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Abstract

This thesis focuses on techniques to detect and track the full-DOF human hand
motion using conventional cameras. The approaches developed in this work
contribute to the area of non-invasive, marker-less articulated object tracking.

The overall approach chosen in this thesis is model-based and realized by
template matching: the high-dimensional hand configuration space is sampled,
then for each sample an artificial hand model rendered, and finally, the resulting
templates matched to the input image.

The first contribution of this thesis is a novel method that is able to compute
silhouette area-based similarity measures in near-constant time. For this pur-
pose, the integral image is combined with a novel representation of arbitrary
silhouette areas by sets of axis-aligned rectangles.

The second contribution is a family of new area-based similarity measures.
The first class of measures matches templates against the segmentation like-
lihood map: one of them assumes a normal distribution of the segmentation
likelihood values, while the other uses non-parametric representations of the dis-
tribution. The second class of measures contributed in this work does not need
any segmentation and works for nearly arbitrary input modalities. This is very
important regarding the upcoming depth imaging and possibly further sensing
technology.

The third contribution is a novel edge-based similarity measure that avoids any
problematic thresholding on the edge gradients of the input image. Furthermore,
the similarity measure can be formulated as convolution, which allows for a faster
matching in Fourier space.

The fourth contribution is a template hierarchy to minimize the number of
similarity computations needed for finding the most likely hand pose observed.
By way of its construction, each leaf of the hierarchy corresponds to a hand
pose and is represented by its silhouette area while the inner nodes represent
the intersecting area of its children. Consequently, matching can be formulated
as a simultaneous template tree traversal and function maximization.

The approaches presented in this thesis are tested on different image sequences
containing complex background and different hand poses including self-occlusion.
For efficient evaluation of the segmentation-based similarity measures, a robust
skin color estimation approach is also proposed. In addition, an artificial hand
model and an approach for a very compact hand motion description is developed.
In the experiments, a monocular camera is used but the approaches can easily
be extended to multi-camera systems, which is explained in detail in this thesis,
too.
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Chapter 1

Introduction

1.1 Motivation

The motivation of this thesis is the development of new algorithms and methods
to improve the camera-based hand tracking including the estimation of the finger
angles, the global position and orientation. In the following, we will first discuss
a few interesting applications, which point out the importance of hand tracking,
and then give an overview of the challenges.

1.1.1 Applications of Hand Tracking

Today, hand tracking is of more interest than ever before. In professional ap-
plications, marker-based hand tracking is used for several years for example
for assembly simulation, motion capture, virtual prototyping and navigation in
virtual environments. Markers are uncomfortable and undesirable for the user.
Thus, marker-less hand tracking, as presented in this thesis, is of high interest.
Recently, human motion tracking found its way to the consumer market through
Nintendo Wii, Sony Move and Microsoft Kinect. The Kinect is the first bare
camera-based consumer product. But the goal of all three products is to track
the human body motion. The Kinect is able to track the whole body with fairly
well accuracy. The next consequent step is the precise tracking of the human
hand, which will significantly improve the interaction with game consoles and
computers. It is expected that hand tracking will revolutionize the application
control and game experience.

For example, imagine a shooter, where the player uses his hand to focus tar-
gets. This is much more intuitive than using a mouse because he could easily
control the 6 DOF (translation and rotation) needed in 3D. In an adventure
game, the user could pick up and drop objects in an intuitive way in contrast
to using keyboard shortcuts. In a flight simulator, the translational DOF can
be used to control the acceleration, the rotational DOF to modify the pitch,
roll, and heading angles of the airplane. In a massively multi-player online
role playing game (MMORPG), the player could freely interact with teammates
and opponents and trading or crafting would become more intuitive. Using the
hand as an input device, completely new content and interaction techniques, not
considered before, can be added and improve the overall gaming experience.

Of even more interest are professional applications. For example, in virtual
assembly simulation, an engineer interacts with his CAD application in a vir-
tual environment (e.g. in a cave). Using hand tracking, he could navigate very

1
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Distal interphalangeal (DIP) 
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Figure 1.1: Illustration of the degrees of freedom (DOF) of the human hand.
The valid hand poses form a manifold in the 21 dimensional space. Adding the
6 global DOFs (translation and rotation), we arrive at 27 DOF. The left image
illustrates the DOF for each joint. The right image shows the name of each
joint.

intuitively by freely moving his hands, control and handle its CAD application
without additional input devices, and manipulate the objects to be designed in a
natural way. A grasping movement, for example, to open a door of a car, is the
same action as in the real world, in contrast to traditional interaction through
a mouse, where it has to be simulated by a sequence of mouse clicks.

Hand tracking also has a high potential in medical applications. Consider
a surgeon in an operating room. He has to keep his hands sterile, which pro-
hibits retrieving additional information about the patient or advanced surgery
techniques with a conventional input device. In contrast, camera-based hand
tracking allows a device to be controlled contact-free. Other medical applica-
tions could be tele-controlled surgery, e.g. a surgeon uses his hands to control a
robot arm with mounted scalpel or other surgery instruments.

Further applications are gesture recognition as next generation “touchless”
touchscreen and in mobile devices to improve application control, rehabilitation,
and assembly simulation.

These are only a few of the numerous applications of hand tracking. Most of
them need, obviously, real-time, precise, tracking of the hand with 26 DOFs. So,
algorithms to achieve this are an enabling technology for this kind of interaction
paradigm. But robust hand detection and recognition in uncontrolled environ-
ments is still a challenging task in computer vision, and thus, an active research
area.

1.1.2 Challenges of Hand Tracking

The main challenges of camera-based hand tracking are the high-dimensional
hand configuration space, the high appearance variation, the limitations of cam-
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eras, and the potentially disturbing environment. In the following, the challenges
are described in detail.

1.1.2.1 High-dimensional Configuration Space

Since the goal of this thesis is the estimation of the hand pose i.e. determining the
finger angles and not only a few gestures, the problem dimension is very high.
Figure 1.1 illustrates the articulations. Each finger has 4 degrees of freedom
(DOF): the thumb has 1 flexing DOF at the interphalangeal and metacarpopha-
langeal joint and 2 DOFs for the carpometacarpal joint. The other 4 fingers
have 1 flexing DOF each for the Distal interphalangeal (DIP) and the Proximal
interphalangeal (PIP) joint and 2 DOFs (flexion and abduction) for the metacar-
pophalangeal (MCP) joint. Overall, the hand has 20 local DOFs. Sometimes,
an additional DOF is added to the thumb CM joint with the metacarpal bone
as axis. The reason is that the thumb movement, as for example made in the
grasping gesture, is hard to be modeled with flexion and abduction only. Thus,
often, we talk about 21 instead of 20 DOFs.

