lot of recent work has been spent on this problem recently [Andrysco
and Tricoche, 2011; Yoon et al., 2007]. Moreover, even when using
fast acceleration data structures, ray-tracing is computational very
expensive and not applicable for real-time rendering on consumer
hardware. However, first GPU implementations that support parallel
tracing of rays seem to be very promising [Djeu et al., 2011; Horn
et al., 2007; McGuire and Luebke, 2009; Parker et al., 2010; Torres
et al., 2009].
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K I N E T I C D ATA S T R U C T U R E S F O R C O L L I S I O N
D E T E C T I O N

Every bond you break
Every step you take
I’ll be watching you

The Police
Every Breath You Take

As already seen in the previous chapter, bounding volume hierar-
chies for geometric objects are widely employed in many areas of
computer science to accelerate geometric queries. These acceleration
data structures are used in computer graphics for ray-tracing, occlu-
sion culling, geographical databases and collision detection, to name
but a few. Usually, a bounding volume hierarchy is constructed in a
pre-processing step which is suitable as long as the objects are rigid.

However, deformable objects play an important role, e.g. for creat-
ing virtual environments in medical applications, entertainment and
virtual prototyping. If the object deforms, the pre-processed hierarchy
becomes invalid.

In order to still use this well-known method for deforming objects
as well, it is necessary to update the hierarchies after the deformation
happens.

Most current techniques do not make use of the temporal and spa-
tial coherence of simulations and just update the hierarchy by brute-
force at every time step or they simply restrict the kind of deforma-
tion in some way in order to avoid the time consuming per-frame
update of all bounding volumes.

On the one hand, we all know that motion in the physical world
is normally continuous. So, if animation is discretized by very fine
time intervals, a brute-force approach to the problem of updating
BVHs would need to do this at each of these points in time. On the
other hand, changes in the combinatorial structure of a BVH only oc-
cur at discrete points in time. Therefore, we propose to utilize an

37
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event-based approach to remedy this unnecessary frequency of BVH
updates.

According to this observation, we present two new algorithms to
update hierarchies in a more sensitive way: we only make an update
if it is necessary. In order to determine exactly when it is necessary, we
use the framework of kinetic data structures (KDS). To use this kind of
data structures, it is required that a flightplan is given for every vertex.
This flightplan may change during the motion, maybe by user interac-
tion or physical events (like collisions). Many deformations caused by
simulations satisfy these constraints, including keyframe animations
and many other animation schemes.

In the following, we first present a kinetization of a tree of axis
aligned bounding boxes and show that the associated update algo-
rithm is optimal in the number of BV updates (This means that each
AABB hierarchy which performs less updates must be invalid at some
point of time).

Moreover, we prove an asymptotic lower bound on the total num-
ber of update operations in the worst case which holds for every BVH
updating strategy. This number is independent from the length of the
animation sequence under certain conditions.

In order to reduce the number of update operations, we propose a
kinetization of the BoxTree. A BoxTree is a special case of an AABB
where we store only two splitting axis per node. On account of this
we can reduce the overall number of events.

Additionally, we present the results of a comparison to the running
times of hierarchical collision detection based on our novel kinetic
BVHs and conventional bottom-up updating, respectively.

This general technique of kinetic BVHs is available for all applica-
tions which use bounding volume hierarchies, but our main aim is
their application to collision detection of deformable objects.

Virtually all simulations of deforming objects, like surgery simula-
tion or computer games, require collision detection to be performed
in order to avoid the simulated objects to penetrate themselves or
each other. For example, in cloth simulations, we have to avoid pen-
etrations between the cloth and the body, but also between the wrin-
kles of the cloth itself.

Most current techniques use bounding volume hierarchies in order
to quickly cull parts of the objects that cannot intersect. In addition
to the required BVH updates, an other problem arises when using
BVHs for self-collision detection: two adjacent sub-areas are always
colliding by contact along their borders. In consequence, checking
BVHs against themselves for self-collision results in a large number of
false positive tests. Moreover, using swept volumes and lazy updating
methods for continuous collision detection results in very large BVs
and hence more false positive tests.
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In order to avoid all those problems mentioned above, we propose
a new event-based approach for continuous collision detection of de-
formable objects. Analogously to the changes in the combinatorial
structure of the BVH, also collisions only occur at discrete points in
time. Exploiting this observation, we have developed the novel ki-
netic Separation-List, which enables continuous inter- and intra-object
collision detection for arbitrary deformations such that checks be-
tween bounding volumes and polygons are done only when neces-
sary, i. e. when changes in the moving front really happen.

This way, the continuous problem of continuous collision detection
is reduced to the discrete problem of determining exactly those points
in time when the combinatorial structure of our kinetic Separation-
List changes. The kinetic Separation-List is based on the kinetic AABB-
Tree and extends the same principle to collision detection between
pairs of objects. We maintain the combinatorial structure of a separa-
tion list of a conventional recursion tree.

As a natural consequence of this event-based approach collisions
are detected automatically in the right chronological order, so there
is no further ordering required like in many other approaches. There-
fore, our kinetic Separation-List is well suited for collision response.

In the following, we will restrict our discussion to polygonal meshes,
but it should become obvious that our data structures can, in princi-
ple, handle all objects for which we can build a bounding volume
hierarchy, including polygon soups, point clouds and NURBS mod-
els. Our algorithms are even flexible enough for handling insertions
or deletions of vertices or edges in the mesh during running-time.

3.1 recap : kinetic data structures

In this section we start with a quick recap of the kinetic data structure
framework and its terminology.

The kinetic data structure framework is a framework for designing
and analyzing algorithms for objects (e.g. points, lines, polygons) in
motion which was invented by Basch et al. [1997]. The KDS frame-
work leads to event-based algorithms that samples the state of dif-
ferent parts of the system only as often as necessary for a special
task. This task can be for example maintaining the convex hull [Basch
et al., 1999], a heap [da Fonseca and de Figueiredo, 2003], a sorted list
[Ali Abam and de Berg, 2007] or the closest pair [Agarwal et al., 2008]
of a set of moving points.

There also exists first approaches of collision detection using ki-
netic data structures. For instance Erickson et al. [1999] described a
KDS for collision detection between two convex polygons by using a
so-called boomerang hierarchy. Agarwal et al. [2002] and Speckmann
[2001] developed a KDS using pseudo triangles for a decomposition
of the common exterior of a set of simple polygons for collision. Basch
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Pmin,y

Pmax,y

P4

P6

P3

P2
P1

Pmax,x

P5

Pmin,x

Figure 3.1: Assume a set of moving points in the plane. P{max,min},{x,y} for
the current bounding volume of this points. At some time, P5
will become smaller than Pmin,y, this causes an event.

et al. [2004] tracked a separating polygonal line between a pair of sim-
ple polygons and Guibas et al. [2001] used a KDS for the separating
plane between rigid objects. However, all these approaches are lim-
ited to two dimensions or very simple objects. Simultaneously to our
approach, Coming and Staadt [2006] presented a kinetic version of
the Sweep-and-Prune algorithm. But this method is limited to broad-
phase collision detection.

However, these are just a few examples for tasks that can be effi-
ciently solved using the framework of kinetic data structures. Guibas
[1998] presents further examples. In the terminology of KDS these
tasks are called the attribute of the KDS.

Usually, a KDS consists of a set of elementary conditions, called cer-
tificates, which prove altogether the correctness of its attribute. Those
certificates can fail as a result of the motion of the objects. This certifi-
cate failures, the so-called events, are placed in an event-queue, ordered
according to their earliest failure time. If the attribute changes at the
time of an event, the event is called external, otherwise the event is
called internal. Thus sampling of time is not fixed but determined by
the failure of some certain conditions.

As an example, we can assume the bounding box of a set of mov-
ing points in the plane. The bounding box is the attribute we are
interested in. It is generated by four points Pt

{max,min},{x,y} which
have the maximum and minimum x− and y−values at a certain
time point t. For every inner point Pti we have Pti [x] < Ptmax,x[x],
Pti [y] < Ptmax,x[y], Pti [x] > Ptmin,x[x] and Pti [y] > Ptmin,y[y]. These
four simple inequations are the certificates in our example. If an
inner point moves out of the bounding box, due to its motion, e.g.
Pt2i [x] > Pt2max,x[x], this causes an external event at the point of time
t+∆twhen Pt+∆ti [x] = Pt+∆tmax,x[x] (see Figure 3.1). If Pti [x] > P

t
j [x] and

Pt3i [x] < Pt3j [x] for points that are not in Pt
{max,min},{x,y}, this causes

an internal event.
We measure the quality of a KDS by four criteria: compactness,

responsiveness, locality and efficiency. In detail:
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• A KDS is compact, if it requires only little space.

• A KDS is responsive if we can update it quickly in case of a
certificate failure.

• A KDS is called local, if one object is involved in not too many
events. This guarantees that we can adjust changes in the fligh-
plan of the objects quickly.

• And finally, a KDS is efficient, if the overhead of internal events
with respect to external events is reasonable.

A proof that the example KDS described above fullfills all four qual-
ity criteria can be found in Agarwal et al. [1997]. We will continue to
describe our new kinetic data structures for hierarchies of objects.

3.2 kinetic bounding volume hierarchies

In our case, the objects are a set of m polygons with n vertices. Every
vertex pi has a flightplan fpi(t). This might be a chain of line seg-
ments in case of a keyframe animation or algebraic motions in case of
physically based simulations. The flightplan is assumed to use O(1)
space and the intersection between two flightplans can be computed
in O(1) time. The flightplan of a vertex may change during simula-
tion by user interaction or physical phenomena, including collisions.
In this case we have to update all events the vertex is involved with.

The attribute is a valid BVH for a set of moving polygons. An event
will happen, when a vertex moves out of its BV.

The kinetic data structures we will present have some properties in
common, which will be described as follows.

They all use an event-queue for which we use an AVL-Tree, because
with this data structure we can insert and delete events as well as
extract the minimum in time O(logk) where k is the total number of
events.

Both kinetic hierarchies, the kinetic AABB- as well as the kinetic
BoxTree, run within the same framework for kinetic updates, which
is explained in the following algorithm:

Algorithm 3.1: Simulation Loop

while simulation runs do
calc time t of next rendering
e← min events in event-queue
while e.timestamp < t do

processEvent(e)
e← min events in event-queue

check for collisions
render scene
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3.2.1 Kinetic AABB-Tree

In this section, we present a kinetization of the well known AABB
tree. We build the tree by any algorithm which can be used for build-
ing static BVHs and store for every node of the tree the indices of
these points that determine the bounding box. For our analysis of the
algorithms it is only required that the height of the BVH is logarith-
mic in the number of polygons.

After building the hierarchy, we traverse the tree again to find the
initial events.

3.2.1.1 Kinetization of the AABB-Tree

Actually, there are three kinds of different events:

• Leaf event: Assume that P1 realizes the BVs maximum along the
x-axis. A leaf event happens, when the x-coord of one of the
other points P2 or P3 becomes larger than P1,x (see Figure 3.2).

• Tree event: Let K be an inner BV with its children Kl and Kr and
P2 ∈ Kr is the current maximum of K on the x-axis. A tree event
happens when the maximum of Kl becomes larger than P2 (see
Figure 3.3). Analogously, tree events are generated for the other
axis and the minima.

• Flightplan-update event: Every time a flightplan of a point chan-
ges we get a flightplan-update event.

So after the initialization we have stored six events with each BV. In
addition, we put the events in the event queue sorted by their time-
stamps.

During runtime, we perform an update according to Algorithm 3.1
before each collision check. In order to keep the BV hierarchy valid,
we have to handle the events as follows:

• Leaf event: Assume in a leaf BV B, realized by the vertices P1, P2
and P3, the maximum extend along the x-axis has been realized
by P2. With the current event, P1 takes over, and becomes larger
than P2[x]. In order to maintain the validity of the BV hierarchy,
in particular, we have to associate P1 as the max x extent of
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P1

P3

P2

Figure 3.2: When P1 becomes larger than the current maximum vertex P2, a
leaf event will happen.

P2P1

Figure 3.3: When P1, the maximum of the left child-box becomes larger than
the overall maximum vertex P2, a tree event will happen.

P2

P3

P1

Figure 3.4: To keep the hierarchy valid when a leaf event happens, we have
to replace the old maximum P2 by the new maximum P1, and
compute the time, when one of the other vertices of the polygon,
P2 or P3 will become larger than P1. In this example this will be
P3.
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B. In addition, we have to compute a new event. This means,
we have to compute all the intersections of the flightplans of
all other vertices in B with P1 in the xt-plane. An event for the
pair with the earliest intersection time is inserted into the event
queue (see Figure 3.4). But that is not necessarily sufficient for
keeping the BVH valid. In addition, we have to propagate this
change in the BVH to the upper nodes. Assume B be the right
son of its father V , so we have check whether P2 had been the
maximum of V too. In this case, we have to replace P2 by the
new maximum P1. Moreover, the corresponding event of V is
not valid any more because it was computed with P2. So we
have to delete this event from the event-queue and compute a
new event between P1 and the maximum of the left son of V .
Similarly we have to proceed up the BVH until we find the first
predecessor V with maxx{V} 6= P2, or until we reach the root. In
the first case we only have to compute another event between
maxx{V} and P1 and stop the recursion. (see Figure 3.5).

• Tree event: Let K be an inner node of the BVH and P2 be the max-
imum along the x-axis. Assume further, P2 is also the maximum
of the left son. When a tree event happens, P2 will be replaced
by P1, which is the maximum of the right son of K (see Fig-
ure 3.5). In addition, we have to compute a new event between
P1 and P2 and propagate the change to the upper nodes in the
BVH in the same way as described above for the leaf event.

• Flightplan-update event: When the flightplan of a vertex changes,
we have to update all the timestamps of those events it is in-
volved in.

3.2.1.2 Analysis of the Kinetic AABB-Tree

For measuring the theoretical performance of our algorithm we use
the four criteria of quality defined for every KDS.

Moreover, we have to proof that our data structure is a valid BVH
even if the object deforms. Therefore, we need the following defini-
tion.

Definition 1 We call a kinetic AABB-Tree valid, if every node in the tree
is a bounding volume for all polygons in its sub-tree.

Then we get the following theorem:

Theorem 1 The kinetic AABB-Tree is compact, local, responsive and effi-
cient. Furthermore, if we update the BVHs in the manner described above,
then the tree is valid at every point of time.

We start with the proof of the first part of the theorem.
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P2

P1

P3

Figure 3.5: In case of a tree- and a leaf event, we have to propagate the
change to upper BVs in the hierarchy. After replacing the old
maximum P2 by the new maximum P1 in the lower left box,
we have to compute the event between P1 and P3, which is the
maximum of the father.

• Compactness: For a BVH we need O(m) BVs. With every BV we
store at most six tree- or leaf events. Therefore, we need space
of O(m) overall. Thus, our KDS is compact.

• Responsiveness: We have to show that we can handle certificate
failures quickly. Therefore, we view the different events sepa-
rately.

– Leaf events: In the case of a leaf event we have to compute
new events for all points in the polygon. Thus, the respon-
siveness depends on the number of vertices per polygon. If
this number is bounded we have costs of O(1). When we
propagate the change to upper nodes in the hierarchy, we
have to delete an old event and compute a new one, which
causes costs of O(logm) per inner node for the deletion
and insertion in the event-queue, since the queue contains
O(m) events. In the worst case we have to propagate the
changes until we reach the root. Thus the overall cost is
O(log2m) for a leaf event.

– Tree events: Analogously, for tree events we get costs of
O(log2m).

Thus the KDS is also responsive.

• Efficiency: The efficiency measures the ratio of the inner to the
outer events. Since we are interested in the validity of the whole
hierarchy, each event is an inner event because each event pro-
vokes a real change of our attribute. So the efficiency is automat-
ically given.

• Locality: The locality measures the number of events one vertex
is participating in. For sake of simplicity, we assume that the
degree of every vertex is bounded. Thus, every vertex can par-
ticipate in O(logm) events. Therefore, a flightplan update can
cause costs of O(log2m). Consequently, the KDS is local.
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We show the second part of the theorem by induction over time.
After the creation of the hierarchy, the BVH is apparently valid.

The validity will be violated for the first time, when the combinatorial
structure of the BVH changes, this means, a vertex flies out of its BV.

In case of a leaf, every vertex in the enclosed polygon could be
considered to such an event. The initial computation of the leaf events
guarantees that there exists an event for the earliest time point this
can happen. For the inner nodes, it is sufficient to consider only the
extremal vertices of their children: Assume a BV B with P1 maximum
of the left son Bleft along the x-axis and P2 maximum of the right
son Bright along the x-axis. This means, all vertices in Bleft have
smaller x-coords than P1 and all vertices in Bright have smaller x-
coords than P2. Thus, the maximum of B along the x-axis must be
max{P1,P2}. Assume w.l.o.g. P1 is the maximum. The vertex Pnext
which could become larger than P1 could be either P2 or a vertex of a
BV in a lower level in the hierarchy becomes invalid before an event
at B could happen. Assume Pnext is in the right sub-tree, then Pnext
must become larger than P2 and therefore Bright has become invalid
sometime before. If Pnext is in the left sub-tree, it must become larger
than P1 and thus Bleft has become invalid before.

Summarised, we get a valid BVH after the initialisation and the
vertex which will violate the validity of the BVH for the first time
triggers an event.

We still have to show that the hierarchy stays valid after an event
happens and that the next vertex which violates the validity also trig-
gers an events.

• Leaf event: Assume B the affected leaf and P2 becomes larger
than P1, which is the current maximum of B. As described
above, we replace P1 by P2. Therefore, B stays valid. Further-
more, we check for all other vertices in the polygon, which is
the next to become larger than P2 and store an event for that
vertex, for which this happens first. This guarantees that we
will find the next violation of the validity of this BV correctly.

In addition, all predecessors of B on the path up to the root
which have P1 as maximum become invalid too. Due to the
algorithm described above, we replace all occurrences of P1 on
this path by P2. Thus, BVH stays valid. The re-computation of
the events on the path to the root ensures that the vertex which
will violate the validity provokes a suitable event.

• Tree event: Assume B the affected inner node. When an event
happens, e. g. P2 becomes larger than P1 which is the current
maximum of B, we once again replace P1 by P2 and therefore B
stays valid. For the computation of the new event it is sufficient
to consider only the two child BVs of B as described above. The
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Figure 3.6: The flightplans are functions f1 (red) and f2 (blue) in the
xt-plane and similarly in the yt- and zt-planes. The function
max(f,f2) (green) determines the upper envelope of f1 and f2.

propagation to the upper nodes happens analogously to the tree
event.

• Flightplan-update event: Actually, a flightplan-update event does
not change the combinatorial structure of the BVH. Therefore,
the BVH stays valid after such an event happens. However, it is
possible that the error times of some certificate failures change.
To ensure that we find the next violation of the BVH, we have
to recompute all affected events.

Recapitulating, we have shown that we have a valid BVH after the
initialisation and the first vertex that violates the validity provokes
an event. If we update the hierarchy as described above, it stays valid
after an event happens and we compute the next times when an event
can happen correctly.

Note that by this theorem the BVH is valid at every time point,
not only at the moments when we check for a collision as it is the
case with most other update algorithms like bottom-up or top-down
approaches.

3.2.1.3 Optimality of the kinetic AABB-Tree

In the previous section, we have proven that our kinetic AABB-Tree
can be updated efficiently. Since there are no internal events, we
would also like to determine the overall number of events for a whole
animation sequence in order to estimate the running-time of the algo-
rithm more precisely. Therefore, we proof the following theorem:

Theorem 2 Given n vertices Pi, we assume that each pair of flightplans,
fPi(t) and fPj(t), intersect at most s times. Then, the total number of events
is in nearly O(n logn).

We consider all flightplans along each coordinate axis separately
(see Figure 3.6). We reduce the estimation of the number of events on
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the computation of the upper envelope of a number of curves in the
plane. This computation can be done by an algorithm using a com-
bination of divide-and-conquer and sweep-line for the merge step.
The sweep-line events are the sections of the sub-envelopes (we call
them the edge events) and intersections between the two sub-envelopes
(which we call the intersection events). Obviously, each sweep-line event
corresponds to an update in our kinetic BVH.

The total number of sweep-line events depends on s. We define
λs(n) as the maximum number of edges for the upper envelope of n
functions, whereas two of these functions intersect at most s times.

For the number of edge events we get:

2λs

([n
2

])
6 λs (n) (3.1)

since the two sub-envelopes are envelopes of
[
n
2

]
flightplans.

Furthermore, we get an new edge in the envelope for every inter-
section event. Obviously, this can be at most λs(n). Therefore, we can
estimate the total number of events by the following recursive equa-
tion:

T (2) = C

T (n) 6 2T
(n
2

)
+Cλs(n) (3.2)

for some constant C. Overall we get:

T (n) 6
logn∑
i=0

2iCλs(
n

2i
) (3.3)

In order to resolve the inequation we have to know more about λs(n).
Actually, λs(n) can be characterized in a pure combinatorial man-
ner without knowledge about the geometrical structure of the func-
tions that form the upper envelope. Therefore, we use the definition
of Davenport-Schinzel sequences [Davenport and Schinzel, 1965]. Origi-
nally developed for the analysis of linear differential equations, today
such Davenport-Schinzel sequences are widely used in computational
geometry. For some alphabet Γ with n letters a word in Γ is called
Davenport-Schinzel sequence if the number of times any two letters may
appear in alternation is at least s and the word has maximum length.
Obviously, the length of such a Davenport-Schinzel sequence matches
λs(n).

A total analysis of λs(n) would exceed the scope of this chapter.
Therefore, we will concentrate on employing a few specific features
of λs(n) but we will omit the proofs. We refer the interested reader
to Sharir and Agarwal [1995] to look-up the proofs and many other
interesting things about Davenport-Schinzel sequences.

One special characteristic of λs(n) is:

Theorem 3 For all s,n > 1 we have: 2λs (n) 6 λs (2n) .
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With this theorem we can solve the recursive equation and get:

Theorem 4 For the computation of the upper envelope of n functions we
need at most O(λs (n) logn) events.

Furthermore, it is true that λs(n) behaves almost linear; more pre-
cisely λs(n) ∈ O(n log∗ n) where log∗ n is the smallest number m
for which the m-th iteration of the logarithm is smaller than 1. For
example, log∗ n 6 5 for all n 6 1020000.

Moreover, it can be shown that the problem of computing the up-
per envelope is in Θ(n logn) by reducing it to a sorting problem
(see [Sharir and Agarwal, 1995] for details). All together this proves
that our algorithm is optimal in the worst case.

This demonstrates one of the strengths of the kinetic AABB-Tree:
with classical update strategies like bottom-up, we need O(kn) up-
dates, where k is the number of queries. However, with our kinetic
BVH, we can reduce this to nearly O(n logn) updates in the worst
case. Furthermore, it is completely independent of the number of
frames the animation sequence consists of (or, the frame rate), pro-
vided the number of intersections of the flightplans depends only on
the length of the sequence in "wall clock time" and not on the number
of frames.

Moreover, our kinetic AABB-Tree is updated only if the vertices
that realize the BVs change; if all BVs in the BVH are still realized
by the same vertices after a deformation step, nothing is done. As an
extreme example, consider a translation or a scaling of all vertices. A
brute-force update would need to update all BVs — in our kinetic al-
gorithm nothing needs to be done, since no events occur. Conversely,
the kinetic algorithm never performs more updates than the brute-
force update, even if only a small number of vertices has moved.

3.2.2 Kinetic BoxTree

The kinetic AABB-Tree needs up to six events for each BV. In order
to reduce the total number of events we kinetized another kind of
BVH, the BoxTree [Zachmann, 2002] which uses less memory than
the kinetic AABB-Tree. The main idea of a BoxTree is to store only
two splitting planes per node instead of six values for the extends of
the box. Hence, the BoxTree can be considered as a lazy version of a
kd-Tree. To turn this into a KDS we proceed as follows:

3.2.2.1 Kinetization of the BoxTree

In the pre-processing step we build a BoxTree as proposed by [Zach-
mann, 2002], but similarly to the kinetization of the AABB tree, we
do not store real values for the splitting planes. Instead, we store that
vertex for each plane that realizes it (see Figure 3.7). We continue with
the initialization of the events:
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P2

P1

minright

maxleft

Figure 3.7: If a vertex in the left sub-tree becomes larger than the point P2
that realizes its current maximum maxleft, a tree event will hap-
pen. Similarly, we get an event for the right sub-tree, if a point in
it becomes smaller than its current minimum minright.

There are only two kinds of events:

• Tree event: Assume B is an inner node of the hierarchy with
splitting plane e ∈ {x,y, z} and assume further minB is the min-
imum of the right sub-tree (or maxB the maximum of the left
sub-tree). A tree event happens, when a vertex of the right sub-
tree becomes smaller than minB with regard to the splitting
axis e, or a vertex of the left sub-tree becomes larger than maxB
(see Figure 3.7).

• Flightplan-update event: Every time if the flightplan of a vertex
changes, a flightplan-update event happens.

During running-time, we perform an update according to Algo-
rithm 3.1 before each collision check. For keeping the BVH valid we
have to handle the events as described in the following:

• Tree event Let K be the node, where the tree event happens and
let Pnew be the vertex in the left sub-tree of K that becomes
larger than the current maximum Kmax.

In this case we have to replace Kmax by Pnew and compute
a new event for this node. The computation of a new event
is more complicated than in the case of a kinetic AABB-Tree.
This is because the number of possibilities of different splitting
planes and because of the fact that the extends of the BVs are
given implicitly.

For simplicity, we first assume that all BVs have the same split-
ting axis. In this case we have to look for event candidates,
i. e. vertices, which can become larger than the maximum, in
a depth-first search manner (see Figure 3.8). Note that we do
not have to look in the left sub-tree of the left sub-tree because
those vertices would generate an earlier event stored with one
of the nodes in the sub-tree.
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Figure 3.8: In order to compute a new event for maxleft, we have to look
which vertex can become larger than maxleft that is recently
realized with P6. In the first level, this could be either the maxi-
mum of the left sub-tree, the vertex P5, or any vertex in the right
sub-tree of node (P1,P2,P3,P4,P5,P6). On the next level it could
be the maximum of the left sub-tree of node (P3,P4,P6), thus the
vertex P4, and all vertices in the right sub-tree, that only contains
P6.

If more than one splitting axis is allowed, we first have to search
for the nodes with the same splitting axis (see Figure 3.9).

In both cases, we have to propagate the change to the upper
nodes: First we have to search a node above K in the hierarchy
with the same splitting axis. If its maximum is also Kmax, we
have to replace it and compute a new event for this node. We
have to continue recursively until we reach a node O with the
same splitting axis but Omax 6= Kmax or until we reach the
root.

• Flightplan-update event: If the flightplan of a point changes, we
have to update all events it is involved in. Therefore, we once
again start at the leaves and propagate it to the upper nodes.



52 kinetic data structures for collision detection

3.2.2.2 Analysis of the Kinetic BoxTree

In order to show the performance of the algorithm, we have to show
the four quality criteria for KDS again.

Theorem 5 The kinetic BoxTree is compact, local and efficient. The respon-
siveness holds only in the one-dimensional case. Furthermore, if we use the
strategies described above to update the BVH, we get a valid BVH at every
point of time.

We start with the proof of the first part of the theorem:

• Compactness: We need space of O(m) for storing the kinetic Box-
Tree. In addition, we get at most two events per node, so we
have O(m) events in total. So the kinetic BoxTree is compact.

• Efficiency: Since we are interested in the validity of the whole
hierarchy and every event leads to a real change of the combi-
natorial structure of the hierarchy, our KDS is also efficient.

• Locality: Assuming the tree is not degenerated, one polygon can
be involved in at most O(logm) events. Consequently, the KDS
is local.

• Responsiveness: Not so straight forward is the responsiveness
of our KDS, which is due to the costly computation of new
events, where we have to descend the tree in dfs-manner. If all
nodes have the same splitting axis, the computation of a new
event costs at most O(logm) because of the length of a path
from the root to a leaf in the worst case. Deletion and inser-
tion of an event in the event-queue generate costs of O(logm)

and in the worst case we have to propagate the change up
to the root BV. Therefore, the overall cost for computing an
event is O(m log2m) and thus the KDS is responsive in the one-
dimensional case. But if the other nodes are allowed to use other
split-axis too, it could be much more expensive. Assume that the
root BV has the x-axis as split-axis and all other nodes have y
as split-axis (see Figure 3.10). If an event appears at the root, we
have to traverse the whole tree to compute the next event. So we
have total costs of O(m logm) and thus, the KDS is not respon-
sive. However, we can simply avoid this problem by defining a
maximum number of tree-levels for the appearance of the same
splitting axis.

The total number of events is nearly in O(n logn) which follows
analogously to the kinetic AABB-Tree.

We show the second part of the theorem by induction over time.
W.l.o.g. we restrict to prove it only for the maxima, the arguments for
the minima follows analogously. After building the BVH we have a
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Figure 3.9: If more than one splitting axis are allowed, we have to search
for the next level with the same splitting axis, when we want to
look for the next candidates for an event. We have to visit the red
marked nodes when we compute a new event for the root box.

splity

splitx

splity

splity

Figure 3.10: In the worst case, all levels have the same split axis, except of
the root. If we want to compute a new event for the root, we
have to traverse the whole tree.

valid hierarchy. It can become invalid if a vertex P gets larger along
some axis than the maximum of some inner node K, i.e. if a tree
event happens. Since we calculate the tree events for every inner node
correctly, we will recognize the first time when the hierarchy becomes
invalid.

We still have to show that the hierarchy stay valid after an event
happen and that we find the next event as well.

If a tree events happens, this means some vertex P becomes larger
than the maximum Kmax of a node K, we have to replace all occur-
rences of Kmax on the way from K to the root box by P and recalculate
the events. This guarantees that the hierarchy is still valid and we will
find the next violation of the validity of the BVH correctly.

In the case of a flightplan-update event, the validity of the BVH
does not change, but the error times of the events may change. Thus
we have to recompute the times for all events, the vertex is involved
in.

Summarized, the hierarchy is valid after initialisation and the first
violation of the validity is stored as event in the BVH. After an event
happens, the hierarchy is valid again an it is guaranteed that we find
the next violation of the validity. Thus, the BVH is valid at every point
of time.
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Figure 3.11: Kinetic Interval DOP: We inflate each point by a certain amount.

Recapitulating, we have a second KDS for fast updating a BVH
which uses less events than the kinetic AABB-Tree but the computa-
tion of one single event is more complicated.

3.2.3 Dead Ends

During the development of our kinetic data structures we also ran
into some dead ends that looked promising on the first sight, either in
theory or in practice. In their implementation it turned out that their
drawbacks predominate their advantages. However, in this section
we will give a short overview on these dead end data structures and
provide descriptions on their specific disadvantages.

3.2.3.1 Kinetic DOP-Tree

It is straight forward to extend the kinetic AABB-Tree to additional
axis by using discrete oriented polytopes. Obviously, these k-DOPs –
k denotes the number of discrete orientations – fit the objects more
tightly than ordinary AABBs. Moreover, all theoretical observations
that holds for the kinetic AABB-Tree (see Section 3.2.1) are also valid
for such kinetic DOP-Trees. Consequently, such a kinetic DOP-Tree
would fulfill all quality criteria for a good KDS. Unfortunately, in
practice the devil is hidden in the asymptotic notation.

It is clear that the number of events increases with an increasing
number of discrete orientations. Moreover, the computation of the
events becomes more complicated because we need an additional pro-
jection on the DOPs’ orientations. However, this projection is not only
required for the event determination but also during the queries. Ac-
tually, the bounding boxes of the kinetic AABB are stored implicitly.
During a bounding box test we re-construct the AABBs explicitly by
looking up their actual values. Hence, the re-construction of a DOP
during queries requires the computation of an additional dot product
for each orientation.

We have implemented a prototypical version of the kinetic DOP-
Tree. But the results show, that the disadvantages predominate the
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Figure 3.12: A point event happens if a point leaves its enclosing inflated
BV.

tighter fitting bounding volumes. In all cases, the kinetic DOP-Tree
performed significantly slower than the kinetic AABB-Tree.

3.2.3.2 Kinetic Interval DOP-Tree

The Kinetic DOP-Tree was an attempt to increase the tightness of the
bounding volume. Unfortunately, the advantages of the tighter BVs
where overcompensated by the increasing number of events. Conse-
quently, we also developed an other strategy that reduces the number
of the events for the cost of worse fitting BVs.

The basic idea relies on a method that was firstly proposed by
Mezger et al. [2003] (see also Section 2.5): He inflated the BVs by
a certain distance. As long as the enclosed polygon does not move
farther that this distance, the BV need not to be updated. In this sec-
tion we will present an event-based kinetic version of this approach,
that we call kinetic Interval-DOP-Tree.

Basically, we enclose each vertex by a small BV. Actually, we used
an AABB or a DOP of higher degree (see Figure 3.11). Based on
these inflated BVs we build a BVH. Beside the flightplan-update event
which is defined similarly to the other kinetic BVHs, there exists only
one other type of event – the Point Event. A point event happens each
time when a vertex escapes its surrounding BV (see Figure 3.12). In
this case we simply move the inflated BV into the direction where the
event has happened (see Figure 3.12). Moreover, we have to propagate
the changes to the upper levels of the hierarchy.

Obviously, we get O(n) events for an object that consists of n ver-
tices. Each vertex is associated to exactly one event. In case of an
event, we have to move the BV and propagate the change. If the BVH
is balanced, this can be done in time O(logn) in the worst case. Sum-
marizing, our Kinetic Interval DOP-Tree is compact, local and respon-
sive.
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(a) (b) (c)

Figure 3.13: When a point event happens (a), we move the into the appropri-
ate direction (b) and recompute the BV (c). Moreover, we have
to propagate the change in the hierarchy.

P1P̃1

Figure 3.14: An oscillation of point P1 between its current position and P̃1
will throw events without any change in the hierarchy.

Surprisingly, if we define the attribute like for the kinetic AABB-
Tree and the kinetic Box-Tree as the validity of the BVH, we can not
prove the efficiency. This is simply because a point event does not nec-
essarily change the BV of its corresponding triangle (see Figure 3.14).
What is even worse, there can be an unlimited amount of such events.
We can simply avoid this problem if we define the validity of the
BVH on a per point instead of a per triangle level. In this case, each
event changes the attribute and we get the efficiency. Obviously, this
extended BVH is also a valid BVH for the whole object.

However, in our prototypical implementation we recognized much
more events for the kinetic Interval DOP-Tree than for the kinetic
AABB-Tree in all our test scenarios. Moreover, the traversal during
query time is more time consuming because of the worse fitting bound-
ing volumes. Consequently, we measured a running-time that is more
than two times slower than that of our kinetic AABB-Tree or our ki-
netic BoxTree.
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3.3 kinetic separation-list

So far, the kinetic AABB-Tree utilizes the temporal and thus combi-
natorial coherence only for the updates of individual hierarchies. In
this section we will describe a novel KDS specifically for detecting
collisions between pairs of objects.

3.3.1 Kinetization of the Separation-List

Our so-called kinetic Separation-List builds on the kinetic AABB-Tree
and utilizes an idea described by [Chen and Li, 1999] for rigid bodies.
Given two kinetic AABB-Trees of two objects O1 and O2, we traverse
them once for the initialization of the kinetic incremental collision
detection. Thereby, we get a list, the so-called separation list, of over-
lapping BVs in the BV test tree (BVTT) (see Figure 3.15). We call the
pairs of BVs in the separation list nodes. This list contains three differ-
ent kinds of nodes: those which contain BVs that do not overlap (we
will call them the inner nodes), leaves in the BVTT, where the BV pairs
do not overlap (the non-overlapping leaves), and finally, leaf nodes in
the BVTT that contain pairs of overlapping BVs, the so-called overlap-
ping leaves.

During run-time, this list configuration changes at discrete points
in time, when one of the following events happens:

• BV-overlap event: This event happens when the pair of BVs of
a node in the separation list which did not overlap so far, do
overlap now. Thus, this event can happen only at inner nodes
and non-overlapping leaves (see Figure 3.16).

• Fathers-do-not-overlap event: This event happens, if the BVs of a
father of an inner node or a non-overlapping leaf in the BVTT
do not overlap anymore (see Figure 3.17). This could be inner
nodes or non-overlapping leaves.

• Leaves-do-not-overlap event: The fathers-do-not-overlap event can-
not occur to overlapping leaves, because if their fathers do not
overlap, then the leaves cannot overlap in the first place. There-
fore, we introduce the leaves-do-not-overlap event.
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Figure 3.15: The simultaneous traversal of two BVHs results in a BVTT (see
Figure 2.4). Those BV pairs, where the traversal stops, build a
list in this tree (green). We call it the separation list. This list
consists of inner nodes, whose BVs do not overlap (B, 3) and
leaf nodes, where the BVs are leaves in the BVH that do either
overlap or not.

• Polygons-collide event: A collision between two triangles can only
happen in overlapping leaves. If a non-overlapping leaf turns
into an overlapping leaf, we have to compute the collision time
and insert an adequate event into the event queue.

• BV-change event: Finally, we need an event that remarks changes
of the BV hierarchies. This event is somewhat comparable to
flightplan updates of the kinetic AABB-Tree, but it is not exactly
the same:

This is, because an object in the separation list is composed of
two BVs of different objects O1 and O2 and the flightplans are
attributes of the vertices of only one single object. Therefore,
not every flightplan update of an object affects the separation
list (see Figure 3.19).

In addition, a BV-change event happens if the combinatorial
structure of a BV in the separation list changes. Since we use
kinetic AABB-Trees as BVH for the objects, this can happen only
if a tree event or a leaf event in the BVH of an object happens.
Surely, not all events cause changes at the separation list.

Assuming that the BVs of the object do not overlap at the beginning
of the simulation, the separation list only consists of one node, which
contains the root BVs of the two hierarchies.

During running-time we have to update the separation list every
time one of the above event happens according to the following cases:

• BV-overlap event: Let K be the inner node with BVs V1 of object
O1 and V2 of object O2. Here, we need to distinguish two cases:



3.3 kinetic separation-list 59

B1

B2

Figure 3.16: BV-overlap event: If the BVs B1 and B2 move so that they begin
to overlap, we get an BV-overlap event.