Adding the 6 global DOFs including the hand position and orientation, the
task of hand pose estimation is equivalent to a function optimization in a mani-
fold in the 27 dimensional space. This is a challenging task, which becomes even
more difficult by the real-time condition.

1.1.2.2 Hand Motion and Appearance Variation

The human hand to be tracked varies strongly from person to person. The skin
color for example depends on the ethnic origins and the skin browning. The
geometry of the hands are also very different, e.g. thickness and length of the
fingers, and width of the hand to mention only some of the varying parameters.
Even the kinematic varies between human beings.

Additionally, the appearance variability of the hand is very high, and thus, it is
challenging to detect the hand in an input image because neither its appearance
nor its position are known.

It is obvious that an exhaustive search in the 27 dimensional space is pro-
hibitive. Thus, hand tracking approaches either reduce the search space by
restricting the hand motion (e.g. allow only a few predefined gestures instead
of full finger flexion and abduction) or initialize the tracker manually. In recent
years, some researchers do not use any restrictions and try to fully estimate
the hand pose and position. This thesis makes contributions to this challenging
task.

1.1.2.3 Unconstrained Background

To be able to detect the hand in an input image, one first has to identify the im-
age region corresponding to the hand by applying a segmentation algorithm (e.g.
skin color segmentation or background subtraction) or extract features whose
distribution on the hand and the background are sufficiently different (e.g. edges).
The more complex the background the less likely those features can be used to
discriminate between hand and background. For example skin colored regions
in the background (Fig. 1.2) will heavily disturb a skin color segmentation. Mo-
ving object in the background are an error source for background subtraction
and textured regions (consider for example a keyboard or a picture as shown in
Figure 1.3) will produce a lot of edges in the background that are similar to the
edge distribution of the hand itself.
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Figure 1.2: A skin color-based hand tracking approach will fail in the example
image (left) due to the red, skin-colored door in the background. The reason is
that the skin segmentation (right) will classify most of the door as skin.

Thus, the ability to extract the hand from the background also heavily depends
on the background itself, and makes the hand tracking more complicated and
less reliable.

1.1.2.4 Camera Limitations

Current camera technology is limited in its capturing capability. In most real
setups there are over- and/or underexposured regions. This is due to the low
dynamic range of the cameras. In the recent years, high dynamic range (HDR)
cameras became affordable, but of limited resolution and frame rate, and the
dynamic range of the cameras still is by some orders of magnitude lower than
the human eye. Additionally, physics and current lens systems restrict the depth
of field of the camera, so the hand motion volume is limited. Other limitation
factors are low camera resolution and frame rate.

Most cameras capture only the usual three color channels and not the whole
spectrum of light. This seems to be intuitive because the human eye is based
on the tristimulus values, but in practice, cameras that would be able to cap-
ture more than three color channels or even the whole light spectrum would
be expected to simplify the hand detection task a lot. The reason is that the
skin could be segmented much more reliably from objects in the background
consisting of different materials than skin.

1.1.2.5 Real-time Tracking Condition

Most hand tracking applications need the hand to be tracked in real-time i.e.
at least 25 full pose estimations per second. This is a very strong condition
in particular due to the high dimensional search space. For example, a hand
tracking approach with a high estimation accuracy is useless for real applications
if it needs a second or even longer to estimate the hand pose in each frame.

1.2 Classification of Approaches

To overcome the limitations, many different kinds of human motion track-
ing approaches have been proposed. In the following, we want to give an
overview of these approaches. There are several ways to classify the approaches
[MHK06, EBN+07]. A lot of publications in the area of hand tracking focus
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Figure 1.3: An edge-based hand tracking approach will yield a low matching
quality in the left image due to the large amount of edges (right image) in the
background.

on the classification of a fixed number of gestures, others try to estimate the
full DOF including all finger joint angles. As its name says, hand gesture clas-
sification can be done efficiently through classification algorithms, e.g. support
vector machines (SVM) or random trees. Recently, in the area of whole body
tracking, an approach for full pose estimation through classification algorithms
has been presented [IKH+11, INK+11]. But it is very questionable whether the
application of this approach to the problem of hand tracking would work; this
is mainly due to the larger appearance variability of the hand compared to the
whole body.

Most of the hand tracking approaches today use some kind of fitting, i.e.,
the whole hand or parts like fingers or finger tips are matched against the in-
put image. This leads us to another way to classify hand tracking approaches:
classification or fitting-based approaches.

One can also differentiate between approaches that are able to automatically
initialize the pose and approaches that need a manual initialization. Approaches
with automatic initialization use a global search of the hand pose in the config-
uration space. By contrast, approaches with manual initialization apply only a
local search in the neighborhood of the pose in the previous frame (trying to
exploit temporal coherence).

Another widely followed categorization divides hand tracking into the follow-
ing two classes: appearance-based and model-based. The term model-based
means that a 3D hand model is fitted somehow against the input image. Model-
based approaches can either be formulated as optimization or nearest neighbor
search. The idea behind the optimization is simple: based on a initial match,
the model is adapted and fitted again until convergence. The nearest neigh-
bor formulation considers a database with all possible hand poses, which have
to be tracked. Then, the goal is to find the most similar hand pose and the
corresponding position in the input image.

By contrast, appearance-based approaches try to learn a direct mapping from
the input image to the hand pose space. Most of them use fairly low-level fea-
tures (e.g. edges or color blobs) or even no features at all (e.g. artificial neural
networks). Thus, such approaches do not need to search the whole configuration
space because the information of the hand poses is encoded in the learned map-
ping. This typically makes them computationally less expensive. On the other
hand, they lack on accuracy and stability due to poor handling of noise and par-
tial occlusion in the input image. Of course, appearance-based approaches need



6 CHAPTER 1. INTRODUCTION

Template Database Input Image 

be
st

  f
it 

Input Image 

... 

... 

... 

hand
pose 

Model-based Appearance-based

Figure 1.4: Model-based approaches (left) use an object model (here the human
hand) and match the templates, each representing a hand pose, to the input
image. In contrast, appearance-based approaches (right) try to learn a direct
mapping from the image space to the pose space.

to include the hand model in some way, too. For example, in a neural network-
based approach, which maps the image pixels to the pose, a hand model is
implicitly stored in the neural network itself.

Figure 1.4 visually compares the idea of model and appearance-based ap-
proaches.

1.2.1 Appearance-based Approaches

A typical appearance-based approach is used in [CW96, CW00] to detect the
hand position in a gray-scale image. In a training step, multiple hand poses
are trained. During tracking, “attention images” are used for segmentation.
Basically, the image pixels are directly used as input vector and a principal
component analysis (PCA) is applied for dimension reduction. A hand pose is
successfully segmented by validating a training image to be close enough in the
low-dimensional space. Nearest neighbor search is performed using a Voronoi
diagram. The hand segmentation probability is evaluated using kernel density
estimation.

A set of specialized mappings is trained based on data obtained by a Cy-
berglove in [RASS01]. After a skin segmentation, moment-based features are
computed and used as weak mapping functions. This mapping functions are
combined to get a strong classification function.

Another classical appearance-based approach for hand tracking is used in
[BPR+04]. They used a so-called Eigentracker to be able to detect a maximum
of two hands. Color and motion cues are used for initialization. The eigenspace
is updated online to incorporate new viewpoints. Illumination variations are
handled by a neural network.

In [AL05] skin-colored blobs are detected to localize the hand position. Next,
the hand pose is estimated by detecting the finger tips. The blobs are detected
using a Bayesian classifier. Color changes during time are handled by an iterative
training algorithm.

[WZD07] detect the hand position in the image using Camshift. A contour
in Fourier space is computed to obtain a scale and rotation invariant hand
descriptor. After locating the hand position, the finger tips are determined
by a semicircle detector. Particle filtering is used to find finger tip location
candidates. A k-means clustering is applied to the candidates. The cluster
centers (prototypes) are used as the final finger positions.
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Appearance-based approaches are also popular in the area of human body
tracking. Basically similar approaches as used for hand tracking can be applied
but, compared to the hand, the appearance variability for the whole body is
by far lower. In [RS99] a statistical body segmentation is applied and low-level
features extracted. A mapping from this low-level features to the 2D body pose
is trained using a set of examples. This is done by first applying the Expectation
Maximization (EM) algorithm to the examples. A mapping function from the
resulting clusters to the 2D pose space is trained. Given a new visual feature,
a mapping from each cluster is performed and the most likely chosen to be the
most probable body pose.

Felzenszwalb et al. [FH05] uses difference of Gaussians (DoG) as features.
They build a tree-structured graph that roughly matches to the human body
structure. Minimization is performed through the Viterbi algorithm. In an
earlier work [FH00] they used the color mean and variance of rectangular regions
as features.

One of the main disadvantages of appearance-based approaches is their high
sensitiveness to noise, feature extraction errors, and partial occlusion. For ex-
ample, if a finger tip is occluded, but not necessarily the rest of the finger, the
above approaches will fail to detect the finger. It is not even easy to determine
which of the fingers is occluded.

A promising alternative are model-based approaches.

1.2.2 Model-based Approaches

Model-based approaches search in the large configuration space to find the best
matching hypothesis. Basically, a descriptor, optimized for fast and accurate
matching, is defined first. Then for all hand poses to be tracked, the correspon-
ding template is generated. During tracking, the hand poses are compared to the
input image by computing the similarity between the corresponding templates
and the (preprocessed) input image. Depending on the needs of the approach
(number of poses that have to be detected, computational power of target device)
the templates are precomputed or generated online during tracking. The main
differences between the approaches is the method to compute the similarity be-
tween hypothesis and input image, how to compute each similarity evaluation
as fast as possible, and acceleration data structures to avoid as many similarity
measure evaluations as possible.

Most approaches for articulated object tracking use edge features and/or a
foreground segmentation as a preprocessing step. Similarity measures between
the target object and the input image are defined based on these features.

The advantage of model-based approaches compared to appearance-based ap-
proaches is that arbitrary hand poses can be modeled including self occlusion.
Partial occlusion by other objects can be handled robustly as well because the
similarity measure between a hypothesis and an input image is only affected by
a limited amount. Using appearance-based approaches, relatively small distur-
bance in observation can lead to a mapping to a variety of poses.

Because this thesis focuses on model-based approaches, an extensive overview
of related work will be given in the Sections 4.1.1 and 4.2.1.
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Figure 1.5: Many previous approaches make some limitations to the problem
of hand tracking. Such limitations are, for example, a simple homogeneously
colored background, restricted global motion (position and orientation), and
restricted local motion (joint angles).

1.3 Limitations of Previous Approaches

Many previous approaches in the area of hand tracking make simplifying as-
sumptions to reduce the high complexity of the full-DOF hand tracking task.
Such assumptions (Fig. 1.5) are mainly the following.

• Simple background : many approaches in the past use a uniformly colored
background with a color at maximum difference to skin color to be able to
easily segment the hand foreground.

• Restricted hand motion: To avoid a search in the whole hand configuration
space, many approaches restrict the hand motion to only a few poses or limit
the rotation angles of the hand. An even more simplifying assumption is not
to detect the hand motion at all, but just recognize a few hand poses. This
is typically solved through classification.

• Manual initialization: If the pose of the hand in the last time step is unknown,
the only way to estimate the hand pose is a search in the whole configuration
space including the global position and orientation. To avoid this challenging
and time consuming step, several approaches perform a manual initialization
and just search in the very close parameter space neighborhood for the hand
pose in the next frame. But a manual initialization is not practicable for all
applications, and always a tedious task for the user.

We want to mention that the approaches presented in this thesis are not insen-
sitive to the above effects and preconditions, but the quality of the approaches
scales with them i.e. the more of the above preconditions are fulfilled, the bet-
ter the approach will work, but if a precondition is not given, it still works at
appropriate quality and speed.
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Generate templates Precomputed templates
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Number of templates unlimited limited to
precomputed poses

Storage space constant linear in # templates
Matching time high low

Acceleration data structures almost impossible possible
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Figure 1.6: Template matching can be done in two different ways: templates can
either be generated offline and stored in a database, or they can be generated
online during the matching. The main differences are storage space, flexibility
and computation time. There are mainly two reasons the matching time using
“Online template generation” is higher: first, the rendering of the model needs
computation resources, and second, the computation of the template represen-
tation, optimized for matching, consumes additional computation power.

1.4 Overview and Contributions

In this thesis, we use a color camera to test and evaluate the novel approaches
presented. The outputs are the hand configuration parameters consisting of the
joint angles, the global position, and the orientation in camera coordinates. As
already mentioned implicitly in the last section, this thesis makes no limiting
assumptions as several other approaches have.

Model-based approaches are expected to be more promising to achieve the
goal of precise hand tracking because they can model arbitrary hand poses and
can reliably compare them to the input image, in 2D and/or 3D. Independent
of the appearance complexity of the hand, a comparison is always possible. In
contrast, appearance-based approaches, which use a direct mapping from image
(or feature) space to the hand pose space have to learn a mapping. This mapping
heavily depends on the power of the mapping function (e.g. neural network,
classifier, random forests). There is no guarantee that such mapping functions
can learn all necessary appearance variations (recognize the hand in a large
number of poses).

Thus, the contributions in this thesis are in the area of model-based hand track-
ing. Using model-based approaches, one has two options: render the hand model
for the hand poses to be matched to the input image online during tracking or
render all poses in a preprocessing step and store them in a database. Figure
1.6 gives an overview of the advantages and disadvantages of both alternatives.
If the pose in the previous time step is known (implies manual initialization),
many researchers use the online update approach because the pose potentially
can be estimated more accurate. But in real setups, the accuracy of the hand
pose estimation is limited by the capturing device (noise, resolution, exposure
dynamic range). Consequently, the estimated hand pose in the previous frame
is not very reliable in many cases.