– Node K is inner node: In order to keep the separation list
valid after the event happened we have to delete K from
it and insert the child nodes from the BVTT instead. This
means, if V1 has the children V1L and V1R, and V2 has the
children V2L and V2R we have to put 4 new nodes, namely
(V1L, V2L), (V1L, V2R), (V1R, V2L) and (V1R, V2R) into the
list. Then we have to compute the next time point t, when
(V1, V2) do not overlap. Furthermore, we have to compute
the times ti for the new nodes when they will overlap. If
ti < t we put a BV-overlap event in the queue, otherwise a
father-do-not-overlap event.

– Node K is a not overlapping leaf: In this case we just have
to turn the node into an overlapping leaf and compute the
next leaves-do-not-overlap event (see Figure 3.20).

• Fathers-do-not-overlap event: In this case we have to delete the
corresponding node from the separation list and insert its father
from the BVTT instead. Furthermore, we have to compute the
new fathers-do-not-overlap event and BV-overlap event for the
new node and insert the one which will happen first into the
event queue (see Figure 3.18).

• Leaves-do-not-overlap event: If such an event happens we have to
turn the overlapping leaf into a non-overlapping leaf, and com-
pute either a new fathers-do-not-overlap event or a BV-overlap
event and put it into the event queue.

• Polygons-collide event: A polygons-collide event does not change
the structure of the separation list. Such an event must be han-
dled by the collision response. But after the collision response
we have to compute the next polygons-collide event.

Note, that the polygons-collide events are reported in the cor-
rect order to the collision response module, this means, that
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Figure 3.17: Fathers-do-not-overlap event: Currently, the BV pairs
(bl, cl), (bl, cr), (br, cl) and (br, cr) are in the seperation
list. If their father BVs B and C do not overlap anymore, e. g. be-
cause the point P1 that realizes the maximum of B becomes
smaller than the minimum of C, we get an fathers-do-not-overlap
event.

that pair of polygons which collides first is also reported first.
There is no other sorting required as it is by normal bottom-up
strategies if we want to handle the first collision between two
frames foremost.

• BV-change event: If something in a BV in the separation list chan-
ges, e. g. the fligthplan of a vertex or the maximum or minimum
vertex of a BV, then we have to recompute all events the BV is
involved in.

3.3.2 Analysis of the Kinetic Separation-List

Analogously to the theorems about the kinetic AABB-Tree and the
kinetic BoxTree, we get a similar theorem for the kinetic incremental
collision detection. First we have to define the "validity" of a separa-
tion list

Definition 2 We call a separation list "valid", if it contains exactly the
non-overlapping nodes that are direct children of overlapping nodes in the
BVTT plus the overlapping leaves.

With this definition we can formulate the appropriate theorem:

Theorem 6 Our kinetic Separation-List is compact, local, responsive and
efficient. Furthermore, we maintain a valid separation list at every point in
time if we update it as described above.

In order to prove the first part of the theorem, we assume, w.l.o.g,
that both objects O1 and O2 have the same number of vertices n and
the same number of polygons m.
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Figure 3.18: If a fathers-do-not-overlap event happens, that means B and C
do not overlap anymore, we have to remove their child BVs
(bl, cl), (bl, cr), (br, cl) and (br, cr) from the separation list and
insert the new node (B,C) instead.

In the worst case it is possible that each polygon of object O1 col-
lides with every polygon of O2. However, this will not happen in real
world application. Thus, it is a reasonable assumption that one poly-
gon can collide with only O(1) polygons of the other object. We will
show the proof for both, the worst and the practical case:

• Compactness: In order to evaluate the compactness, we have to
define the attribute we are interested in. In the case of the kinetic
incremental collision detection, this is the separation list. Thus,
the size of a proof of correctness of the attribute may have size
O(n2) in the worst case and O(n) in the practical case.

For every node in the separation list, we store one event in the
event queue, which will be at most O(n2) in the worst, respec-
tively O(n) in the practical case in total.

Furthermore, for every BV we have to store the nodes in the
separation list in which it is participating; that could be at most
O(n2) in the worst case or rather O(n) in the practical case,
too. Summarizing, the storage does not exceed the asymptotic
size of the proof of correctness and thus, the data structure is
compact.

• Responsiveness: We will show the responsiveness for the four
kinds of events separately:

– Leaves-do-not-overlap event: The structure of the separa-
tion list does not change if such an event happens. We
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Figure 3.19: If the flightplan of PC2 changes, this has no effect on the separa-
tion list, and thus, no BV-change event will happen due to this
change.

just have to declare the node as not overlapping leaf and
compute a new event which costs time O(1). The insertion
into the event queue of the new event could be done in
O(logn).

– BV-overlap event: The insertion of a new node into the
separation list and deletion of the old node needs time
O(logn). In addition we have to delete the links from the
old BV to the old node in the separation list and insert the
new ones. If we organise this lists of links as an AVL-tree,
we get costs of O(logn).

– Fathers-do-not-overlap event: The deletion of nodes and
events takes time of O(logn) again.

– BV-change event: When this kind of event happens, the
structure of our separation list does not change. We just
have to recompute the event of the affected node. The in-
sertion and deletion of an event costs O(logn).

Overall, our data structure is responsive in all cases.

• Efficiency: To determine the efficiency is bit more complicated
because it is not immediately obvious which events we should
treat as inner and which as outer events. Clearly, leaves-do-not-
overlap events, BV-overlap events and fathers-do-not-overlap
event cause a real change of the attribute – the separation list –
so these events are outer events. But classifying the BV-change
events is more difficult. Those which happen due to flightplan
updates clearly do not count because they happen due to user
interactions and could not be counted in advance. But there are
also BV-change events which happen due to changes of the BV
hierarchies and they could be regarded as inner events.

Since we use the kinetic AABB-Tree there are at most O(n logn)
events in one single BVH. One BV could be involved in n nodes
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in the separation list. So there are O(n2 logn) inner events in
the worst case.

On the other hand, there may be Ω(n2) outer events and thus
the KDS is still responsive, even if we treat the BV-change events
as inner events.

In the reasonable case we have at most O(n logn) inner events
from the kinetic AABB-Tree and O(n) outer events in the sep-
aration list. Consequently, our KDS is also responsive in this
case.

• Locality: We also have to be careful when showing the locality
of our data structure. The objects of our kinetic data structure
are the nodes in the separation list, not the single BVs in the
kinetic AABB hierarchies. Each node is involved in only O(1)
events and thus, our kinetic Separation-List is trivially local.

Otherwise, if the flightplan of one single BV changes this could
cause O(n) BV-change events in the kinetic Separation-List, be-
cause one BV could participate O(n) nodes in the worst case.
However, this is compared to O(n2) total nodes in our kinetic
Separation-List small and moreover, in the reasonable case there
are at most O(1) nodes affected by a flightplan update. Summa-
rized, our kinetic Separation-List can be updated efficiently in
all cases if a flightplan update happens.

In order to show the second part of the theorem, we use induction
over time once more.

Obviously, after the first collision check we get a valid separation
list. The hierarchy becomes invalid if either the BVs of an inner node
or of a not overlapping leaf do not overlap anymore or if the father
of one of this kind of nodes do not overlap anymore.

Furthermore, it could happen that the BVs of an overlapping leaf
do not overlap anymore. During initialisation we compute this points
of time as events and store them sorted by time in the event queue.
Thus, we will notice the first point in time when the hierarchy be-
comes invalid.

We have to show, that the separation list is updated correctly if
an event happens and that the next point in time when it becomes
invalid provokes an event.

• BV-overlap event: If a BV-overlap event happens, the separation
list becomes invalid because the BVs of an inner node overlap.
To repair the defect we have to remove the node from the list
and replace it by its four children. In order to determine the
next time when one of this new nodes becomes invalid we have
to calculate the events and insert them into the event queue.

• Fathers-do-not-overlap event: In case of a fathers-do-not-overlap
event the list becomes invalid because the BVs of a node K over-
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lapped before and do not overlap anymore. Thus, K is not the
deepest node in the hierarchy whose BVs do not overlap. So, K
must be replaced by its parent node VK.

The hierarchy can became invalid at node VK for the next time
if the BVs of VK overlap or the predecessor of VK does not
overlap anymore. So we have to compute what happens first
and generate an event and insert it into the event queue. This
guarantees that we will find the next time, when VK becomes
invalid.

• Leaves-do-not-overlap event: A leaves-do-not-overlap event does
not affect the validity separation list. It is sufficient to turn the
node into a not overlapping leaf.

In order to recognize the next point of time when this node may
violate the validity we have to look if either a BV-overlap event
or a fathers-do-not-overlap event will happen first for this node
and insert the corresponding event into the event queue.

• BV-change event: A BV-change event does not affect the validity
of the separation list. But it is necessary to recompute the event
times for the corresponding BVs in the list.

Overall, the validity of the hierarchy is guaranteed at all points of
time.

If we want to check for a collision at any time, we only have to test
the primitives in the overlapping leaves for collision.

Though our data structure fullfills all quality criteria of a kinetic
data structure, the bounds of used storage O(n2) or update costs of
O(n) for flightplan updates of one single vertex seems not to be very
promising. On the other hand these are worst-case-scenarios and only
hold, if all polygons of one object overlap with all polygons of another
object. This case does not happen in real-world applications. In most
applications the number of overlapping polygons could be shown to
be nearly linear (see also Section 6.2). Our experiments in the results
section of this chapter show that the kinetic Separation-List performs
very well in practical cases and that the running-time is up to 50 times
faster compared to other approaches.

3.3.3 Self-Collision Detection

BVHs are also used for self-collision detection. In general, collisions
and self-collisions are detected in the same way. If two different ob-
jects are tested for collisions, their BVHs are checked against each
other. Analogously, self-collisions of an object are performed by test-
ing one BVH against itself. The main problem which arises when
using this method in combination with discrete time sampling algo-
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Figure 3.20: The BV-overlap event is somewhat the opposite of the fathers-
do-not-overlap event (see Figure 3.18): If the BVs B and C begin
to overlap, we have to remove the corresponding node from the
separation list and insert their child BVs (bl, cl), (bl, cr), (br, cl)
and (br, cr) instead.

rithms is the problem of adjacency: the BVs of adjacent polygons all-
ways overlap.

Therefore, approaches which are not using temporal and spatial co-
herence has to descent from the root of the BVTT down to all neigh-
bours of a polygon at every query time. This are O(n logn) BV over-
lap tests, even if there are not a single pair of colliding polygons.

Our kinetic Separation-List avoids the problem of adjacency. For
self collision tests we also test the BVH against itself, but we do this
only one time for the initialisation. During run-time, pairs of adjacent
BVs stay all the time in the separation list and their parents will never
be checked for collision as it is with most other approaches.

3.3.4 Implementation Details

In this section we describe some implementation details of our ki-
netic Separation-List which differ in several points from the basic al-
gorithms described above. Algorithm 3.2 shows the basic simulation
loop.

First of all, it is not necessary to store the separation list explicitly.
Instead, it is sufficient to link only the two colliding BVs in the kinetic
AABB-Tree. Therefore, we use a simple list for every BV in the kinetic
AABB hierarchy and store pointers to the colliding BVs in the other
hierarchy. It is sufficient, to use a list, even if we have to delete or
insert some pointers when an event appears, because in real world
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Algorithm 3.2: Simulation Loop

while simulation runs do
determine time t of next rendering
e← min event in event queue
while e.timestamp < t do

processEvent(e)
if e = Polygons-Collide event then

collision response
e← min event in event queue

render scene

scenarios the degree of vertices is bounded and thus, a single BV
does not collide with too many other BVs in the BVTT.

Moreover, if a fathers-do-not-overlap event happens we do not sim-
ply add the father of the affected BVs into our separation list, because
in most cases the fathers of the fathers do not overlap either. Instead,
we ascend in the hierarchy to the highest pair of BVs which does not
overlap and then delete all its children that are in the separation list.
Note, that the data structure is not responsive anymore if we proceed
like this, because in the worst case, we have cost of O(n2) for one
single event. However, if we simply proceed as described in the sec-
tion before, we would have to process O(n2) events. Thus, the overall
complexity is still the same. Equivalently, we do not insert just the
children if a BV-overlap event happens. Instead, we descent directly
to the deepest non-overlapping nodes in the BVHs.

For the event queue we use a Fibonacci heap. With this data struc-
ture we can efficiently insert, delete and update events.

3.3.4.1 Continuous Primitive Intersection Test

The polygons-collide event requires two continuously moving polygons
to be checked for intersection. In our implementation we used a con-
tinuous triangle intersection test according to the tests described in
Eckstein and Schömer [1999]. In this section we will give a short
sketch of the basic ideas.

We break the triangle test into several sub-tests that can be com-
puted more efficiently than testing a pair of triangles in a whole. In
detail, we test vertices and faces and the edges separately for intersec-
tion. Overall, this results in 3 vertex/face- and 9 edge/edge-tests for
each pair of triangles.

A necessary condition for a vertex/face intersection is that the
point is located in the triangles’ plane (see Figure 3.21). This means

(q(t) − p1(t)) ·n(t) = 0 (3.4)

With n(t) = (p2(t) − p1(t))× (p3(t) − p1(t)) this results in a cubic
equation that has to be solved for t. Moreover, we have to test if q(t)
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Figure 3.21: Continuous vertex/face-test: As a pre-condition of an intersec-
tion, q(t) has to be located in the triangles plane, i. e. (q(t) −
p1(t)) ·n(t) = 0.
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Figure 3.22: Continuous edge/edge-test: As a pre-condition of an intersec-
tion, both lines (p1(t),p2(t)) and (q1(t),q2(t)) have to be lo-
cated in the same plane.

is really located inside the triangle, e. g. by computing the barycentric
coordinates.

Similarly, we get a necessary condition for an edge/edge-intersection:
both lines must be located in the same plane (see Figure 3.22). As
equation we get:

(q1(t) − p1(t)) ·n(t) = 0 (3.5)

with n(t) = (p2(t) − p1(t))× (q2(t) − q1(t)). Again, we get a cubic
equation and we additionally have to apply a validity test that checks
if the edges really intersect.

Summarizing, for both kinds of intersection tests – vertex/face and
edge/edge – we first have to find a point in time where four points
are co-planer by solving a cubic equation. Next, we have to check for
validity at the time of co-planarity.



68 kinetic data structures for collision detection

3.4 event calculation

The calculation of the events depends on the motion of the objects. At
first we assume a linear motion of the vertices.

In the kinetic AABB-Tree we get an event if a vertex P become larger
than another vertex Q along some axis. Therefore, the computation
of an event corresponds to line intersection tests in 2D.

More precisely, assume two vertices P and Q with velocity vectors
p and q, respectively. At point in time t we have Px(t) < Qx(t). In
order to get the next point of time t when P becomes larger than Q
along the x-axis, we get t = Qx(t)−Px(t)

px−qx
.

If t < 0, there will be no event.
In the kinetic Separation-List we get events if two BVs begin to

overlap or do not overlap anymore.
Assume two BVs A and B with extreme points PAimax and PBimax,

respectively and minimum points PAimin and PBimax, respectively with
i ∈ {x,y, z} at time t.

Algorithm 3.3: Event Calculation
Compute f with l · f 6 t 6 l · (f+ 1)
t = l · (f+ 1)
while t > l · f do

p = Pl·(f+1) − Pl·f
q = Ql·(f+1) −Ql·f

pf =
p
l

qf =
q
l

Compute t when P gets larger than Q
f = f+ 1

There are two different cases for events:

• Assume A and B overlap at time t and we want to get the
point of time t when they do not overlap anymore. Surely, A
and B do not overlap ⇔ there exists an axis i ∈ {x,y, z} with
PAimax(t) < P

B
imin(t) or PBimax(t) < P

A
imin(t).

Thus, we have to compute the points of time ti for every axis
i ∈ {x,y, z} when PAimax becomes smaller than PBimin and PBimax
becomes smaller than PAimin. We generate an event for the min-
imum of these ti.

• If A and B do not overlap at time t, we have to look for the time
t, when they overlap. A and B overlap ⇔ PAimax(t) > PBimin(t)

and PBimax(t) > P
A
imin(t) for all axes i ∈ {x,y, z}.

Thus we have to compute the points of time ti for all i ∈
{x,y, z}, when PAimin becomes smaller than PBimax and PBimin
gets smaller than PAimax too. We generate an event for the max-
imum of the ti.
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We tested our algorithms with keyframe animations. Between two
keyframes we interpolated linearly. Therefore, we get paths of line
segments as motion of the vertices.

Assume k keyframes K0, . . . ,Kk. Let l be the number of interpo-
lated frames between two keyframes. We want to compute for the
vertices P and Q with positions P(t) and Q(t), respectively, when the
next event between these points will happen, i. e. when P will become
larger along the x-axis than Q.

Therefore, we first have to determine the actual keyframe Kf with
l · f 6 t 6 l · (f+ 1). We get the recent velocity pf and qf for the two
vertices by pf = P(l · (f+ 1)) − P(l · f) and qf = Q(l · (f+ 1)) −Q(l · f).

Now we can compute time twhen P gets larger thanQ as described
in the previous section. If t 6 m · (f+ 1) we get the event for P and Q.
But if t > l · (f+ 1) we have to look at the next keyframe whether the
paths of P and Q intersects and so on (see Algorithm 3.3). Thus, we
have to compute k line intersections for one single event in the worst
case.

3.5 results

We implemented our algorithms in C++ and tested the performance
on a PC running Linux with a 3.0 GHz Pentium IV with 1 GB of
main memory. We used two different types of test scenarios, keyframe
animations and simple velocity fields with linear motion.

In order to test the updating performance of the kinetic hierarchies,
we used three different keyframe animations. The first one shows a
tablecloth falling on a table. We tested this scene with several reso-
lutions of the cloth, ranging from 2k to 16k faces. This scene shows
the behaviour of our algorithms under heavy deformation. The two
other keyframe scenarios show typical cloth animations. The first one
shows a male avatar with a shirt in resolutions from 32k to 326k de-
forming triangles, the other one a female avatar with a dress reaching
from 65k to 580k deforming triangles (see Figure 3.23).

In order to measure the speed of updates when the flightplan chan-
ges, we used a benchmark with two expanding spheres. We assign a
velocity vector which points away from the midpoint to each point of
a sphere, so that the spheres expand regularly. When they collide, the
velocity vectors of the colliding triangles are reversed. We tested this
scene with resolutions from 2k to 40k triangles.

Additionally, we implemented a typically recursive static collision
detection algorithm (see Algorithm 3.4) in order to compare the over-
all performance of the Kinetic AABB-Tree and the Kinetic BoxTree.
Because we are primary interested in the speed of the updates we
did not include self-collision detection. Moreover, we compared the
performance of our algorithms with a bottom-up updating strategy.



70 kinetic data structures for collision detection

Algorithm 3.4: Check{BV a of object A, BV b object B}

if overlap ( a, b ) then
if a and b are leaves then

test_primitives( a, b )
else

forall children a[i] of a do
forall children b[j] of b do

Check( a[i], b[j] )
else

return

First, we consider the number of events. In the high-resolution
tablecloth scene we have about 400 events per frame and have to up-
date only 1000 values for the kinetic AABB-Tree and even less for the
kinetic BoxTree (see Figure 3.24). In contrast, the bottom-up approach
has to update 60 000 values. Since the computation costs for an event
are relatively high, this results in an overall speed-up of about factor
5 for updating the kinetic AABB-Tree(see Figure 3.25). The number of
events increases almost linearly with the number of polygons which
supports our lower bound for the total number of events of nearly
O(n logn) (see Figure 3.26).

The diagram also shows that we need less events for the kinetic
BoxTrees, but the proper collision check takes more time since the
kinetic BoxTree is susceptible for deformations.

A high amount of flightplan updates does not affect performance
of our kinetic hierarchies; they are still up to 5 times faster than the
bottom-up updates (see Figure 3.27).

In the cloth animation scenes the gain of the kinetic data structures
is highest, because the objects undergo less deformation than the
tablecloth. Consequently, we have to perform less events. In this sce-
narios we see a performance gain of a factor about 10 (see Figures 3.29

and 3.31). From Theorem 2, it is clear that this factor increases with
the number of interpolated frames between two keyframes. This is,
because the performance of the event based kinetic data structures
only depends on the number of keyframes and not on the total length
of the scene (see Figure 3.30).

Overall, the kinetic AABB-Tree performs best and the running time
of the updating operations is independent from the sampling fre-
quency. This means, for example, if we want to render a scene in slow
motion – maybe ten times slower – the costs for updating are still the
same while they increase for the bottom-up-update by a factor of ten.

In order to evaluate the performance of our kinetic Separation-List
we re-used the tablecloth scene (see Figure 3.23 (b)) and the male
cloth animation scene (see Figure 3.23 (c)). Moreover, we added a new
scene with single swirling cloth in resolutions of 4K to 33K deforming
polygons (see Figure 3.33). We used this scene in order to stress our
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(a) Expanding spheres (b) Tablecloth

(c) Cloth animation with a male avatar (d) Catwalk of a female avatar

Figure 3.23: Scenes with which we tested our algorithms.

algorithm: it contains very heavy deformation of the cloth and many
self collisions.

We compared the performance of our kinetic Separation-List with
a classical swept-volume algorithm for continuous collision detection:
we updated the hierarchy with a bottom-up updating strategy. For
the proper collision check we constructed an AABB which encloses
the BVs at the beginning and the end of the frame.

First, we considered the number of events in our kinetic Separation-
List compared to the number of checks the swept-volume algorithm
has to perform. In the high-resolution tablecloth scene we have about
500 events per frame with our kinetic data structure compared to sev-
eral tens of thousands collision checks with the swept-volume. Since
the computational costs for an event are relatively high, this results
in an overall speed-up of about factor 50 for updating the kinetic
Separation-List. The number of events rises nearly linearly with the
number of polygons (see Figure 3.35).

In the cloth animation scenes with the male avatar and the table-
cloth the gain of our kinetic data structures is highest, because the
objects undergo less deformation than the swirling cloth and thus we
have to compute and handle less events. In these scenarios we see a
performance gain of a factor up to 50 compared to the swept-volume
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Figure 3.24: Tablecloth scene: Average number of events and updates per
frame. The kinetic BoxTree has, as expected, has the smallest
total number of events and the smallest number of total updates
per event.
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Figure 3.25: Tablecloth scene: The total number of updates is significantly
smaller than the updates required by the bottom-up-strategy.
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Figure 3.26: Tablecloth scene: Total time for updates and collision detec-
tion. Unfortunately, due to the relatively high deformation of
the tablecloth and the high costs for the event-computation, the
gain is lesser than expected, but there is still a significant gain
for the kinetic AABB-Tree and the BoxTree.
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Figure 3.27: Expanding spheres scene: Average total time for the updates
and the collision checks. This scene seems to be more appro-
priate for the KDSs than the tablecloth scene, despite the high
amount of flightplan updates. The gain of the kinetic data struc-
tures compared to the bottom-up approach is more than a factor
of five.
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Figure 3.28: Catwalk scene: Average number of events and updates. The ra-
tio seems to be nearly the same as in the tablecloth scene.
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Figure 3.30: Male cloth animation scene: Average update time depending
on the number of interpolated frames between two key frames.
Since the number of events only depends on the number of key
frames and not on the number of interpolated frames, so, the
average update time decreases if we increase the total number
of frames.
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Figure 3.31: Male cloth animation scene: Average updating time. In this
scene we have an overall gain of a factor about 10 for the ki-
netic AABB-Tree compared to the bottom-up-update.

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350

ti
m

e
/

m
se

c

triangles / 1000

kinetic AABB

kinetic BoxTree

Bottom-Up

Figure 3.32: Male cloth animation scene: Total time, this means the time for
updates and the proper check time.
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Figure 3.33: The swirling cloth animation scene.
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Figure 3.34: Male cloth animation scene: Average total time for updating the
hierarchies and performing the inter- and intra-collision detec-
tion. We have an overall gain of about a factor of 20 with our
kinetic Separation-List.

algorithm (see Figure 3.34). This factor would increase even further
if the number of interpolated frames between two keyframes were
increased. This is because the performance of the event-based kinetic
data structures only depends on the number of keyframes and not on
the total length of the scene or the number of collision checks.

Overall the kinetic Separation-List performs best and the running
time of the updating operations is independent from the sampling fre-
quency. Moreover, the collisions are reported in the right order with
our kinetic Separation-List. This is important for a correct collision
response scheme. The collisions in the swept-volume algorithms are
reported in random order. If we would sort them the gain by our
algorithms would even increase.

3.6 conclusion and future work

We introduced two novel bounding volume hierarchies for updating a
BVH over deformable objects fast and efficiently. We presented a the-
oretical and experimental analysis showing that our new algorithms
are fast and efficient both in theory and in practice. We used the
kinetic data structure framework to analyze our algorithms and we
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Figure 3.35: Male cloth animation scene: Total time, including updating and
collision check, in the resolution of 49K triangles, depending on
the number of interpolated frames in-between two key frames.
Since the number of events only depends on the number of
key frames and not on the number of interpolated frames, the
average update time decreases if we increase the total number
of frames.
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Figure 3.36: Tablecloth scene: Total time, this means updating the hierar-
chies and the time for the collision check including self collision.
The gain of our kinetic data structures is about a factor of 50.
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Figure 3.37: Tablecloth scene: Number of events in our kinetic data structure
compared to the number of collision checks we have to perform
with the swept-volume algorithm. The number of events is sig-
nificantly smaller. Note the different scales.
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Figure 3.38: Swirling cloth scene: Time for updating and self collision check.
Even in this worst case scenario for our algorithm, we have a
gain of a factor about two for our kinetic data structure. This
depends on the higher number of events in this scenario.
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Figure 3.39: Swirling cloth scene: Number of events for the kinetic
Separation-List and the number of collision checks for the swept
AABB approach. Again, note the different scales.
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showed an upper bound of nearly O(n logn) for the updates that
are required at most to keep a BVH valid. We also showed that the
kinetic AABB-Tree and kinetic BoxTree are optimal in the sense that
they only need to make O(n logn) updates.

Our kinetic bounding volume hierarchies can update the bounding
volumes more than 10 times faster than a bottom-up approach in prac-
tically relevant cloth animation scenes. Even in scenarios with heavy
deformations of the objects or many flightplan updates we have a
significant gain by our algorithms.

Moreover, we used our kinetic AABB-Tree to define an other kinetic
data structure – the kinetic Separation-List – for continuous inter-
and intra-collision detection between deformable objects, i. e. pair-
wise and self collision detection. The algorithm gains its efficiency
from the event-based approach.

It contains a discrete event-based part which updates only the com-
binatorial changes in the BVH and a continuous part which needs
to compute only the time of future events after such a combinato-
rial change. Our algorithm is particularly well-suited for animations
where the deformation cannot be restricted in some way (such as
bounded deformations). Our kinetic Separation-List is perfectly qual-
ified for a stable collision response, because it naturally delivers the
collisions ordered by time to the collision response module. In prac-
tically relevant cloth animation scenes our kinetic data structure can
find collisions and self-collisions more than 50 times faster than a
swept-volumes approach. Even in scenarios with heavy deformations
of the objects we observed a significant gain by our algorithm.

3.6.1 Future Work

We believe that the kinetic data structures are a fruitful starting point
for future work on collision detection for deformable objects.

Small changes could help to improve the performance of our ki-
netic data structures. For instance, the use of trees of higher order
than binary trees could on the one hand reduce the number of events,
and on the other hand accelerate the propagation of events. Also the
rebuild of parts of the BVHs in case of heavy deformations could
help to improve the running-time. In addition, it should be straight-
forward to extend our novel algorithms to other primitives such as
NURBS or point clouds and to other applications like ray-tracing or
occlusion culling.

3.6.1.1 Kinetic Ray-Tracing

Obviously, our kinetic AABB-Tree and also our kinetic BoxTree can be
applied directly to accelerate ray-tracing of deformable scenes. How-
ever, in this paragraph we will propose an other event-based kinetic
method that we will pursuit in the future.
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Figure 3.40: Sending a single ray for each pixel in a raytracer may result in
aliasing artefacts, like the checkerboard in the background.

A typical ray-tracer sends a single ray for each pixel through the
scene. This may result in aliasing artefacts (see Figure 3.40). Therefore,
advanced ray-tracers send not only a single ray but several rays for
each pixel and in the end they interpolate the results. Actually, a
single pixel does not represent only a single ray – or several rays –
but the whole viewing frustum that is spanned by the pixel.

We will exploit this idea in our kinetic ray-tracer. Basically, we will
maintain a sorted list of all primitives for each viewing frustum that is
spanned by a single ray (We call it the pixel frustum). Such an ordering
can be easily realized with a kinetic sorted list. Events will happen if
two primitives change place. It is easy to prove the four KDS quality
criteria for this data structure.

Moreover, we propose an event-based 3D version of the Sutherland-
Hodgman polygon clipping algorithm [Sutherland and Hodgman,
1974] for each primitive. The basic principle is very easy: A subject
polygon is clipped consecutively against the spanning lines or, in 3D,
the spanning planes of the clip polygon (see Figure 3.41). Events will
happen if a vertex passes through a spanning plane. Please note that
this will also throw an event in one or more pixel frusta in the neigh-
bourhood. A combined handling of these simultaneous events will
reduce the overall workload significantly.

During a query there is no explicit ray-shooting required any more.
We simply have to collect the closest triangle or a set of closest tri-
angles and combine their colors with respect to their sizes and their
distances. This also allows an easy way to realize anti-aliasing.

Kinetic version of light buffers [Haines and Greenberg, 1986] or
kinetic BSP-trees can be used for further speed-up or the recursive
tracing of rays.
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Figure 3.41: The red polygon is clipped consecutively against the spanning
lines (blue) of the clip polygon (black).

3.6.1.2 Parallel Kinetic Data Structures

The kinetic data structures for the pixel frusta of the kinetic ray-tracer
described above are widely independent from their neighbours. This
allow as trivial parallelization.

However, we can also advance the concept of parallelization to
deeper level for general kinetic data structures. Basically, a KDS relies
on the consecutive handling of events that are stored in a global event-
queue. An event stores the expiration time of a certificate. These cer-
tificates are elementary geometric conditions that proof all together
the correctness of an attribute. The locality of a KDS guarantees that
these certificates are widely independent. This means that a single
event does not affect too much changes in other certificates.

Consequently, we could parallelize a KDS on a certificate level. We
just have to replace the global event-queue by a local event-queue
for each certificate. Due to the locality of a KDS, the synchronization
overhead should be relatively small.

3.6.1.3 Flightplans for Unknown Paths

A major drawback of kinetic data structures is the requirement of a
flightplan. Actually, the more information is known about the flight-
plan, the more efficient is the KDS in practice. It is straight forward to
derive such flightplans from keyframe animations. Our results show
that the performance of our kinetic data structures increase with an
increasing number of interpolated frames between the key frames.

However, in highly interactive scenes such as computer games or
virtual reality applications, the interaction is determined by using
physically-based simulation instead of pre-computed keyframe ani-
mations because of their higher level of flexibility. Physically-based
simulations are usually computed for each frame separately. Hence,
a kinetic data structure can not gain an effort from knowledge about
the flightplans.

Therefore, on a first sight, physically-based simulations seem not
to be well suited for the use in kinetic data structures. However, in
the future we plan to integrate them anyway. Basically, we do not
have to now the exact point in time when an event will happen, but
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it is sufficient to maintain a lower bound for the event. This means,
we search a time interval where it is guaranteed that no event will
happen.

Therefore, we can use e. g. larger time steps for the integration.
However, larger time steps also result in a higher uncertainty. Conse-
quently, we plan to analyze different integration schemes like explicit
and implicit Euler, Runge-Kutta, and so on, with respect to their error
bounds. These error bounds will define a region that a particle can
not exceed during a certain time interval and thus, defines a lower
bound for the events.





4
S P H E R E PA C K I N G S F O R A R B I T R A RY O B J E C T S

Look at the globe
And all of the spheres around me
How could it be I never knew?

Joy of X
Sweet Parallel Lines

Sphere packings have diverse applications in a wide spectrum of
scientific and engineering disciplines: for example in automated ra-
diosurgical treatment planning, investigation of processes such as
sedimentation, compaction and sintering, in powder metallurgy for
three-dimensional laser cutting, in cutting different natural crystals,
the discrete element method is based on them, and so forth.

In contrast, in the field of computer graphics sphere packings are
hardly used1. This has two main reasons: first, computer graphics
usually concentrates on the visual parts of the scene, i. e. the surface
of the objects and not on what is behind. Secondly, computing sphere
packings for arbitrary 3D objects is a highly non trivial task [Birgin
and Sobral, 2008]. Almost all algorithms that are designed to com-
pute sphere packings are computationally very expensive and there-
fore, they are restricted to very simple geometric objects like cubes or
cylinders.

However, volumetric object representations also have their advan-
tages. For instance, in physically based simulations, the penetration

1 Actually, we know only two applications of sphere or circle packings in computer
graphics: Shimada and Gossard [1995] and Miller et al. [1996] used uniform sphere
packings to compute triangulated surfaces form other object representations like
CSG or free form surfaces. Schiftner et al. [2009] defined a new kind of triangle
meshes that can be described by 2D circle packings. These triangle meshes can be
used to construct very stable hexagonal surfaces.

83
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volume is known to be the best measure for contact information
that collision detection algorithms can provide [O’Brien and Hodgins,
1999]. Or think about physically based simulations of deformable
objects, that sometimes require a prevention of the objects’ volume.
Within simple mass-spring systems it is hard to fulfil volume con-
straints, just because the volume is not really modelled. Algorithms
that take the volume into account, e. g. the Finite-Element-Method
(FEM) that relies on a volumetric tetrahedral representation of the
objects, are computationally very expensive and hardly applicable
to real-time scenarios. A representation of the objects’ volumes by
sphere packings could make the best out of both worlds: they could
avoid the computational expense of FEM methods but preserve the
volume during simulation by simply maintaining the non-overlap
constraints (see Section 7.2).

The pre-condition for these applications, however, is an efficient
and stable method to compute sphere packings for arbitrary objects.
In this chapter we will present almost two new methods that are able
to compute polydisperse sphere packings. To our knowledge, such a
method did not exist before.

The first method is based on a voxelization of the object. We greed-
ily choose the centers of the voxels as potential centers of the spheres.
The main drawback of this approach is exactly these fixed positions
of the centers. If the object, or the voxelization, are not perfectly sym-
metric and aligned, it produces a lot of regular, small spheres close
to the surface. During the collision detection (see Chapter 5) this can
result in a noisy signal. Moreover, it is complicated to define the num-
ber of resulting spheres and the density of the packing in advance.

Therefore, we present a more flexible extension of this greedy voxel-
based method that is able to produce space-filling sphere packings.
The basic idea is very simple and related to prototype-based app-
roaches known from machine learning. Furthermore, this prototype
based approach directly leads to a parallel version of our algorithm
that we have implemented using CUDA. The theoretic analysis shows
that our algorithm generates an approximation of the Apollonian di-
agram for arbitrary objects.

However, we will start with a short review of existing sphere pack-
ing algorithms before we will explain our two new methods in more
detail. Finally, we will shortly sketch how sphere packings can help
to create entirely new solutions to fundamental problems in com-
puter graphics: for instance, the segmentation and classification of
3D objects, real-time path planning in dynamic environments, 3D re-
construction from point clouds and global illumination computation
using photon mapping.
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4.1 related work

For centuries, people have been fascinated by packing spheres into
objects. Started as a pure intellectual challenge in the lifetime of Ke-
pler [Szpiro, 2003], today there exist a wide variety of applications to
sphere packings, reaching from the optimal composition of granular
materials to automated neurosurgical treatment planning [Hifi and
M’Hallah, 2009].

However, the one and only sphere packing problem does not exist.
In fact, as diverse as the fields of application is the number of dif-
ferent sphere packing problems. Most sphere packing problems turn
out to be surprisingly complicated, but their solution has inspired
researchers to mathematical2, but also lyrical3 highlights over time.
There are still a lot of open questions with respect to sphere pack-
ings, e. g. most parts of the sausage conjecture4 Moreover, there are
interesting links between sphere packing problems and other math-
ematical fields, like hyperbolic geometries, Lie algebras or monster
groups [Conway and Sloane, 1992].

Sphere packing problems can be classified by several parameters,
including the dispersity, the dimension, the orientation of the contacts
between the spheres, etc. [Zong and Talbot, 1999]. The focus of this
chapter is the computation of space-filling polydisperse sphere pack-
ings for arbitrary objects and arbitrary object representations in any
dimension. Because of the wide spectrum of different sphere packing
problems, we cannot provide a complete overview of all of them. We
confine on recent and basic methods that are related to our problem
definition or our approaches.

As an introduction to the general sphere packing literature, includ-
ing homogenous sphere packings, we refer the interested reader to
[Aste and Weaire, 2000], [Leppmeier, 1997], [Conway and Sloane,
1992] or [Hifi and M’Hallah, 2009].

4.1.1 Polydisperse Sphere Packings

Polydisperse sphere packings are widely used and researched in ma-
terial science and in simulations via the Discrete-Element method
(DEM). Basically, there exist two different methods to construct poly-
disperse sphere packings: the dynamic method places a pre-defined

2 For instance, the proof of Kepler’s conjecture was solved just a few years ago. This
proof was, beside the 4-color theorem, one of the first proofs that was solved with
the help of a computer [Hales, 2005]

3 Soddy’s “Kiss Precise” [Soddy, 1936]
4 The sausage conjecture deals with the minimum volume of the convex hull for a

packing of homogenous spheres. For less than 56 spheres in 3D, this volume will be
minimal if the spheres are ordered as a sausage [Fejes Toth et al., 1989]. Surprisingly,
in 42 dimensions this is true independently of the number of spheres [Leppmeier,
1997]. For other dimensions and other numbers of spheres this question is still open.
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distribution of spheres inside a given container and then changes
the positions and the radii of the spheres until a required density
is reached. In contrary, the geometric method places the spheres one af-
ter another, following geometric rules. Usually, the geometric method
performs better, but the quality of the sphere packing depends on the
placement of the initial spheres.

However, both methods are restricted to very simple geometric con-
tainers like cubes or spheres. Especially existing dynamic algorithms
can be hardly extended to arbitrary objects, because the dynamic sim-
ulation requires a time consuming collision detection of the spheres
with the surface of the object.