In such cases, or if the hand pose is completely unknown (at initialization),
the approach using precomputed templates is much more appropriate because
a global search in the hand pose space is much faster. Of course, the number of
templates in the database is limited by the device memory.

But using smart descriptors, a compact representation and sophisticated accel-
eration data structures allow us to use a large database to achieve an sufficient
accuracy. In combination with the continuously increasing device memory the
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disadvantages of precomputed templates are more and more alleviated and their
advantages simultaneously improved. Thus, with increasing computation power
of current hardware, such approaches become more and more appropriate for
online tracking, and not only for pose initialization. Model-based approaches
using precomputed templates can be formulated as a database indexing prob-
lem, i.e. find the element in the database that best matches to the input image.
This also involves finding the location in the input image where the best match
occurs.

In this thesis, each element in the database represents a hand pose. More
precisely, we store a descriptor optimized for matching in the database. An
instance of the descriptor is denoted by template and matching the database to
an input image as template matching. Crucial for template matching are

• the discriminative power of the distance measure used for matching and

• the computation time to match the database to the input image.

The computation time mainly depends on:

– the time to compute the similarity measure i.e. the time needed to match
one template to one position in the input image and

– the acceleration data structure used to minimize the number of database
elements that have to be matched to the input image with a minimal loss
of accuracy.

This leads us to the main contributions of this thesis to the area of hand
tracking:

1. An edge-based similarity measure: most edge-based approaches need binary
edges i.e. thresholds have to be chosen, which is not easy in general. In
this thesis, we present a threshold-free similarity measure utilizing the edge
gradient itself. Matching a template to the input image can be formulated as
convolution, and thus, the computation time can be reduced utilizing Fourier
Transform.

2. A novel skin color estimator: we present a novel skin color segmentation ap-
proach. The core of the approach is the estimation of the skin color distribu-
tion utilizing a clustering algorithm combined with a subsequent classification
of the clusters as skin and non-skin (i.e. background).

3. A very compact and resolution independent representation of template sil-
houettes by sets of axis-aligned rectangles. This allows us to compute several
area-based similarity measures in near-constant time with respect to the im-
age resolution. In contrast, previous state-of-the-art approaches are linear in
the image resolution.

4. A set of segmentation-based similarity measures: similarity measures utilizing
the object foreground in the input image typically compare the size and shape
of the template to the extracted foreground of the input image. We present
robust approaches based on the scalar segmentation i.e. no binarization of
the segmentation is necessary.

5. A segmentation-free similarity measure: Area-based similarity measures have
the advantages, that the resulting likelihood maps produce few and ex-
tent maxima. This is well suited for fast global maximum search. But
segmentation-based approaches heavily depend on the segmentation quality.
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Binarization Feature extraction Matching Result Capture image 

Figure 1.7: Illustration of a typical hand tracking pipeline by hand of two fea-
tures (skin segmentation and edge gradient). The hand poses shown are chosen
for visualization purposes only. The first source of error is the camera used to
capture the image. Other examples for error sources are skin segmentation (or
background subtraction), edge detection and binarization of the edges or the
segmentation likelihoods. One goal of this thesis is not just to alleviate the
influence of errors, but to completely eliminate them.

We present an area-based similarity measure, that does not need any kind
of segmentation at all. The similarity measure directly works on the input
(color) image. Its formulation is generic. Consequently, it can trivially be
extended to use other input modalities than just color.

6. A template hierarchy: due to the large size of the hand pose database, it is
prohibitive to match the whole database of size n to the input image. We
present a hierarchy as an acceleration data structure to reduce the matching
complexity from O(n) to O(log n). The hierarchy is based on the silhouette
area of the hand poses. Consequently, our hierarchy yields very deep trees,
and thus, significantly reduces the matching time. In contrast, previously
presented hierarchies (e.g. [STTC06]) are very flat.

7. A coarse-to-fine detection approach that naturally integrates our template
hierarchy in order to heavily reduce the computation time for simultaneous
hand localization and pose estimation.

In summary, this thesis has two main goals.
First, develop a set of robust similarity measures. This also includes eliminat-

ing sources of error e.g. segmentation or binarization. To explain this in detail,
we should take a look at a typical hand tracking pipeline as shown in Figure 1.7.
Each step, from image capturing up to the matching step is a source of errors.
The goal is not only to try to reduce the errors made in a pipeline step, but to
completely eliminate them.
The second goal is to heavily reduce the overall computation time to achieve

real-time tracking.





Chapter 2

3D Hand Model

As a first step of model-based articulated object tracking we need a model of
the object. In the area of hand tracking we have two options.

The first option is to use real hand poses i.e. capture a human hand with a
camera and label the images manually. This method has the advantage that all
hand poses are valid and realistic. The disadvantage is the labeling procedure.
It is extremely time consuming, and not very accurate. A person typically can
decide easily if a hand pose is open, close, or pointing and so on, but it is hard
to determine the exact pose i.e. the flexion and abduction angles of all fingers.

The second option is an artificial hand model. The advantages and disad-
vantages are vice versa compared to a manual labeling. The hand pose (joint
angles) is trivially given, but it is not easy to model and render a realistic hand.
Especially the thumb with its complex kinematic is a challenging task and of-
ten not payed much attention. There is a lot of work in the area of modeling
and rendering the human hand. But the focus of most of the approaches is a
realistically looking hand, i.e. a human being has the impression that the hand
looks like a real hand. But looking realistic is not necessarily the same as being
realistic with respect to geometry and kinematic. Figure 2.1 demonstrates this
fact visually. In practice, it turned out that a not necessarily realistically looking
but geometrically correct hand performs better for model-based hand tracking.

Hand tracking approaches also have to take the varying shapes of human hands
into account. Either one calibrates the hand for a specific person, which is not
practicable for every application (e.g. hand tracking as a computer interface on
public terminals) or use a hand model that is as generic as possible i.e. use the
average geometry of a large number of different real hands. But the accuracy
of the hand model also depends on the similarity measures used by the hand
tracking approach. Some similarity measures are more, others less sensitive to
varying hand shapes. In this thesis, we expect our similarity measures to tolerate
a high variation of hand shapes. But, of course, the closer the hand model to
the real human hand is, the better the tracking quality is.

In the following, we will denote the hand joint angles as shown in Figure 2.2.

2.1 Related work

In practice, most researchers use a simple hand model consisting of basic geo-
metrical shapes e.g. cylinders, cones, and spheres.

13
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real hand Skin and bones My artificial model

Figure 2.1: Each hand model has its advantages and disadvantages. The skin
and bones model looks realistic only at a first view, but flexed fingers tend to be
too circular, while models with simple geometric primitives (right) look visually
not very realistic, but match well in shape.

Rehg [Reh95] proposes to use a simple kinematic hand model. The palm,
consisting of several bones, is modeled by only one rigid body. He argues that
one is not able to track the palm deformation, and thus, it is not necessary to
model it. Each finger is modeled by three cylinders and has four degrees of
freedom (DOF): one degree for the abduction of the finger, and one degree for
the flexion of each joint. The thumb is modeled by 5 DOFs. The additional
DOF models the rotation about the longitudinal axis in order to be able to
position the palm opposite to the other fingers during grasping.

[KCX06] uses a similar kinematic model but does not model the longitudinal
rotation of the thumb. Thus, for each finger 4 DOFs are used, which result
into 20 DOFs. The palm is modeled as a rectangular parallelepiped, the fingers
by cylinders and spheres. They also use the dynamic joint motion constraint
θDIP = 2

3θPIP to reduce the dimensionality of the hand motion.

In [SMC01, STTC06] the hand model is build from a set of ellipsoids, cones,
and cylinders mathematically described by quadrics. The author proposes that
projection from 3D to the image plane is performed very efficiently for quadrics.
The projection is needed to match the images against the hand hypothesis. Fol-
lowing [RK94b, RK94a] each finger is modeled by 4 DOFs except the thumb,
which is modeled by 5 DOFs. The palm is modeled by a cylinder, its top and
bottom closed by half-ellipsoids. Cones are used for the fingers, and the joints as
well as the finger tips by hemispheres. Finally, the thumb is represented by an el-
lipsoid, a truncated cylinder, and a truncated cone. In [WLH01] the same hand
model is used, but the constraints are learned from real hand motion captured
by a CyberGlove. A Principal Component Analysis (PCA) is applied to reduce
the pose space dimension while trying to preserve the relations between the joint
angles. Because this approach is not able to learn the local manifolds structure
of the pose space the authors replaced the PCA by a kd-tree search in the high-
dimensional pose space in [LWH04]. Quadrics are also used in [GSP+10]. They
modify the projection of the quadrics such that the depth values are computed
as well in order to match the model to range images.
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Figure 2.2: We use 4 DOFs for each finger. The distal interphalangeal (DIP),
proximal interphalangeal (PIP), interphalangeal (IP) and metacarpophalangeal
(MCP) have one flexing DOF θ, and the metacarpophalangeal (MCP) and car-
pometacarpal (CMC) one flexing DOF θ and one abducting DOF ϕ.

In [HSKMG09] a completely different approach is used. Each bone is first
treated as a rigid object with 6 DOFs and independent of the other bones. A
tree is built from the bones with the palm as the root node and the finger tips
as leafs. The authors argue that the tree structured graph obeys the Markov
property. To enforce that connected bones stay close, proximity constraints are
employed by penalizing high distance between neighboring bones. Non-valid
joint angles are penalized in a similar way.

Only a few researchers use more complex hand models i.e. a mesh instead of
geometric primitives. [BKmM+04] uses Linear Blend Skinning to compute the
surface of the hand based on the bones. Additionally, they use a slightly different
hand kinematic model than most other researchers. The thumb is modeled by
3 flexing and 1 abducting DOFs, and the other fingers by an additional twist,
which is also in contrast to related work.

The same approach is applied in [dLGPF08] for hand tracking. The triangle
mesh is computed by a pose space deformation technique. The authors also
include illumination and shading in their synthetic hand model.

In summary, most approaches use simple models consisting of geometric prim-
itives. Only a minority use complex triangle meshes. We argue that it is not
worth to use such complex models because the hand shape variability between
human beings is too high. It is only useful to use a very complex model, if one is
tracking only a group of a few and well known persons, and one has the ability
to precisely scan the hands.1

1 But, of course, it is worth to use a realistic kinematic model.
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Figure 2.3: Construction of our artificial hand model: the palm is modeled by
an anisotropic cone with an ellipsoid as cap. The finger parts corresponding to
bones are represented by cones and the joints by spheres. The final model is
shown on the right.

2.2 Hand Geometry

Because the goal of this thesis is to develop new algorithms for hand tracking that
perform well for arbitrary hand shapes, we follow the majority and use geometric
primitives to generate a hand model that represents an common human hand.

Prior to this model, we have tested a skin and bones model (an example
pose is shown in Figure 2.1). But it turned out in several experiments that
the model is not sufficient to detect a real human hand because flexed fingers
produce unrealistic finger geometry. Especially the fingers around the joints are
too circle-like. The more the fingers are flexed, the more the finger geometry
diverges from a real hand pose.

To determine the width and length of the components of the hand (palm and
finger parts corresponding to the bones) we have used my own hand as a rough
model. We have also tested tables (containing finger length and thickness) from
the internet, but they turned out not to be more realistic. Of course, a more
appropriate model would be to measure a lot of real hands and use the mean
values of each finger part and the palm. But this is not practicable due to time
and resource limitations.

One has to distinguish between the model accuracy of bone length and thick-
ness, and the accuracy of the exact hand silhouette i.e. the curvature of the
hand. We argue that the first is important for tracking, while the exact silhou-
ette cannot be modeled precisely because of two reasons. First, real hands vary
too strongly in their silhouette (or 3D shape). Second, good tracking approaches
have to have a certain amount of error tolerance to varying silhouettes that is
higher than the silhouette variation between real hands.

For our synthetic hand model, we use an anisotropic cylinder for the palm,
truncated cones for the finger parts and spheres for the joints to ensure seamless
connections between the cones. The hand model is rendered in OpenGL. Figure
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Figure 2.4: Construction of our improved artificial hand model: We replace the
palm, previously represented by an anisotropic cylinder, by a more accurate
triangle mesh. We still use spheres and cones to model the fingers.

2.3 shows our hand model in an example pose. We do not care about a realistic
rendering of the skin color and texture because this feature is not necessary for
the hand tracking approaches presented in this thesis. Not modeling skin color
and texture in the hand model even is advantageous because skin color and
texture has a high local variation inside hands, is not static in time, and thus,
cannot be predicted reliably and robustly.

In several experiments, it turned out that in some cases a cylinder is not
appropriate to represent the palm. Thus, we replaced the palm by a more
realistic mesh (Figure 2.4). We have not scanned a hand ourselves. There are a
lot of hand meshes available in the Internet for free.

We have also taken the forearm into account. The appearance of the forearm
is often unknown i.e. we do not know if a person wears a long-sleeved clothing
or not. Figure 2.6 demonstrates the problem by an example. If a person wears
one, the forearm is covered by (in most cases) non-skin colored cloth and also
produces an edge response. Thus, color and edge-based approaches are heavily
affected. For a smart handling of this problem, we used a cone to represent
the forearm, but declare it as “neutral”. Neutral in the sense that the forearm
is neither treated as foreground nor as background. Consequently, both edges
at the border between the palm and the forearm, and the forearm silhouette
and the image background are not included in any similarity measure. We have
to take care of the size/length of the neutral forearm region, i.e. not to make
the neutral forearm region too large because otherwise it will have a negative
impact on our hand template hierarchy which will become clear after explaining
the generation of our template hierarchy in Sec. 5.2.