For instance Schaertl and Sillescu [1994] used a dynamic algorithm
to simulate Brownian movements of spherical atoms. They start with
a regular distribution of the spheres but allow an intersection. Then
they start a simulation until an equilibrium state without overlaps
is reached. Kansal et al. [2002] presented a dynamic algorithm which
they applied to the simulation of granular materials. It is an extension
of the sphere packing method by Lubachevsky and Stillinger [1990].
Initially, they place the spheres in a non-overlapping state and grow
the radii of the spheres. Collisions were resolved using an event-based
approach.

Azeddine Benabbou [2008] combined dynamic and geometric meth-
ods by using an advancing-front approach. In order to avoid large
voids, they applied a dynamic point-relocation scheme that is based
on weighted Delaunay triangulations. Another combined method was
proposed by Herrmann et al. [2006]. They used a generalization of
the parking lot model: after an initial greedy filling, a dynamic com-
paction moves the spheres in order to make room for more insertions.

Jerier et al. [2008] presented a pure geometric approach that is
based on tetrahedral meshes and can be used to fill also arbitrary
polygonal objects. The tetrahedra are used to compute isotropic hard-
sphere clusters. Successive tetrahedrization of the voids allows to in-
sert additional spheres. However, even with extensions that allow
small intersections between the spheres as presented by Jerier et al.
[2010], this method is very time consuming.

There are also first approaches that support the parallel computa-
tion of polydisperse sphere packings. Kubach [2009] presented an al-
gorithm to solve the 3D knapsack problem for spheres in a cube. They
compute several greedy solutions simultaneously with a master-slave
approach. A non-parallel solution to this problem was proposed by
Sutou et al. [2002]. They used a formulation as a non-convex problem
with quadratic constraints.
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4.1.2 Apollonian Sphere Packings

All the approaches described above try to solve some kind of opti-
mization problem. This means, either the number or the size of the
spheres are defined a priori. Real space-filling sphere packings po-
tentially require an infinite number of spheres. They usually rely on
fractal structures – the Apollonian sphere packings [Aste and Weaire,
2000].

Such Apollonian sphere packings can be computed via an inversion
algorithm [Borkovec et al., 1994]. Mahmoodi-Baram and Herrmann
[2004] presented an extension that uses other start parameters and
can produce also other self-similar sphere packings. Packings like this
are used in material science to create very compact materials and to
avoid micro fractures in the materials [Herrmann et al., 2003].

An important quality criterium is the density, that is closely re-
lated to the fractal dimension. An exact determination of the fractal
dimension is still an open problem. Borkovec et al. [1994] presented a
numerical approximation of the fractal dimension. Mahmoodi-Baram
and Herrmann [2004] determined different densities for several start
parameters of their inversion algorithm.

Closely related to Apollonian sphere packings are space-filling bear-
ings. They are used to simulate the continental drift for instance
[Baram and Herrmann, 2007]. Baram et al. [2004] modified the inver-
sion algorithm to the computation of complex bi-chromatic bearings
for platonic solids. Classical Apollonian sphere packings require five
colors.

However, all these algorithms are very time-consuming and more-
over, they cannot be extended to arbitrary objects.

4.1.3 Sphere Packings for Arbitrary Objects

Sphere packings for arbitrary geometries are predominantly investi-
gated in the field of radiosurgical treatment planning. Usually, the tu-
mor region is represented by a polygonal model. A Gamma-Knife can
shoot spherical beams inside this region. In order to avoid hot-spots,
that are regions that are irradiated by several beams – they hold the
risk of overdosage – but also in order to avoid regions that are not hit
by a beam, it is essential to compute a good spherical covering of the
tumor region.

This problem was firstly formulated as a min-max sphere packing
by Wu [1996]. In this problem formulation a set of spheres with differ-
ent radii and a 3D region are pre-defined. The objective is to compute
a minimum number of spheres that maximise the covered volume.
According to Wang [2000] there exists an optimal solution where the
centers of the spheres are located on the medial-axis of the 3D region.
However, the greedy method is not optimal in each case [Wu, 1996].
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Acutally, Wang [1999] proved the NP completeness of this problem,
even if it is restricted to integer radii. Li and Ng [2003] used a Monte-
Carlo algorithm, but they can compute an optimal solution only for
a few hundred spheres that are located inside a simple tetrahedron.

Wang [1999] presented a simplification that allows arbitrary integer
radii. They used a voxelization to approximate the objects’ medial
axis and an algorithm that explores the whole search-tree, even if
they called it "dynamic programming". Consequently, their approach
can be used only for very simple polygonal objects and a handful of
spheres.

Anishchik and Medvedev [1995] computed an explicit approxima-
tion of the objects’ medial axis by using so called Voronoi-S-Networks.
He yields a higher accuracy and delivers an estimation of density of
the sphere packing.

4.1.4 Voronoi Diagrams of Spheres

Basically, the computation of sphere packings can be reduced to the
successive computation of Voronoi diagrams for a set of spheres. Also
our Protosphere algorithm is based on this idea. However, there is not
much research on the computation of such generalized Voronoi dia-
grams, even if they are useful for the estimation of voids in complex
proteins.

To our knowledge, there exist only two implementations that both
use a very similar structure: a method presented by Anikeenko et al.
[2004] that was later extended by Medvedev et al. [2006] and an algo-
rithm that was described by Kim et al. [2004a]. Both approaches trace
Voronoi edges between already computed Voronoi sites via edge-
tracing through a set of spheres. The main problem is to a lesser
extent the construction of the Voronoi edges, that can be represented
as quadratic Bezier patches [Kim et al., 2004b], but the localization of
the Voronoi sites.

A brute-force approach has a quadratic complexity [Kim et al.,
2004b]. Cho et al. [2006] used geometric filters, called feasible re-
gions, to accelerate the Voronoi site search. Manak and Kolingerova
[2010] extended this idea by using a 3D Delaunay triangulation of the
spheres’ centers. This allows a faster spherical region search.

In addition to their computational complexity, all these methods
are restricted to sets of points and spheres. They cannot handle com-
plex polyhedral objects or free form surfaces. A dense sampling of
the object’s surface as proposed by Agarwal et al. [1994] results in
inaccuracies [Sheehy et al., 1995] and higher running-times [Boada
et al., 2005].
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(a) (b)

(c) (d)

Figure 4.1: The different stages of our sphere packing algorithm: First, we
voxelize the object (a) and compute distances from the voxels to
the closest triangle ((b); transparency = distance). Then we pick
the voxel with the largest distance and put a sphere at its center
(c). We proceed incrementally and, eventually, we obtain a dense
sphere packing of the object (d).

4.2 voxel-based sphere packings

Almost all algorithms described in the previous section are designed
to solve some kind of optimization problems. The reason for our in-
terest in sphere packings was initially not the problem itself, but we
needed sphere packings for arbitrary objects in order to implement
our new data structure for volumetric collision detection, the Inner
Sphere Trees (see Chapter 5). The only pre-condition for a sphere pack-
ing to be used in this data structure is that the sphere packing has to
be feasible. Precisely, we call a sphere packing feasible, if all spheres are
located inside an object, and if the spheres do not overlap each other.

Certainly, the object should be approximated well by the spheres,
while their number should be small. But there are no constraints that
restrict the number of spheres, the radii of the spheres or the volume
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(a) (b)

(c)

Figure 4.2: This figure shows the first steps of the creation of the inner
spheres. First, the object is voxelized (a). Additionally, we com-
pute the shortest distance to the surface (red lines) for interior
voxel centers (yellow), i. e. a discretization of the interior distance
field. Next, we place a maximal sphere at the voxel center with
the largest radius (blue sphere). Then those voxels whose cen-
ters are located inside the new sphere (red), are deleted, and the
shortest distances of some voxels are updated, because they are
now closer to the new inner sphere (green)(b). This procedure
continues greedily (c).

that must be covered. Consequently, we can use any feasible sphere
packing for the construction of our Inner Sphere Trees.

The first method that we have developed to compute such feasi-
ble sphere packings is a simple heuristic that offers a good trade-off
between accuracy and speed in practice. This heuristic is currently
based on voxelization. Actually, voxel representations of objects are
also a representation of the object’s volume. However, they are very
memory consuming because of the fixed size of the voxels. Hence
it seems a good idea to merge the voxels to spheres in order to save
some memory. This is exactly the basic idea of our voxel-based sphere
packing heuristic.

We start with a flood filling voxelization, but instead of simply stor-
ing whether or not a voxel is filled, we additionally store the distance
d from the center of each voxel to its closest point on the surface,
together with the triangle that realizes this distance. In our imple-
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mentation we use a slightly modified version of Dan Morris’ Voxelizer
[Morris, 2006] to compute this initial distance field.

After this initialization we use a greedy algorithm to generate the
inner spheres. All voxels are stored in a priority queue, sorted by their
distance to the surface. Until the priority queue is empty, we extract
the maximum element, i. e.the voxel V∗ with the largest distance d∗.
We create an inner sphere with radius d∗ that is placed on the center
of the voxel V∗. Then, all voxels whose centers are contained in this
sphere are deleted from the priority queue. Additionally, we have to
update all voxels Vi with di < d∗ and distance d(Vi,V∗) < 2d∗. This
is because they are now closer to the sphere around V∗ than to a
triangle on the hull (see Figure 4.2). Their di must now be set to the
new free radius. This process stops, when there is no voxel left.

After this procedure the object is filled densely with a set of non-
overlapping spheres. The restriction to those voxel centers, that are
located inside the object, and the consecutive update of the minimum
distances guarantees that the spheres do not overlap and that they
are all located inside the object.

Figure 4.1 summarizes the steps of our voxel-based sphere packing:
we start with a voxelization, compute a distance field, add spheres
greedily, and finally get an object that is filled with spheres.

Basically, the density and thus the accuracy can be somewhat con-
trolled by the number of initial voxels. However, it is hardly possible
to determine the expected density or the resulting number of spheres
in advance. Moreover, due to the fixing of the sphere centers to the
centers of the voxels, this heuristic can produce small and very reg-
ular spheres close to the surface of the object (see Figure 4.3). This
results in artifacts, in particular temporal aliasing, in the collision re-
sponse. Therefore, we have developed another sphere-packing algo-
rithm that, one the one hand, provides a better control on the spheres’
density but also avoids these artefacts.

4.3 protosphere : prototype-based sphere packings

In this section, we will present a new algorithm, called Protosphere,
that is able to efficiently compute a space filling sphere packing for ar-
bitrary objects. It is independent of the object’s representation (polyg-
onal, NURBS, CSG, etc.); the only precondition is that it must be pos-
sible to compute the distance from any point to the surface of the
object. Moreover, our algorithm is not restricted to 3D but can be
easily extended to higher dimensions.
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Figure 4.3: An object filled with the voxel-based sphere packing method. On
the body, you can see the regular spheres that were produced due
to the fixed center positions.

The basic idea is very simple and related to prototype based app-
roaches known from machine learning. This approach directly leads
to a parallel algorithm that we have implemented using CUDA. As a
byproduct, our algorithm yields an approximation of the object’s me-
dial axis that has applications ranging from path-planning to surface
reconstruction.

4.3.1 Apollonian Sphere Packings for Arbitrary Objects

A simple algorithm to fill an object with a set of non-overlapping
spheres is the following greedy method. For a given object we start
with the largest sphere that fits into the object. Iteratively, we insert
new spheres, under the constraints that

a) they must not intersect the already existing spheres and

b) that they have to be completely contained inside the object.

The resulting sphere packing is called an “Apollonian sphere pack-
ing”. One important property of Apollonian packings is that they are
known to be space filling. There exist efficient algorithms to compute
Apollonian diagrams for very simple geometrical shapes like cubes
or spheres, but they are hardly expandable to arbitrary objects, let
alone their computation time (see Section 4.1.2). Hence, in order to
transfer the idea of Apollonian sphere packings to arbitrary objects,
we have to make further considerations.

Let P denote the surface of a closed, simple object in 3D. Consider
the largest sphere s inside P. Obviously, s touches at least 4 points
of P, and there are no other points of P inside s (see Figure 4.4. This
implies that the center of s is a Voronoi node (VN) of P. Consequently,
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Figure 4.4: The largest sphere that fits into an object, touches at least 3 points
in 2D, and 4 points in 3D, respectively.

it is possible to formulate the greedy space filling as an iterative com-
putation of a generalized Voronoi diagram (VD) of P plus the set of
all spheres existing so far (see Figure 4.5).

This basic idea has a major drawback: many algorithms have been
devised for the calculation of the classic VD and for its many gener-
alizations. However, there are relatively few works dedicated to the
construction of VDs for spheres in 3D (see Section 4.1.4 ) and, to our
knowledge, there is no algorithm available that supports the compu-
tation of VDs for a mixed set of triangles and spheres, let alone a fast
and stable implementation.

Fortunately, a closer look at the simple algorithm we proposed
above shows that we do not need the whole Voronoi diagram, but only
the Voronoi nodes. Hence the core of our novel algorithm is the ap-
proximation of the VNs. Again, the basic idea is very simple: we let a
single point, the prototype, iteratively move towards one of the VNs:

Algorithm 4.1: convergePrototype( prototype p, object O )
place p randomly inside O
while p has not converged do

qc = arg min{ ‖p− q‖ : q ∈ surface of O }

choose ε(t) ∈ [0, 1]
p = p+ ε(t) · (p− qc)

The last line guarantees that, after each single step, p is still inside
the object, because the entire sphere around p with radius ‖p−qc‖ is
inside the object.

Moreover, moving p away from the border into the direction (p−

qc) leads potentially to bigger spheres in the next iteration (see Fig-
ure 4.6 for a visualization of our algorithm). Usually, ε(t) is not a
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(a) (b)

(c) (d)

Figure 4.5: The basic idea of our Protosphere algorithm: compute a Voronoi
diagram for the object (a), place the largest sphere (b), re-
compute Voronoi diagram for the object and the new sphere (c),
place largest sphere in the new Voronoi diagram etc. (d).

constant or chosen randomly, but a cooling function that allows large
movements in early iterations and only small changes in the later
steps.

The accuracy of the approximated VN depends on the choice of
this cooling function and on the number of iterations. Actually, in the
first iterations, a large movement of the prototypes should be allowed
in order to move very quickly towards the maximum. In the later
iterations, when we have almost arrived at the maximum, only a fine
tuning is required. We choose the following variation of a Gaussian
function to meet these requirements:

ε(d) = 1− e

(
|t−tmax|
0.5tmax

)c
−0.5 (4.1)

with tmax denoting the maximum number of iterations. The cool-
ing factor c controls the steepness of the cooling function (see Figure
4.7).

Furthermore, we can directly use the information of the prototypes’
movement to improve the temporal cooling with an additional geomet-
ric cooling. Actually, for the new minimum distance dt in some itera-
tion twe get 0 6 dt 6 2dt−1, simply because we allowed a movement
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(a) (b)

(c) (d)

Figure 4.6: The prototype convergence algorithm: Place prototype P ran-
domly inside the object (a). Compute minimum distance d from
the prototype P to the surface (b). Move prototype P into the
opposite direction, away from the surface (c) Continue until the
prototype converges (d).

of at most dt−1 during the last iteration t− 1. If dt is much smaller
than dt−1, we have moved the prototype p far away from a proba-
bly better position that allows a larger sphere. Therefore, we should
leave the new position, that is closer to the surface, as fast as possible.
Hence, we should allow a large step size in this case.

On the other hand, if dt is much larger than dt−1, it seems to
be that dt−1 was too close to the surface, and probably also dt is.
Therefore, we should quickly escape from this position with a large
step size.

Finally, if dt is almost the same as dt−1, we are probably very close
to the optimum. Hence we should reduce the speed of movement and
apply only fine tuning.

Summarizing, we need a function ε(d), that takes these consider-
ations into account, with respect to dt

dt−1
that is known to be in the

interval [0, 2]. We can use almost the same Gaussian function as for
the temporal cooling function in Equation 4.1. With x := dt

dt−1
we get:

ε(d) = 1− e

(
|x−1|
0.5

)c
−0.5 (4.2)
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Figure 4.7: Plots of our cooling functions: ε(t) with tmax = 50 and c = 5

(left). ε(d) with c = 2 (right).

Again, c controls the steepness of ε(d) (see Figure 4.7).
For the complete cooling function εtot(t), we simply combine the

two ideas to: εtot(t) := ε(t) · ε(d).
The overall sphere packing algorithm can be described as follows:

Algorithm 4.2: spherePacking( object O )

while Number of required spheres is not met do
Place prototype p randomly inside O
convergePrototype( p, O)
s = new sphere at position p
O = O∪ s

4.3.2 Parallelization

Using a single prototype does not guarantee to find the global opti-
mum (which is the sought-after VN), because the algorithm presented
in the previous section depends on the starting position of the proto-
type and can end up in a local maximum (see Figure 4.8). Hence
we use a set of independently moving prototypes instead of only a
single one. This can be easily parallelized if the prototypes are al-
lowed to move independently. However, a naive implementation has
its drawbacks: many prototypes converge to the same end position
(see Figure 4.8). Consequently, we get a lot of similar and thus re-
dundant computations. Obviously, this is not very efficient, even in
parallel computing.

Therefore, we use a slightly different approach for our implemen-
tation that is based on a uniform distribution of the prototypes. Ac-
tually, we compute a uniform grid and start with a prototype in each
cell that is located inside the object. During the movement step of Al-
gorithm 4.1 the prototypes are confined to their cells. This results in
a uniform density of the prototypes, and moreover, the grid can be
used to speed up the distance computations. For the latter we addi-
tionally compute the discrete distance from each cell to the surface.
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Figure 4.8: Depending on the prototype’s start position, it can run into a lo-
cal maximum instead of finding the global maximum (left). Dif-
ferent prototypes converge to the same end position (right).

For further acceleration, we remove those prototypes from the compu-
tation, that show the same closest point in two consecutive iterations
and that are therefore clamped twice to the same position. Obviously,
those prototypes cannot be Voronoi nodes.

Algorithm 4.3 shows the pseudo-code of the complete parallelized
version.

Algorithm 4.3: parallelSpherePacking( object O )
In parallel: Initialize discrete distance field
while Number of required spheres is not met do

In parallel: Place pi randomly inside grid cell ci
In parallel: convergePrototype(pi, O ∪ inserted spheres)
In parallel: Find VN pm ∈ {pi} with max distance dm
Insert sphere at position pm with radius dm
In parallel: Update discrete distance field

Figure 4.9 shows a visualization of the main steps.
Please note that after the convergence of the initial set of proto-

types, we get an approximation of the medial axis (see Figure 4.10).
Its accuracy depends on the number of initial prototypes and thus on
the size of the grid.

In addition, our algorithm extends Apollonian sphere packings to
arbitrary objects. This is the reason for the space filling property of
our algorithm.

4.3.3 Results

We have implemented our algorithm using CUDA. We filled differ-
ent objects densely with spheres (see Figure 4.11). The triangle count
reaches from 10.000 for the pig until up to 300.000 for the dragon. We
are able to fill all objects with 100.000 spheres within a few seconds
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(a) (b)

(c) (d)

Figure 4.9: The parallel Protosphere algorithm: We use a discrete distance
field. The discrete distance to the surface is colour coded (a). We
place a prototype in each cell of the distance field (b). We use the
discrete distance only to define a region in which we have to look
for closest objects for each prototype (c). During the convergence
step we clamp the prototypes to their cells (d).

using a NVIDIA GTX480 graphics card (see Figure 4.13). The number
of iterations of Algorithm 4.1 was set to 50.

In order to track the accuracy, we compared the positions of the
prototypes, that were computed with our Protosphere algorithm to
the exact positions of the Voronoi nodes. Therefore, we used simple
objects, like a cube and a sphere, where the VNs positions can be cal-
culated analytically. Actually, the accuracy of the computed Voronoi
nodes is > 99.99% compared to the exact Voronoi nodes position.

Surprisingly, the filling rate depends only on the number of spheres
but is independent of the objects’ shapes, at least with all objects that
we have tested (see Figure 4.12).

4.4 conclusions and future work

Summarizing, we have presented two novel methods for filling ar-
bitrary objects very quickly and stably with sets of non-overlapping
spheres. Our prototype-based Protosphere algorithm is even optimal
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Figure 4.10: After the convergence of the initial prototypes, our parallel al-
gorithm yields an approximation of the object’s Voronoi nodes
(left). If we connect overlapping spheres, we get an approxima-
tion of the medial axis (right).

in the sense that it produces space filling sphere packings due to the
Apollonian property.

Naturally, sphere packing is an interesting problem per se. But orig-
inally, we designed our algorithms as a means to an end; we simply
required a method to fill arbitrary objects with spheres in order to
realize our Inner Sphere Trees data structure (see Chapter 5). It turns
out that the efficient computation of sphere packings for arbitrary
objects, but also the algorithms for their computation, offer very in-
teresting properties that open new ways to solve fundamental prob-
lems of computer graphics and beyond. For instance, we applied our
sphere packings to the real-time simulation of volume preserving de-
formable objects (see Section 7.2). In the following, we will outline a
few other ideas for the future use of such sphere packings.

4.4.1 Future Work

First, we want to improve our Protosphere algorithm in the future.
Even if it already works very fast in its parallel version, there is
still room for improvements. Especially the computation of the ini-
tial spheres takes some time. We plan to accelerate this step by using
hierarchical grids instead of uniform grids. Probably, this would al-
low the real-time approximation of the object’s medial axis.

Moreover, we want to extend our algorithm to other object repre-
sentations than polygonal meshes, e. g. NURBS, CSG or point clouds.
This is basically straight forward, we simply have to adapt the closest
point computation.

At the moment, we use a simple greedy choice for the spheres. Re-
placing this by a more intelligent optimized choice would probably
improve the covered volume and could further help to solve other
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(a) (b)

(c) (d)

Figure 4.11: The models used for the timings: A cow (a), a pig (b), a bust (c)
and a dragon (d)

optimization problems, e. g. the placement of beams in radiosurgical
treatment planning. Furthermore, we can replace the prototypes by
other geometric primitives, like line segments. An appropriate dis-
tance function would allow to compute ellipsoid packings instead of
sphere packings. Also the extension to higher dimensions is straight
forward.

The packing of spheres into arbitrary objects also offers some inter-
esting theoretical implications. Until now, the density of Apollonian
sphere packings has been investigated only for very simple geomet-
ric objects like cubes. There, an exponential distribution of the sphere
sizes has been derived. It is unknown, if this also holds for arbitrary
objects, even if we already assume this with respect to our results (see
Figure 4.12). Probably, it is possible to classify objects with respect to
their fractal dimension. An other open problem is the analysis of the
voids between the spheres. If it is possible to estimate the voids a
priori, we could derive error bounds for our collision detection algo-
rithm.

4.4.1.1 Generalized Voronoi Diagrams

A major advantage of our Protosphere algorithm is that it initially
computes an approximation of the object’s Voronoi nodes, and thus
on the medial axis. Hence, our algorithm can be used as a blueprint
for several generalized Voronoi diagram problems.
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Figure 4.14: Our Protosphere algorithm does not only compute a sphere
packing, but also maintains automatically the adjacency be-
tween the spheres, the so called Sphere Graph.

For instance, the extensions mentioned above would allow to ap-
proximate generalized Voronoi nodes for almost any mixture of dif-
ferent geometric primitives in arbitrary dimensions. Varying the dis-
tance function allows further generalizations. Moreover, the optimiza-
tions of the performance would probably allow a real-time computa-
tion of such generalized VNs. To our knowledge, such a flexible al-
gorithm does not exist yet. Usually, generalized VD algorithms are
restricted to either of these extensions, not to speak about their per-
formance and their robustness.

Generalized Voronoi diagrams have numerous applications in many
scientific disciplines beyond computer graphics and computer sci-
ence, including chemistry, biology and material science. However, in
order to connect the Voronoi nodes to a complete Voronoi diagram,
we will have to add an edge tracing algorithm.

4.4.1.2 Applications to Computer Graphics

Beyond the computation of generalized VD, that are widely used in
computer graphics, our sphere packings can be applied to other fun-
damental problems.

For instance, the sphere packing can be used to construct level-of-
detail representations of objects by simply sorting the spheres by their
size. Furthermore, we can use the sphere sizes and their relative po-
sition as a similarity measure to compare different objects or for the
search in geometric databases. Obviously, this similarity measure is
scale-invariant if we use only the relative sizes of the spheres. More-
over, it can be applied hierarchically.

However, the Protosphere algorithm also has another interesting
feature. Actually, it does not only compute a sphere packing, but
it also derives automatically the neighbourhood between the spheres.
Connecting adjacent spheres results in a neighbourhood graph that
we call the Sphere Graph (see Figure 4.14).

This sphere graph can be applied to segmentation problems. Usu-
ally, a segmentation of objects into its functional parts is often used for
modelling, skeletal extraction or texturing [Attene et al., 2006; Chen
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et al., 2009; Shamir, 2008]. We assume that our volumetric Sphere-
Graph representation has some advantages over the typical surface-
based methods. Several heuristics can be used in our Sphere Graph,
e. g. a formulation as min-cut problem, but we can also take into ac-
count the sizes of the spheres or their distribution.

Another fundamental problem in computer graphics is the recon-
struction of polygonal objects from point clouds that were derived
from a 3D scanner. The extension to point clouds mentioned above
allows our algorithms to work directly on this kind of object repre-
sentation. We can use the direction of the edges in our Sphere Graph
with respect to the points in order to determine the interior and ex-
terior of the object. The same technique can be applied to close holes
in polygonal meshes. However, we can also formulate this again as
a min-cut problem. We assume, that such Sphere Graph-based algo-
rithms are very robust to noisy data.

Last but not least, it is also possible to apply our sphere packings to
global illumination. Until now, we restricted the sphere packings to
fill the interior of single objects. However, we can also use a spherical
representation of the free space between the objects. This new spherical
free-space representation allows us to re-formulate the photon map-
ping algorithm. Basically, photon mapping is closely related to ray
tracing. Instead of tracing rays from the eye through the scene, pho-
ton mapping traces rays from the lights through the scene in order to
simulate the distribution of the photons (Please see [Dutré et al., 2006;
Francis, 2009; Pharr and Humphreys, 2004] for more details). The ac-
curacy of this approach, but also the performance, depends on the
number of rays. If we use our Sphere Graph as free space representa-
tion, we can re-formulate this discrete tracing of rays as a continuous
network-flow problem. We simply have to define the lights as photon
source and the objects as a photon sink, with respect to their material
parameters.

Obviously, these are just a few examples how sphere packings of
arbitrary objects and their accompanying space-representation, the
Sphere Graph, can be applied to very different problems in computer
graphics. We are sure that there exist much more interesting applica-
tions of our data structures in the future.





5
I N N E R S P H E R E T R E E S

Then the sky crashed down
And the spheres collide

Supreme Majesty
Fallen Star

In the previous chapter, we have presented new methods to com-
pute sphere packings for arbitrary objects. In this chapter, we will
use these sphere packings to define a new data structure for collision
detection between rigid objects.

In Chapter 2 we have already seen that BVHs guarantee very fast
responses at query time as long as no further information than the
set of colliding polygons is required for the collision response. This
is because the modern traversal algorithms converge quickly toward
a pair of colliding primitives and the algorithm stops immediately
when the first intersecting pair is found.

However, most applications require much more information in or-
der to resolve or avoid the collisions. Unfortunately, typical contact in-
formations like distances, translational penetration depth or the time
of impact suffer from their complex computations and their discon-
tinuous definitions of the resulting force and torque directions. This
even aggravates when haptic frequencies of 250–1000 Hz are required
or the scene consists of massive models.

This chapter contributes the following novel ideas to the area of
collision detection:

105
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• a novel geometric data structure, the Inner Sphere Trees (IST),
that provides hierarchical bounding volumes from the inside of
an object;

• we propose to utilize a clustering algorithm to construct a sphere
hierarchy;

• a unified algorithm that can compute for a pair of objects, based
on their ISTs, both an approximate minimal distance and the
approximate penetration volume; the application does not need
to know in advance which situation currently exists between
the pair of objects;

• a time-critical variant of the penetration volume traversal, which
runs only for a pre-defined time budget, including a new heuris-
tic to derive good error bounds, the expected overlap volume;

• a novel collision response scheme to compute stable and contin-
uous forces and torques, both in direction and value, based on
the penetration volume.

Our ISTs and consequently, the collision detection algorithm are in-
dependent of the geometry complexity; they only depend on the ap-
proximation error.

The main idea is that we do not build an (outer) hierarchy based
on the polygons on the boundary of an object. Instead, we fill the
interior of the model with a set of non-overlapping simple volumes
that approximate the object’s volume closely. In our implementation,
we used spheres for the sake of simplicity, but the idea of using inner
BVs for lower bounds instead of outer BVs for upper bounds can be
extended analogously to all kinds of volumes. On top of these inner
BVs, we build a hierarchy that allows for fast computation of the
approximate proximity and penetration volume.

The penetration volume corresponds to the water displacement of
the overlapping parts of the objects and thus, leads to a physically
motivated and continuous repulsion force and torques. As already
mentioned in the introduction, according to [Fisher and Lin, 2001a,
Sec. 5.1], it is “the most complicated yet accurate method” to define
the extent of intersection, which was also reported earlier by [O’Brien
and Hodgins, 1999, Sec. 3.3]. However, to our knowledge, there are
no algorithms to compute it efficiently as yet.

However, our inner sphere tree not only allows to compute both
separation distance and penetration volume, but it also lends itself
very well to time-critical variants, which run only for a pre-defined
time budget. Moreover, our ISTs can also easily extended to support
the time of impact computations that are needed for continuous col-
lision detection. In this, they avoid the time-consuming continuous
triangle intersection tests.
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Our data structure can support all kinds of object representations,
e. g. polygon meshes or NURBS surfaces. The only precondition is
that they be watertight. In order to build the hierarchy on the in-
ner spheres, we utilize a recently proposed clustering algorithm that
allows us to work in an adaptive manner. Moreover, we present a
parallel version of that clustering algorithm that runs completely on
modern GPUs.

In order to evaluate the accuracy of our approximative ISTs, we
additionally have developed an algorithm that is able to compute an
accurate value of the penetration volume. This algorithm is based on
tetrahedral decomposition of polygonal objects. Unfortunately, even
in combination with acceleration data structures this algorithm can
not operate in real-time. However, this approach can be useful for
users that require exact information.

In contrast, the results show that our ISTs can answer both kinds of
queries, distance and penetration volume queries at haptic rates with
a negligible loss of accuracy.

5.1 sphere packings

Our ISTs rely on dense sphere packings of objects. These sphere pack-
ings can be computed by each algorithms that we have presented in
Chapter 4. Some optimization that we will describe in the following
section require to store additionally one or more triangles that are
closest to a sphere. However, this information can be derived easily
during the computation of the sphere packing by both algorithms. Ba-
sically, our ISTs are independent of the object’s complexity, e. g. the
triangle count. Their running-time depends only on the number of
spheres in the sphere packing.

In the following, we will describe how to build an IST from a sphere
packing.

5.2 hierarchy creation

Based on the sphere packing, we create an inner bounding volume
hierarchy. To do so, we use a top-down wrapped hierarchy approach
according to the notion of Agarwal et al. [2004], where inner nodes
are tight BVs for all their leaves, but they do not necessarily bound
their direct children (see Figure 5.1). Compared to layered hierarchies,
the big advantage is that the inner BVs are tighter. We use a top-down
approach to create our hierarchy, i.e., we start at the root node that
covers all inner spheres and divide these into several subsets.

The partitioning of the inner spheres has significant influence on
the performance during runtime. Previous methods that have been
developed for ordinary BVHs, like the surface area heuristic (see Sec-
tion 2.2) produce optimal hierarchies for surface representations of
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Figure 5.1: In a wrapped hierarchy, the blue sphere covers all its leaf nodes
(red spheres), but not its direct children (green spheres).

the objects, but they do not take the objects’ volume into account. Al-
gorithms for building the classical outer sphere trees, like the medial
axis approach [Bradshaw and O’Sullivan, 2004; Hubbard, 1995] work
well if the spheres constitute a covering of the object and have similar
size, but in our scenario we use disjoint inner spheres that exhibit a
large variation in size. Other approaches based on the k-center problem
work only for sets of points and do not support spheres.

5.2.1 Batch Neural Gas Hierarchy Clustering

So we decided to use the batch neural gas clustering algorithm (BNG)
known from machine learning [Cottrell et al., 2006]. BNG is a very ro-
bust clustering algorithm which can be formulated as stochastic gra-
dient descent with a cost function closely connected to quantization
error. Like k-means, the cost function minimizes the mean squared eu-
clidean distance of each data point to its nearest center. But unlike k-
means, BNG exhibits very robust behaviour with respect to the initial
cluster center positions (the prototypes): they can be chosen arbitrarily
without affecting the convergence. Moreover, BNG can be extended
to allow the specification of the importance of each data point; below,
we will describe how this can be used to increase the quality of the
ISTs.

In the following we will give a quick recap of the basic batch neural
gas and then describe our extensions and application to building the
inner sphere tree.

Given points xj ∈ Rd, j = 0, . . . ,m and prototypes wi ∈ Rd, i =
0, . . . ,n initialized randomly, we set the rank for every prototype wi
with respect to every data point xj as

kij :=
∣∣{wk : d(xj,wk) < d(xj,wi)}

∣∣ ∈ {0, . . . ,n} (5.1)
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In other words, we sort the prototypes with respect to every data
point. After the computation of the ranks, we compute the new posi-
tions for the prototypes:

wi :=

∑m
j=0 hλ(kij)xj∑m
j=0 hλ(kij)

(5.2)

These two steps are repeated until a stop criterion is met. In the origi-
nal publication by Cottrell et al. [2006], a fixed number of iterations is
proposed. Indeed, after a certain number of iteration steps, which de-
pends on the number of data points, there is no further improvement.
We propose to use an adaptive version and stop the iteration if the
movement of the prototypes is smaller than some ε. In our examples,
we chose ε ≈ 10−5×BoundingBoxSize, without any differences in the
hierarchy compared to the non-adaptive, exhaustive approach. This
improvement speeds up the creation of the hierarchy significantly.

The convergence rate is controlled by a monotonically decreasing
function hλ(k) > 0 that decreases with the number of iterations t.
We use the function proposed in the original publication [Cottrell
et al., 2006]: hλ(k) = e−

k
λ with initial value λ0 = n

2 , and reduction

λ(t) = λ0

(
0.01
λ0

) t
tmax , where tmax is the maximum number of iter-

ations. These values have been taken according to Martinetz et al.
[1993].

Obviously, the number of prototypes defines the arity of the tree.
If it is too big, the resulting trees are very inefficient. On the other
hand, if it is too small, the trees become very deep and there exist
a lot of levels with big spheres that do not approximate the object
very well. Experiments with our data structure have shown that a
branching factor of 4 produces the best results. Additionally, this has
the benefit that we can use the full capacity of SIMD units in modern
CPUs during the traversal.

5.2.1.1 Magnification Control

So far, the BNG only utilizes the location of the centers of the spheres.
In our experience this already produces much better results than
other, simpler heuristics, such as greedily choosing the biggest spheres
or the spheres with the largest number of neighbours. However, it
does not yet take the extent of the spheres into account. This is, be-
cause neural gas uses only the number of data points and not their
importance. As a consequence, the prototypes tend to avoid regions
that are covered with a very large sphere, i.e., centers of big spheres
are treated as outliers and they are thus placed on very deep levels in
the hierarchy. However, it is better to place big spheres at higher lev-
els of the hierarchy in order to get early lower bounds during distance
traversal (see Section 5.3.1 for details).
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Figure 5.2: This figure shows the results of our hierarchy building algorithm
based on batch neural gas clustering with magnification control.
All of those inner spheres that share the same color are assigned
to the same bounding sphere. The left image shows the cluster-
ing result of the root sphere, the right images the partitioning of
its four children.

Therefore, we use an extended version of the classical batch neural
gas that also takes the size of the spheres into account. Our exten-
sion is based on an idea of Hammer et al. [2006], where magnification
control is introduced. The idea is to add weighting factors in order to
“artificially” increase the density of the space in some areas.

With weighting factors v(xj), Equation 5.2 becomes

wi :=

∑m
j=0 hλ(kij)v(xj)xj∑m
j=0 hλ(kij)v(xj)

(5.3)

Where v(xj) identifies a control parameter to take care of the impor-
tance. In Hammer et al. [2006], a function of density is used to control
the magnification. In our scenario we already know the density, be-
cause our spheres are disjoint. Thus, we can directly use the volumes
of our spheres to let v(xj) = 4

3πr
3.

Summing up the hierarchy creation algorithm: we first compute a
bounding sphere for all inner spheres (at the leaves), which becomes
the root node of the hierarchy. Therefore, we use the fast and sta-
ble smallest enclosing sphere algorithm proposed in Gärtner [1999].
Then, we divide the set of inner spheres into subsets in order to cre-
ate the children. To do that, we apply the extended version of batch
neural gas with magnification control mentioned above. We repeat
this scheme recursively (see Figure 5.2 for some clustering results).

In the following, we will call the spheres in the hierarchy that are
not leaves hierarchy spheres. Spheres at the leaves, which were com-
puted by any sphere packing algorithms from the previous chapter,
will be called inner spheres. Note that hierarchy spheres are not neces-
sarily contained completely within the object.
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Figure 5.3: The upper green array stores the indices of the prototype to
which the sphere in the upper blue array has been assigned af-
ter the initial BNG clustering. In a first step, we sort the spheres
with respect to their prototype index (the lower green and blue
arrays). Note, that each sphere is assigned to exactly one proto-
type.

5.2.1.2 Parallel Hierarchical Batch Neural Gas

The Batch Neural Gas algorithm produces a very good partitioning
of the inner spheres, but as a drawback, it is very time-consuming.
Actually, we have to execute O(n) BNG calls – one for each hierarchy
sphere – where n denotes the number of inner spheres. In case of a
balanced tree with height O(logn) we have an overall running-time
of O(n logn), but with a relatively high hidden constant factor that
results from the number of iteration steps.

However, BNG in its pure form, but also the hierarchical BNG calls
of our BVH creation, are perfectly suited for parallelization. Assum-
ing O(n) processors we are able to reduce the asymptotic running-
time to O(log2 n). In the following we will sketch the details of this
parallel hierarchical BNG implementation using the GPU.