2.3 Hand Kinematic and Constraints

The kinematic of the hand model in this thesis uses a hierarchical transfor-
mation chain. The hierarchy (tree structure) is implicitly given by the bone
connections as shown in Figure 2.2. The palm orientation forms the root node
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Figure 2.5: The problem with the forearm: a hand with long-sleeved clothing
(left) produces a strong edge response and no (or a very short) foreground region
on the forearm, while a hand with short-sleeved (middle) clothing yields no edges
but is segmented as foreground. This heavily influences similarity measures. We
model the forearm as a neutral region (right) to handle both cases.

and corresponds to the global orientation of the hand. Each finger pose is deter-
mined in the coordinate space of its parent node. For example, the flexion angle
θDIP determines the angle between the distal phalanges and the intermediate
phalanges.

Let Rx be the rotation matrix corresponding to the flexion about θx, Py to
abduction about ϕy and Tz the translation matrix corresponding to the position
of bone z relative to its parent bone. For bone names please see Figure 2.6.
Then, the global transformation matrix MDIP for the distal phalanges in hand
coordinates is

MDIP = RG (TMCPMCPRMCP ) (TPPRPIP ) (TIPRDIP ) (2.1)

RG is the rotation matrix determining the palm orientation, Tx and Rx are the
local translation and rotation matrices of the corresponding bones, where x is a
placeholder for a joint.

2.3.1 Static Constraints

For the hand model used in this thesis, the maximum flexion angle is θmax = 90◦

and the abduction angle ϕmax = 30◦ for all fingers. All values were obtained
experimentally from a real human hand.

2.3.2 Dynamic Constraints

We need to apply dynamic constraints to avoid invalid hand poses. In addi-
tion to the fact that invalid hand poses should not be used, they also would
generate additional templates, which would unnecessarily increase the number
of hypotheses that have to be tested during tracking. Two types of dynamic
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Figure 2.6: Bones of the human hand. Source: Wikipedia

constraints are used. First, only a limited amount of differences between the
flexion angles of neighboring fingers are allowed.

θindex ≤ θmiddle + 60◦ (2.2)

θmiddle ≤ θindex + 60◦ (2.3)

θmiddle ≤ θring + 45◦ (2.4)

θring ≤ θmiddle + 45◦ (2.5)

θring ≤ θpinky + 45◦ (2.6)

θpinky ≤ θring + 45◦ (2.7)

Because all constraints relate to the metacarpophalangeal joint, we have omit-
ted the subscript MCP for the sake of clarity. Second, relations between flexion
and abduction angles of the metacarpophalangeal joints are employed.

ϕindex ≤ ϕmax − θindexϕ
max

θmax
(2.8)

ϕmiddle ≤ ϕmax − θmiddleϕ
max

θmax
(2.9)

ϕring ≤ ϕmax − θringϕ
max

θmax
(2.10)

ϕpinky ≤ ϕmax − θpinkyϕ
max

θmax
(2.11)

2.4 Shader-based Feature Extraction

To be able to extract all relevant edges (to match a hand model to an input im-
age), the conventional OpenGL lighted and shaded hand model is inappropriate.
Figure 2.7 demonstrates this by a real hand and our model. It is easy to see

http://en.wikipedia.org/wiki/File:Scheme_human_hand_bones-en.svg
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Figure 2.7: The problem of extracting salient edge features: extracting edges
from a conventionally rendered artificial hand model does not result in an appro-
priate edge image. We either do not get enough edges (encircled region in the
middle image on the bottom row), or we get too many edges (encircled region
in the right image on the bottom row).
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Figure 2.8: We use a shader to ensure that all and only the edges, needed for
matching, are extracted. The edges “between” the fingers are most important.
For this purpose, we use a different color for each finger. The colors are inter-
polated between the colors of the finger tip and the palm to avoid edges at the
joints.

that in the model several edges found in the real image are not extracted in the
hand model. This, of course, would degenerate edge-based similarity measures.

To overcome this problem, we use a small OpenGL Shading Language (GLSL)
shader that shades each finger with different colors. Different colors are assigned
to the finger tips and the palm. The colors are interpolated such that at the
joints the color gradient is nearly zero to avoid an undesired edge response. The
result is shown in Figure 2.8.

We provide the colors for each finger and the palm together with the hand
geometry and kinematic (rotation angles) in a hand description file. During
rendering, we set the color values for each bone and the position of the bone
in the shader as uniform variables. The color of each vertex is determined by
interpolation in the vertex shader. Let c1 and c2 be the color values at the top
and bottom of a finger bone and v1 and v2 the position of a vertex on both ends
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Figure 2.9: We use a shader to colorize the geometric primitives, representing
finger bones. The color of each finger is interpolated between the color on the
finger tip (blue in the example images above) and the palm (gray in the example
image) to avoid an additional edge response at the joints. The images above
show two examples of geometric primitives. As interpolation factor we use the
length of the projection of v1v to v1v2, normalized by ‖v1v2‖

of the geometric primitive (e.g. a cone) representing the bone (Figure 2.9 shows
an example). Given a vertex v of the geometric primitive, its color is

c = (1− α)c1 + αc2 (2.12)

with

α =
(v1 − v)·(v2 − v1)

‖v2 − v1‖2
(2.13)

For completeness, we want to mention that the extraction of the hand model
silhouette area is trivial if a background color disjoint to the foreground colors
is chosen.

2.5 Automatic Hand Pose Generation

In order to be able to generate arbitrary hand poses i.e. subsets of the hand pose
space, it is necessary to use a hand pose description utility. For this purpose,
we have developed a tree-based pose description method. The idea behind the
method is quite simple but powerful.

Let a node in the descriptor tree describe the simultaneous motion of several
DOFs (joints and hand orientation). Each node contains a list of all DOFs to be
modified, the start and end motion angles for each DOF and the sampling rate.
A simple example illustrates the hand poses generated by a node. Let the node
contain the two DOFs θindex

MCP and θindex
PIP with the start and end angles [0◦, 90◦]
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Figure 2.10: An example output of our hand pose generator developed in line
with this thesis. In this very simple example the description tree contains one
node with two DOFs.

and [0◦, 20◦] and the sampling rate 3. The output of the hand pose generator is
shown in Figure 2.10.

If two nodes have the parent-child relation, the DOFs in the parent and the
child node are combined in the way of nested loops. For example, a parent node
A “modifies” the index finger resulting in nA different poses, and one of its child
nodes B modifies the middle finger resulting in nB different poses. Then the
combination of nA and nB generates all combinations of the index and middle
finger yielding a total of nA×nB poses. Figure 2.11 shows a simple example
descriptor tree and Figure 2.12 the resulting hand poses. If two nodes have the
sibling relation, they are independent of each other. The nodes are processed
sequentially. By combining multiple trees in one hand pose database, the tree-
based description method is able to generate any pose in a very compact way.

2.6 Summary

In this chapter we have motivated and presented our artificial hand model con-
sisting of geometric primitives for the fingers and a mesh representing the palm.
We also presented a description tree to describe hand motions, which allows us
to automatically generate an arbitrary hand pose database. Additionally, we
use GLSL Shader to be able to render the hand model such that matching fea-
tures can easily be extracted. We use the presented hand model to evaluate the
hand tracking algorithms presented in this thesis, except the similarity measure
in Sec. 4.2. The reason for the exception is as follows. Previous to the hand
model presented in this chapter, we used a skin and bones model. But we expe-
rienced several problems e.g. unrealistic hand shapes and weak edge extraction.
Consequently, we have developed a new hand model that does not have all this
disadvantages.
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Figure 2.11: We developed a tree that is able to model arbitrary hand motions to
be able to generate any template datasets we need for hand tracking. A simple
example tree, consisting of two nodes, illustrates the construction of the tree. In
this example, each node modifies two joint angles. The hand poses generated
using this tree are shown in Figure 2.11.
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Figure 2.12: An example set of artificial hand poses generated using the descrip-
tor tree in Fig. 2.11.





Chapter 3

Skin Segmentation

In Section 4 we will present several segmentation-based novel similarity measures
to match a hand pose hypothesis to an input image. The first step of silhouette
area-based object detection approaches is the segmentation of the object. Seg-
mentation applied to hand tracking, in the optimal case, means that only the
hand itself is extracted and the remainder is background. But, in practice, some
parts of the background are falsely classified as foreground.

The most popular segmentation methods are background subtraction and skin
segmentation. The best choice of the segmentation algorithm depends on the
object to be detected and its vicinity. For example, for indoor tracking of a
human body, background subtraction is expected to perform best because one
has a static background and only the human body is moving. In contrast, if one
wants to track a lot of human bodies in a crowd, background subtraction is not
suitable because most parts of the scene consist of moving bodies, additionally
overlapping each other. Generally, if only the target object is moving, back-
ground subtraction most often performs well. But if other parts are non-static,
too, other methods should be chosen.

The applicability of background subtraction for hand tracking is limited be-
cause in case of a typical hand motion the complete arm or even the whole body
is moving, and will lead to a classification of the body as foreground, too. Skin
color segmentation works significantly better because in most setups only the
hand, and possibly the forearm and/or the face, is segmented as foreground.
Due to various influences like human skin color, lighting conditions, camera pa-
rameters, and skin colored background, skin segmentation is a challenging task.

3.1 Related Work

Typically, a skin color distribution, and if possible, also a background distribu-
tion is learned in a training step. Based on the learned distribution, the input
image is segmented and skin likelihood values for each pixel computed.

[JR02] compared histogram and mixture model-based representation of skin
and non-skin color. They constructed the color models for skin and non-skin
classes from a dataset of nearly 1 billion hand labeled pixels. They found that
the histogram-based representation is superior for very large training data sets.
For small training data sets, the mixture model delivers better segmentation
results. They reached a detection rate of 80% at a false positive rate of 8.5%
for web images. The main disadvantage is the inflexibility of a static skin color

25
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model. It may have a low performance on images captured under conditions
that were different from those of their training data set.

[DGN04] improved skin detection by a variational EM algorithm with spatial
constraints. For initialization, they used the skin color model of [JR02]. In
[ZCWW04] a generic skin model is used for rough skin classification. Based on
the classification, a Gaussian mixture model is trained using the EM algorithm.
The final classification is done with the help of a support vector machine utilizing
additional spatial and shape information of the skin pixels. [CB00] proposed a
skin segmentation method in YCbCr space, applying Bayesian decision rules.

[SSA00] predicted changes of skin color during tracking with a second order
Markov model. Skin and non-skin color histograms are updated based on feed-
back from current segmentation and prediction. Skin color changes are modeled
as translation, scaling and rotation in color space. Their approach requires an
initial detection of skin. The online updating potentially drifts away from skin
to background color if the segmentation quality in each step is not very high.

A two-stage segmentation approach is used in [DB08]. First, both hand and
background color are modeled by a Gaussian. They use the Kullback-Leibler
divergence for Gaussian as distance measure between the foreground and back-
ground color distributions. Second, the MSER (Maximal Stable Extremal Re-
gion) detector is applied to the color likelihood map to detect the largest region
with the highest foreground probability. It is likely that this region represents
the desired hand.

A face detector is used in [WR05] to generate the skin color distribution.
Previous skin segmentation algorithms lack in their robustness with respect

to different conditions e.g. lighting, skin color variation, camera-parameters and
skin colored background. To this end, we have developed a skin color segmenta-
tion algorithm that is more robust to the aforementioned influence factors. The
problem can be formulated more generally as detection of a homogeneous color
region in an image.

Klinker et al. [KSK88, KSK87] extensively studied color images captured by
CCD cameras. The first influence factor they analyzed were the camera limi-
tations and their impact on the colors of images. The main limitation of con-
ventional cameras is the low dynamic range (LDR). The main drawback of the
LDR is overexposure, which yields a color clipping and a blooming effect. Addi-
tionally, many cameras apply a gamma-correction to account for the non-linear
human perception of light. But this transformation introduces curvature into
the color clusters representing image regions. We have to account for these in-
fluencing factors because they distort the distribution of image regions in color
space, and consequently, would reduce the quality of our approach presented in
the following section.

Furthermore, Klinker et al. proposed the Dichromatic Reflection Model, which,
basically, describes the color of objects as a linear combination of two color
vectors: one vector represents material surface reflection and the other mate-
rial body reflection. Thus, the colors of an object form a plane in the three-
dimensional color space.

In [KSK90, Kli93, Kli88], Klinker et al. proposed an image segmentation ap-
proach based on the Dichromatic Reflection Model. First, they divide the image
into small non-overlapping windows. For each window a PCA based color anal-
ysis is applied and windows of the same type are merged utilizing the matte
shading. Next, the highlight colors are combined with the matte colors to form
the plane hypothesis. Using the plane hypothesis and additionally accounting
color clipping and blooming effects, an accurate image segmentation is performed
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Figure 3.1: An image captures by an industrial camera, and its 3D color space
representations in RGB, HSV and Lab from left to right.

that outlines the material boundaries. They are able to separate the image into
two different images, one showing the matte parts and the other image the
highlights.