Obviously, on the first level of our hierarchy, the ordering kij and
consequently also hλ(kij)v(xj)xj can be computed independently for
each sphere xj. Summing up all those values can be implemented
in parallel too, by using a parallel scan algorithm [Sengupta et al.,
2008]. Also the parallel assignment of spheres to prototypes is straight
forward: we simply have to compute the distances of each sphere to
the prototypes. Please note, that each sphere is assigned to exactly
one prototype.

In the next level of the BVH creation, we have to add 4 new proto-
types for each prototype from the previous level (in case of a branch-
ing factor of 4). However, triggering an own parallel process for each
sub-set of spheres would shoot down the advantages of parallel com-
puting, especially in the deeper hierarchy levels. Therefore, we de-
cided to chose an other way. In the following we will describe its
technical details.

First, we sort the spheres with respect to the prototype that the
spheres were assigned to (see Figure 5.3). This can be done in par-
allel by using a parallel sorting algorithm [Satish et al., 2009]. This
technical detail allows us later to use fast parallel prefix-sum compu-
tations. However, after the sorting we virtually insert 4 new proto-
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Figure 5.4: An example for the second level of the hierarchical BNG. Accord-
ing to Figure 5.3, each sphere (blue array) has been assigned to
a prototype. We insert 16 new prototypes, w1,1, · · · ,w4,4), 4 for
each prototypew1, · · · ,w4) from the previous level and compute
the values that are required by BNG, e. g. hλ(kij)v(xj). Please
note that we do not have to allocate new memory or copy any
values from CPU to GPU. We can simply re-use the memory
from the previous level because each sphere was assigned to ex-
actly one prototype. Consequently, we get a constant memory
consumption for each level.
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Figure 5.5: In order to compute the new position of the prototypes for the
next iteration, we have to determine

∑
hλ(kij)v(xj)xj. Therefore,

we compute the prefix sum (brown array) for each of the four
prototype arrays from Figure 5.4. The differences between the
values at the boarders directly deliver us the individual sum for
each prototype.

types for each prototype from the previous hierarchy level. The fact
that each sphere has been assigned to exactly one prototype in the
previous level allows us to compute the values that are required for
BNG (e. g. kij) in parallel for each sphere. We simply have to ensure
that these values are computed for the right new prototypes (see Fig-
ure 5.4).

Finally, we have to sum up the individual values to get the new pro-
totype positions; this means we have to compute

∑m
j=0 hλ(kij)v(xj)xj

and
∑m
j=0 hλ(kij)v(xj). Surprisingly, we can directly re-use the par-

allel prefix-sum from above [Sengupta et al., 2008], even if we now
need the sums for each new prototype individually: we simply have
to subtract the values at the borders of our sorted prototype array
(see Figure 5.5).
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Algorithm 5.1 summarized our complete parallel hierarchical BNG
implementation.

Algorithm 5.1: Parallel hierarchical BNG

while Not on inner sphere level do
iteration = 0

while iteration<maxNumberIterations do
iteration++
In parallel Sort prototype array
In parallel forall Spheres do

compute hλ(kij)v(xj)xj
and hλ(kij)v(xj)

In parallel Compute prefix sum
In parallel forall Prototypes in level do

Compute new position
read back prototype positions

The prefix sum and the sorting of the prototypes for n inner spheres
can be computed in parallel using O(n) processors in O(logn). Basi-
cally, both algorithms are based on an implicit balanced binary tree
structure (see [Satish et al., 2009] and [Sengupta et al., 2008] for more
details). The "per sphere" steps of Algorithm 5.1 have a complexity
of O(1), obviously. If the tree is balanced, the outer while-loop is
called O(logn) times. Overall, we get a parallel time complexity of
O(log2 n). The memory consumption is O(n).

In practice it is essential that there is not too much traffic between
the memories of the CPU and the GPU. In our implementation there
is almost no traffic required. We only have to save the positions of the
prototypes from the last iteration in the outer loop of Algorithm 5.1
1. We only have to allocate memory for the prototypes once. This
memory can be re-used for all iterations. In our prototypical naive
implementation using CUDA without further optimizations, we get
an overall speed-up by a factor of 10 compared to the sequential hier-
archy computation.

5.3 traversal algorithms

Our new data structure supports almost all different kinds of colli-
sion queries. Namely proximity queries, which report the separation
distance between a pair of objects, penetration volume queries, which
report the common volume covered by both objects and moreover,
it also supports continuous collision detection queries, which report the
time of impact if two objects collide. Obviously, the traversal can be

1 However, also this is not really necessary. In the future, we plan to move also the
smallest enclosing sphere computation to the GPU. Then, we only have to read back
the whole hierarchy once.
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easily modified in order to provide also boolean answers that simply
report whether the objects collide or not.

As a by-product, the proximity query can return a witness realizing
the distance, the penetration volume algorithm can return a partial
list of intersecting polygons and the continuous collision detection
query can return the first pair of colliding spheres.

We start with a separate discussion of the distance and penetra-
tion volume queries in order to point out their specific requirements.
In Section 5.3.3 we describe how to combine these traversal schemes
to a unified algorithm that is able to provide distance and penetra-
tion volume information, without the user has to know in advance,
whether the objects overlap or not. Furthermore, we will describe a
time-critical extension of both algorithms that allows an approxima-
tion of the appropriate contact information, distance and penetration
volume, respectively, if a pre-defined time-budget should not be ex-
ceeded.

Finally, we will describe an algorithm that uses our new data struc-
ture to compute the time of impact. Actually, the main focus during
the design of our ISTs was the computation of a continuous penetra-
tion measure, the penetration volume, at haptic rates. But it turns out
that the ISTs also has some nice implications on continuous collision
detection.

5.3.1 Distances

Our proximity query algorithm works like most other classical BVH
traversal algorithms: we check whether two bounding volumes over-
lap or not. If this is the case, we recursively step to their children.
In order to compute lower bounds for the distance, we simply have
to add an appropriate distance test at the right place. This has to be
done, when we reach a pair of inner spheres (i. e. the leaves of the
ISTs) during traversal (see Algorithm 5.2). Due to Chapter 4, these
inner spheres are located completely inside the object and thus, pro-
vide a lower bound on the sought-after distance. During traversal
there is no need to visit branches of the bounding volume test tree
that are farther apart than the current minimum distance because of
the bounding property. This guarantees a high culling efficiency.

5.3.1.1 Improvements

In most collision detection scenarios there is a high spatial and tem-
poral coherence, especially when rendering at haptic rates. Thus, in
most cases those spheres realizing the minimum distance in a frame
are also the closest spheres in the next frames, or they are at least in
the neighbourhood. Therefore, using the distance from the last frame
yields a good initial bound for pruning during traversal. Thus, in
our implementation we store pointers to the closest spheres as of the
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Algorithm 5.2: checkDistance( A, B, minDist )
input : A, B = spheres in the inner sphere tree
in/out: minDist = overall minimum distance seen so far
if A and B are leaves then

// end of recursion

minDist = min{distance(A, B), minDist}
else

// recursion step

forall children a[i] of A do
forall children b[j] of B do

if distance(a[i], b[j]) < minDist then
checkDistance( a[i], b[j], minDist )

last frame and use their current distance to initialize minDist in Algo-
rithm 5.2.

If the application is only interested in the distance between a pair
of objects, then, of course, a further speed-up can be gained by aban-
doning the traversal once the first pair of intersecting inner spheres is
found (in this case the objects must overlap and the distance is zero).

Moreover, our traversal algorithm is very well suited for paralleliza-
tion. During recursion we compute the distances between four pairs
of spheres in one single SIMD implementation, which is greatly facil-
itated by our hierarchy being a 4-ary tree.

Obviously, Algorithm 5.2 returns only an approximate minimum
distance, because it utilizes only the distances of the inner spheres
for the proximity query. Thus, the accuracy depends on their density.

Fortunately, it is very easy to alleviate these inaccuracies by sim-
ply assigning the closest triangle (or a set of triangles) to each inner
sphere. After determining the closest spheres with Algorithm 5.2, we
add a subsequent test that calculates the exact distance between the
triangles assigned to those spheres. This simple heuristic reduces the
error significantly even with relatively sparsely filled objects, and it
hardly affects the running time.

5.3.2 Penetration Volume

In addition to proximity queries, our data structure also supports a
new kind of penetration query, namely the penetration volume. This is
the volume of the intersection of the two objects, which can be inter-
preted directly as the amount of the repulsion force if it is considered
as the amount of water being displaced.

The algorithm that computes the penetration volume (see Algo-
rithm 5.3) does not differ very much from the proximity query test:
we simply have to replace the distance test by an overlap test and
maintain an accumulated overlap volume during the traversal. The
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overlap volume of a pair of spheres can be easily derived by adding
the volumes of the spherical caps.

Due to the non-overlapping constraint of the inner spheres, the
accumulated overlap volumes provides a lower bound on the real
overlap volume of the objects.

Algorithm 5.3: computeVolume( A, B, totalOverlap )
input : A, B = spheres in the inner sphere tree
in/out: totalOverlap = overall volume of intersection
if A and B are leaves then

// end of recursion

totalOverlap += overlapVolume( A, B )
else

// recursion step

forall children a[i] of A do
forall children b[j] of B do

if overlap(a[i], b[j]) > 0 then
computeVolume( a[i], b[j], totalOverlap )

5.3.2.1 Intersection Volume of Spheres

The main challenge during the traversal is the computation of the
penetration volume between a pair of spheres. According to Weis-
stein [2012a], this can be expressed in a closed formular. Basically, the
intersection volume of two intersecting spheres is a lens built of two
spherical caps. Without loss of generality we assume that one sphere
is centered at the origin and the second sphere is displaced by a dis-
tance d on the x-axis (see Figure 5.6 for the setting). The equations of
the spheres can be expressed as

x2 + y2 + z2 = r21 (5.4)

and (x− d)2 + y2 + z2 = r22 ,respectively (5.5)

Consequently, the intersection is:

(x− d)2 − x2 = r22 − r
2
1 (5.6)

Solving for x delivers

x =
d2 − r22 + r

2
1

2d
(5.7)

This means, the intersection of the spheres is a curve lying in plane
parallel to the z-plane. In detail we get by combining Equations 5.4
and 5.7:
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a

d

r1 r2

Figure 5.6: Penetration volume of two spheres with radius r1 and r2, respec-
tively.

y2 + z2 = r21 − x
2
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d2 − r22 + r

2
1

2d

)2
=
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(
d2 − r22 + r

2
1

)2
4d2

(5.8)

Acutally, this denotes a circle of radius

a =
1

2d

√
4d2r21 −

(
d2 − r22 + r

2
1

)2
=
1

2d

√
(−d+ r2 − r1) (−d− r2 + r1) (−d+ r2 + r1) (d+ r2 + r1)

(5.9)

In order to compute the intersection volume, we can simply add
the volumes of the two spherical caps with distances d1 = x for the
first sphere and d2 = x− d for the second sphere. The heights of the
spherical caps are:

h1 = r1 − d1 =
(r2 − r1 + d) (r2 + r1 − d)

2d
(5.10)

and h2 = r2 − d2 =
(r1 − r2 + d) (r1 + r2 − d)

2d
(5.11)

In common, the volume of a spherical cap of height h for a sphere
with radius r can be expressed by (see e. g. Weisstein [2012b] for more
details.):

V(R,h) =
1

3
πh2 (3r− h) (5.12)

Consequently, we get for the total intersection volume V for two
spheres:

V = V (r1,h1) + V (r2,h2)

=
π (r1 + r2 − d)

2 (d2 + 2dr2 − 3r22 + 2dr1 + 6r1r2 − 3r21)
12d

(5.13)
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Summarizing, Equation 5.13 allows us to compute the overlap be-
tween a pair of spheres efficiently during the traversal.

5.3.2.2 Improvements

Similar to the proximity query implementation, we can utilize SIMD
parallelization to speed up both the simple overlap check and the
volume accumulation.

Furthermore, we can exploit the observation that a recursion can
be terminated if a hierarchy sphere (i. e. an inner node of the sphere
hierarchy) is completely contained inside an inner sphere (a leaf) of
the other IST. In this case, we can simply add the total volume of all
of its leaves to the accumulated penetration volume. In order to do
this quickly, we store the total volume

Voll(S) =
∑

Sj∈Leaves(S)

Vol(Sj), (5.14)

where Sj are all inner spheres below S in the BVH.
This can be done in a preprocessing step during hierarchy creation.

5.3.2.3 Filling the gaps

The voxel-based sphere packing algorithm described in Section 4.2 re-
sults in densely filled objects. However, there still remain small voids
between the spheres that cannot be completely compensated by in-
creasing the number of voxels. This results in bad lower bounds.

As a remedy, we propose a simple heuristic to compensate this
problem: we additionally assign a secondary radius to every inner sphere,
such that the volume of the secondary sphere is equal to the volume
of all voxels whose centers are contained within the radius of the pri-
mary sphere (see Figure 5.7). This guarantees that the total volume
of all secondary spheres equals the volume of the object, within the
accuracy of the voxelization, because each voxel volume is accounted
for exactly once.

Certainly, these secondary spheres may slightly overlap, but this
simple heuristic leads to acceptable estimations of the penetration
volume. (Note, however, that the secondary spheres are not necessar-
ily larger than the primary spheres.)

For our second sphere packing method, the Protosphere algorithm
(see Section 4.3), there is, until now, no method known to determine
the size of the voids between the spheres.

5.3.3 Unified Algorithm for Distance and Volume Queries

In the previous sections, we introduced the proximity and the pene-
tration volume computation separately. However, it is quite easy to
combine both algorithms. This yields a unified algorithm that can
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Figure 5.7: After constructing the sphere packing with the voxel-based
method (see Section 4.2), each voxel can be intersected by several
non-overlapping spheres (left). These do not necessarily account
for the whole voxel space (green space in the left picture). In or-
der to account for these voids, too, we simply increase the radius
of the sphere (green sphere) that covers the center of the voxel
(right).

compute both the distance and the penetration volume, without the
user having to know in advance whether the objects overlap or not.

We start with the distance traversal. If we find the first pair of in-
tersecting inner spheres, then we simply switch to the penetration
volume computation.

The correctness is based on the fact that all pairs of inner spheres
we visited so far during distance traversal do not overlap and thus
do not extend the penetration volume. Thus, we do not have to visit
them again and can continue with the traversal of the rest of the hier-
archies using the penetration volume algorithm. If we do not meet an
intersecting pair of inner spheres, the unified algorithm still reports
the minimal separating distance.

5.3.4 Time Critical Distance and Volume Queries

To yield a time critical version of the distance query is very easy. We
can simply interrupt the traversal at any time and return the mini-
mum distance computed so far. For the initialization we can compute
the distance between any pair of inner spheres or simply use the clos-
est pair from the last traversal (see Section 5.3.1.1). However, the dis-
tance traversal only computes a lower bound of the distance. Using
an additional classical outer BVH would achieve also an upper bound.

Yielding an interruptible version for the penetration volume traver-
sal is more complicated but also more needful. Because in most cases,
a penetration volume query has to visit many more nodes than the
average proximity query. Consequently, the running time on average
is slower, especially in cases with heavy overlaps.

In the following we will describe a variation of our algorithm for
penetration volume queries that guarantees to meet a predefined time
budget. This is essential for time-critical applications such as haptic
rendering.
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Figure 5.8: We estimate the real penetration volume (green) during our time-
critical traversal by the “density” in the hierarchy spheres (blue
and red) and the total volume of the leaf spheres.

A suitable strategy to realize time-critical traversals is to guide
the traversal by a priority queue Q. Then, given a pair of hierarchy
spheres S and R, a simple heuristic is to use Vol(S∩R) for the priority
in Q. In our experience, this would yield acceptable upper bounds.

Unfortunately, this simple heuristic also may result in very bad
lower bounds in cases where only a relatively small number of inner
spheres can be visited (unless the time budget permits an almost
complete traversal of all overlapping pairs).

A simple heuristic to derive an estimate of the lower bound could
be to compute∑

(R,S)∈Q

∑
Ri∈ch(R),
Sj∈ch(S)

Vol(Ri ∩ Sj), (5.15)

where ch(S) is the set of all direct children of node S.
Equation 5.15 amounts to the sum of the intersection of all direct

child pairs of all pairs in the priority queue Q. Unfortunately, the di-
rect children of a node are usually not disjoint and thus, this estimate
of the lower bound could actually be larger than the upper bound.

In order to avoid this problem we introduce the notion of expected
overlap volume. This allows us to estimate the overlap volume more
accurately.

The only assumption we make is that for any point inside S, the
distribution of the probability that it is also inside one of its leaves is
uniform.

Let (R,S) be a pair of spheres in the priority queue. We define the
density of a sphere as

p(S) =
Voll(S)
Vol(S)

(5.16)

with voll(S) defined similarly to equation 5.14 as the accumulated
volume of all inner spheres below S.

This is the probability that a point inside S is also inside one of its
leaves (which are disjoint). Next, we define the expected overlap volume
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Vol(R,S) as the probability that a point is inside R∩ S and also inside
the intersection of one of the possible pairs of leaves, i. e.

Vol(R,S) = p(S) · p(R) ·Vol(R∩ S)

=
Voll(R) ·Voll(S) ·Vol(R∩ S)

Vol(R) ·Vol(S)
(5.17)

(see Figure 5.8).
In summary, for the whole queue we get the expected overlap vol-

ume ∑
(R,S)∈Q

Vol(R,S) (5.18)

Clearly, this volume can be maintained during traversal quite easily.
More importantly, this method provides a much better heuristic

for sorting the priority queue: if the difference between the expected
overlap Vol(R,S) and the overlap Vol(R ∩ S) is large, then it is most
likely that the traversal of this pair will give the most benefit toward
improving the bound; consequently, we insert this pair closer to the
front of the queue.

Algorithm 5.4 shows the pseudo code of this approach. (Note that
p(S) = 1 if S is a leaf and therefore Vol(R,S) returns the exact inter-
section volume at the leaves.)

Algorithm 5.4: compVolumeTimeCritical( A,B )
input : A,B = root spheres of the two ISTs
estOverlap = Vol(A,B)
Q = empty priority queue
Q.push( A,B )
while Q not empty & time not exceeded do

(R,S) = Q.pop()
if R and S are not leaves then

estOverlap –= Vol(R,S)
forall Ri ∈ children of R, Sj ∈ children of S do

estOverlap += Vol(Ri,Sj)
Q.push( Ri,Sj )

We initialize the priority queue with the root spheres of the objects.
The overlap of the root spheres is trivially an upper bound for the
total overlap. Then we pop the element with biggest overlap, sub-
tract the overlap volume from the upper bound computed so far and
insert the child pairs instead. A lower bound is simply derived by
exclusively summing up the overlap volumes of inner spheres.

Obviously, it is possible to stop the traversal if an user specified
accuracy between lower and upper bound is reached, or if the time for
this query is exceeded. This maximum running-time can be derived
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Pt+1d
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Qs

Qt+1

Qt Pr

Figure 5.9: The centers of the blue and the red sphere move from position Pt
to Pt+1, and Qt to Qt+1 respectively, in a time step of the simu-
lation. Spheres in deeper hierarchy levels can only collide, if the
capped cylinders that are spanned by the moving spheres over-
lap. The intersection between the capped cylinders can be easily
determined by computing the minimum distance d between the
line segments (Pt,Pt+1) and (Qt,Qt+1) that is realized by the
points Pr and Qs.

in advance, because the computation for a single pair of spheres takes
a fixed amount of time.

Overall, we have derived a time-critical algorithm that can traverse
a given IST such that the lower bound and the upper bound of the
penetration volume approach each other fairly quickly.

5.3.5 Continuous Collision Detection

The main focus for the design of the ISTs was the approximation of
the penetration volume. However, they can be easily extended for
continuous collision detection. There, the ISTs even offer some inter-
esting advantages compared to traditional polygon-based continuous
collision detection algorithms.

When BVHs are applied for the acceleration of continuous colli-
sion detection queries, often swept volumes are used. Swept volumes
are bounding volumes that bound the original object’s bounding vol-
umes at the beginning and the end of each query time. The bounding
volume property guarantees that there is no intersection of the objects
in this time if the BVs do not overlap. We applied this swept-volume
method to our ISTs.

We assume a linear motion between the start and the end configu-
ration. Sweeping spheres over time linearly creates a capped cylinder
as swept volume (see Figure 5.9). An intersection test for two capped
cylinders is relatively simple. Basically, we have to check if the dis-
tance between the line segments (Pt,Pt+1) and (Qt,Qt+1) is smaller
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than the sum of the radii rp and rq (Notation according to Figure
5.9). Therefore, we first compute the minimum distance between the
lines that where spanned by the line segments [Schneider and Eberly,
2002]. The line equations are defined as:

Lp(r) = Pt + r(Pt+1 − Pt) = Pt + rmp

Lq(s) = Qt + s(Qt+1 −Qt) = Qt + smq (5.19)

The squared distance between any two points on the lines is:

D(r, s) = |Lp(r) − Lq(s)|
2 (5.20)

For sake of clarity we use the following shortcuts:

a := mpmp b := mpmq c := mqmq

d := mp(Pt −Qt) d := −mq(Pt −Qt) f := (Pt −Qt)(Pt −Qt)

and we get

D(r, s) = f+ ar2 + 2brs+ cs2 + 2dr+ 2es (5.21)

Lp(r) and Lq(s) are continuously differentiable. Consequently, also
D(r, s) is continuously differentiable, and we get the minimum by
computing the partial derivations and solving for zero. Finally, we
get the minimum distance for:

rmin =
bd− ae

ac− b2
and smin =

be− cd

ac− b2
(5.22)

Additionally, in order to get the minimum distance between the
line segments, we have to clamp rmin and smin to the end of the line
segments – this means to the interval rmin, smin ∈ [0, 1] – and we
have to catch the special case of parallel lines, i. e. ac− b2 = 0.

Actually, we are not really interested in an intersection test of two
capped cylinders but in the movement of two spheres along the line
segments. This allows a further simplification, because we have the
additional constraint that r = s. Applying this to Equation 5.21 gives
us:

D(r) = f+ ar2 + 2br2 + cr2 + 2dr+ 2er (5.23)

and we get:

rmin =
−e− d

a+ 2c+ c
(5.24)
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Figure 5.10: Determining the point of impact for a pair of spheres.

for the points that realize the minimum distance.
For the inner spheres we also have to compute the exact time of im-

pact. Therefore, we have to extend Equation 5.20. Two spheres collide
at a point in time rtoi if the distance between the spheres equals the
sum of their radii (see Figure 5.10):

(rp + rr)
2 = |Lp(r) − Lq(s)|

2 = ((Pt −Qt) + rtoi(mp −mq))
2

r2 = (∆P+ r∆m)2 (5.25)

Solving for rtoi delivers:

rtoi = ±

√
r2 −∆P2

∆m2
+

(
∆P ·∆m
∆m2

)2
−
∆P ·∆m
∆m2

(5.26)

In other words, determining the time of impact for a pair of spheres
requires only a quadratic equation to be solved. If you remember the
continuous triangle intersection test in Section 3.3.4.1, we had to solve
12 costly cubic equations, 3 vertex/face- and 9 edge/edge-tests. This
is the reason for the special suitability of our ISTs for continuous
collision detection.

In Algorithm 5.5 we sketch the complete continuous collision traver-
sal for our ISTs. The algorithm is almost the same as for the volume
and distance queries, we simply have to replace the distance and vol-
ume tests by the continuous sphere tests described above. Obviously,
also this algorithm can be optimized using SIMD acceleration.

5.4 continuous volumetric collision response

In this section, we describe how to use the penetration volume to
compute continuous forces and torques in order to enable a stable
6 DOF haptic rendering or physically based rigid body simulation.
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Algorithm 5.5: computeTimeOfImpact( A, B, timeOfImpact )
input : A, B = spheres in the inner sphere tree
in/out: timeOfImpact = minimum time of impact seen so far
if A and B are leaves then

// end of recursion

timeOfImpact = min{timeOfImpact(A, B), timeOfImpact}
else

// recursion step

forall children a[i] of A do
forall children b[j] of B do

if
distance(a[i](t), a[i](t + 1), b[j](t), b[j](t + 1)) < a[i](r) + b[j](r)
then

computeTimeOfImpact( a[i], b[j], timeOfImpact )

Mainly, there exist three different approaches to resolve collisions: the
penalty-based method, the constraint-based method and the impulse-
based method. The constraint-based approach computes constraint
forces that are designed to cancel any external acceleration that would
result in interpenetrations. Unfortunately, this method has at least
quadratic complexity in the number of contact points. The impulse-
based method resolves contacts between objects by a series of im-
pulses in order to prevent interpenetrations. It is applicable to real-
time simulations but the forces may not be valid for bodies in resting
contact.

So we decided to use the penalty-based method, that computes
penalty forces based on the interpenetration of a pair of objects. The
main advantages are its computational simplicity, which makes it ap-
plicable for haptic rendering and its ability to simulate a variety of
surface characteristics. Moreover, the use of the penetration volume
eliminates inconsistent states that may occur when only a penetration
depth (i. e. a minimum translational vector) is used.

Obviously, the amount of overlap can be directly used to define the
amount of repelling forces. However, in order to apply such penalty
forces in haptic environments or physically-based simulations, also
the direction of the force is required in addition to its amount.

A simple heuristic would be to consider all overlapping pairs of
spheres (Ri,Sj) separately. Let ci, cj be their sphere centers and nij =
ci − cj. Then we compute the overall direction of the penalty force as
the weighted sum n =

∑
i,jVol(Ri ∩ Sj) · nij (see Figure 5.11). Obvi-

ously, this direction is continuous, provided the path of the objects
is continuous. However, this simple heuristic also has its drawbacks:
in case of deep penetrations it is possible that some internal inter-
sections point into the false direction. As a result, the objects will be
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Figure 5.11: The direction of the penalty force can be derived from the
weighted average of all vectors between the centers of colliding
pairs of spheres, weighted by their overlap.
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Figure 5.12: Left: force magnitude (red) and direction of the force vector
(green) during the cow/pig animation. Right: the test scenes. A
cow scraping alongside a pig (upper), two instances of a mon-
ster with complex extremities tangled up (lower).

sucked up into each other. Therefore, it can be necessary to flip some
of the directions nij.

In the following, we will present an extension based on normal
cones for all spheres throughout the hierarchy that can help to iden-
tify these pairs. Moreover, we will show how our ISTs can provide
also continuous torques.

5.4.1 Contact Forces

Algorithm 5.3 and its time-critical derivative return a set of over-
lapping spheres or potentially overlapping spheres, respectively. We
compute a force for each of these pairs of spheres (Ri,Sj) by:

f(Ri) = kcVol(Ri ∩ Sj)n(Ri) (5.27)

where kc is the contact stiffness, Vol(Ri ∩ Sj) is the overlap volume,
and n(Ri) is the contact normal.
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Figure 5.13: Force magnitude (red) and direction (green) in the monster
scene (see Figure 5.12).
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Figure 5.14: Torque magnitude (red) and direction (green) in the monster
scene (see Figure 5.12).
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PR,S

cR

cS

Figure 5.15: Left: we compute a normal cone for each inner sphere. The cone
bounds a list of triangles that is associated with the sphere. Note
that the spread angle of the normal cone can be 0 if the sphere is
closest to a single triangle (e. g. the green sphere). Right: the axis
of the normal cones cR and cS are used for the force direction.
The center PR,S of the spherical cap defines the contact point.

Summing up all pairwise forces gives the total penalty force:

f(R) =
∑

Ri∩Sj 6=∅

f(Ri) (5.28)

In order to compute normals for each pair of spheres, we augment
the construction process of the ISTs: in addition to storing the distance
to the object’s surface, we store a pointer to the triangle that realizes
this minimum distance. While creating the inner spheres by merging
several voxels (see Section 4.2), we accumulate a list of triangles for
every inner sphere. We use the normals of these triangles to compute
normal cones which are defined by an axis and an angle. They tightly
bound the normals of the triangles that are stored in the list of each
inner sphere.

During force computation, the axes of the normal cones cR and
cS are used as the directions of the force since they will bring the
penetrating spheres outside the other object in the direction of the
surface normals (see Figure 5.15). Note that f(Ri) 6= f(Sj). If the cone
angle is too large (i. e. α ≈ π), we simply use the vector between the
two centers of the spheres as in the naive approach.

Obviously, this force is continuous in both cases, because the move-
ment of the axes of the normal cones and also the movement of the
centers of the spheres are continuous, provided the path of the objects
is continuous. See Figures 5.13 and 5.12 for results from our bench-
mark.



5.5 excursus : tetrahedral collision detection 129

Figure 5.16: This image shows the normals for each pair of spheres overlap-
ping each other, computed by our collision response scheme.

5.4.2 Torques

In rigid body simulation, the torque τ is usually computed as τ =

(Pc −Cm)× f, where Pc is the point of collision, Cm is the center of
mass of the object and f is the force acting at Pc. Like in the section
before, we compute the torque separately for each pair (Ri,Sj) of
intersecting inner spheres:

τ(Ri) = (P(Ri,Sj) −Cm)× f(Ri) (5.29)

Again, we accumulate all pairwise torques to get the total torque:

τ(R) =
∑

Ri∩Sj 6=∅

τ(Ri) (5.30)

We define the point of collision P(Ri,Sj) simply as the center of the in-
tersection volume of the two spheres (see Figure 5.15). Obviously, this
point moves continuously if the objects move continuously. In combi-
nation with the continuous forces f(Ri) this results in a continuous
torque.

5.5 excursus : volumetric collision detection with tetra-
hedral packings

To our knowledge, there are no implementations available to compute
the exact penetration volume between two polygonal objects. In order
to still evaluate the quality of our penetration volume approximation,
we had to develop a new algorithm for this task. The algorithm is
based on tetrahedralization of polygonal objects. The main principle
is very similar to the ISTs.
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Figure 5.17: Our tetrahedron intersection method: in the first step, we clip
the triangles of the red tetrahedron against the planes that span
the blue one.

Figure 5.18: Our tetrahedron intersection method: the second step we tetra-
hedralize the resulting polyhedron.

Initially, instead of computing a sphere packing for the object, we
compute a tetrahedralization. Obviously, the non-overlapping tetra-
hedra fill the objects without any gaps. In order to accelerate the
collision queries, we constructed an AABB tree above the tetrahedra.
We used AABB instead of spheres, because they fit tetrahedra much
tighter.

For the queries we use the same traversal algorithm as for the ISTs
(see Algorithm 5.3). We simply replace the computation of the sphere
intersection by a method for tetrahedra intersection. Unfortunately,
there is no closed formular for the intersection volume of two tetra-
hedra.

Therefore, we have developed a new method that is based on poly-
gon clipping: we clip the triangles of one tetrahedron with all span-
ning planes of the other tetrahedron (see Figure 5.17). In a second
step, we tetrahedralize the resulting polyhedron (see Figure 5.18).
The intersection volume can be easily derived from the sum of the
volumes of the new tetrahedra.

This simple method allows us to calculate the intersection volume
exactly. However, the runtime of this approach is not applicable to
real-time collision detection due to bad BV fitting and the costly
tetrahedron-tetrahedron overlap volume calculation. In all our exam-
ple scenes it took more than 2 sec/frame on average.
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5.6 results

We have implemented our new data structure in C++. The testing
environment consists of a PC running Windows XP with an Intel
Pentium IV 3GHz dual core CPU and 2GB of memory.

The benchmark includes hand recorded object paths with distances
ranging from about 0–20% of the objects’ BV size for the proximity
queries. We concentrated on very close configurations, because they
are more interesting in real world scenarios and more challenging
regarding the running-time. The paths for the penetration volume
queries concentrate on light to medium penetrations of about 0–10%
of the objects’ total volumes. This scenario resembles the usage in hap-
tic applications best, because the motive for using collision detection
algorithms is to avoid heavy penetrations. However, we also included
some heavy penetrations of 50% of the objects’ volumes to stress our
algorithm. We included those tests in addition to the results of our
performance benchmarking suite (see Section 6.3) because we used
the coherence techniques described above. Our benchmarking suite
does not support coherence until now.

We used highly detailed objects with a polygon count ranging up
to 370k to test the performance and the quality of our algorithm.2 The
quality of the resulting distances and penetration volumes is closely
related to the quality of the underlying sphere packing. Consequently,
we filled each object in different resolutions in order to evaluate the
trade-off between the number of spheres and the accuracy.

We computed the ground truth data for the proximity queries with
the PQP library. We also included the running time of PQP in our
plots, even if the comparison seems to be somewhat unfair, because
PQP computes exact distances. However, it shows the impressive
speed-up that is achievable when using approximative approaches.
Moreover, it is possible to extend ISTs to support exact distance calcu-
lations, too. In order to compute the ground truth for the penetration
volume, we used our tetrahedral approach described in Section 5.5.

The results of our benchmarking show that our ISTs with the high-
est sphere resolution have an average speed-up of 50 compared to
PQP, while the average error is only 1%. Even in the worst case, they
are suitable for haptic rendering with response rates of less than 2

mesc in the highest resolution (see Figure 5.20). The accuracy can be
further improved by the simple extension described in Section 5.3.1.1.
With the highest sphere count, the error is below floating point accu-
racy with only a negligible longer running time (see Figure 5.21).

Our penetration volume algorithm is able to answer queries at hap-
tic rates between 0.1 msec and 2.5 msec on average, depending on
the sphere resolution, even for very large objects with hundreds of

2 Please visit http://cgvr.informatik.uni-bremen.de/research/ist to watch some
videos of our benchmarks.
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Figure 5.19: Test scenes: Oil pump (330k triangles) and Armadillo (700k tri-
angles)
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Figure 5.20: Oil pump scene: average and maximum time/frame (Left), rel-
ative error compared to accurate distance (Right).

thousands of polygons (see Figures 5.24, 5.26 and 5.27). The average
accuracy using the highest sphere resolution is around 0.5%. How-
ever, in the case of deeper penetrations, it is possible that the traver-
sal algorithm may exceed its time budget for haptic rendering. In
this case, our time-critical traversal guarantees acceptable estimations
of the penetration volume even in worst-case scenarios and multiple
contacts (see Figure 5.28 and 5.29).

The per-frame quality displayed in Figures 5.22 and 5.25 re-empha-
sizes the accuracy of our approach and additionally, shows the conti-
nuity of the distance and the volume.
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Figure 5.21: Armadillo scene: average and maximum time/frame (Left), rel-
ative error compared to accurate distance (Right).
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Figure 5.22: Distance per frame in the oil pump scene.

Figure 5.23: Test scenes: bolt (171k triangles), pig (10k triangles) and screw-
driver(488k triangles)
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Figure 5.24: Bolt scene: average and maximum time/frame (Left), relative
error compared to accurate penetration volume (Right).
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Figure 5.25: Penetration volume per frame in the bolt scene.
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Figure 5.26: Pig scene: average and maximum time/frame (Left), relative er-
ror compared to accurate penetration volume (Right).
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Figure 5.27: Screwdriver scene: average and maximum time/frame (Left),
relative error compared to accurate penetration volume (Right).
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Figure 5.28: Time critical penetration volume computations in the torso
scene (470k triangles). Left: average and maximum query time;
The y axes are labeled differently.
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volume computations in the torso scene
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5.7 conclusions and future work

We have presented a novel hierarchical data structure, the Inner Sphere
Trees. The ISTs support different kinds of collision detection queries,
including proximity queries and penetration volume computations
with one unified algorithm, but also continuous collision detection
queries. Distance and volume queries can be answered at rates of
about 1 kHz (which makes the algorithm suitable for haptic render-
ing) even for very complex objects with several hundreds of thou-
sands of polygons.

For proximity situations, typical average running times are in the
order of 0.05 msec with 500 000 spheres per object and an error of
about 0.5%. In penetration situations, the running times depend, ob-
viously, much more on the intersection volume; here, we are in the
order of around 2.5 msec on average with 237 000 spheres and an er-
ror of about 0.5%. The balance between accuracy and speed can be
defined by the user. Moreover, the speed is independent of the objects’
complexity, because the number of leaves of our hierarchy is mostly
independent of the number of polygons.

For time-critical applications, we describe a variant of our algo-
rithm that stays within the time budget while returning an answer
“as good as possible”.

Our algorithm for distance and volume queries can be integrated
into existing simulation software very easily, because there is only
a single entry point, i. e. the application does not need to know in
advance whether or not a given pair of objects will be penetrating
each other.

The Memory consumption of our inner sphere trees is similar to
other bounding volume hierarchies, depending on the predefined ac-
curacy (in our experiments, it was always in the order of a few MB).
This is very modest compared to voxel-based approaches.

Another big advantage of our penetration volume algorithm, when
utilized for penalty-based simulations, is that it yields continuous di-
rections and magnitudes of the force and the torque, even in cases
of deep penetrations. Moreover, our inner sphere trees are perfectly
suited for SIMD acceleration techniques and allow algorithms to make
heavy use of temporal and spatial coherence.

Last but not least, we have presented a new method for partition-
ing geometric primitives into a hierarchical data structure based on
the Batch Neural Gas clustering. Our approach considers the object’s
volume instead of restricting the partitioning to the surface, like most
other algorithms do. Moreover, we have implemented a fast and sta-
ble parallel version of our hierarchical clustering.
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5.7.1 Future Work

However, our novel approach also opens up several avenues for fu-
ture work, starting with with the partitioning of the geometric prim-
itives: it would be interesting to apply our clustering approach also
to classical outer BVHs. But also for the ISTs there might be some
room for improving the hierarchy. For example, it could be better, es-
pecially at the borders of an object, to minimize the volume of those
parts of hierarchy spheres that are outside of the object, instead of
minimizing their volume.

Another option could be the investigation of inner volumes other
than spheres. This could improve the quality of the volume covering
because spheres do not fit well into some objects, especially if they
have many sharp corners or thin ridges.

Moreover, we would like to explore other uses of inner bounding vol-
ume hierarchies, such as ray tracing or occlusion culling. Note that the
type of bounding volume chosen for the “inner hierarchy” probably
depends on its use.

An interesting question is the analytical determination of exact er-
ror bounds. This could lead to an optimal number of inner spheres
with well-defined errors. Therefore we require an analytical or numer-
ical model for the voids between the spheres. In order to minimize
the error for distance queries, we could also use a combined inner
and outer hierarchy.

On the whole, ISTs are fast enough for haptic refresh rates. How-
ever, there exist configurations, especially in cases of heavy penetra-
tions, where the 1 kHz constraint may not always be met. Therefore,
we presented a time critical version of the volume traversal. Unfortu-
nately, the volumes, and thus the forces and torques, are not guaran-
teed to be continuous. It would be nice to define a traversal algorithm
that is able to compute continues forces for fixed response times. An-
other issue with respect to the forces is a missing theoretical model
that computes frictional forces for a volumetric penetration measure.

5.7.1.1 Quasi-volumetric Penetration Measure for Thin Sheets

A major drawback of our data structure is their restriction to water-
tight objects. This is mainly, because we have to compute a sphere
packing of the objects’ interior. In real word applications, e. g. in vir-
tual prototyping tasks in the automotive industry, thin sheets are
widely modelled as a single polygon layer.

In the future we plan to extend our ISTs also to such open geome-
tries by defining a quasi-volumetric penetration measure for thin or non-
closed objects. The basic idea is very simple. Instead of filling the
object’s interior with spheres, we fill the free space, or at least a cer-
tain region surrounding an object. At the edges we break these sphere
packings into several connected components (see Figure 5.30). During
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Figure 5.30: ISTs for non-closed objects: we fill the space surrounding an ob-
ject and break this sphere packing into several connected com-
ponents.

the traversal we just have to select the correct connected component
to be checked.

This quasi-volumetric penetration measure not only allows to com-
pute volumetric forces and torques for this sheets, but it also avoids
the tunneling effect of other static collision detection approaches.

5.7.1.2 Theoretic Analysis

An other very interesting challenge would be a theoretic analysis of
our new data structure. For polygonal object representations, we get
an upper bound of O(n2) for the number of colliding polygons and
thus, also for the worst case running time of collision detection algo-
rithms.

Until now we could not construct a similar worst case scenario for
sphere packings. Therefore, we assume that the worst case complexity
for the overlap of two sphere packings is in O(n). However, a prove
for that conjecture is still pending.

This prove could have an important impact on the future develop-
ment of our ISTs: for instance, it would probably enable us to design
new parallel algorithms with constant running-time even in the worst
case, using only O(n) processors.

5.7.1.3 Simulation of Fractures

A long time objective is the extension of our ISTs to deformable ob-
jects. Basically, we could use some kind of parallel Sweep-and-Prune
method [Liu et al., 2010a] on the inner sphere level, but also other
methods are possible. However, as a short time objective we plan to
apply our ISTs to the simulation of fractures and the material removal
in milling simulations.
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Here, the volumetric object representation by the sphere packing
has several advantages. For instance, during a milling process we can
directly remove the spheres and use the resulting sphere packing for a
re-triangulation, if spheres are removed completely. In case of a partly
removal of large spheres we can use an implicit hierarchy of the large
sphere to reconstruct the residual object. The implicit hierarchy has to
be computed only once for a single sphere. With an adequate scaling
we can re-use this for all other spheres. Consequently, we can avoid a
time-consuming re-built of the complete hierarchy.

However, these are just a few ideas for further extensions of our
new data structure. We feel certain that there are much more interest-
ing projects in the future.
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∈ O(n logn)

The theoretical complexity of almost all hierarchical collision de-
tection approaches is in the worst case quadratic in the number of
polygons. This is simply true because it is possible to construct artifi-
cial objects like the Chazelle polyhedron (see Figure 1.1) where each
polygon of one object collides with all polygons of an other object
(see Chapter 1). However, in practice, a quadratic running-time of the
collision detection for complex objects consisting of millions of poly-
gons is not an option and no one would use quadratic algorithms
in real-time scenarios. Actually, situations like this do not happen
very often in practical relevant scenarios because most objects behave
much better than the artificial ones. This raises the question: What
makes an object to behave good? And how can we track this goodness
mathematically?

These are exactly the question we will answer in the first part of
this chapter. In detail, we present an new a model to estimate the
expected running time of hierarchical collision detection. We show
that the average running time for the simultaneous traversal of two
binary BVHs depends on two characteristic parameters: the overlap
of the root BVs and the BV diminishing factor within the hierarchies.

143
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With this model we are able to show that the average running time is
in O(n) or even in O(logn) for realistic cases.

However, theoretically "good behaviour" is only one side of the coin.
Today a user can chose between a wide variety of different collision
detection libraries that are all based on different BVHs (see Chapter 2)
and our theoretical observations hold until now only for AABB trees.
Moreover, the asymptotic notation hides a constant factor that could
make the difference between a smooth 30 frames per second real-
time collision detection and unplayable 3 frames per second when
choosing the wrong data structure. Actually, it is extremely difficult
to evaluate and compare collision detection algorithms in practice
because in general they are very sensitive to specific scenarios, i. e. to
the relative size of the two objects, their relative position to each other,
the distance, etc.

The design of a standardized benchmarking suite for collision de-
tection would make fair comparisons between algorithms much eas-
ier. Such a benchmark must be designed with care so that it includes
a broad spectrum of different and interesting contact scenarios. How-
ever, there was no standard benchmarks available to compare differ-
ent algorithms. As a result, it is non-trivial to compare two algorithms
and their implementations.

Therefore, we have developed the first benchmarking suite that al-
lows a systematic comparison of pairwise static collision detection
algorithms for rigid objects that we present in the second section of
this chapter. Our benchmark generates a number of positions and ori-
entations for a predefined distance or penetration depth. We imple-
mented the benchmarking procedure and compared a wide number
of freely available collision detection algorithms.

Usually, collision detection is directly coupled with a collision re-
sponse scheme that resolves collisions between pairs of objects. Hence,
the performance of the collision detection is not the only factor that
a user has to consider when choosing the right algorithm. Different
algorithms provide different kinds of contact information like dis-
tances, penetration depth or penetration volume (see Chapter 2) and
the quality of the simulation directly relies on the quality of the con-
tact information. This quality of the contact information includes the
continuity of the force and torque vectors, but also the amount of
noise in the signal. In the third section of this chapter, we present
a novel methodology that comprises a number of models for cer-
tain collision response scenarios. Our device-independent approach
allows objective predictions for physically-based simulations as well
as 6 DOF haptic rendering scenarios.
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6.1 related work

In Chapter 2 we have already seen that there exists a wide variety of
different collision detection algorithms that makes it hard for a user
to chose the right one for his application. Surprisingly, the literature
about methods that allow a fair comparison between collision detec-
tion algorithms is very sparse. In most publications a certain scenario
that is probably currently available or that makes the freshly pub-
lished algorithm look good is chosen. However, this may result in a
bias and does not guarantee an objective evaluation. In this section
we will give a short recap about other methods that were published
about the objective comparison and the theoretical analysis of colli-
sion detection algorithms.

6.1.1 Theoretical Analysis

In the last few years, some very interesting theoretical results on the
collision detection problem have been proposed. One of the first re-
sults was presented by Dobkin and Kirkpatrick [1985]. They have
shown that the distance of two convex polytopes can be determined
in time O(log2 n), where n = max{|A|, |B|} and |A| and |B| are the
number of faces of object A and B, respectively.

For two general polytopes whose motion is restricted to fixed alge-
braic trajectories, Schömer and Thiel [1995] have shown that there is
an O(n

5
3+ε) algorithm for rotational movements and an o(n2) algo-

rithm for a more flexible motion that still has to be along fixed known
trajectories [Schömer and Thiel, 1996].

Suri et al. [1998] proved that for n convex, well-shaped polytopes
(with respect to aspect ratio and scale factor), all intersections can
be computed in time O((n + k) log2 n), where k is the number of
intersecting object pairs. They have generalized their approach to the
first average-shape results in computational geometry [Zhou and Suri,
1999].

Under mild coherence assumptions, Vemuri et al. [1998] showed
linear expected time complexity for the CD between n convex ob-
jects. They use well-known data structures, namely octrees and heaps,
along with the concept of spatial coherence.

The Lin-Canny algorithm [Lin and Canny, 1991] is based on a
closest-feature criterion and makes use of Voronoi regions. Let n be
the total number of features, the expected run time is between O(

√
n)

and O(n) depending on the shape, if no special initialization is done.
In [Klein and Zachmann, 2003b], an average-case approach for CD

was proposed. However, no analysis of the running time was given.
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6.1.2 Performance Benchmarks

There does not exist much work about special benchmarking suites
for collision detection algorithms. Most authors simply choose some
objects and test them in a not further described way or they restrict
their explorations just to some special scenarios. For instance, Otaduy
and Lin [2003] chose a set of physically based simulations to test their
collision detection algorithms. This scenarios are a torus falling down
a spiral peg, a spoon in a cup, and a soup of numbers in a bowl.

van den Bergen [1998] positioned two models by placing the origin
of each model randomly inside a cube. The probability of an intersec-
tion is tuned by changing the size of the cube. The problem here is
that it is stochastic and that a lot of large and irrelevant distances are
tested.

A first approach for a comprehensive and objective benchmarking
suite was defined by Zachmann [1998]. The code for the benchmark
is freely available. However, it does not guarantee to produce results
with practical relevance because the objects interpenetrate heavily
during the benchmark, but collision detection is mostly used to avoid
interpenetrations. In many simulations objects are allowed to collide
only a little bit and then the collision handling resolves the collision
by backtracking or a spring-damping approach.

Caselli et al. [2002] presented a comparison with the special fo-
cus on motion planing. They used different scenes in their probabilis-
tic motion planner for the benchmark. However, this benchmarking
suite is restricted to a special scenario and it is not of general util-
ity. Govindaraju et al. [2005a] created a benchmark for deformable
objects. Other researchers have focused on benchmarking of physics
engines, of which collision detection is one part. The Physics Abstract
Layer (PAL) [Boeing and Bräunl, 2007] provides a unified and solid in-
terface to physics engines. Using PAL, a set of benchmarks has been
constructed. The collision detection benchmark simulates sixty-four
spheres falling into an inverted square pyramid. The downside of
this benchmark is that it is a very special scenario.

6.1.3 Quality Benchmarks

Actually, the literature about the quality of forces and torques in sim-
ulated environments is even sparser than that of collision detection
benchmarks. Usually, a video or some pictures are presented that
should prove the visual quality of the presented algorithms. Most
related work is provided by the haptics community. Cao [2006] pre-
sented a framework for benchmarking haptic systems. This frame-
work emulates a haptic device to which benchmarks can be attached.
This benchmark simulates a point-based haptic device with only 3

DOF. Another problem is that it is unsuitable for benchmarking of
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non-haptic algorithm behaviour. Ruffaldi et al. [2006] proposed a se-
ries of “ground truth” data sets for haptic rendering. These data can
be used to assess the accuracy of a particular haptic rendering sys-
tem, but this benchmark only approximates a single point of contact.
Unger et al. [2001] presented a user study where they compared the
forces during a 3D peg-in-hole task in real and virtual. However, to
our knowledge there is no benchmark available that uses an analyti-
cal model to compute the ground truth data for a fair comparison of
different penetration measures.

6.2 theoretical analysis

Bounding volume hierarchies have proven to be a very efficient data
structure for collision detection.

The idea of BVHs is to partition the set of object primitives (e. g. poly-
gons or points) recursively until some leaf criterion is met. In most
cases each leaf contains a single primitive, but the partitioning can
also be stopped when a node contains less than a fixed number of
primitives. Each node in the hierarchy is associated with a subset of
the primitives and a BV that encloses this subset.

Given two BVHs, one for each object, virtually all collision detec-
tion approaches traverse the hierarchies simultaneously by an algo-
rithm similar to Algorithm 6.1. It conceptually traverses a bounding
volume test tree (see Figure 2.4 in Chapter 2) until all overlapping
pairs of BVs have been visited. It allows to quickly “zoom in” to ar-
eas of close proximity and stops if an intersection is found or if the
traversal has visited all relevant sub-trees. Most differences between
hierarchical CD algorithms lie in the type of BV, the overlap test and
the algorithm for constructing the BVH.

There are two conflicting constraints for choosing an appropriate
BV. On the one hand, a BV-BV overlap test during the traversal should
be done as fast as possible. On the other hand, BVs should enclose
their subset of primitives as tight as possible so as to minimize the
number of false positives with the BV-BV overlap tests. As a con-
sequence, a wealth of BV types has been explored in the past (see
Chapter 2).

Algorithm 6.1: traverse(A,B)

if A and B do not overlap then
return

if A and B are leaves then
return intersection of primitives enclosed by A and B

else
forall children Ai and Bj do

traverse(Ai,Bj)
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In order to capture the characteristics of different approaches and
to estimate the time required for a collision query, we have to remem-
ber the cost function Equation 2.2 that we have introduced in Chapter
2:

T = NvCv +NpCp +NuCu with (6.1)

T = Total cost of testing a pair of models for intersection

Nv = Number of BV Tests

Cv = Cost of a BV Test

Np = Number of Primitive Tests

Cp = Cost of a Primitive Test

Nu = Number of BV Updates

Cu = Cost of a BV Update

An example of a BV update is the transformation of the BV into a
different coordinate system. During a simultaneous traversal of two
BVHs, the same BVs might be visited multiple times. However, if the
BV updates are not saved, then Nv = Nu.

In practice, Nv, the number of overlap tests usually dominates the
running time, i. e. T(n) ∼ Nv(n), because Np = 1

2Nv in a binary tree
and Nu 6 Nv. While it is obvious that Nv = n2 in the worst case, it
has long been noticed that in most practical cases this number seems
to be linear or even sub-linear.

Until now, there is no rigorous average-case analysis for the running-
time of simultaneous BVH traversals. Therefore, we present a model
with which one can estimate the average number Nv, i. e. the number
of overlap tests in the average case. In this work, we restrict ourselves
to AABB trees (axis-aligned bounding box trees) which allows us to
estimate the probability of an overlap of a pair of bounding boxes by
simple geometric reasoning.

6.2.1 Analyzing Simultaneous Hierarchy Traversals

In this section, we will derive a model that allows to estimate the
number Nv, the number of BV overlap tests. This is equivalent to the
number of nodes in the BVTT (remember Figure 2.4 in Chapter 2)
that are visited during the traversal. The order and, thus, the exact
traversal algorithm are irrelevant.

For the most part of this section, we will deal with 2-dimensional
BVHs for sake of illustration. At the end, we extend these considera-
tions to 3D which is fairly trivial.

The general approach of our analysis is as follows. For a given level
l of the BVTT we estimate the probability of an overlap by recursively
resolving it to similar probabilities on higher levels. This yields a
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product of conditional probabilities. Then we estimate the conditional
probabilities by geometric reasoning.

Let Ñ(l)
v be the expected number of nodes in the BVTT that are

visited on level l. Clearly,

Ñ
(l)
v = 4l · P[A(l) ∩B(l) 6= ∅ ] (6.2)

where P[A(l) ∩ B(l) 6= ∅ ] denotes the probability that any pair of
boxes on level l overlaps. In order to render the text more readable,
we will omit the “ 6= ∅“ part and just write P[A(l) ∩B(l) ] henceforth.

Let Xl denote the number of nodes we visit on level l in the BVTT.
Overall, the expected total number of nodes we visit in the BVTT is

Ñv(n) =

d∑
l=1

Ñ
(l)
v =

d∑
l=1

4lP[A(l) ∩B(l) ] (6.3)
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where d = log4(n
2) = lg(n) is the depth of the BVTT (equalling the

depth of the BVHs).
In order to derive a closed-form solution for P[A(l)∩B(l) ] we recall

the general equations for conditional probabilities:

P[X∧ Y ] = P[Y] · P[X |Y ] (6.4)

and, in particular, if X ⊆ Y
P[X] = P[Y] · P[X |Y ] (6.5)

where X and Y are arbitrary events (i. e. subsets) in the probability
space.

Let o(l)x denote the overlap of a given pair of bounding boxes when
projected on the x-axis, which we call the x-overlap. Then,

P[A(l) ∩B(l) ] = P[A(l) ∩B(l) | A(l−1) ∩B(l−1) ∧ o
(l)
x > 0 ]

· P[A(l−1) ∩ B(l−1) ∧ o
(l)
x > 0 ]

by Eq. 6.5, and then, by Eq. 6.4,

P[A(l) ∩B(l) ] = P[A(l) ∩B(l) | A(l−1) ∩B(l−1) ∧ o
(l)
x > 0 ]

· P[A(l−1) ∩B(l−1) ]

· P[o(l)x > 0 | A(l−1) ∩ B(l−1) ]

Now we can recursively resolve P[A(l−1) ∩B(l−1) ], which yields

P[A(l) ∩B(l) ] =

l∏
i=1

P[A(i) ∩B(i) | A(i−1) ∩B(i−1) ∧ o
(i)
x > 0 ] ·

l∏
i=1

P[o
(i)
x > 0 | A(i−1) ∩ B(i−1) ] (6.6)

6.2.1.1 Preliminaries

Before proceeding with the derivation of our estimation, we will set
forth some denotations and assumptions.

Let A := A(l) and B := B(l). In the following, we will, at least
temporarily, need to distinguish several cases when computing the
probabilities from Equation 6.6, so we will denote the two child boxes
of A and B by A1,A2 and B1,B2, respectively.

For sake of simplification, we assume that the child boxes of each
BV sit in opposite corners within their respective parent boxes. Ac-
cording to our experience, this is a very mild assumption.

Furthermore, without loss of generality, we assume an arrangement
of A, B, and their children according to Figure 6.1, so that A1 and B1
overlap before A2 and B1 do (if at all).
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Finally, we assume that there is a constant BV diminishing factor
throughout the hierarchy, i.e.,

a ′x = αxax, a ′y = αyay, etc.

Only for sake of clarity, we assume that the scale of the boxes is
about the same, i. e.,

bx = ax, b ′x = a ′x, etc.

This assumption allows us some nice simplifications in Equations 6.7
and 6.11, but it is not necessary at all.

6.2.2 Probability of Box Overlap

In this section we will derive the probability that a given pair of child
boxes overlaps under the condition that their parent boxes overlap.

Since we need to distinguish, for the moment, between 4 different
cases, we define a shorthand for the four associated probabilities:

pij := P[Ai ∩Bj | A∩B∧ ox > 0]

One of the parameters of our probability function is the distance
o
(0)
x := δ, by which the root box B(0) penetrates A(0) along the x axis

from the right. Our analysis considers all arrangements as depicted
in Figure 6.1, where δ is fixed, but B is free to move vertically under
the condition that A and B overlap.

First, let us consider p11 (see Figure 6.2). By precondition, A over-
laps B, so the point P (defined as the upper left (common) corner of
B and B1) must be on a certain vertical segment L that has the same
x coordinate as the point P. Its length is ay + by.

Actually, P can be chosen arbitrarily under the condition that stays
fixed on B as B assumes all possible positions. L would be shifted
accordingly, but its length would be the same.

Note that for sake of illustration, segment L has been shifted slightly
to the right from its true position in Figure 6.2 (left). If in addition A1
and B1 overlap, then P must be on segment L ′.

Thus,

p11 =
Length(L ′)
Length(L)

=
a ′y + b

′
y

ay + by
= αy. (6.7)

Next, let us consider p21 (see Figure 6.2 (right); for sake of clarity,
we re-use some symbols, such as a ′x). For the moment, let us assume
o21,x > 0; in Section 6.2.2.1 we estimate the likelihood of that condi-
tion.

Analogously as above, P must be anywhere on segment L ′, so

p21 = αy = p11

and, by symmetry, p12 = p21. Very similarly, we get p22 = αy.
At this point we have shown that pij ≡ αy in our model.
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αx ·αy T(n)

< 1/4 O
(
1
)

1/4 O
(

lgn
)√

1/8 ≈ 0.35 O
(√
n
)

3/4 O
(
n1.58

)
1 O

(
n2
)

Table 6.1: Effect of the BV diminishing factor αy on the running time of a
simultaneous hierarchy traversal.

6.2.2.1 Probability of X-Overlap

We can trivially bound

P[o
(i)
x > 0 | A(i−1) ∩B(i−1) ] 6 1

Plugging this into Equation 6.3, and substituting that in Equation 6.6
yields

Ñv(n) 6
d∑
l=1

4l ·αly =
(4αy)

d+1 − 1

4αy − 1
(4αy 6= 1)

∈ O
(
(4αy)

d
)
= O

(
nlg(4αy)

)
. (6.8)

The corresponding running time for different αy can be found in
Table 6.1. For αy > 1/4, the running time is in O

(
nc
)
, 0 < c 6 2.

In order to derive a better estimate for P[o(l)x > 0 | A(l−1) ∩B(l−1) ],
we observe that the geometric reasoning is exactly the same as in
the previous section, except that we now consider all possible loci of
point P when A and B are moved only along the x-axis. Therefore, we
estimate

P[o
(l)
x > 0 | A(l−1) ∩B(l−1) ] ≈ αx. (6.9)

Plugging this into Equations 6.3 and 6.6 yields an overall estimate

Ñv(n) 6
d∑
l=1

4l ·αlx ·αly ∈ O
(
nlg(4αxαy)

)
. (6.10)

This results in a table very similar to Table 6.1.

6.2.2.2 The 3D Case

As mentioned above, our considerations can be extended easily to
3D. In 3D, L and L ′ in Equation 6.7 are not line segments any longer,
but 2D rectangles in 3D lying in the y/z plane. The area of L ′ can be
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determined by (a ′y+b
′
y)(a

′
z+b

′
z) and the area of L by (ay+by)(az+

bz). Thus,

p11 =
area(L ′)
area(L)

=
(a ′y + b

′
y)(a

′
z + b

′
z)

(ay + by)(az + bz)
=
4a ′ya

′
z

4ayaz
= αyαz. (6.11)

The other probabilities pij can be determined analogously as above
so that p11 = p12 = p21 = p22 = αyαz.

Overall, we can estimate the number of BV overlap tests by

Ñv(n) 6
d∑
l=1

4l ·αlx ·αly ·αlz ∈ O
(
nlg(4αxαyαz)

)
. (6.12)

where d = log4(n
2) = lg(n).

Note that Table 6.1 is still valid in the 3D case.
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Figure 6.5: Some models of our test suite: Infinity Triant
(www.3dbarrel.com), lock (courtesy by BMW) and pipes.
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Figure 6.6: The number of visited BVTT nodes for models shown in Fig. 6.5
at distance δ = 0.4.

6.2.3 Experimental Support

Intuitively, not only α should be a parameter of the model of the
probabilities (see Equations 6.7 and 6.9), but also the amount of pene-
tration of the root boxes. This is not captured by our model, so in this
section we present some experiments that provide a better feeling of
how these two parameters affect the expected number of BV overlap
tests.

We have implemented a version of Algorithm 6.1 using AABBs as
BVs (in 3D, of course). As we are only interested in the number of
visited nodes in the BVTT, we switched off the intersection tests at
the leaf nodes.

For the first experiment we used a set of CAD objects, each of them
with varying numbers of polygons (see Figure 6.5). Figure 6.6 shows
the number of BV overlap tests for our models depending on their
complexities for a fixed distance δ = 0.4. Clearly, the average number
of BV overlap tests behaves logarithmically for all our models.

For our second experiment we used artificial BVHs where we can
adjust the BV diminishing factors αx,y,z. As above, the child BVs of
each BV are placed in opposite corners. In addition, we varied the
root BV penetration depth δ.
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Figure 6.7: For larger values of α, our theoretical model seems to match the
experimental findings fairly well. In this Plot α = 0.8
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Figure 6.8: Same as Plot 6.7 but with α = 0.9.

We plotted the results for different choices of α and n, averaged
over the range 0.0–0.9 for δ (see Figures 6.7 and 6.8). For larger α’s,
this seems to match our theoretical results. For smaller α our model
seems to underestimate the number of overlapping BVs. However, it
seems that the asymptotic running-time does not depend very much
on the amount of overlap of the root BVs, δ (see Figures 6.12 and
6.12).

6.2.4 Application to Time-Critical Collision Detection

As observed in [Klein and Zachmann, 2003b], almost all CD app-
roaches use some variant of Algorithm 6.1, but often, there is no
special order defined for the traversal of the hierarchy, which can
be exploited to implement time-critical computing.

Our probability model suggests one way how to prioritize the traver-
sal; for a given BVH, we can measure the average BV diminishing
factor for each sub-tree and store this with the nodes. Then, during
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Figure 6.10: Same as Plot 6.9 with α = 0.7

running-time, a good heuristic could be to traverse the sub-trees with
lower α-values first, because in these sub-trees the expected number
of BV pairs we have to check is asymptotically smaller than in the
other sub-trees.

In addition, we could tabulate the plots in the Figures 6.12 and 6.13

(or fit a function) and thus compute a better expected number of BV
overlaps during running-time of time-critical collision detection.

6.3 performance benchmark

The theoretic analysis in the previous chapter provides an estimation
for the number of possible bounding volume checks during a simul-
taneous BVH traversal. However, the analysis is, until now, restricted
to AABB hierarchies. Moreover, it delivers an estimation only for the
number of bounding volumes to be tested, this means for Nv in the
collision detection cost function (see Equation 6.1). A complete theo-
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Figure 6.11: Same as Plot 6.9 with α = 0.8
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retical analysis of different collision detection approaches should also
include the other factors, like the cost a BV check (Cv), the cost for a
BV update (Cu) and of course, the number and the cost of the prim-
itive tests (Np and Cp). Especially the latter depends mainly on the
distinctive object. For instance, spheres as bounding volumes can be
checked very fast for overlap, but they fit flat objects very poorly. In
practice this results in a large number of BV tests (a large Nv), but
each test is very cheap, i. e. Cv is small. Moreover, due to the bad
object fitting, Np is very large compared to probably better fitting
AABBs. Hence, in this example there is a direct connection between
the number of BV tests, the number of primitive tests and the shape
of the object. A closed formular to to solve the cost function 6.1 is not
even known for AABBs, not to speak about a solution for all available
BVHs and all objects.

Consequently, the theoretical analysis is good to guarantee lower
bounds on the asymptotic running-time of collision detection algo-
rithms and it may help to improve the quality of time-critical traver-
sal algorithms or to create better BVHs, but it is not very helpful
when comparing real implementations of different collision detection
schemes. However, in most applications that require collision detec-
tion, this collision detection is the computational bottleneck. And in
order to gain a maximum speed of applications, it is essential to select
the best suited algorithm.

Unfortunately, it is, not only in theory, but also in practice, ex-
tremely difficult to compare collision detection algorithms because in
general they are very sensitive to specific scenarios, like the shape or
the size of the object, the relative position or orientation to each other,
etc. Moreover, different collision detection methods provide different
kinds of contact information, e. g. the minimum distance or the pene-
tration depth.

Only a standardized benchmarking suite can guarantee a fair com-
parisons between different algorithms. Such a benchmarking suite
should include a broad spectrum of different and interesting contact
scenarios for different kinds of contact information and a represen-
tative set of different objects that do not prefer a special collision
detection method in advance.

In this section, we present such a benchmarking suite for static
pairwise collision detection between rigid objects. It has been kept
very simple so that other researchers can easily reproduce the results
and compare their algorithms.

The user only has to specify a small number of parameters. Namely,
the objects he wants to test, the number of sample points, and finally,
a set of distances or penetration depth. Our algorithm then generates
the required number of test positions and orientations by placing the
object in the given contact scenario.
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Our benchmarking suite is flexible, robust and it is easy to inte-
grate other collision detection libraries. Moreover, the benchmarking
suite is freely available and could be downloaded together with a set
of objects in different resolutions that cover a wide range of possible
scenarios for collision detection algorithms, and a set of precomputed
test points for these objects 1. Our benchmarking suite has been al-
ready adopted successfully by other researches (see e. g. Ernst et al.
[2008] and Ruffaldi et al. [2008]).

6.3.1 Benchmarking Scenarios

A main distinction factor of collision detection methods is the kind of
contact information that they provide. As already seen in Chapter 2),
this information may be the minimum distance between a pair of ob-
jects, a penetration depth or a simple boolean answer whether the
objects do collide or not. Actually, most freely available collision de-
tection libraries report only latter information. Usually, these boolean
algorithms stop the traversal when they find the first pair of inter-
secting polygons. However, this is exactly the point of time when the
work of algorithms that additionally compute a penetration depth ac-
tually starts. Therefore, we introduce two different scenarios in order
to guarantee a fair comparison:

• Scenario I: Most boolean collision detection methods are based
on bounding volume hierarchies. If the bounding volumes of
two objects do not intersect, there is no collision and they can be
rejected very quickly. If two objects overlap, the recursive traver-
sal during the collision check should quickly converge towards
the colliding polygon pairs. The worst case for these algorithms
is a configuration where a lot of BVs overlaps, possibly down to
the leaves, but the polygons do not intersect.

Consequently, in this scenario we want to construct configura-
tions where the objects are in close proximity, but do not over-
lap.

• Scenario II was designed to compare also collision detection
schemes that additionally compute a measure for the penetra-
tion depth. Their running time usually increases with an in-
creasing amount of intersection between the objects. In order to
compare also this class of algorithms, we compute intersecting
object configurations with respect to the amount of overlap.

A configuration denotes the relative position and orientation be-
tween two objects. For rigid objects, such a configuration can be de-
scribed by six parameters (see Figure 6.14): the transformation of ob-
ject B in the coordinate system of object A, defined by the distance d

1 http://cgvr.informatik.uni-bremen.de/research/colldet_benchmark/

http://cgvr.informatik.uni-bremen.de/research/colldet_benchmark/
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Figure 6.14: The relative position and orientation between two rigid objects
can be defined by six parameters.

and the polar coordinates ϕA and θA and the orientation of object B,
defined by the angles ϕB, θB, ψB.

Since we cannot foresee the application of a given collision detec-
tion algorithm, the relative positions and orientations are more or
less random from a statistical point of view. Therefore, it seems rea-
sonable to factor these parameters out. We achieve this for Scenario I
by testing as many configurations as possible for a set of pre-defined
distances. For Scenario II, we fix the amount of intersection between
the objects. We chose to use the intersection volume as measure for
the penetration depth.

Hence, the main challenge of our benchmark is to compute a large
set of configurations for a pair of objects and a pre-defined distance or
penetration volume, respectively. In the next section, we will describe
two methods to achieve these sets of configurations. The basic ideas
of those methods can be used for both scenarios.

6.3.2 Computation of Configurations

Without loss of generality, it is sufficient to rotate only one of the
objects in order to get all possible configurations, because we can
simply transform one of the objects into the coordinate system of
the other. This does not change the relative position of the objects.
Therefore, our search space has basically six dimensions.

However, it is impossible to test a continuous 6D search space of
configurations, therefore, we have to reduce it by sampling. In order
to find a large number of sampling points, we propose two different
methods in our benchmarking suite. We call them the sphere method
and the grid method. The sphere method is faster, but it could miss
some interesting configurations; conversely, the grid method is more
accurate but much slower. Both methods start with a fixed rotation.
After a cycle of method-specific translations, the moving object is ro-
tated and the next cycle can start until a user specified number of
rotations is reached.
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Figure 6.15: Our sphere-method uses a fixed rotation for every cycle. The
moving object is rotated around the fixed object. After a cycle is
finished, the rotation is changed.

6.3.2.1 The Grid Method

The first method uses a simple axis-aligned grid to find the transla-
tions. The center of the moving object is moved to the center of all
cells. For each of these, the object is moved towards the fixed object
until the required distance or penetration depth is reached. Then, the
configuration is stored. Unfortunately, it is not possible to know the
number of configurations found by this method in advance.

6.3.2.2 The Sphere Method

The main idea of this method is to reduce the time for finding pos-
sible configurations. To this end, the 3D search space is reduced to
two dimensions by using polar coordinates. Nevertheless, it might
happen to miss some interesting configurations. Within this method,
we place the moving object on a sphere around the fixed object. The
sphere should be bigger than the required distance. In the next step,
we move the object towards the fixed object on a straight line through
the center of the sphere until we reach the required distance or pene-
tration depth, respectively. Because there could be several points that
match the required distance or penetration depth on the straight line,
it is possible to miss some configurations (see Figure 6.16). In addi-
tion to the higher speed of this method, it is possible to define the
number of located configurations in advance, because every straight
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(a) (b)

Figure 6.16: The sphere method will find only configuration (a) for the red
and the green objects, but it will miss configuration (b).

line leads to exactly one configuration in case of the distance (see
Figure 6.15).

At the end of this procedure, we have got a large number of con-
figurations for a user specified number of object-object-distances or
penetration depth. This has to be done only once as preprocessing
step, even if we add another collision detection library to the set later,
or if we move to other platforms.

However, there is still the question, how to compute the required
distances and penetration depth during the search space sampling.
In the next two sections, we describe two different method for each
scenario:

6.3.2.3 Distance Computation

One method to determine the distance between two objects is to use
the (boolean) collision detection algorithms themselves. We can build
an offset object from the fixed object where the offset equals the spec-
ified distance. Then, we can conduct a binary search until we find a
point where the moving object is just touching the offset object. How-
ever, offset objects can get very complicated for complex objects.

That is why we propose another method: the PQP-library [Gott-
schalk et al., 1996; Larsen et al., 1999] offers the possibility to com-
pute the distance between two objects by using swept spheres. With
a given distance, we can also do a binary search until we find a point
which matches the specified distance.

However, distance computing is more complicated than collision
detection. Thus, this method is more time consuming. On the other
hand, it is more accurate and less memory intensive than the offset
object method. Therefore, we prefer this method for our benchmark.
Another advantage of this method is that we know the exact distance
between the objects during the binary search. We can use this infor-
mation to delete cells in the grid method with a higher distance than
the specified one. This accelerates the search for configurations.

Indeed, our benchmarking suite supports both methods for dis-
tance computing, because PQP is not Open Source software and,
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therefore, it is not possible to deliver it directly with our benchmark-
ing suite.

6.3.2.4 Penetration Volume Computation

Computing the penetration volume can be basically performed by
using the same methods as for the distance computations. However,
constructing an internal offset object is more complicated than the
computation of an external offset object. Therefore, we prefer the bi-
nary search method using an algorithms that compute the penetra-
tion volume instead of the distance. The tetrahedron-based approach
described in Section 5.5 can achieve an exact measure for the pene-
tration volume. However, it is relatively slow. Hence, we additionally
included the option to approximate the penetration volume by using
our Inner Sphere Trees (see Section 5).

6.3.3 Benchmarking Procedure

The time-consuming part has been done in the previous step. To per-
form the benchmark, we just load the set of configurations for one
object. For each object-object distance and intersection volume, re-
spectively, we start the timing, set the transformation matrix of the
moving object to all the configurations associated with that distance
and perform a collision test for each of them. After that, we get a max-
imum and an average collision detection time for the given distance
or intersection volume, respectively.

6.3.4 Implementation

Besides the distance or the penetration depth between the objects and
their configuration, the performance of collision detection libraries
mainly depends on the complexity and the shape of the objects. We
used 86 different objects in several resolutions in order to cover a
wide range of use cases. All of the objects are in the public domain
and can be accessed on our website. In particular, we used models of
the Apollo 13 capsule and the Eagle space transporter, because they
are almost convex but have a lot of small details on the surface. To
test the performance of collision detection libraries on concave objects
we chose models of a helicopter, a lustre, a chair, an ATST-walker and
a set of pipes. Moreover, we used a laurel wreath to test intricate
geometries. A buddha model, a model of the Deep Space 9 space
station, a dragon, and the Stanford Bunny were tested as examples
of very large geometries. A model of a castle consists of very small,
but also very large triangles. We used it to test the performance at
unequal geometries. Accurate models of a Ferrari, a Cobra, and a
door lock represent typical complex objects for industrial simulations.
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Additionally, synthetic models of a sphere, a grid, a sponge, and a
torus are included. Figures 6.18, 6.19 and 6.20 show only some of
these objects.

We also provide a set of pre-computed configurations. Therefore,
we sampled the configuration space for each object and each object’s
resolution separately. For sake of simplicity, we tested a model against
a copy of itself.

• Scenario I: We chose a step size of 15◦ for the spherical coordi-
nates and a step size of 15◦ per axis for the rotations of object B.
With these values, we generated a set of 1 991 808 sample con-
figurations for each distance.

We computed sample configurations for distances from 0 up to
30% of the object size in 1% steps, because in all example cases,
there was no significant time spent on collision detection for
larger distances. To compute the configuration of two objects
with the exact distance we used PQP.

• Scenario II: We used the approximative IST bounding volumes to
compute the configurations, because the exact tetrahedral algo-
rithm is some orders of magnitude slower. Although ISTs com-
pute intersection volumes very quickly, we still had to reduce
the sampling of the configuration space. Therefore, we changed
the step size per axis to 30◦. We computed sample configura-
tions for intersection volumes from 0 up to 10% of the total
fixed object volume in 1% steps. With these values we gener-
ated a set of 268 128 sample configurations for each intersection
volume. Because most applications of collision detection will try
to avoid large intersections, a penetration volume of 10% should
be sufficient as you can see in Figure 6.17.

One problem that arises with the configuration computation con-
cerns numerical stability. Because we are forced to floating point ac-
curacy, it is not possible to find configurations with an exact distance
while doing binary search. On account of this, we use an accuracy of
0.001% relative to the size of the fixed object in our benchmark. Of
course, this accuracy can be changed by the user.

However, computing this large amount of configurations requires
a lot of computational power or time. In order to accelerate the con-
figuration computation, we used a PC cluster with 25 cluster nodes,
each with 4 Intel Xeon CPUs and 16 GB of RAM. The time needed to
calculate configurations for a complete set of distances or intersection
volumes varies from object to object between 10 h and 200 h. Over-
all, it we required 5 600 CPU days to compute all configurations for
each 86 objects. All these configurations, as well as the objects and
our benchmarking suite can be downloaded from our web site2.

2 http://cgvr.informatik.uni-bremen.de/research/colldet_benchmark/

http://cgvr.informatik.uni-bremen.de/research/colldet_benchmark/
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Figure 6.17: The "happy buddha" scene with a total amount of 10% intersec-
tion volume. The objects are in heavy interpenetration; a config-
uration that usually should not happen in practically relevant
scenarios.

Moreover, it is easy to include also other objects: the user simply
has to specify the pair of objects he wants to test, the size of the grid,
if he wants to use the grid-method or a step size for the spherical
coordinates of the sphere-method. Moreover, a step size for the rota-
tion of the moving object must be defined and finally, a distance or
a penetration depth. Then, our benchmark automatically generates a
set of sample points for these specified parameters.

In a second run, our benchmark contains a script that tests all avail-
able algorithms. It measures the times with an accuracy of 1 msec.
Moreover, our benchmarking suite also offers scripts for the auto-
matic generation of diagrams to plot the results of the benchmark.

Most collision detection libraries use proprietary internal data struc-
tures for data representation. Therefore, it is not possible to pass all
kinds of objects directly to the algorithms. We chose OpenSG, a freely
available scenegraph system for object management, because it offers
support for many file formats, it is portable to many operating sys-
tems and, its data structures are well documented and easy to use.
We wrote a wrapper for different collision detection libraries in order
to convert the OpenSG data to the specific required data structures of
the collision detection libraries. During initialization, our benchmark
simply checks if the dynamically linked libraries are available and, if
so, loads them.

We tested a wide variety of freely available collision detection li-
braries.
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Figure 6.18: Some of the objects we used to test the collision detection li-
braries: a model of a castle, a helicopter and a laurel wreath

6.3.4.1 Collision Detection Libraries for Scenario I

Most freely available collision detection libraries support only boolean
collision queries. Our benchmark provides wrappers for the follow-
ing libraries:

• V-Collide: V-Collide, proposed by Hudson et al. [1997], is a wrap-
per with a simple interface for I-Collide and the RAPID library.
In a first step, a sweep-and-prune algorithm is used to detect
potentially overlapping pairs of objects. In a second step, the
RAPID library is used for the exact pairwise test between a pair
of objects. It uses an oriented bounding box test to find possibly
colliding pairs of triangles.

• PQP: PQP [Gottschalk et al., 1996; Larsen et al., 1999] is also
based on the RAPID library. As with RAPID, PQP uses oriented
bounding boxes. Furthermore, PQP is also able to compute the
distance between the closest pair of points. For distance and tol-
erance queries, a different BV type, the so-called swept spheres,
is used.

• FreeSolid: FreeSolid, developed by Van den Bergen [1999], uses
axis-aligned bounding boxes for collision detection. For a fast
collision test between the AABB hierarchies, the acceleration
scheme described by van den Bergen [1998] is used. FreeSolid
can also handle deformations of the geometry.

• Opcode: Opcode, introduced by Terdiman [2001], is a collision
detection library for pairwise collision tests. It uses AABB hier-
archies with a special focus on memory optimization. Therefore,
it uses so-called no-leaf, i. e. BVHs of which the leaf nodes have
been removed. For additionally acceleration it uses primitive-
BV overlap tests during recursive traversal, whereas all other
libraries described in this section only use primitive-primitive-
tests and BV-BV-tests. Like Freesolid, Opcode also supports de-
formable meshes.

• BoxTree: The BoxTree, described by Zachmann [1995], is a mem-
ory optimized version of the AABB trees. Instead of storing 6
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values for the extents of the boxes, only two splitting planes are
stored. For the acceleration of n-body simulations, the libraries
offers support for a grid.

• Dop-Tree: The Dop-Tree [Zachmann, 1998] uses discrete oriented
polytopes (where k is the number of orientations) as BVs. k-
DOPs are a generalization of axis aligned bounding boxes. The
library supports different numbers of orientations. The author
mentioned that k = 24 guarantees the highest performance.
Therefore, we also chose this number for our measurements.
The set of orientations is fixed. This library also supports n-
body simulation via grids.

6.3.4.2 Collision Detection Libraries for Scenario II

The number of freely available libraries that also support the com-
putation of the penetration depth is sparse. Moreover, we can not
include penetration depth algorithms that are based on conservative
advancement (see Section 2.3.3), because these algorithms require not
only the recent configuration, but also the previous configuration of
the objects. Finally, we included only two algorithms that behave very
differently for our second scenario:

• Voxmap-Pointshell Algorithm: We use an implementation of the
Voxmap-Pointshell algorithm (VPS) that was provided by the
Deutsches Zentrum für Luft- und Raumfahrt (DLR) [Sagardia
et al., 2008]. VPS uses different data structures for moving and
stationary objects. Fixed objects are represented by a uniform
voxel grid where each voxel stores a discrete distance value.
Moving objects are represented as pointshells. Pointshells are
sets of points uniformly distributed on the surface of the object.
Section 2.4.1.2 shows an example of a voxmap and a pointshell.
In our quality benchmark (see Section 6.4.5.1) we will addition-
ally explain how these data structures can be used to compute
an appropriate collision response.

• Inner Sphere Trees: The second algorithm are the Inner Sphere
Trees that we introduced extensively in Chapter 5. As men-
tioned before, it computes an approximation of the penetration
volume.

6.3.5 Results

We used the pre-computed configurations described in Section 6.3.4
to benchmark the aforementioned algorithms. We tested Scenario I
and Scenario II separately because a comparison of algorithms pro-
viding different kinds contact information can not be fair.
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Figure 6.19: Some more of the test objects: a model of the Apollo 13 capsule,
a set of pipes and a lustre.

Figure 6.20: Even more objects we used in the performance benchmark: a
chinese dragon, a circular box and a gargoyle
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Figure 6.21: The results of the benchmark for the castle scenario in reso-
lutions with 127 131 vertices. The x-axis denotes the relative
distance between the objects, where 1.0 is the size of the ob-
ject. Distance 0.0 means that the objects are almost touch-
ing but do not collide. The abbreviations for the libraries are
as follows: bx=BoxTree, do=Dop-Tree, pqp=PQP, vc=V-Collide,
op=Opcode, so=FreeSOLID. The AABB-based algorithms per-
form best in this kind of scenarios.
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Figure 6.22: The results of the benchmark for the grid scene with 414 720

vertices. The notation is the same as in Figure 6.21

6.3.5.1 Results for Scenario I

We tested the boolean collision detection libraries on a Pentium D
CPU with 3 GHz and 1 GB of DDR2-RAM running Linux. All source
code was compiled with gcc 4.0.2 with optimization -O3 except Op-
code. This is, because Opcode was originally designed for Windows
and uses some non-C++-standard code that produces run-time errors
when compiled with optimization -O2 or above. Moreover, the Linux-
version of Opcode produces some false-positive messages when the
objects are very close together. Therefore, the results of Opcode are
not directly comparable to the results of the other libraries. Moreover,
we used the boolean version of PQP, that does not compute distances,
during the test.

The first reasonable finding of our measurements is that those al-
gorithms which use the same kind of BVH behave very similar. Our
second finding is that all algorithms have their special strength and
weakness in different scenarios. For instance, the AABB-based algo-
rithms like FreeSOLID, Opcode and the BoxTree are very well suited
for regular meshes like the grid or the lustre but also for meshes with
very varying triangle sizes, like the castle (see Figures 6.21 and 6.22).
In these cases, they were up to four times faster than the OBB-based
libraries or the Dop-Tree. This is because in these test cases, AABBs
fit the objects very well and therefore, the algorithms can benefit from
their faster collision check algorithm.

When we used concave and sparse objects, like the lustre or the
ATST, or objects with lots of small details, like the Apollo capsule, the
situation changed completely and the OBB-based algorithms, namely
PQP and V-Collide, performed much better than the AABB-based
libraries (see Figures 6.23 and 6.24). This is because with these kinds
of objects, a tight fitting BVH seems to gain more than a fast BV test.



170 evaluation and analysis

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14

ti
m

e
/

m
ill

is
ec

distance / % of bounding box

Apollo / 163198

bx

do

pqp

vc

op

so

Figure 6.23: The results of the benchmark for the Apollo capsule with
163 198. In these test cases, the OBB-based algorithms are much
faster than the AABB-based libraries.

A special role played the DOP-Tree which combines the fast BV
tests of the AABB-based algorithms with the tight BVs of the OBB-
based libraries. As expected, this BVH is placed between the other
two kinds of algorithms in most of the test scenarios.

Another interesting aspect we wanted to benchmark is the depen-
dency on the complexity of the objects. Therefore, we tested all our
models in different resolutions. The surprising result was that there
was no general dependency on the complexity for the algorithms we
tested. For instance, in the lustre scene, the times increased nearly
linearly with the number of polygons for the AABB-based libraries,
whereas it is nearly constant for the OBB-based algorithms. In the
grid scenario, the increase was about O(n logn) for all algorithms
(see Figure 6.26). In the castle scene, the collision detection time seems
to be independent from the complexity (see Figure 6.27) and in the
chair scene, the collision detection time decreased for all algorithms
with an increasing object complexity (see Figure 6.28).

Summarizing, there is no all-in-one device suitable for every pur-
pose. Every algorithms has its own strength in special scenarios. There-
fore, the users should check their scenario carefully when choosing
a special collision detection algorithm. A good compromise seems to
be the Dop-Tree, because it combines tight BVs with fast BV tests.
Moreover, in some cases, it could be helpful to increase the complex-
ity of the model in order to decrease the time for collision detection,
but this does not work in all cases. However, in nearly all test cases,
all libraries are fast enough to perform real time collision checks even
for very complex objects.
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Figure 6.24: The results of the benchmark for the ATST walker with 20132

vertices. Like in the Apollo case (Figure 6.23), the OBB-based
algorithms are much faster than the AABB-based libraries.
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Figure 6.25: The results of the benchmark for the lustre scene for a distance
of 1% relative to the object size. The x-axis denotes the num-
ber of vertices divided by 1000. The time for collision detection
in this scene increases nearly linearly for the AABB-based algo-
rithms.
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Figure 6.26: The results of the benchmark for the grid scene for a distance of
1% relative to the object size. The x-axis denotes the number of
vertices divided by 1000. In contrast to the lustre scene (Figure
6.25) the running-time seems to increase in O(n logn) for all
algorithms.
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Figure 6.27: The dependency of the collision detection time from the com-
plexity of the models in the castle scene. The distance is fixed
to 1% of the object size. The collision detection time seems to be
independent of the complexity.
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Figure 6.28: The dependency of the collision detection time from the com-
plexity of the models in the chair scene. Again, the distance is
fixed to 1% of the object size. In contrast to the castle scene
(see Figure 6.27), the collision detection time decreases with an
increasing complexity.

6.3.5.2 Results for Scenario II

In our second scenario, we tested the libraries on an Intel Core2 CPU
6700 @ 2.66 GHz and 2 GB of RAM running Linux. All source code
was compiled with gcc 4.3 and optimization setting -O3. Both al-
gorithms that we included in our benchmark, IST as well as VPS
(see Section 6.3.4.2), work independent of the object’s complexity.
Therefore, we chose the objects in their highest resolution to com-
pute required data structures, the sphere packing and the voxmap
and pointshell, respectively. The running-time of VPS scales linearly
with the size of the pointshell. However, the limiting factor of the VPS
is actually the high memory consumption of the voxmap. For our
measurements, we included the highest resolution for the voxmap
that just fits into the main memory. The running-time of the IST algo-
rithms depends mainly on the number of inner spheres. Therefore, we
included different sphere packing resolutions in our measurements.

In case of penetrating objects, we got very similar results for al-
most all objects in both cases, maximum and average time. Figures
6.29 and 6.31 show the average timings for the buddha and the gar-
goyle scenes, Figures 6.30 and 6.32 show the maximum running-time
of the algorithms in the same scenes. The running-time of the ISTs
is sub-linear in all cases. Lower and mid-size sphere packings up to
100k spheres outperform the VPS algorithm significantly and they re-
quire less than one millisecond of computation time in scenarios of
small overlaps. Therefore, they are very well suited for haptic ren-
dering. Surprisingly, the running-time of the VPS algorithm is not
constant as expected. In the worst case, the maximum running-time



174 evaluation and analysis

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10

ti
m

e
/

m
ill

is
ec

penetration volume / %

Buddha / avg timing (collision)

vps (11M / 8k)

ist (1372k)

ist (827k)

ist (135k)

ist (29k)

Figure 6.29: Scenario II, average running-time in the happy buddha scene:
on the x-axis you find the amount of overlap in percent of the
object’s total volume. The number in parentheses after IST de-
notes the number of spheres in thousands. The two numbers
after VPS denote the number of voxels and points in thousands,
respectively.

exceeds the average running-time by a factor of two. This is probably
due to caching effects. Moreover, the running-time seems to increase
linearly with a linear increasing penetration volume. We suppose that
this behaviour is due to an increasing amount of intersecting points
and consequently, an increasing amount of collision response compu-
tations.

In order to evaluate this, we also included timings of both algo-
rithms in Scenario I, this means with objects in close proximity but
without overlap (see Figures 6.33 and 6.34 for the average and max-
imum running-time respectively). As expected, the running-time of
the VPS algorithm is almost linear. However, the ISTs are much faster,
even with very detailed sphere packings with up to 800k inner spheres.

Summarizing, the results of our performance benchmark show that
it is possible to compare quiet different collision detection libraries
with respect to their running-time. Moreover, our tests can be used
to determine objects and a placement of pairs of objects that are not
ideal for the special algorithm.

However the computation time is not enough to fully assess a colli-
sion detection algorithm. Often, the quality of the collision responses
is another important factor. We will discuss this in more details in the
next section.

6.4 quality benchmark

In order to make games or virtual environments realistic, one of
the fundamental technologies is collision handling. Beside the de-
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Figure 6.30: Scenario II, maximum running-time in the happy buddha scene
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Figure 6.31: Scenario II, average running-time in the gargoyle scene
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Figure 6.32: Scenario II, maximum running-time in the gargoyle scene
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Figure 6.33: Scenario I with ISTs and VPS, average running-time in the fish
scene
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Figure 6.34: Scenario I with ISTs and VPS, maximum running-time in the
fish scene
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tection of collisions among virtual objects, it computes a collisions
response (such as penetration depth, contact points, and contact nor-
mals) and finally feeds these into a physically-based simulation or
force-feedback algorithm.

Especially with forces, human perception is very sensitive to un-
expected discontinuities both in magnitude and direction [Kim et al.,
2002a]. This effect is aggravated particularly when both, virtual and
haptic feedback, are provided to the user: it is known that visual and
tactical senses are treated together in a single attentional mechanism
and wrong attention sensing can affect the suspension of disbelief
[Spence et al., 2000]. Consequently, it is essential that collision de-
tection algorithms provide stable and continuous forces and torques
even in extreme situations, like high impact velocities or large contact
areas. Therefore, a benchmarking suite for collision detection should
not only assess its performance but also the quality of its collision
response.

In order to determine the quality of the collision response of an
algorithm, we can not simply re-use the configurations of the perfor-
mance benchmark and measure the force- and torque vectors because
computing realistic forces and torques from detailed objects in com-
plex contact scenarios is highly non-trivial.

Because of that, we propose to use fairly simple scenarios and ge-
ometries to test the quality of the collision response. We believe that
this approach is even more warranted because different collision han-
dling systems use different measures for the force and torque com-
putations. For instance, penalty-based methods usually use a trans-
lational penetration depth or the penetration volume, impulse based
collision response schemes often needs the first time of impact.

Another advantage of simple scenarios is that we can model them.
This allows us to calculate the theoretically expected forces and torques
analytically for different collision response schemes. The comparison
of this analytically derived ground truth data with the data gathered
from the benchmarked algorithms allows us to define several mea-
sures, such as deviations and discontinuities of forces and torques, or
the measurement of noise.

Our benchmarking suite contains several artificial scenes that sup-
port different challenges for collision handling schemes, including
scenarios with thin sheets and large contact areas.

Summarizing, our quality benchmarking suite proposed in this sec-
tion contributes:

• an evaluation method for force and torque quality that analyzes
both magnitude and direction values with respect to contact
models;

• a validation of our proposed benchmark;
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• and a thorough evaluation of two rather different collision de-
tection algorithms.

This empirically proves that our methodology can become a stan-
dard evaluation framework. The quality benchmarks allows the iden-
tification of the specific strengths and weaknesses and thus, a realis-
tic rating of each benchmarked algorithm. Moreover, our benchmark
helps to identify specific scenarios where an algorithm’s collision re-
sponse diverges from the correct results.

6.4.1 Force and Torque Quality Benchmark

Our quality benchmark evaluates the deviation of the magnitude and
direction of the virtual forces and torques from the ideal prediction
by a model. The ideal force and torque will be denoted by Fi and T i,
respectively, while the ones computed by one of the collision detec-
tion algorithm will be denoted by Fm and Tm, which we will also call
“measured forces”.

Consequently, the scenarios in this benchmark should meet two
requirements:

• they should be simple enough so that we can provide an analyt-
ical model;

• they should be a suitable abstraction of the most common con-
tact configurations in force feedback or physically-based simu-
lations.

In the following, we will introduce the implemented scenarios (see
Section 6.4.2) and the methodology that we used to evaluate force
and torque quality (see Sections 6.4.3 and 6.4.4).

6.4.2 Benchmarking Scenarios

Figure 6.35 shows all scenarios and their specific parameters. We will
explain the details in the following:

• Scenario I (a,b) Translation with Constant Penetration:

A cone is translated while colliding with a block, maintaining
a constant penetration. We chose a constant penetration of δ =
1
3H = 2

3r and a length of the trajectory of L+ 2a. Two situations
have been differentiated in this scenario:

a) h > δ and

b) h→ 0, i. e. the block is a thin rectangle.
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(a) Scenario I (b) Scenario II

(c) Scenario III (d) Scenario IV

Figure 6.35: Scenarios in the force and torque quality benchmark as ex-
plained in Section 6.4.2. Upper row shows 3D snapshots,
whereas the lower displays parametrized schematics. Trajecto-
ries are represented with red dashed curves. Expected relevant
forces and/or torques are shown with blue vectors. Coordinate
systems are placed in points where forces and torques are mea-
sured – for the cone and the sphere this point is in their AABB
center, whereas the position in z axis for the "Pins" object is in
the middle of the pin.
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Ideally, only forces should appear and they should have only
a component in the positive y direction. Moreover, these forces
should be constant while the cone slides on the block. This sce-
nario evaluates the behaviour of algorithms with objects that
have flat surfaces or sharp corners. In addition, scenario Ib eval-
uates how algorithms handle the so-called tunneling effect which
occurs when thin or non-watertight objects yield too small forces
and torques that allow interpenetration.

• Scenario II Revolution with Constant Penetration:
A sphere is revolved around a cylinder maintaining a constant
penetration. The radius of the orbit is ρ = 5

3R = 5
3r. Ideally, only

forces should appear (no torque) and they should have uniquely
sinusoid components in x and y directions. In addition to that,
the measured force magnitude should be constant while the
sphere revolves around the cylinder. This is a suitable bench-
mark for environments with objects that have smooth, rounded
surfaces.

• Scenario III: Rotation of a Square Pin in a Matching Square Hole:
A so-called pins object with a rectangular and a circular pin
and a matching holes object compose this scenario. The rectan-
gular pin is introduced in the rectangular hole and is turned
around its axis. The size of the objects is b = 2a, the side of
the rectangular pin is c = 2r and it has a length of a in z direc-
tion. The maximum rotation angle is φmax = 30◦. Ideally, only
torques should appear and they should have only a component
in positive z direction. Moreover, the measured torque magni-
tude should increase as φ increases. This scenario evaluates the
behaviour of algorithms with large contact areas.

• Scenario IV: Revolution of a Pin Object around the Central Axis of a
Hole:
This scenario uses the same objects as in Scenario III. The start
configuration is shown in Figure 6.35. Then, the pins object is
revolved around the central axis of the second one. The orbit
radius is ρ = 1

10c = 1
20r. The expected forces and torques

are those that bring the pins object towards the central axis,
i. e. sinusoidal forces on the xy plane and torques with only z
component. This scenario evaluates the behaviour of algorithms
with large and superfluous contact areas that should not gener-
ate collision reactions, such as the contact between objects in
the xy plane. Besides of that, this scenario contains small dis-
placements around a configuration in which two objects are in
surface contact. These small displacements should generate the
corresponding small forces that push the pins object back to the
only-surface-contact configuration.
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6.4.3 Evaluation Method

For each scenario, we measured the following values and recorded
them with respect to their time stamp k.

a) forces Fm
k ,

b) torques Tm
k ,

c) penalty values qm
k and

d) computation time tk.

In order to assess these measured values, we have developed ideal an-
alytical models of the expected forces and torques (i). The directions
of these force and torque vector models are shown in Figure 6.35,
whereas magnitudes are considered to be proportional to analytically
derivable collision properties, such as

1. ‖Fi‖ or ‖T i‖ ∼ p, translational penetration depth,

2. ‖Fi‖ or ‖T i‖ ∼ V , intersection volume.

In each scenario we have determined p and V , respectively, as follows:

• Scenario Ia: p ∼ δ and V ∼ δ3

• Scenario Ib: p ∼ δ

• Scenario II: p = ρ = const and V = const

• Scenario III: p ∼ sin(φ2 )−1 and V ∼ ( 1
tan(φ) +

1
tan(π2−φ))(

√
2 cos(π4 −

φ) − 1)2

• Scenario IV: p = ρ = const and V = c2 − (c − ρ| cosφ|)(c −
ρ| sinφ|) + πr2 − 4

∫r
ρ
2
(r2 − τ2)dτ

In order to evaluate the quality of the magnitude, the standard
deviation of measured (m) and ideal (i) curves is computed:

σF =
1

N

√√√√ N∑
k=1

(
‖F̂i
k‖− ‖F̂m

k ‖
)2, (6.13)

where F̂ = F
‖F‖max

, andN being the total amount of time stamps. Anal-
ogously, the indicator for direction deviation is the angle between
ideal and measured values; the average value of this angle is:

γF =
1

N

N∑
k=1

arccos
Fi
kF

m
k

‖Fi
k‖‖Fm

k ‖
. (6.14)

Deviation values for torques (σT ,γT ) are computed using Tm
k and T i

k,
instead of force values.
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Additionally, we track the amount of noise in the measured sig-
nals. A color coded time-frequency diagram using short time Fourier
transform can be used to visualize the noise in time domain. In order
to define a more manageable value for evaluations, we compute the
ratio

ν =

∫
Sm∫
Si (6.15)

where Sm is the energy spectral density of the measured variable
(e. g. ‖ Fm ‖) and Si is the spectrum of the corresponding ideal signal.
ν can be evaluated for forces and torques directions and magnitudes
separately.

6.4.4 Equivalent Resolutions for Comparing Different Algorithms

The algorithms that we included in our quality benchmark, VPS and
IST, are both approximative. This means, they both allow a trade-off
between quality and performance. Usually, increasing the resolution
of the data structures improves the quality of the contact information,
whereas computation time also increases.

However, when comparing such approximative collision detection
algorithm, it would be nice to compare their quality for a pre-defined
average performance, or to compare their performance for a given de-
sired quality. In this context, “equivalent” means a resolution such
that both algorithms exhibit the same quality of forces and torques.
In order to guarantee such a fair comparison, we define the equivalent
resolution.

Considering two objects in a scenario (A is moving, B is fixed),
we define the resolution pair (eAopt, eBopt) to be the optimum equivalent
resolution pair:

(eAopt, e
B
opt) = min{η(eA, eB) | t̄(eA, eB) = τ}, (6.16)

where τ is the maximum admissible average computation time, t̄ and
η = ωσσ +ωγγ̄, the equally weighted sum of the standard devia-
tions.

In practice, since time and quality functions of Equation 6.16 are
unknown, we have to derive the equivalence numerically. Therefore,
we performed several tests. Actually, we defined three different reso-
lutions within a reasonable3 domain for each object A and B and for
each scenario. Overall, we defined sets of 3× 3 = 9 pairs (eA, eB) for
the objects. Then, the sets of 9 corresponding tests were performed,
recording all necessary average computation times (t̄) and the global
deviations (η) in each of them. Next, we applied a linear regression
to values of t̄, obtaining the plane which predicts the average compu-
tation time for a resolution pair in each scenario. Each of these planes

3 Between coarse but acceptable and too fine resolutions.
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was intersected with τ = 0.9 ms4, obtaining the lines formed by all
(eA, eB) expected to have t̄ = 0.9ms for each scenario.

Afterwards, we performed a linear interpolation of η values to se-
lected points on these lines. And finally, these interpolated values
were used to get a cubic approximation curve for η in each scenario.
The minimum of each of these curves is situated in (eAopt, eBopt) for the
corresponding scenario.

Being aware of the fact that further refinements would yet be possi-
ble, it is considered that the reached compromise is accurate enough
in order to make a fair comparison. The average absolute difference
between predicted and measured η values with equivalent resolutions
was 1.2% for the VPS algorithm and 2.1% for the IST algorithm.

6.4.5 Results

In order to test our benchmark, we compared our ISTs (see Chapter 5)
with the widely used Voxmap Pointshell (VPS) approach (see Section
2.4.1.2). Both algorithms facilitate and assume a penalty-based haptic
rendering method, which allows colliding objects to penetrate each
other to some degree. The two algorithms use different definitions of
penetration: the one by VPS is closely related to the (local) translational
penetration depth, while the one by IST is the intersection volume.

We will start with a short recap of the VPS algorithm and explain
how the algorithm computes the force and torque values. Then, we
will discuss the output of our quality benchmark.

6.4.5.1 Force and Torque Computation by VPS

The Voxmap Pointshell algorithm was initially presented by McNeely
et al. [1999]. The algorithm computes collision forces and torques of
potentially big and complex geometries with 1 kHz update rates. To
achieve this goal, two types of data structures are generated offline for
each colliding object-pair: a voxmap and a pointshell (see Figure 6.36).
In this work, we used the fast and accurate voxmap generator pre-
sented by Sagardia et al. [2008].

Voxmaps are uniform 3D grids in which each voxel stores a discrete
distance value v ∈ Z to the surface; e. g. for surface voxels v = 0

and for first inner layer voxels v = 1. Pointshells are sets of points
uniformly distributed on the surface of the object; each point has
additionally an inwards pointing normal vector.

During collision detection, the normal vectors ni of colliding points
Pi – those which are in voxels with v > 0 – are accumulated, weighted

4 Collision detection and force computation must lie under 1ms; hence we chose a
reasonable value under this barrier.
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Figure 6.36: On the left, a layered voxmap (bottom) is colliding with red
pointshell points (top), yielding red bold collision forces. On
the right, the computation of a single collision force related to a
colliding point is graphically shown. Single collision forces are
computed scaling the normal vector (ni) of the colliding point
(Pi) with the sum of the local (niεi) and global (vs) penetration
of the point in the object.

by their penetration in the voxmap to compute the force F. Summa-
rizing, this results in the following equation for the local forces:

Fi = max{niεi︸︷︷︸
(I)

+ vs︸︷︷︸
(II)

, 0}ni (6.17)

with

I) denotes a local continuous component – distance to colliding
voxel center in normal vector direction – and

II) denotes a global discrete component – related to the voxmap
layer.

The global force acting on the whole object can be easily computed
by summing up all local forces:

Ftot =
∑

∀i|v(Pi)>0

Fi. (6.18)

Similarly, we can define local torques Ti: Ti are the cross products
between local forces Fi and point coordinates Pi, considering all mag-
nitudes are expressed in the pointshell frame. We assume that the
center of mass is located in the origin:

Ti = Pi × Fi (6.19)

At the end, all local torques Ti are summed to compute the total
torque Ttot.

Ttot =
∑

∀i|v(Pi)>0

Ti. (6.20)

The forces and torques of the ISTs were computed according to our
new volumetric collision response scheme described in Section 5.4.
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6.4.5.2 Results

In this section we present the results of our quality benchmark ap-
plied to the VPS and the IST data structures. For each scenario, de-
scribed in Section 6.4.2, we store the collision forces F ∈ R3 and
collision torques T ∈ R3 that were returned by the algorithms. The
magnitudes ‖ F ‖, ‖ T ‖, the orientations d of these vectors and the
direction deviations between the model and the measured values γ
are analyzed. As in the case of the performance benchmark, all ob-
jects and paths used in the force and torque quality benchmark (see
Figure 6.35) are available on our website. We tested them on an In-
tel Core2Quad CPU Q9450 @ 2.66 GHz and 3.4 GB of RAM running
Linux SLED 11. The libraries were compiled with gcc 4.3.

We have chosen the voxel size u in the voxelized objects such that
H = 60u,h = 30u (Scenario I), R = 30u (a penetration of 20u is main-
tained) (Scenario II), c = 20u (Scenario III), and ρ = 20u (Scenario
IV). The number of voxels was chosen to be 728× 24× 303 voxels for
the block in Scenario I while the cone has 15 669 pointshell points.
In Scenario II, for the cylinder, 491× 816× 491 voxels we used and
12 640 pointshell points for the sphere. In Scenario III the number of
voxels was chosen to be 1 204 × 604 × 603 for the block and 12 474

pointshell points for the pin objects. For the last Scenario the number
of voxel was chosen to be 243× 123× 123 voxels for the block and
13 295 pointshell points for the pin.

Figures 6.37, 6.38, 6.39 and 6.40 show example plots of the force
and torque magnitude analysis in different scenarios. In detail, Fig-
ure 6.37 contains the expected model curves for ideal force magni-
tudes in Scenario I. Measured curves are superposed to expected
curves to give an idea of how reliable they are derived with respect
to these proposed collision response models. The standard deviation
between measured and ideal curves yields the magnitude deviation
σF = 0.043 for VPS and σF = 0.176 for ISTs. In Scenario III, the stan-
dard deviation between measured and ideal curves yields the magni-
tude deviation σT = 0.169 and σT = 0.112 for the torques, respectively.
Figure 6.38 shows the curve ‖T‖‖F‖ , which should be 0 for Scenario II,
since ideally no torques should appear. This quotient gives informa-
tion about the magnitude of forces or torques that actually should not
occur.

In Figure 6.41 and 6.42, the force and torque components are dis-
played, giving a visual idea of force and torque direction deviations.
Figure 6.39 shows this direction deviation for Scenario II, the associ-
ated γ values are γF = 2.40 for VPS and γF = 7.64 for ISTs.

Finally, Figure 6.43 (VPS) and 6.44 (IST) visualize the results of our
noise measurement of the force in the x-direction in Scenario III. The
color coded time-frequency diagrams visualize the amount, the time,
and the frequency of the signal‘s noise. The corresponding ν values

http://cgvr.informatik.uni-bremen.de/
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Figure 6.37: Forces in Scenario I.
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Figure 6.38: Forces in Scenario II.

are νF = 0.620 for VPS and νF = 1.12 for ISTs, where values closer to
one denote a minor amount of noise.

All these results show that VPS and IST are very close to their un-
derlying models and that different haptic rendering algorithms can
be evaluated. All these results show that our models for penetration
are suitable. Furthermore, they prove empirically that our benchmark
is valid. Hence, these empirical results show that our benchmark can
be helpful in practice. In particular, the benchmark also reveals signif-
icant differences between the algorithms: whereas ISTs seem to have a
higher standard deviation from the ideal model, VPS tends to deliver
noisier signal quality. The decision between accuracy and noise could
be essential for some applications.

6.5 conclusion and future work

In summary, we have presented three different method that allow
a theoretical analysis as well as a practical relevant comparison of
different collision detection and response methods.
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Figure 6.39: Average angle between analytical model and measured values
in Scenario II.
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Figure 6.40: Torques in Scenario III.
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Figure 6.41: Torques in Scenario III.
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Figure 6.42: Forces in Scenario IV.
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Figure 6.43: Noise in the force signal of the VPS algorithm. The colored pic-
ture shows the time frequency domain: the colors decode the
intensity of the frequency, where dark blue remarks an inten-
sity of zero.

Figure 6.44: Noise in the force signal of the IST algorithm. Again, the colored
picture shows the time frequency domain: the colors decode the
intensity of the frequency, where dark blue remarks an intensity
of zero.
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In Section 6.2 we have presented an average-case analysis for si-
multaneous AABB tree traversals, under some assumptions about the
AABB tree, that provides a better understanding of the performance
of hierarchical collision detections than that which was observed in
the past. Our analysis is independent of the order of the traversal.
In addition, we have performed several experiments to support the
correctness of our model. Moreover, we have shown that the running
time behaves logarithmically for real world models, even for a large
overlap between the root BVs.

In Section 6.3, we have presented an easy to use benchmarking
method and a representative suite for benchmarking objects for static
collision detection algorithms for rigid objects. Our benchmark is ro-
bust, fast, flexible and it is easy to integrate other collision detection
libraries. We used our benchmarking suite to test several freely avail-
able collision detection libraries with a wide variety of objects. This
comparison of several algorithms yields a simple rule for choosing
the optimal algorithm.

Finally, in Section 6.4, we have introduced a model that allows a
fair comparison of the quality of different collision response methods.
The results maintain the validity of our analytically derived force and
torque models. In addition, the specific differences between the two
benchmarked algorithms, VPS and IST, also emphasize the impor-
tance of a standardized benchmark for entirely different collision re-
sponse approaches. Moreover, they show that the quality of penalty
forces and torques of quite different collision detection algorithms
can be easily benchmarked with our proposed methods.

Our performance benchmark, as well as our quality benchmark,
have been published as open source; so it will be a great asset to users
who want to figure out the best suited collision handling scheme.
Moreover, it will help researches who want to compare their algo-
rithms to other approaches with a standardized benchmark that de-
livers verifiable results. Additionally, it helps to identify geometric
worst cases for the collision detection method or problematic cases in
which the collision response scheme diverges from the correct results.

6.5.1 Future Work

Our work can be used as the basis of different future directions: on
the one hand, it would be interesting to provide extensions of our
theoretical analysis and practical benchmarks, on the other hand, our
results can be directly used to realize new collision detection schemes.

For instance, several existing methods for hierarchical collision de-
tection may benefit directly from our theoretical analysis and model
in Section 6.2. Especially in time-critical environments or real-time ap-
plications it could be very helpful to predict the running-time of the
collision detection process only with the help of two parameters that
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Figure 6.45: The intersecting triangles that were found by PQP (left) and
CollDet (right) in a typical CAD simulation. You can see, that
CollDet finds much more intersecting triangles.

can be determined on-the-fly. We will try to speed up probabilistic
collision detection by the heuristics mentioned above.

We have already tried to derive a theoretical model of the probabil-
ities that depends on the BV diminishing factor as well as the pene-
tration distance of the two root BVs. This would, hopefully, lead to a
probability density function describing the x-overlaps, thus yielding
a better estimation of Ñ(l)

v in Section 6.2.2. However, this challenge
seems to be difficult.

Furthermore, a particular challenge will be a similar average-case
analysis for BVHs utilizing other types of BVs, such as DOPs or OBBs.
The geometric reasoning would probably have to be quite different
from the one presented here. Moreover, it would be very interesting
to apply our technique to other areas, such as ray tracing, and we be-
lieve one could exploit these ideas to obtain better bounding volume
hierarchies.

Also our benchmarking suite offers possibilities for further exten-
sions: for example, the design of a benchmarking suite for more than
just two objects and for continuous collision detection algorithms. An-
other promising future project would be a standardized benchmark-
ing suite for deformable objects that is still missing and could be very
helpful for users. Moreover, a comparison of the numerical stability of
different implementations could be useful. For instance, during our
research we recognized, that some algorithms find significantly less
intersecting triangles during collision queries than other algorithms
(see Figure 6.45). And the fastest algorithms does not help if it misses
interesting contacts.

An application of our results could be the implementation of a
performance optimized collision detection library. It could internally
implement several different algorithms and choose either of them on
a case-to-case basis according to the shape of the objects and their
configuration. Moreover, it would be nice to generate a ranking of
the different measurements in our quality benchmark, like continu-
ity of forces and torques in magnitude and direction or the noise of
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the signals, with respect to psychophysical cognition. To achieve that,
elaborate user studies need to be done, including testbeds with dif-
ferent haptic devices and investigations about the perception of the
different parameters. Moreover it would be nice to include more com-
plex physically based collision response phenomena like friction.





7
A P P L I C AT I O N S

Practice what you preach

Testament

In the previous sections, we have presented new data structures
and algorithms for collision detection and sphere packings. How-
ever, we did not develop these methods just because of their scien-
tific beauty, but because they are really useful in practical relevant
scenarios.

Obviously, our data structures for collision detection can be used in
almost all situations where collision detection is required. In Chapter
2 we have already mentioned a wide spectrum of possible applica-
tions. However, we also used our data structures and algorithms to
realize projects that would hardly be possible without them. In this
chapter we will present exemplary three different applications that
are based on our research and that are interesting from a scientific or
engineering point of view.

We will start with an extension of our sphere packing algorithm.
Based on the dense packing of spheres for arbitrary objects, we will
present a new method for the simulation of deformable objects, the
sphere-spring systems. Sphere-spring systems are an extension of the
classical mass-spring systems: we just replace the dimensionless par-
ticles by spheres that represents the object’s volume. This allows us
to define new control parameters; namely, the transfer of volume be-
tween the spheres and a novel volume force model. Moreover, main-
taining the non-penetration constraint of the spheres during the sim-
ulation guarantees volume preservation. Additionally, we present a
parallel implementation of this sphere-spring system using the capa-
bilities of modern GPUs. We applied our system to the animation of
a complex virtual human hand model.

Our second example presents an application of our ISTs (see Chap-
ter 5) in robotics. In collaboration with KUKA Robotics Corp., we
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applied our ISTs to interactive obstacle avoidance in highly dynamic
environments. The obstacles were maintained via a Kinect camera in
real-time. Hence, they are represented as a point cloud. Consequently,
our applications extends the IST distance computation to fast distance
queries for point cloud data.

Finally, we present a haptic workspace that allows high fidelity,
two-handed multi-user interactions in scenarios containing a large
number of dynamically simulated rigid objects and a polygon count
that is only limited by the capabilities of the graphics card. Based
on this workspace, we present a novel multi-player game that sup-
ports qualitative as well as quantitative evaluation of different force-
feedback devices in demanding haptic manipulation tasks. The game
closely resembles typical tasks arising in tele-operation scenarios or
virtual assembly simulations. Using our haptic game, we conducted
a comprehensive user study that evaluates the influence of the de-
grees of freedom on the users’ performance in complex bi-manual
haptic interaction tasks. The results of our user study show that 6

DOF force-feedback devices outperform 3 DOF devices significantly,
both in user perception and in user performance.

7.1 related work

In this section, we will present a very short overview on existing
methods that are closely related to the applications in this chapter.
A complete overview over all previous methods for all three applica-
tions would go far beyond the scope of this thesis. Therefore, we are
restricted to a few basic and recent works. The section is subdivided
into four parts.

We start with a section about general methods for the simulation of
deformable objects. Then, we present the special challenges that arise
when simulating a human hand.

The third section outlines recent methods for real-time obstacle
avoidance in robotics, with a special focus on approaches that rely
on data that is retrieved via depth cameras.

Finally, we discuss user studies that are related to evaluation on the
influence of the degrees of freedom in human-computer-interactions.

7.1.1 General Deformation Models of Deformable Objects

Actually, there already exists a wide spectrum of methods for the
simulation of deformable objects. The survey by Nealen et al. [2006]
provides a good overview. Basically, we can distinguish two main
approaches: geometric and physically-based algorithms. Geometric
methods, like meshless deformations [Becker et al., 2009; Müller and
Chentanez, 2011; Müller et al., 2005] or mass-spring systems [Bielser
et al., 1999; Chen et al., 1998], can be usually computed very fast
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and most of them are perfectly suited for parallelization. However,
physical properties like volume preservation can be modelled only
with further, often costly, extensions [Hong et al., 2006; Vassilev and
Spanlang, 2002].

Physically-based methods, e. g. the Finite-Element-Method (FEM)
[Hunter, 2005], directly support the computation of such physical
properties. Unfortunately, they are computationally very expensive
and can be hardly used in real-time simulations. Simplifications, like
the explicit FEM [Müller et al., 2002] are suited for real-time use, but
in case of large deformations or large time-steps they can end up in
artefacts.

Another physically-based methods is the Discrete-Element-Method
(DEM). It relies on sphere-packings and can be used for the analysis
of fractures, but also for the simulation of fluids and granular materi-
als [Jing and Stephansson, 2007]. The DEM is more flexible than the
FEM, but it is also computationally even more expensive. Therefore,
Munjiza [2004] developed a combination of both methods, but it is
only applicable to offline simulations.

7.1.2 Hand Animation

Realistic simulation of a virtual hand adds further challenges to the
underlying deformable model. Usually, virtual models of a human
hand are skeleton-based. The individual limbs of the model are associ-
ated with the joints of a virtual skeleton and take over its movements.
One of the most simple forms of skeleton-based animations is the so-
called skeleton subspace deformation (SSD) [Magnenant-Thalmann et al.,
1988]. It is the most widely used technique for real-time character an-
imation. The movements of the limbs of the model are calculated by
a simple linear transformation blending technique. However, the SSD
also has some drawbacks. For instance, it produces poor results on
complicated joints like the thumb.

Some authors presented solutions to overcome these drawbacks by
combining the SSD with other techniques. In Magnenant-Thalmann
et al. [1988], the position of the vertices of the model are corrected by
using an exponential function depending on their distance from the
joints of the skeleton. Thereby, the deformations look more realistic.
Another possibility is the pose space deformation [Lewis et al., 2000].
They make a correction of the model based on data that is specified
for different key poses. The degrees of freedom of motion are inter-
preted as the spatial dimensions of the pose space. This technique
combines the shape interpolation [Bergeron and Lachapelle, 1985]
with the skeleton-based animation. The shape interpolation calculates
the current target pose of the animation from the given key pose by
linear combination. The calculation is very simple, but requires preset
poses that have been (possibly expensive) obtained from a reference
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model. The shape interpolation is often used for facial animation. The
Eigenskin animation by Kry et al. [2002] provides an improvement of
the technique that is used by the pose-space deformation. It uses a
singular value decomposition to store the data of the preset poses in
a compressed form. By this means, the calculation of the correction
of the model can also be made by the graphics hardware.

However, all these SSD-based approaches can handle only the vis-
ible deformations on the outer skin. There are other algorithms that
additionally deal with the simulation of the internal structures and
their physical properties. Albrecht et al. [2003] developed a model of a
human hand that consists of bones, muscles and skin. The movements
of this model are triggered by the contractions of the muscles. To rep-
resent all aspects of muscle movements, two types of muscles are
used: pseudo muscles whose contractions cause the rotations of the
limbs and geometric muscles, that emulate the volume of real mus-
cles. The operation of the geometric muscles is described by Kaehler
et al. [2001]. Each muscle fiber is composed of segments whose vol-
ume is simulated by ellipsoids. If the muscles are contracted, these
segments are shorter and thicker. The outer skin is connected to the
muscles by a mass-spring system and it can take over their defor-
mations. Sueda et al. [2008] described a technique that can be used
to simulate the deformation of the tendons of the hand. This tech-
nique is suitable to expand existing animation systems. The tendons
are simulated by cubic B-spline curves. In Chen and Zeltzer [1992],
the deformation of the muscle is calculated using the FEM. A com-
plex volume is divided into many subspaces (typically tetrahedron).
The movements of the nodes of the tetrahedron are represented as
system of equations that is solved by numerical methods. The FEM
provides a high degree of physical accuracy, but at the expense of
the runtime behaviour. Such simulations are typically not suitable for
real-time applications. The computational complexity of the FEM is
highly dependent on the number of tetrahedra. In order to reduce
the computational cost of linear 4-node tetrahedra, also quadratic
10-node tetrahedra can be used to simulate organic shaped volume
[Mezger and Strasser, 2006]. Jaillet et al. [1998] presented a technique
that uses a system of spheres to simulate deformable volumetric ob-
jects like human organs. The movements of the spheres are either cal-
culated using the Lennard-Jones potential or a mass-spring system.
However, they did not include volume transfer, therefore, their mass
spring systems are very stiff.

7.1.3 Obstacle Avoidance in Robotics

The movement of autonomous robots in unknown environments of-
fers numerous challenges to both, hard- and software: the robots have
to retrieve data to create a map of their environment, they have to lo-
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calize themselves in this environment and they have to plan paths for
their movements while simultaneously avoiding obstacles.

The first challenge is already the retrieval of the data: several differ-
ent sensor types have been proposed, including monocular cameras
[Clemente et al., 2007], stereoscopic cameras [Konolige and Agrawal,
2008], laser scanners Weingarten et al. [2004] and time-of-flight cam-
eras [Ohno et al., 2006; Prusak et al., 2008].

In a second step, this sensor data can be combined to create a map
of the environment. For instance, May et al. [2009] proposed an iter-
ative closest point algorithm for the registration of several depth im-
ages. Henry et al. [2012] combined depth images and classical color
images to construct loop-closed maps of large indoor environments.
Obviously, the resulting maps can be used for collision avoidance
and path-planning using any appropriate collision detection method.
However, all these approaches require several seconds for the envi-
ronment to be reconstructed. Therefore, they can be hardly applied
to real-time collision avoidance, and they can not handle online chan-
ges that happen in dynamic environments.

Several methods has been proposed for such online collision avoid-
ance approaches. Some authors include a high number of additional
sensors like infra red or ultrasound to the robots or the environment.
These sensors have a limited range of view or produce only coarse
data but their combined output can be used to avoid collisions with
abruptly popping up objects [Hu and Gan, 2005]. Other works use
neural networks [Benavidez and Jamshidi, 2011], behavioural bayesian
networks [Yinka-Banjo et al., 2011] or optical flow algorithms for se-
quences of images [Low and Wyeth, 2005] that can be further im-
proved by also including depth images [Ravari et al., 2009]. Kuhn
and Henrich [2007] introduced the idea to compute distances directly
from single images of the environment using computer-vision classi-
fication techniques. However, they did not include depth values.

Especially the release of Microsofts inexpensive depth camera Kin-
ect inspired many researchers to new online collision avoidance algo-
rithms that work directly on the depth image, often represented as a
point cloud. For example, Biswas and Veloso [2012] proposed an er-
ror minimization method providing real-time robot pose estimation.
However, their approach is restricted to ground robots moving in a
2D space. Also Bascetta et al. [2010] represented the robot only by
a single point in order to simplify the distance computation. Schiavi
et al. [2009] compared the obstacle and the robot depth maps by an
image plane projection in 3D. The approach that is closest related to
our method, was developed simultaneously to ours by Flacco et al.
[2012]. They also use a KUKA Light-Weight-Robot and a Kinect for
the data retrieval. Their primary focus is the computation of the col-
lision responses based on distances and velocities and less the accel-
eration of the distance queries. Actually, the distance computation is
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derived from a simple spherical approximation of the robot’s surface.
However, they do not describe any acceleration data structures for
the distance queries.

7.1.4 Evaluation of Haptic Interactions

Haptic user interfaces have been actively applied to the domain of
human-computer interaction in virtual environments for almost two
decades. Many user studies have shown that providing haptic feed-
back during virtual interaction tasks has positive effects on the per-
ceived realism.

For instance, Basdogan et al. [2000] developed a multimodal shared
virtual environment. The experiments showed that force-feedback dur-
ing collaboration with a remote partner contributes to the feeling of
“sense of togetherness”, which is a kind of presence. Moreover, force-
feedback also helps to improve the user performance. Other authors
obtained very similar results with respect to multi-user haptic inter-
actions. Experiments cover a wide spectrum of tasks reaching from
training of motor skills in surgery [Hutchins et al., 2005], rehabilita-
tion tasks Jung et al. [2006], tele-operation [Stylopoulos and Rattner,
2003] to computer games [Swapp et al., 2006]. Moreover, haptic sys-
tems can also help to enhance the emotional immersion in real-time
messaging. Tsetserukou [2010] developed a virtual hug system that
supports 3D virtual worlds like Second Life.

Furthermore, some bi-manual haptic workspaces have been devel-
oped already: Murayama et al. [2004] used two SPIDAR-G devices
that provide 6 DOF motion and 6 DOF force-feedback. A simple 3D
pointing task was used to evaluate the system. The results indicate
that bi-manual haptic interactions are more intuitive and efficient
with respect to task completion time than single-handed manipula-
tions. Two-handed haptic interaction has also shown to be a promis-
ing way for shape modelling applications: Attar et al. [2005] was able
to ensure an enhanced precision during interaction; Keefe et al. [2007]
applied a two-handed tracking system and Phantom devices to help
users control their gestures during sketching 3D shapes directly in
3D space.

In addition, there exists a large body of work on two-handed in-
teraction in general, without a special focus on haptics. For instance,
Leganchuk et al. [1998] has shown that two-handed interaction com-
bines two types of advantages: first, twice as many degrees of free-
dom simultaneously available to the user can result in increased mo-
tion efficiency; second, single-handed interaction usually requires a
higher level of abstraction because of an unnatural, mental composi-
tion task. Consequently, bi-manual interaction can reduce the cogni-
tive load. Veit et al. [2008] was partly able to validate these assump-
tions. They conducted a user study to test two-handed freeform de-
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formations using datagloves. The results show an improvement of the
user’s perception, but only if the degree of symmetry was high.

However, the effect of the degrees of freedom on the user’s per-
ception is still an active field of research. Jacob et al. [1994] proposed
a theoretical principle to capture the control structure of an input
device: a device that is able to move directly across all dimensions
is called an integral device, while a device that constrains the user’s
movement along a single dimension is called a separable device. This
is an extension to a theoretical framework proposed by Garner [1974]
called the perceptual structure of objects and tasks by structuring its
attributes into integral and separable attributes. They supported this
theory by showing that user performance increases if the perceptual
structure of the object being manipulated matches the control struc-
ture of the device. However, the matter does not seem to be settled
yet, since Veit et al. [2009] obtained completely opposite results when
conducting a simple manipulation experiment using a dataglove for
an integral device versus a touchscreen for a separable device: the
results suggest that the simultaneous manipulation of all DOFs does
not necessarily lead to better performance. Martinet et al. [2010] val-
idated these results when investigating 3D manipulation using a 2D
multitouch screen.

However, all of the experiments mentioned in the above two para-
graphs were conducted without any force-feedback. Consequently, it
is impossible to extend the findings directly to haptic environments.
For example, Veit et al. [2009] explains his results by real-world con-
straints that reduce the interaction dimensionality in the real world,
such as gravity. But, with haptic devices it is easy to model these
physical constraints as well.

To our knowledge, there is very little work on the comparison of
haptic devices with different degrees of freedom. Wang and Srini-
vasan [2003] presented a study about the effect of torque-feedback on
purely haptic perception of the location of objects in virtual environ-
ments. Usually, research concentrated mostly on analyzing devices
with an asymmetric number of sensors and actuators. For instance,
Verner and Okamura [2009] found that for tasks like drawing or trac-
ing, devices with 3 DOFs of force and an additional 3 DOFs of po-
sitioning can approximate the performance of full force and torque
feedback.

7.2 sphere-spring systems and their application to hand

animation

A main goal of virtual reality is a realistic simulation of physical pres-
ence in computer-simulated environments. While the level of realism
of visual and aural sensations has been improved significantly during
the past decades, the simulation of realistic and intuitive interactions
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is still a challenge. The most important tool for interactions in the real
world are our hands. In applications like surgery simulation, virtual
prototyping or virtual assembly, a plausible simulation of the human
hand is essential to gain a desired grade of realism. On the hardware
side, input devices like data gloves already help to transform the mo-
tion of the human hand into virtual worlds. But a realistic real-time
simulation of a virtual hand model is still an active field of research.

Actually, the human hand is one of the most difficult objects to an-
imate. The reason is its complex structure consisting of bones, mus-
cles, tendons, veins and skin. These parts are made of different ma-
terials with different physical properties. Moreover, their interaction
provides a variety of complex movement sequences. The hand is di-
vided into separate moveable limbs, their location and mobility is
determined by their bones. These bones are rigid bodies, which can
not be deformed. In contrast, the soft tissue parts can be stretched
during the movement in some parts and in other parts they are com-
pressed. Thereby, folds and humps become visible on the outer skin.
To make a computer model of a human hand look realistic, either the
internal structure of the hand with all its parts, or at least the effects
that are visible on the skin have to be simulated. Usually, the more
detailed the model is, the more complex is the simulation.

In this chapter, we present a virtual hand model that simulates
all the essential components of the human hand and their interac-
tion. Therefore, we introduce a new model for the simulation of de-
formable objects, the sphere-spring system. The sphere-spring system
is an extension of the well-known mass-spring system. The basic idea
is very simple: instead of representing the mass as dimensionless
points, we additionally assign a certain volume to each mass point.
In detail, the volume of the soft tissue beneath the skin is represented
by a system of non-overlapping spheres. The spheres are connected
via springs. During simulation, we keep up this non-penetration con-
straint which directly leads to a volume preserving simulation of the
tissue. Like mass-spring systems, our sphere-spring system is per-
fectly suited for parallelization. Finally, we present a parallel imple-
mentation on the GPU using CUDA.

7.2.1 Sphere-Spring System

Our new sphere-spring system is an extension of the classical mass-
spring system that is, due to its simplicity, widely used for real-time
simulation of deformable objects. In the real world, objects are build
of a large number of molecules that are connected via electromagnetic
forces. Basically, a mass-spring system is a simplification of this physi-
cal model: objects are sampled to a set of discrete particles. In order to
simulate the interaction between these particles, they are connected
via virtual springs. Usually, the simulation is split into two phases:
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first, forces between the particles are calculated, and in a second step,
the movement of the particles is computed.

In addition to external forces acting on the object, the internal
spring forces acting on the particles can be computed following Hooke’s
spring law:

fi→j = −
[
ks(|l|− lr) + kd

v l
|l|

]
l
|l|

fj→i = −fi→j

(7.1)

These equations denote the total spring forces acting on two particles
pi and pj that are connected by a spring, with:

• ks: the spring constant.

• kd: the damping constant.

• lr: the rest length of the spring.

• l: the vector between the positions of the particles: l = pi − pj

• |l|: the length of l.

• v: the velocity vector of the spring that can be derived from the
velocities vi and vj of the particles: v = vj − vi.

The new positions of the particles can be computed using Newton’s
second law of motion:

F = ma = mv̇ = mẍ (7.2)

Consequently, computing the movement of particles can be reduced
to solving ordinary differential equations.

In our sphere-spring system, we do not concentrate the mass in di-
mensionless points, but we additionally assign a volume to each parti-
cle. Therefore, we compute a sphere-packing to represent the volume
of the soft tissue using our Protosphere algorithm (see Section 4.3). The
masses are assigned proportionally to the size of the spheres. Please
note, that initially, the spheres do not overlap. This new representa-
tion of the soft tissue offers additional possibilities during the simula-
tion process. The goal is to keep the non-penetration constraint dur-
ing the simulation and moreover, we want to keep the overall volume
of all spheres to be constant. Together, these two constraints result in
a volume preserving simulation, that can not be realized using simple
mass-spring systems.

In order to maintain these two constraints during the simulation,
we propose two strategies: if two spheres overlap, we add an addi-
tional force to resolve the collision. Moreover, we allow the transfer
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of volume between the spheres. The latter allows us for example to
model bulges that appear if the fingers are bended. In the next sec-
tions, we will explain both strategies in detail.

Everything else is similar to simple mass-spring systems: we simu-
late the motion of the spheres following Newton’s law and the centers
of the spheres are connected via springs. Consequently, our sphere-
spring system also inherits all advantages of mass-spring systems: it
is easy to implement, and due to the locality of the operations, it is
perfectly suited for parallelization.

7.2.1.1 Volume Forces

The first strategy to keep the spheres separated, is to simply add an
additional penalty force if two spheres overlap during the simulation.
In order to realize this, we present a simple modification of Equa-
tion 7.1.

Obviously, the penalty force should be proportional to the amount
of overlap. The penetration volume Vijp between two spheres can be
easily calculated by (see Section 5.3.2):

Vijp =



0 if |l| > ri + rj,
4
3π(min (ri, rj))3 if |l|+ min (ri, rj)

6 max (ri, rj),
π(ri+rj−|l|)(l|2+2|l|ri+2|l|rj−3r21−3r

2
2+6r1r2)

12·|l| else

(7.3)

where ri denotes the radius of the sphere i.
We use this amount of overlap to add an additional penalty force

to Equation 7.1:

fi→j = −
[
ks(|l|− lr) + kd

v l
|l| + kv V

ij
p

]
l
|l|

fj→i = −fi→j

(7.4)

With this new volume constant kv, we can directly control the
amount of overlap: the larger we chose kv, the less overlap is allowed.
However, if we choose kv too large, we recognized some unwanted
side-effects. For instance, we need much more iterations to get a sta-
ble state of the system. In order to avoid these drawbacks, we addi-
tionally propose a method to transfer volume between the spheres.

7.2.1.2 Volume Transfer

Applying volume forces alone is not enough to maintain all our con-
straints, namely the non-penetration constraint. Therefore, we addi-
tionally allow the spheres to transfer parts of their volume to adjacent
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spheres. In order to guarantee a constant overall volume, the same
amount of volume that a sphere emits must be obviously absorbed
by an other sphere.

Actually, we do not simply transfer the whole penetration volume
Vpenetration that we have computed using Equation 7.3, but we in-
troduce an additional transfer factor ktrans to control the amount
of transferred volume. Obviously, ktrans can be chosen dynamically
with respect to the penetration volume to gain another degree of free-
dom. However, in our prototypical implementation, we used a con-
stant factor. Overall, we get for the transfer volume:

Vtrans = ktrans · Vp (7.5)

One question is still open: How do we know where we should trans-
fer the volume? We will answer this question in the next section.

7.2.1.2.1 Direction of Volume Transfer

If an external force acts on a soft object, e. g. if we press a finger into
a soft part of our body, we get a dent at the position where the force
impacts. This means, the tissue that formerly has filled this dent, has
been displaced. Actually, the tissue avoids the force. In the volume
transfer of our sphere-spring system we emulate this avoiding with
a simple heuristic. The tissue seeks regions where no force is acting
on it. Therefore, it moves into the opposite direction of the impact-
ing force. Consequently, we also transfer the volume away from the
forces.

In detail, the accumulation of all spring forces from Equation 7.4
and the external forces acting on a sphere si deliver the direction and
the magnitude of the resulting force fsi . Because we want to transfer
the volume into the direction of fsi , we simply have to search all
adjacent spheres and choose the one sphere sj that is "mostly" in the
transfer direction:

sj | sj ∈ Adjsi ∧
li→j · fsi > 0 ∧

∀ sk ∈ Adjsi , sk 6= sj| li→k · fsi 6 li→j · fsi (7.6)

where si is the i-th sphere in the system, fsi is the resultant force of
the sphere si, Adjsi denotes the set of all adjacent spheres of si and
li→j =

psj−psi
|psj−psi |

is the normalized directional vector from sphere si
to sphere sj (see Figure 7.1).

Obviously the existence of such a sphere is not guaranteed. If all the
adjacent spheres k of the current sphere si are located in the opposite
half space of our force fsi , we simply do not transfer any volume.
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F
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Figure 7.1: Sphere B has two adjacent spheres A and C. The penetration vol-
ume will be transferred to A, because A is closest to the direction
of the force vector Fb.

7.2.1.2.2 Rest Volume

Unfortunately, the volume transfer alone is not sufficient to guarantee
a stable simulation. Just think of a constant external force, like wind,
acting on a sphere. The sphere will continuously reduce its volume
until it is zero. Consequently, it will never retrieve volume back from
its adjacent spheres, even if the force stops. Simply defining a mini-
mum sphere size could avoid this problem. However, a wide variety
between the minimum and maximum sphere size leads to numeri-
cal problems during simulation. Moreover, the system could never
again reach its initial state. Therefore, we propose a different idea to
deal with this problem, that is closely related to the rest length of the
springs.

Usually, in a mass-spring system, a rest length of the springs is de-
fined. If the length of all springs matches their rest length, the system
is in an equilibrium state, the so-called rest pose. Similarly to the rest
length of the springs, we introduce a rest volume of the spheres. This
rest volume is simply defined as the initial volume of the spheres
in the rest pose. During simulation, all spheres try to restore their
rest volume, as all springs try to restore their rest length. On the one
hand, this additional parameter allows the system to go back to a
well defined and stable initial state. On the other hand, it prevents
the spheres from transferring all their volume to their neighbours
without the chance over ever getting it back.

7.2.2 Parallelization of the Sphere-Spring System

Like classical mass-spring systems, our sphere-spring system is per-
fectly suited for parallelization, because all basic steps rely on local
information only.

In detail:
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Bone

Spheres

Skin

Figure 7.2: Our Model of the virtual hand consists of three different layers:
the bones, the spheres and the skin. Basically, there exist three
different types of springs: between the bones and the springs
(blue), between adjacent spheres (red) and between the spheres
and the skin (green).

• Force Volume: The force volume of Equation 7.4 can be computed
separately for all springs. We simply have to compute the pene-
tration volume and the force for each connected pair of spheres.

• Volume Transfer: Actually, parallelizing the volume transfer is
not as straight forward as the other steps, because two spheres
are involved. Decreasing the volume of one sphere and increas-
ing the volume of another sphere may result in a typical Write-
After-Write error if different spheres try to increase the volume
of the same adjacent sphere.

However, we can avoid this problem with a simple trick: we di-
vide the decrease and increase of the volume into two separate
phases.

In the first phase, we compute the direction of the volume trans-
fer. Therefore, we have to check all adjacent spheres of each
sphere. Obviously, this can be done in parallel. Moreover, we
decrease the volume if necessary, and we store the index of that
sphere, that should receive the volume.

In a second step, we collect the volumes of all adjacent spheres
that should be transferred.

• Sphere Movement: Just like the particles in mass-spring systems,
the movement of the spheres can be computed independently
for all spheres. We have to solve the respective ordinary differ-
ential equation.

Overall, a single iteration step of our parallel implementation of
the sphere-spring system can be summarized as follows:

7.2.3 Application to a Virtual Human Hand Model

In this section, we will shortly describe our virtual hand model to
which we applied our sphere-spring system. Usually, simulating a
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Algorithm 7.1: Iteration-Step

In parallel forall Springs do
Compute Volume Force

In parallel forall Spheres do
Decrease Volume of Sphere

In parallel forall Spheres do
Increase Volume of Sphere

In parallel forall Spheres do
Move Sphere

(a) (b)

(c)

Figure 7.3: The different layers of our virtual human hand: the skeleton (a),
the sphere packing (b) and the skin (c).

human hand is more complicated than the simulation of a fully elas-
tic body like a pillow. This is mainly because of the additional skele-
ton inside the hand. Actually, the movement of the skeleton directly
affects the deformation of the hand from the inside. Moreover, only
parts of the skin may be affected by skeletal transformation, e. g. if we
bend only a single finger.

Basically, our hand model is divided into three different layers:
the skeleton inside the hand, a layer of spheres that represents the
soft tissue, and finally, the skin on the surface of the hand (see Fig-
ure 7.3). Therefore, we have also different kinds of springs between
these layers: some spheres are connected to the skeleton via skeleton-
sphere-springs, spheres that touch the surface are connected to the
skin via skin-sphere-springs, and finally, there exists springs between
the spheres to realize the sphere-spring system. Additionally, we in-
cluded springs between the polygons that realize the skin (see Figure
7.2).

The skeleton of the hand is divided into separate bones. The bones
are organized in a typical scenegraph hierarchy. Therefore, transform-
ing the hand, or at least parts of the hand, can be realized by simple
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Figure 7.4: Average running-time of various sphere-spring systems with re-
spect to the number of spheres and to the number of iterations.

matrix multiplications. During the simulation, the bones are treated
as rigid bodies.

The connections between the bones and the spheres and the springs
between the skin and the spheres, respectively, define which parts of
the hand must be moved if a bone transformation is applied.

7.2.4 Results

We have implemented our sphere-spring system and the virtual hand
model using NVIDIAs CUDA. CUDA offers the possibility to use
the same memory for computation and for rendering via OpenGL.
Therefore, we are able to use the same data buffers for the simula-
tion and as well as fort the rendering. Consequently, we do not have
to read or write any data from main memory after the initialization
of our sphere-spring system. All our benchmarks were made with a
NVIDIA GTX 480 GPU.

We measured the dependency of the running-time from various
parameters. In our first scenario, we started with a flat outstretched
hand that was then clenched to a fist. This is a worst-case scenario
because almost all joints of the hand are involved (see Figure 7.5).
We tested this scenario for different numbers of spheres and different
numbers of iterations. Usually, a higher number of iterations results
in a higher level of the system’s stability. The results are plotted in
Figure 7.4. As expected, a higher number of spheres in the sphere-
spring-systems requires more computation time. Moreover, the aver-
age time per iteration does not remain constant; it decreases with an
increasing number of iterations. This is mainly, because the running-
time of our algorithm decreases when it is closer to its equilibrium.
In this case, the amount of volume to be transferred, but also the
number of spheres that is involved in the volume transfer decrease.
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(a) (b) (c)

(d) (e) (f)

Figure 7.5: Two different poses of the hand model calculated by a simple
skeleton-based algorithm ((a), (d)) and by our sphere-spring al-
gorithm ((b), (e)) with the underlying spheres ((c), (f)).
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Figure 7.6: Average running-time during for two different movements of the
virtual hand. In the first case (red) four fingers of the hand were
moved simultaneously, while in the second case (green) only two
fingers were moved.
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In a second scenario we tested the behaviour of our sphere-spring
system in less complex movements. Therefore, we moved only two
fingers instead of including the whole hand as in the first scenario.
Again, we tested several different numbers of spheres. As expected,
we see an increasing running-time with an increasing number of
spheres (see Figure 7.6). Moreover, we also get a higher running-time
if more fingers are involved in the movement. However, the addi-
tional computational effort is relatively small.

7.3 real-time obstacle avoidance in dynamic environ-
ments

Figure 7.7: A prototype of the KUKA Omnirob ( c©KUKA Robotics Corp.,
2010).

During the last years we observed that humans and robots move
more and more to close ranks. Just think about autonomous robotic
vacuum cleaners that have already entered our living rooms. In the
future the importance of such tasks that unify human and robotic
workspaces will increase significantly, not only for small service robots,
but also in industrial applications. However, if our foot is hit by a
small vacuum cleaner that lost its way, this does not hurt too much.
But a heavy and powerful industrial robot that got astray could in-
jure people seriously. Therefore, the protection of humans in robotic
workspaces has an absolute priority [Haddadin et al., 2008].

This means, unexpected collisions between humans and robots have
to be avoided under all circumstances. This challenge can be solved
by the design of the robotic manipulators and on appropriate develop-
ment of robust collision avoidance methods. Actually, collision avoid-
ance includes three major parts: the perception of the environment,
the algorithmic detection of collisions based on environment infor-
mation and finally the corresponding movement of the robot [Flacco
et al., 2012]. All those parts must be solved in real-time because peo-
ple tend to behave unpredictably.
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Figure 7.8: The LWR is represented by eight parts. We create an individual
IST for each of these parts.

In this project, that we realized in cooperation with KUKA Robotics
Corp., we explored the applicability of depth sensors like Microsoft’s
Kinect and our Inner Sphere Trees (see Chapter 5) to real-time col-
lision avoidance. In the following we start with a description of the
scenario. Then we will outline our new algorithmic approaches and
finally we will conclude with the presentation of some preliminary
results.

7.3.1 The Scenario

KUKA has developed the autonomous robotic platform Omnirob (see
Figure 7.7. The Omnirob consists of a 7-DOF KUKA Light-Weight-
Robot (LWR) mounted on an autonomously driving car that adds
even more degrees of freedom to the platform. The car can localize its
position via laser scanner, if the environment is already known, while
the LWR recognizes its position from the rotations of its segments.

In our scenario we added a Kinect depth camera to the end effector
of the LWR in order to scan the environment. In our implementa-
tion, the Kinect is controlled via the OpenNI [2010] drivers. An open
source library for point clouds, the Point Cloud Library (PCL) [Rusu
and Cousins, 2011], generates 3D point clouds from the depth images
delivered by OpenNI.

The main goal of this project, was the real-time distance computa-
tion between these point clouds and the robot. In contrast to Flacco
et al. [2012], we neglected the reaction of the robot, but concentrated
on fast and accurate distance computations. Therefore, we represented
the LWR by a detailed polygonal model. We split the geometric model
into eight parts and computed Inner Sphere Trees for each of the parts
(see Figure 7.8) in order to accelerate the distance queries.
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Figure 7.9: Different octree levels for a point cloud model of a bunny.

7.3.2 Accelerating Distance Queries for Point Clouds

Actually, our IST data structure support distance queries between
ISTs and point clouds from scratch. We can simply model each point
in the point cloud as a single sphere with radius zero and apply the re-
cursive distance traversal from Section 5.3.1. However, a single depth
image from the Kinect contains approximately 300K points. Perform-
ing 300K× 8 distance queries brute force exceeds the desired frame
rate even if one IST consists of only a single point and we use coher-
ence conditions in addition. Our benchmarks showed running-times
of about 2 sec/query.

Consequently, we have to reduce the number of point/IST tests
significantly in order to guarantee real-time performance. Therefore,
we propose two different data structures that allow to filter special
regions of interests from the point cloud. Namely we used an octree
and an uniform grid. Both data structures can compute regions that
are in a predefined neighbourhood to an input point. In the following
we will explain the implementation details and we will discuss the
special strength and weakness of both data structures.

7.3.2.1 Octree

Actually, an octree is a tree data structure for spatial subdivision. Ba-
sically, it partitions the 3D space recursively into eight octants. The
recursion stops if either there are no points included in the subre-
gion, or if a certain depth and thus a certain size of the leaf cells is
met.

A main feature of octress is that they allow fast location of nearest
neighbours. Principally, the nearest neighbour search (NNS) problem
takes as input a point q and returns the point pclosest in the point
cloud P which is closest to q. When using octrees for this task, we first
have to locate the cell that contains q and then we explore recursively
the cells in the neighbourhood until pclosest is found. Obviously, the
same technique can be used to define range queries. Range queries
deliver all those points pi ∈ P that are located inside a sphere of
radius r around some query point q.
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We use these octree operations to compute our regions of interest.
In detail, we start with the construction of an octree for the whole
point cloud. For a complete distance query between the robot and
the point cloud, we first locate the nearest neighbours for the centers
of the bounding spheres – this are the root spheres – of each of our
ISTs individually. This distance to the nearest neighbour provides an
upper bound for the range query: assume that the distance of the
nearest neighbour for sphere si with radius ri is di. We know, that
each inner sphere has at most distance ri to the surface of the root
bounding sphere. Consequently, we will find the closest point of the
point cloud to any inner sphere in the IST in a distance of at most
di + ri. Consequently, a range query on the octree with range di + ri
delivers all candidates in our region of interest.

Algorithm 7.2 summarizes the distance query algorithm for a single
IST and a point cloud.

Algorithm 7.2: computeDistance{ Point Cloud P, IST T }
Compute octree O for P
dist = NNS(O, T .radius)
LeafList = RangeQuery( O, dist + T .radius )
forall Leaves li in LeafList do

forall pi in li do
if distance( T , pi ) < dist then

dist = distance( T , pi )

Please note, if we have already computed a minimum distance for
an IST, we can obviously use this value to optimize the minimum
distance computations for the other ISTs.

In our implementation we used the octree provided by PCL. In
addition to a fast octree construction, this library also supports fast
NNS and range queries. Figure 7.9 shows some levels of an octree
that was generated with PCL.

7.3.2.2 Uniform Grid

The advantage of octrees is their memory efficiency: we do not waste
memory on storing void regions. On the other side, locating points in
the tree requires an recursive traversal starting at the root. Moreover,
the recursive construction of an octree is relatively expensive. Espe-
cially the latter disadvantage is essential because we have to construct
a new octree for each frame. Therefore, we evaluated an other data
structure with a less expensive construction phase: the uniform grid.

Inserting points in a uniform grid is trivial. However, uniform grids
usually lack of their high memory consumption. In order to overcome
this disadvantage we use spatial hashing that stores only those cells
in the grid that are really occupied by points.
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Figure 7.10: A typical point cloud recorded by the Kinect and the polygonal
model of the LWR. The red line denotes the minimum distance
between the LWR and the point cloud (left). The complete setup
of our application: The KUKA Omnirob with a head mounted
Kinect in front of a workspace (right).

The overall algorithm to determine the closest distance from an IST
to the point cloud is almost the same as for octrees: we locate the
centers of the ISTs in the grid, find the nearest neighbour that defines
an upper bound and finally we perform a range query (see Algorithm
7.2). The only difference is in the implementation of the NNS and
the range query. Actually, both operations can be implemented by a
simple uniform region growing.

7.3.3 Results

We implemented both approaches in a proof-of-concept application.
Please note that the code, especially that for the queries, is not op-
timized yet. All tests were performed on an Intel Core i3-2100 CPU
with 3.10GHz and 4GB main memory.

Figure 7.10 shows the typical setup: we mounted a Kinect to the
end-effector of a KUKA Omnirob. The Omnirob is located in front of
a workspace. During the tests we moved the objects on the workspace.
The Kinect captures depth images that were used for the minimum
distance computations. A single depth image has a resolution of ap-
proximative 270K points. Usually, the Kinect captures 30 frames per
second.

In our first scenario, we tested the influence of the octree’s and
the grid’s cell size to the performance. Figure 7.11 shows the average
time that is required to construct the data structure and Figure 7.11

shows the average time for a single distance query. On the one hand,
the time that is required for the construction decreased with an in-
creasing cell size. On the other hand, the query time increased with
an increasing cell size. We found an optimum for both data struc-
tures for a cell size of about 8 cm. Obviously, the grid construction is
faster than that of the octree but it requires more time for the queries.
For both data structures, the construction time dominates the query
time significantly (see Figure 7.11). However, we was able to provide
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Figure 7.11: Average construction time for a single point cloud with 270K
points. The x-axis denotes different cell sizes of the quadtree
and the grid.

0

2

4

6

8

10

12

14

16

20 30 40 50 60 70 80 90 100

ti
m

e
/

m
se

c

cell size / cm

Query Time

Grid
Octree

Figure 7.12: Average query time, this means NNS, range query, and exact
IST distance computation, for a single point cloud with 270K
points. The x-axis denotes different cell sizes of the quadtree
and the grid.

a close to real time performance of about 40 msec per frame for both
data structures even with our non-optimized implementation.

In a second scenario, we captured different depth images an merged
them to a larger point cloud. This allows a more detailed map of
the environment that can be applied to path-planning tasks. Please
note, that we did not require any registration algorithm because the
KUKA LWR knows its position and orientation from sensor data. As
expected the construction time (see Figure 7.14) increased linearly
with the number of points. However, the query time remained almost
constant (see Figure 7.15).
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Figure 7.13: Combined construction and query time from Figures 7.11 and
7.12
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Figure 7.14: Average construction time for point clouds with respect to the
size of the point cloud. The cell size was set to 8 cm.
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Figure 7.15: Average query time for point clouds with respect to the size of
the point cloud. The cell size was set to 8 cm.
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7.4 3 dof vs . 6 dof - playful evaluation of complex hap-
tic interactions

Haptics is an emerging technology; it adds the sense of touch to
applications in fields like tele-operations, medical simulations, or vir-
tual assembly tasks that are known from the automotive and air-
craft industry. In these areas, force-feedback already helps to improve
human-computer, as well as human-human interactions in multi-user
scenarios for almost two decades.

For a long time, haptic devices were bulky, expensive, and could
be installed and handled only by experts. This has changed but in the
last few years, when the first low-cost haptic devices entered the mar-
ket, which were designed especially for desktop use. Besides typical
consumer electronic applications like games or online shops, where
the sense of touch could be a decision criterion for selecting products,
these low-cost devices could also be used to improve the quality of
training skills or enhance the desktop of each constructing or design
engineer.

However, if a whole engineering office should be equipped with
haptic devices cost could be still a limiting factor, even if they are
low-cost machines. The cost of haptic devices mainly depends on
the number of actuators. Consequently, the low-cost devices for the
mass market usually support only 3 DOFs. Obviously, real -world
object manipulations comprises not only forces with 3 DOFs but also
torques with 3 DOFs. Therefore, rendering these kinds of interactions
faithfully requires much more expensive 6 DOF haptic devices.

This raises the question whether or not the enhanced experience is
worth the additional cost for the 6 DOF devices, which is precisely
the question that this section endeavors to answer.

Intuitively, it seems obvious that users operating with full 6 DOFs
should perform much better than users that are provided only 3

DOFs. In fact, the influence of the DOFs in human-computer inter-
action is still an active field of research, with partly contradictory
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results, even if they do not include haptics and are restricted to single-
hand interactions. However, this section not only presents a qualita-
tive analysis, but also quantitative methodologies to assess the influ-
ence of full 6 DOF force and torque rendering objectively.

In order to conduct our user studies, we have implemented a hap-
tic workspace that provides high-fidelity 6 DOF force-feedback in ob-
ject manipulation scenarios containing a large number of dynamically
simulated rigid objects. In addition, it supports different kinds of hap-
tic (and non-haptic) devices for bi-manual multi-user interactions. It
relies on our new collision detection technique, the Inner Sphere Trees
(see Chapter 5) that firstly meets the special requirements, especially
the very high simulation frequency and the support to simultaneous
simulation of lots of massive objects, of such a haptic workspace.

It is a challenge to define a task that does not favor one of the input
methods in advance. In our case, this means we need a task that can
be solved with 3 DOF devices as well as with 6 DOF devices with
the same level of success. Moreover, we need a task that requires co-
ordinated bi-manual interactions from the users. Therefore, we have
developed a simple haptic multi-player game that requires complex,
two-handed manipulations of two players within the same environ-
ment at the same time.

In order to evaluate the users’ performance, we recorded all paths
of all objects, including those of the users’ hands, for later quantita-
tive and qualitative analysis. Moreover, we utilized a questionnaire to
evaluate some of the “softer” factors of such a haptic workspace.

The results support our initial hypothesis, that 6 DOF haptic de-
vices outperform 3 DOF haptic devices with respect to user percep-
tion and also user performance. This might encourage device manu-
facturers to spend more efforts in the development of cheaper 6 DOF
haptic devices for desktop use.

7.4.1 Haptesha - A Multi-User Haptic Workspace

The main challenge when doing haptic rendering is the extremely
high frequency that is required: while the temporal resolution of the
human eye is limited to approximately 30 Hz, the bandwidth of the
human tactile system is about 1000 Hz. In most haptic scenarios, the
computational bottleneck remains the collision detection, whereas the
force computation can be done relatively fast.

In order to achieve such a high simulation rate, the heart of our hap-
tic workspace is our new geometric data structure, the Inner Sphere
Trees (see Chapter 5), that not only allows us to detect collisions be-
tween pairs of massive objects at haptic rates, but also enables us to
define a novel type of contact information that guarantees stable and
continuous forces and torques, that are based on the penetration vol-
ume. This enable us to treat physically based simulation and haptic
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Figure 7.16: The simulation thread in our haptic workspace computes the
collision forces based on the separation list, which captures the
current collision information. This list is generated in the colli-
sion detection thread. Conversely, the haptic thread passes the
new positions of the objects to the collision and the (visual) ren-
dering thread.

rendering in a common way. The only difference between dynamic
objects and user-controlled objects is, that the forces for the latter are
rendered to the haptic device instead of using them for the simula-
tion.

For visual output we use the open source scenegraph OpenSG
[2012] that supports shading and multi-monitor output.

However, even if the ISTs are very fast, it is not possible to guaran-
tee constant time intervals for the collision detection. Therefore, we
extended the algorithm’s time-critical approach and included multi-
threading support. In cases of interpenetrating objects, the compu-
tation of the penetration volume can run slower than the required
1000Hz, because it might have to visit many nodes during traversal,
especially in cases with heavy overlaps. Consequently, an answer of
this query type can not be guaranteed within a predefined time bud-
get as it is needed for haptic applications. Moreover, the force compu-
tation requires time, too.

On the other hand, almost all currently available CPUs include mul-
tiple cores or, at least, support functions to accelerate multi-threading.

One appropriate strategy to realize time-critical traversals is a de-
coupling of the force computation and the collision detection by run-
ning them asynchronously in different threads. Therefore, we re-use
the idea of separation-lists once more.

Actually, we divide the work into the following independent threads
(see Figure 7.16):

1. a haptic simulation thread, which is responsible to handle the user
input and computes the forces
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Figure 7.17: The two-player set up with four haptic devices for our user
study

2. a collision detection thread, in which separation lists are generated
for each pair of possibly colliding objects.

3. Depending on the application it is, of course, possible to add
other threads, e. g. a rendering thread.

During runtime, the collision detection thread only maintains a sep-
aration list and passes it to the haptic thread. In return, the haptic
thread passes the current positions of the simulated objects to the
collision detection thread for the next query. The haptic thread then
uses the current separation list to compute the force, until the next
collision detection query is finished.

Usually, especially in haptic simulations running at 1 kHz, the spa-
tial coherence is high and thus, the separation lists between two syn-
chronizations do not differ very much.

7.4.2 The Design of the Study: a Haptic Game

Usually, when designing haptic user studies, some kind of object
docking or path following task is used. Unfortunately, these kinds
of tasks are not very well suited when one wants to compare the in-
fluence of the degrees of freedom because depending on the dock or
the path, one of the devices is favored in advance. For example, if a
docking task requires a rotation of the object, it is impossible to solve
it with a 3 DOF device that does not support changes of the orienta-
tion. On the other hand, if the task does not require changes of the
object’s orientation, there would be no need for a 6 DOF device. More-
over, these tasks usually can be solved with a single-handed device.
Consequently, there is no need for coordination between both hands,
which is essential in bi-manual interaction tasks.
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Figure 7.18: The playing field of our haptic game.

Consequently, we had to design a new kind of experiment that sup-
ports a fair comparison of devices with different degrees of freedom
and additionally requires complex bi-manual interactions not only as
an option, but as a necessity. Therefore, we use a kind of indirect
and imprecise docking task. This means the objects to place are not
directly glued to the haptic tool but must be controlled indirectly fol-
lowing a physically-based simulation. Moreover, the objects do not
have to be placed precisely into a predefined docking station, but
into a wider goal.

This indirect interaction metaphor that we propose resembles closely
typical tasks arising in bi-manual tele-operation scenarios or virtual
assembly simulations. Thus, the analysis of the users’ performance in
this experiment allows for conclusions of practical relevance.

In detail, we have implemented a simple two-player haptic game
that is based on our haptic workspace. The players sit face-to-face at
a table with two monitors in between (see Figure 7.17). Each player
operates the two identical force-feedback devices on his side, one for
each hand. In order to evaluate the differences between 3 and 6 DOF
interactions, one of the players uses two 3 DOF devices, namely, two
Novint Falcons (see Figure 7.19, left), whereas his opponent operates
two 6 DOF devices that where realized by two Haption Virtuose 6D
Desktop devices (see Figure 7.19, right).

We used these kinds of force-feedback devices, because they have
comparable specifications (see Figure 7.1), they are both designed for
desktop use, and there is no other pair of devices that differs in DOFs
yet has similar specs.

The playing field is a room with a set of complex objects with differ-
ent shapes lying on the ground. Each player has a “well” in front of
him and controls two rigid virtual hands with his two force-feedback
devices. The goal of the game is to pick up the objects and place them
in the player’s own well in front of him. Figure 7.17 gives an overview
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of the setup with the four haptic devices; Figure 7.18 shows a typical
view of the playing field.

Even if the task is the same for both players, different strategies can
lead to the goal depending on the degrees of freedom of the devices.
In tests prior to the final study’s design, the 6 DOF operators usually
picked up a single object and directly placed it in the well. On the
other hand, the 3 DOF users shoveled some of the objects to the front
of the well and tried to push them up the well’s walls (we dubbed this
the “shovel technique”). Consequently, the success of both techniques
can be tweaked by the hight of the well and the number of objects in
the scene. In order to guarantee a fair comparison we adjusted the
parameters such that with both techniques the chance to win and the
chance to pocket an objects is almost the same for both input devices.
Additionally, we chose the objects such that their size and form factor
forces the users to really use coordinated bi-manual interactions.

For two reasons it is essential that we do not take the winning rate
or the number of pocketed objects as distinctive measure: the same
probability to win with both kinds of devices proves the fairness and
comparability of our results and moreover, the winning rate could
also influence the answers of the questionnaire subconsciously.

In order to maintain fairness we also implemented the facility to
turn the virtual hands with the 3 DOF devices by mapping rotations
to the buttons on the haptic handle (see picture in Figure 7.19), be-
cause it could be complicated for the 3 DOF users to pick up or shovel
the objects with the hands remaining in their initial orientation due
to the rigidity of the controlled virtual hands. The device has four
buttons; we used three of them to change the pitch, yaw, and roll
of the virtual hand, while the fourth button changes the direction of
the rotation. In addition to the general learning period when oper-
ating unknown devices, this relatively complex control paradigm for
the three rotational degrees of freedom required some training. Thus
each round of the game started with a training phase that ends when
both players managed to pocket an object. However, the results of
our user study show that almost all participants used the possibility
to change the hand’s orientation only in the training phase in order
to bring the hands into a comfortable orientation. During the game
they only made very few attempts to adjust the orientation.

For the evaluation, we recorded the forces and torques acting on
the user-controlled hands and additionally, we tracked the covered
distances and rotations. This data allows to derive conclusions about
the efficiency of the haptic interaction. Furthermore, we recorded the
time for the training phase. Moreover, we conducted a user interview
after the game using a questionnaire, where we asked the users about
the quality of the feedback and their preferences with respect to 3

DOFs vs. 6 DOFs.



222 applications

Figure 7.19: The haptic devices that we used in our evaluation: the 3 DOF
Novint Falcon (left) and the 6 DOF Haption Virtuose 6D Desk-
top (right).

3 DOF 6 DOF

Manufacturer Novint Haption

Model Falcon Virtuose 6D Desktop

Translational Workspace 102mm x 102mm x 102mm Sphere with 120mm in diameter

Rotational Workspace - 35
◦ in the 3 directions

Maximum force in translation 10N 15N

Maximum torque in rotation - 0.5 Nm

Price 200$ 30,000$

Table 7.1: The specifications of both force feedback devices show a compa-
rable workspace and a comparable amount of maximum transla-
tional force. The 6 DOF device can additionally render torques.

The setting of a game was chosen to ensure that, due to the compet-
itiveness, the users are highly concentrated on the challenge and not
on the potentially unknown and fascinating devices. After finishing
a round, the players swap seats. Thus, each player plays with both
kinds of devices. Due to this, we were able to test a large amount of
subjects in a relatively small time interval, and moreover, we could
keep the learning phase relatively short.

7.4.3 The User Study

In the following, we will give an overview of the user study that we
conducted using our haptic game described above.

7.4.3.1 Participants and Protocol

We tested a total number of 47 participants, aged 17 to 34 years. Half
of them were high school students visiting our department of com-
puter science, the others were scientific employees with the depart-
ment. Of the participants, 33 were male and 14 female, 3 were left-
handed and 44 right handed. 27 of them play computer games regu-
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larly, and almost all have some experience in gaming, except 4 who
stated they never played a computer game before. Only 5 participants
use VR devices regularly. 8 subjects did not play our haptic game for
the first time, because they already helped in the pre-test phase to
improve the game design, but only two of them played it more often
than twice. Only these 8 persons had made experiences with haptic
devices before, 6 of them during the pre-test-phase.

The participants entered the room with the experimental setup in
groups of 4 persons. They were given a short verbal introduction
about the game, the experiment and the special properties and fea-
tures of the devices, such as the dead-man protection of the 6 DOF
device or the mapping of rotations to the buttons of the 3 DOF device.

After this short introduction and a few seconds for the subjects to
assume the right and comfortable grasping of the haptic handles, the
training phase started immediately. The time for the training phase
was restricted to maximally 3 minutes but could end earlier if both
players managed to pocket an object. Like the training phase, the
game also lasted 3 minutes. During the game, the players received
feedback about the score and the time limit by a heads-up display
on the screen. After completing the game, the subjects were asked
to answer a questionnaire and rate the intuitiveness of control, the
quality of the force feedback and so on, on a five-point Likert scale.
The Likert scale has suitable symmetry and equidistance for the use
of parametric analysis.

7.4.3.2 Results

The groupwise introduction and the attendance of other persons in
the room during the test could distract the players. However, the
results of our survey show that the concentration during the game
was rated very high (3 DOFs: M=4.32, SD=.837, 6 DOFs: M=4.23,
SD=1.026, with the Likert scale ranging from “Heavy distractions”=1

to “No distractions”=5). Also the training time (3 DOFs: M=2.51,
SD=.655, 6 DOFs: M=2.81, SD=.680, with the Likert scale ranging
from “Too short”=1 over “Perfect”=3 to “Too long”=5) and the play-
ing time (3 DOFs: M=2.64, SD=.705, 6 DOFs: M=2.57, SD=.683, with
the same Likert scale) was rated as sufficient overall.

As mentioned in the introduction, we hypothesized that 6 DOF hap-
tic devices are better suited for complex bi-manual haptic interactions
than 3 DOF devices with respect to intuitiveness and the naturalness
of the control paradigms, the quality of the force-feedback, and other
parameters. A paired-samples t-test was conducted to compare the
measured values and the results of the survey in 3 DOF and 6 DOF
conditions.

Overall, the results support our hypothesis that object manipula-
tion using force-feedback with 6 DOFs is more natural and more in-
tuitive: from our survey, we get a highly significant difference in the
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Figure 7.20: The users’ perception as voted in the survey. The 6 DOF device
was rated significantly better with respect of naturalness and
intuitiveness of control.

scores for naturalness of control in the 3 DOF (M=2.83, SD=.816) and
6 DOF (M=3.55, SD=.717) case; t(46)=-6.425, p<0.001 with the Likert
scale reaching from “Not natural”=1 to “Perfect natural”=5. We get a
similar highly significant result for the intuitiveness of control (3 DOF
(M=3.28, SD=.877) and 6 DOF (M=4.04, SD=.779); t(46)=-4.741 p<0.001

(Likert scale from “Not intuitive”=1 to “Perfectly intuitive”=5)). Also,
the quality of the force-feedback shows highly significant differences
between 3 DOF (M=2.98, SD=1.011) and 6 DOF (M=3.66, SD=.867)
conditions; t(46)=-4.761 p<0.001 (Likert scale from “Unsatisfiable”=1

to “Perfect”=5) (see Figure 7.20). However, the mediocre absolute
values show that there is still room for improvements regarding the
naturalness and the quality of the forces and torques.

Even though most subjects rated the time given for the training
phase as sufficient for both kinds of devices, the paired-samples t-
test shows a significant difference between 3 DOF (M=2.51, SD=.655)
and 6 DOF (M=2.81, SD=.680) conditions; t(46)=-2.625, p=0.012. This
further supports the results about the intuitiveness of control and the
higher naturalness.

In the training phase, the time measured until a player manages to
pocket the first object also supports the users’ experience we observed
through the questionnaire: they needed significantly more time to
learn the handling of the 3 DOF devices (M=94.66, SD=69.370) than
the 6 DOF devices (M=60.74, SD=51.809); t(46)=2.954, p=0.005 (see
Figure 7.22).

In order to guarantee a fair comparison, we adjusted the task so
that the 3 DOF operators and the 6 DOF operators can win with
the same chance. The measured results support the validity of our
calibration: overall, there were 20 rounds of all games won using a
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Figure 7.21: There is no statistically significant difference between the num-
ber of pocketed objects with respect to the DOFs. Hence, our
adjustment of the game guarantees a fair comparison between
the different devices.

Figure 7.22: The time that the users needed to pocket the first object during
training with respect to 3 DOF and 6 DOF devices. Clearly, the
3 DOF users needed significantly more time.

3 DOF device, and 18 rounds won using a 6 DOF device (9 rounds
were a tie).

The number of objects that were pocketed by users using the 6

DOF devices was slightly larger (M=5.94, SD=4.532) than the num-
ber of objects pocketed by users using the 3 DOF devices (M=5.64,
SD=4.321). However, there is no statistically significant difference be-
tween the number of pocketed objects with respect to the DOFs (see
Figure 7.21).

Additionally, a one-way between-subjects ANOVA was conducted
to compare the effect of experience on the number of pocketed objects:
there was a significant difference between the group that has haptic
experience, which is exactly the group that played the game more
than once, and the participants that played the game only for the first
time (Unexperienced 3 DOF: N=39, M=4.95, SD=3.692, Experienced 3

DOF N=8, M=9.00, SD=5.757, F(1,46)=6.538, p=0.014, Unexperienced
6 DOF: N=39, M=5.08, SD=3.608, Experienced 6 DOF N=8, M=10.13,
SD=6.334, F(1.46)=9.814, p=0.003). In both cases, 3 DOF and 6 DOF,
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Figure 7.23: Typical data recorded from the users’ interaction during the
game. This plot shows the position of the haptic handle in z di-
rection, which is controlled by the users’ dominant hand with
the 3 DOF (red) and 6 DOF device (green). Clearly, one can
see the typical high frequencies caused by the “shovelling tech-
nique” that is often applied by 3 DOF users, whereas the 6 DOF
users interact more precisely. Moreover, one can see how the 3

DOF user tries to distract the 6 DOF user at sample time 10k.

the experienced users was able to pocket significantly more objects
than the unexperienced users. However, they were still not able to
pocket significantly more objects with 6 DOF than with 3 DOF or vice
versa. Also these results show that the calibration of our experiment
works correctly: the task can be solved with both kinds of devices
with the same succession rate. This implies the fairness of the game.

Even if the chance to win the game is independent of the degrees
of freedom, we expected differences in the users’ performance due to
the different techniques: as already mentioned in the section before,
the 3 DOF users usually shoveled the objects on the ground into the
direction of the well, whereas the 6 DOF users precisely picked up the
objects. These different strategies directly affects the efficiency of the
haptic interactions. The "shovel"-technique can be successful, but it
is inefficient with respect to the covered distances, because the users
need a higher frequency of forward and backward moving of their
hands.

This hypothesis is supported by our measured data: the distances
covered by the 6 DOF device that was used with the dominant hand
(M=295.8, SD=134.0) is significantly (t(46)=-12.034, p<0.001) shorter
compared to the paths of the 3 DOF device used with the dominant
hand (M=724.1, SD=235.0). For the non-dominant hand, we obtain
almost the same picture (3 DOF (M=374.0, SD=291.5) and 6 DOF
(M=605.0, SD=251.4); t(46)=-5.991, p<0.001).
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Figure 7.24: The distances covered by the users’ dominant and non-
dominant virtual hands. Clearly, the paths of the 3 DOF users
are significantly longer than the paths of the 6 DOF users. More-
over, they prefer to use their dominant hand. Surprisingly, the 6

DOF users cover a slightly longer path with their non-dominant
hand.

Figure 7.23 shows the z-position of the virtual hand in the scene,
which is controlled by the user. One can clearly see the typical, high-
frequency “shovelling” of the 3 DOF user and the relatively smooth
motion of the 6 DOF user. Moreover, the plots reveal another typical
strategy of the 3 DOF users: they tried to distract the 6 DOF users
when they had managed to grab an object. You can see this, for in-
stance, at the 5000-th sample position: here, the 3 DOF user tried to
knock the object out of the 6 DOF user’s hand.

The above mentioned distance measures for the dominant and the
non-dominant hand have some other impacts, too: the distance cov-
ered by the dominant hand of the 3 DOF users is significantly longer
than that of their non-dominant hand (dominant hand: M=724.1, SD=
235.0; non-dominant hand: M=605.0, SD=251.4; t(46)=3.368, p=0.002).
Surprisingly, we get the opposite result when looking at the 6 DOF
paths (dominant hand: M=295.8, SD=134.0; non-dominant hand: M=
374.0, SD=291.5), even if the result is not statistically significant.

Further experiments will have to show if this is an impact of the
strain due to the reduced degrees of freedom, or if it is a result of the
special “shovel” strategy facilitated by this game.

With the 6 DOF device the rotation of the user’s real hands is
mapped directly to the device, whereas with the 3 DOF device the
rotation virtual hand is mapped to the buttons as described above. In
other words, with the 6 DOF device, an integral set of object parame-
ters (position and orientation) is mapped to an integral task (moving
the end-effector of the device), while with the 3 DOF device the set
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Figure 7.25: This plot shows the roll-angle of the 3 DOF (red) and the 6

DOF (green) users. The 6 DOF users typically rotate their virtual
hands continuously, while the 3 DOF users let their hands in
almost the same orientation at all times.

of object parameters is treated as a separable set [Garner, 1974; Jacob
et al., 1994].

This has, of course, consequences on the strategies that users em-
ploy. Usually, the 3 DOF users first brought their virtual hands in a
suitable orientation and changed it only very seldomly during the
game, whereas the 6 DOF users rotated their real and virtual hands
continuously. Figure 7.25 shows a typical situation. Additionally, we
computed the Euler angles and accumulated all rotational changes.
This shows significant differences, using the paired-samples t-test,
for both the dominant and non-dominant hands (6 DOF dominant:
M=90.0, SD=64.0; and 3 DOF dominant: M=15.1, SD=16.0; t(46)=7.495,
p<0.001; 6 DOF non-dominant: M=85.9, SD=27.6; and 3 DOF non-
dominant: M=13.6, SD=11.5; t(46)=14.883, p<0.001). This suggests that
mapping of rotations to buttons cognitively overwhelmed users in
time-critical tasks requiring precision motor control.

We used 6 different objects in our game, all of them are cartoon an-
imals (see Figure 7.27). We chose these objects, because their extrem-
ities, like the wide-spreaded arms, oversized feet and ears, or the
tails, should simplify the grasping of the objects by clamping them
between the fingers of the virtual hands (this facilitated object manip-
ulation considerably). Surprisingly, the only object without strongly
protruding extremities, the rhino model, was pocketed most often.
We tested the significance with a chi2-test and obtained a significance
level of p<0.01 with the 3 DOF devices, and even p<0.001 with the 6

DOF devices. We believe that this can be a hint that the abstraction
between the simple handle of the force-feedback device and the de-
tailed virtual hand cognitively overloads the users, but this has to be
investigated in more depth in future studies.
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Figure 7.26: The total amount of rotations applied by the users during the
game, which was obtained by accumulating the changes of the
Euler angles. Obviously, the 3 DOF users avoid to rotate their
virtual hands, probably because the orientation of the virtual
hands is mapped to the buttons of the end-effector of the force-
feedback device. (Usually, they brought it in a comfortable posi-
tion during the training phase and did not change it during the
game.

All other factors we investigated, like the age, the sex, and the hand-
edness do not have any significant effects on the user’s performance.
Even the experience in gaming or with other virtual reality devices
does not have any effect. We checked this by using one-way between-
subjects ANOVA tests. Eight participants that started with the 6 DOF
devices in the first round and then switched to the 3 DOF devices in
the second round, stated after the swap of seats that it was really hard
and unnatural to cope with the reduced feasibilities of the 3 DOF de-
vices. Conversely, there was not a single user starting with the 3 DOF
device who complained about the extended degrees of freedom af-
ter swap of seats. However, the analysis of the users’ questionnaires
does not show any significant differences between users starting with
3 DOFs and ending with 6 DOFs, or vice-versa, with respect to the
rating of the different devices.

7.5 conclusions and future work

In the following, we will shortly summarize our applications and
outline some directions of future investigations.

Our sphere-spring system allows a much more realistic animation
of a human hand as it would be possible with a pure skeletal-based
system or a pure mass-spring system. The deformations caused by
the stretching and compression of the soft tissue of a real hand can
be well reproduced by our model as shown in Figure 7.5. Through
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(a) Yellow Cat (b) Chicken (c) Dog

(d) Killer Whale (e) Rhino (f) Brown Cat

Figure 7.27: Screenshots of the objects we used in the game. Surprisingly, the
rhino (e) was pocketed significantly more often than the other
objects.

the parallel computation on the GPU, the animation can be greatly
accelerated. The computation time scales perfectly with the number
of cores of the GPU, therefore we expect an enhanced performance
with future hardware.

In the second section of this chapter, we presented and application
of our Inner Sphere Trees to real-time collision avoidance for robots
in highly dynamic environments. Therefore, we extended our ISTs to
distance computations with point cloud data that was captured via a
Kinect. The results show a close to real-time performance even with
our not yet optimized implementation.

Finally, we presented a new multi-user haptic workspace with sup-
port for a large number of haptic devices and a likewise number of
dynamic objects with a high polygon count. Its multithreaded archi-
tecture guarantees a constant simulation rate of 1 KHz that is required
for stable haptic interactions. Based on our workspace we have imple-
mented a haptic multi-player game with complex bi-manual haptic
interactions that we use for a quantitative and qualitative analysis of
haptic devices with respect to their number of sensors and actuators.

We conducted a user evaluation with 47 participants. The results
show that 6 DOF devices outperform 3 DOF devices significantly,
both in user perception and in objective data analysis. For example,
the learning phase is much shorter and the users judged the 6 DOF
device to be much better with regard to the quality of forces and the
intuitiveness of control. However there is still place left for improve-
ments of the haptic devices: the overall rating of force quality and
also naturalness of control is rated only mediocre.
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Figure 7.28: In the future, we plan to apply our hand animation scheme to
natural interaction tasks like virutal prototyping.

7.5.1 Future Work

Our sphere-spring system can already produce a realistic animation
of the human hand, but there is still some room for improvements.
In our prototypical implementation of the sphere-spring system, we
require approximatively 50 iterations per frame to get a stable state
of the system. As for now, we use a simple Euler step during inte-
gration. However, the bottleneck of our sphere-spring system is not
the integration step, but the calculation of the volume transfer. There-
fore, enhanced integration methods like Runge-Kutta, that support
larger time steps could probably increase the speed of our algorithms.
Tweaking other parameters, like a dynamic version of the volume
transfer factor or a dynamic adjustment of the springs after the trans-
fer of volume, is also an option. Another challenge is to provide a
theoretical proof of the system’s stability.

The long time objective for our real-time hand animation is their
application to natural interaction tasks (see Figure 7.28). Therefore,
we have to include collision detection as well as a stable collision
response model and the support to frictional forces. Basically, we plan
to use a deformable version of the Inner Sphere Tree data structure.

The resolution of current depth cameras, like the Kinect, is very
limited [Khoshelham and Elberink, 2012]. Future technologies for
real-time depth image acquisition will hopefully provide better res-
olutions. However, larger point clouds also increase the demands on
our collision detection system. All parts of the grid algorithms can be
trivially parallelized. We hope that a GPU version will gain a further
performance boost. At the moment, we use our collision detection
algorithms only for collision avoidance between the robot and the
environment. A better performance would also allow path planning
directly on the point cloud data. This offers several challenges for fu-
ture works: for instance, we need an additional representation of the
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objects’ volumes, instead of only their surface. Probably, a real-time
version of the sphere packing algorithms could produce relief.

Finally, also our pioneering user study leaves some challenges for
the future: further studies are necessary to find the best trade-off be-
tween cost and performance regarding bi-manual complex haptic in-
teractions. This could include asymmetric set-ups of the haptic de-
vices, e. g. 6 DOF for the dominant hand and cheaper 3 DOF for the
other hand. Obviously, it would be nice to compare other haptic but
also non-haptic devices and to investigate other kinds of tasks like
object recognition.
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E P I L O G U E

The future has taken root in the
present

This Morn’ Omina

In this chapter we will summarize the main contributions presented
in this thesis and we will venture to describe avenues for future work
in the field of collision detection and related areas. We will restrict the
summary in this chapter to very basic concepts and results. In the in-
dividual sections of the respective chapters you will find much more
detailed presentations (see Sections 3.6, 4.4, 5.7, 6.5 and 7.5). The same
applies for the future work section. You will find the more technical
improvements and extension of our new data structures, evaluations
methods and applications in the individual chapters. In this chapter,
we try to draw a wider picture of future challenges related to colli-
sion detection in particular and to geometric acceleration structures
in general.

8.1 summary

Collision detection is one of the enabling "technologies" for all kinds
of applications that deal with objects in motion. Often collision detec-
tion is the computational bottleneck. An increasing graphical scene
complexity, enabled by the explosive development on GPUs, also
makes increasing demands on the collision detection process. Sim-
ply relying on the further increase of the computational power just
postpones rather than eliminates this problem.

235
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A major challenge is still the collision detection for complex de-
formable objects. Pre-computed bounding volume hierarchies become
invalid and must be re-computed or updated. This is often done on a
per-frame basis. In Chapter 3 we presented two new data structures,
the kinetic AABB-Tree and the kinetic BoxTree, that need significantly
less update operations than previous methods. We even showed that
they are optimal in the number of bounding volume updates by prov-
ing a lower bound on the number of update operations. Also in prac-
tice they outperform existing algorithms by an order of magnitude.
Our new data structures gain their efficiency from an event-based ap-
proach that is formalized in the kinetic data structure framework.
Moreover, we also extended this method to the collision detection
process itself. The resulting kinetic Separation-List enables real-time
continuous detection of collisions in complex scenes. Compared to
classical swept volume algorithms we measured a performance gain
of a factor of 50.

Another challenge in the collision handling process is to determine
"good" contact information for a plausible collision response. Actu-
ally, the penetration volume is known to be the best penetration mea-
sure because it corresponds to the water displacement of the over-
lapping parts of the objects and thus leads to physically motivated
and continuous repulsion forces and torques. However, no one could
compute this penetration measure efficiently as yet. In Chapter 5

we presented the first data structure, we called it Inner Sphere Trees,
that yields an approximation of the penetration volume even for very
complex objects consisting of several hundreds of thousands of poly-
gons. Moreover, these volume queries can be answered at rates of
about 1 kHz (which makes the algorithm suitable for haptic render-
ing) and an error of about 1% compared to the exact penetration
volume. The basic idea of our Inner Sphere Trees is very simple: In con-
trast to previous methods that create bounding volume hierarchies
from the surfaces of the objects, we fill the objects’ interior with sets of
non-overlapping volumetric primitives – in our implementation we used
spheres – and create an inner bounding volume hierarchy. In order
to partition our inner primitives into a hierarchical data structure, we
could not simply adopt the classical surface-optimized methods; so
we have developed a volume-based heuristic that relies on an optimiza-
tion scheme known from machine learning.

However, the main challenge was less the hierarchy creation, but
the computation of an appropriate sphere packing. Actually, there
were no algorithms available that could compute sphere packings for
arbitrary objects efficiently as yet. Therefore, we have developed a
new method that we presented in Chapter 4. Basically, it extends the
idea of space-filling Apollonian sphere packings to arbitrary objects
by successive approximating Voronoi nodes. Originally designed as a
means to an end, we are pretty confident that we just hit the tip of an



8.1 summary 237

iceberg with this new spherical volume representation. Section 4.4.1
outlines some ideas, how sphere packings can be applied to many
other fundamental problems in computer graphics, including global
illumination and the segmentation of 3D objects.

Another example is the definition of a new deformation model for
the volume preserving simulation of deformable objects based on our
sphere packings that we presented in Section 7.2. Basically, these so-
called Sphere-Spring Systems are an extension of classical mass-spring
systems with an additional volume assigned to the masses. We ap-
plied our model to the real-time animation of a virtual hand model.
Also our Inner Sphere Trees enabled us to realize interesting applica-
tions that are summarized in Chapter 7 too: In Section 7.3 we ex-
plored new methods for real-time obstacle avoidance in robotics us-
ing the minimum distance between point clouds that was derived by
a Kinect and our Inner Sphere Trees. In Section 7.4 we first described
a new multi-user haptic workspace that we then used to evaluate the
influence of the degrees of freedom in demanding bi-manual haptic
interaction tasks. The results of our extensive user study shows that
6 DOF devices outperform 3 DOF devices significantly, both in user
perception and performance. This is partly contradictory to previous
user studies that did not include haptic feedback.

However, there already exists a wide variety of different collision
detection approaches and obviously, not all of them will have been re-
placed by our new data structures tomorrow. Actually, also our new
data structures have their drawbacks, like the restriction to watertight
models of our Inner Sphere Trees, or the requirement of flightplans for
our kinetic data structures. Furthermore, different applications need
different contact information; e. g. for path-planning in robotics it is
sufficient to detect whether two objects collide or not. It does not
need any further contact information. Additionally, most collision de-
tection algorithms are very sensitive to specific scenarios, i. e. to the
relative size of the objects, the relative position to each other, the dis-
tance, etc. This makes it very difficult to select the best suited colli-
sion detection for a special task. In order to simplify this selection
process, but also in order to give other researches the possibility to
compare their new algorithms to previous approaches, we have de-
veloped two representative and easy to use benchmarks that delivers
verifiable results – namely, a performance benchmark for static colli-
sion detection libraries for rigid objects (see Section 6.3) and a quality
benchmark that evaluates the quality of forces and torques computed
by different collision response schemes (see Section 6.3). The results
of our benchmarks show that they are able to crave out the strengths
and weaknesses of very different collision handling systems.

However, simply stressing collision detection algorithms with worst
case objects like Chazelle’s polyhedron is easy but not very conducive.
The results of our benchmarks shows, that such worst cases do not
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happen very often in practical cases. Usually, we observed an almost
logarithmic performance for most objects. In Section 6.2 we presented
a theoretical average-case analysis for simultaneous AABB tree traver-
sals to confirm this observation.

8.2 future directions

The introductory picture of this chapter shows the Holodeck known
from Star TrekTM, to symbol the long term objective: A fully immer-
sive and interactive virtual environment that cannot be distinguished
from reality. Obviously, we are still far away from its implementa-
tion. However, improvements in hardware as well as software devel-
opment, offer today possibilities that were unimaginable just a few
years ago. In this section, we will present some medium-term ob-
jectives on the long way to the Holodeck, with a special focus on
collision detection and geometric data structures that will probably
concern the research community during the years to come.

8.2.1 Parallelization

While we can identify a stagnancy in the frequency of CPUs for a
few years, the further performance gain today is primarily achieved
by packing more cores into a single die. We get the same picture for
GPUs; for instance, a recent NVIDIA GTX 680 features 1536 cores.
Moreover, GPUs have become fully programmable in the past years.
While parts of the collision detection pipeline lead themselves well to
parallelization, this is more complicated for other parts. For example,
it is straight forward to assign pairs of objects in the narrow phase to
different cores for a simultaneous check on the CPU.

GPU cores actually are not suitable to recursive hierarchy traver-
sal, because of their lack of an instruction stack. Hence, collision de-
tection for GPUs requires completely different algorithms and data
structures. First approaches have been published on non-hierarchical
collision detection on the GPU, but we think that there is still room
for improvements. For instance, we are pretty sure that our kinetic
data structures as well as our Inner Sphere Trees would greatly bene-
fit from parallelization.

8.2.2 Point Clouds

Most work has been spent on collision detection for polygonal objects.
However, hardware that generates 3D content in the form of point
clouds has become extremely popular. For instance, with the success
of Microsoft’s Kinect an advanced real-time tracking system is located
in each child’s room today. The output of a Kinect is basically a depth
image and thus some kind of a point cloud. Real-time interactions
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relying directly on such depth images will benefit from fast collision
detection that does not require a conversion to polygonal objects as
intermediate step.

Moreover, 3D photography becomes more and more popular. Ad-
vanced effects in 3D photo editing would benefit from fast point
cloud-based collision detection methods too.

8.2.3 Natural Interaction

Until now, the Kinect’s accuracy is restricted to track only coarse
movements of the body. We are quite sure that future developments
will allow a precise tracking of the human hands and fingers. This
would enable us to use our primary interaction tools – our hands –
to manipulate objects in virtual environments naturally. Obviously,
there already exist hardware devices for finger tracking, like data
gloves, but they always cause a tethering of the user.

However, there are also challenges on the software side. Until now,
there is no physical plausible simulation model available, that al-
lows complex grasps and precise operations like turning a screw
with the index finger and the thumb. In today’s virtual prototyping
tasks objects are most often simply glued to the virtual hand. How-
ever, such precise operations require a detailed physically-based de-
formable hand model and an appropriate simulation of the fingers’
frictional forces.

8.2.4 Haptics

While the improvements in visual and aural sensations are impress-
ing, one sense is widely neglected in the simulation of virtual environ-
ments: the sense of touch. However, force feedback defines a natural
and expected cue how to resolve collisions with the environment and
hence it adds an significant degree of immersion and usability. For
instance, in natural interaction scenarios described above, it would
prevent a deviation of our real hands and the virtual ones.

Until now, haptic devices are bulky, expensive and require tech-
nical expertise for installation and handling. The first cheap devices
that were designed for the consumer market are very limited in their
degrees of freedom and in their amount of force.

Also on the software side there are unsolved challenges with re-
spect to haptics. Our Inner Sphere Trees are able to meet the high fre-
quency demands of 1000Hz for haptic simulations, but it is hardly
possible to provide appropriate forces for thin sheets that often ap-
pear in virtual assembly tasks. Moreover, the determination of surface
details that are visually represented by textures but have no corre-
sponding representation in the object’s geometry are still a challenge.



240 epilogue

8.2.5 Global Illumniation

Even if the quality of real-time graphics has improved significantly in
the last years, almost everybody is able to detect large differences be-
tween real-time renderings via OpenGL or DirectX on the one hand
and CGI animated films that are produced in a time consuming of-
fline rendering on the other hand. This gain of quality mainly re-
lies on global illumination techniques like ray tracing that allow a
realistic simulation of advanced lightning effects, like refractions or
subsurface scattering. Such global illumination models are still not
applicable to real-time rendering, especially if deformable or at least
moving objects are included.

The problems that arise with global illumination are very similar to
collision detection. Actually, most of these techniques require recur-
sive intersection computations between the scene and a ray as a basic
operation (see Section 2.6.1). Geometric data structures like BVHs are
used to accelerate these intersection tests. Similarly to collision detec-
tion, these data structures become invalid if the scene changes.

8.2.6 Sound Rendering

Sound rendering draws two major challenges: First, if a sound hap-
pens at some place in a virtual environment, it has to be distributed
through the scene. This means we have to compute echoes and reflec-
tions in order to make it sound realistic. This problem is very similar
to global illumination problems and can be approximated by tracing
rays through the scene. However, we also think that our Sphere Graph
would be suited well to compute sound propagations.

The second challenge is the production of the sounds itself. Today,
usually pre-recorded samples are used. If an event happens, e. g. if we
knock over a virtual vase that falls down and breaks into pieces, we
hear the respective pre-recorded sound of braking vases. However, it
is hardly possible to provide a sound database that covers every pos-
sible sound in highly interactive scenes. For instance, a vase falling
on a wooden floor sounds different from a hit on a stone floor. Con-
sequently, synthesis of sounds from material properties and contact
information will improve the sound quality as well as save the cost
and time for the pre-recording of samples.
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