We could use the matte image for skin color segmentation by, first, white
balancing the image (similar to Sec. 3.2.1), and then, classifying each image
region as skin or non-skin. But we need only the skin colored regions of the
image. With our hierarchical clustering approach, we are able to prune large
image parts early and need to fully process only those regions most promising to
be skin. With our approach we are confident to save computation time, which is
important because we want to integrate our approach in real-time applications.

We propose a two-step algorithm to detect a homogeneously colored object.
First, we segment the image into subsets, each representing one or more objects,
and second, identify the correct subset representing the target object. In the
following, we denote such image subsets as image regions. Our approach needs
the image regions to be separable in color space, which is the case for most
objects, and the target object (in our case the human hand) has to have an
average color of limited variation, i.e. the color should not change significantly
(e.g. green to red). For application to skin detection, the proposed approach
makes no fixed assumption about the skin color distribution, in contrast to
many other methods. Only a rough hypothesis about the skin color distribution
relative to the background in color space is needed to identify the image region
representing the target,.

3.2 Segmentation of Homogeneous Color
Regions

The goal of the proposed method is to segment the image region that represents
the target object. For application to hand tracking, we want to identify skin
regions. Skin color typically is closer to red than an average background. Never-
theless, color distributions can heavily deviate from red. In contrast to previous
skin detection methods, we do not need a skin color distribution learned in a
preprocessing step. Such a learned color distribution could lead to a low quality
segmentation.

3.2.1 Choosing the Optimal Color Space

A homogeneous color region is a region in the image space that represents an
object that has a homogeneous color under white uniform illumination. One
of the design choices of our segmentation algorithm that works in color space,
is the color space itself. The quality of our algorithm is the higher, the better
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Figure 3.2: Given a point set consisting of two clusters, we expect a clustering
algorithm to subdivide both clusters as shown in the left image. However, if
the clusters are very anisotropic, the clustering approach tends to subdivide the
clusters as shown in the right image, which is not the desired result.

homogeneous color regions can be distinguished in color space. We compared
the RGB, HSV and Lab histograms of several images. We could not observe
that color regions could be separated better in HSV and Lab space. An example
is shown in Figure 3.1. Generally, transforming an image from one color space
to another potentially changes the shape of the regions in the histogram, but not
the separability of the regions. Of course, some images can be better separated
in one color space than in any other, but this changes from image to image. Thus,
there is no superior color space for clustering. The input image is available in
RGB color space, consequently we have decided to perform clustering in the RGB
space. In images captured under unconstrained conditions, the color distribution
of homogeneous regions can be heavily stretched. Clustering algorithms tend
to subdivide such strongly anisotropic clusters instead of subdividing different
clusters. Figure 3.2 illustrates this behavior.

To compensate this, the image is first transformed by yi := S−
1
2 UT (xi −m)

where U and S are obtained from the singular value decomposition [U, S, V T ] =
svd(C) of the covariance matrix C and m is the mean value of the RGB values
of the image I. The result of this transformation can be interpreted as an
image-specific color space1 (see Figure 3.3).

3.2.2 Expectation Maximization (EM) Clustering

In the previous section, we have explained how to transform and normalize the
image colors appropriately to be able to separate the image regions. Next, we
want to use a clustering algorithm to separate the image regions. Our goal is
to extract the regions that correspond to the color distribution of interest (skin
color for application to hand tracking).

As mentioned in Section 3.1, [KSK88, KSK87] showed that an object forms a
plane in the three dimensional color space, and additionally, color values offside
the plane, observed in real images, are the result of noise. We utilize this
information for our approach. We assume that each object can be approximated
by an ellipsoid in color space (plane + noise), and consequently, we can apply
the EM algorithm to separate different image regions. Each cluster, representing
the colors of an image region, is modeled by a center and a distance matrix.

1 A similar, but simpler transform is performed in the standard whitening transform. Note that
for our transformation, we do not transform on the gray axis, but instead on the R axis
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Figure 3.3: Prior to clustering the image in color space, a whitening transform
is applied to avoid homogeneous but very asymmetric regions to be splitted by
the EM algorithm. The left image shows the image in the RGB color space and
the right image after the transform (similar to whitening transform).

Let us assume we have a random variable X with distribution

p(x|Θ) =
K∑
j=1

αjN (x|Σj),x ∈ X (3.1)

and unknown parameters

Θ = (θj)j=1...K = (αj , x̄j ,Σj)j=1...K (3.2)

with

N (x|x̄j ,Σj) =
1

(2π)
3
2 det(Σj)

1
2

e−
1
2 (x−x̄j)T Σ−1

j (x−x̄j). (3.3)

Then, the EM algorithm estimates the parameters Θ, i.e. the Gaussian density
functions and the probability for each Gaussian.

Consider the image pixels x of image I in color space as a random variable X .
If we assume that X can be modeled by a Gaussian mixture model (GMM), then
I can be clustered in color space by applying the EM algorithm to X in order
to estimate the Gaussian mixture parameters. Next, each pixel x is assigned to
cluster j, if

p(x|θj) ≥ p(x|θl) ∀l ∈ {1 . . . k} (3.4)

3.2.3 Adding Spatial Constraints to EM

The back-projection of the color space clustering to image space reveals that
image regions are poorly separated in image space. An example is shown in
Figure 3.4. To address this problem, we use spatial constraints in order to get
smoother cluster borders in image space.

The idea behind the spatial constraints is the following: If two pixels belong
to the same region, they should have the same probability to belong to the same
class, and if an image region is crossing the neighborhood N (x) of a pixel x ∈ I,
the pixels on both sides should not belong to the same image region.

But we do not yet have the image regions. Instead, we can use image edges.
Using image edges, we have to take into account that a lot of image edges do
not belong to the border between two image regions. For this reason we do not
modify the probabilities on image edges but only for pixels not having edges
in image space: in a neighborhood N (x) of a pixel x ∈ I without an edge, all
pixels in N (x) are modified such that their probabilities to belong to the same
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Figure 3.4: In order to get smoother region borders, additional spatial con-
straints are integrated into the EM algorithm. The above pictures show an
example image (left), the clustering result without constraints (middle), and
with constraints (right)

cluster became more similar. Based on this idea, we modify the probabilities of
all pixels in each iteration of the EM algorithm as follows.

First, image edges are extracted by the Laplace edge detection operator. The
resulting edge image is denoted by C(I).

Based on the edge image, we compute a kind of image distance map D̃ with

D̃(x) = max
xj∈N (x)

C(xj)

‖x− xj‖+ 1
(3.5)

Due to varying edge response and image dimensions, it is necessary to normalize
D̃. We denote the edge distance image normalized to [0, 1] by D.

In each EM iteration, we compute for all image pixels the average probability
p̄(x|θi) of the neighborhood of size l×l. Then, we use the edge distance image
to interpolate between the probability of a pixel belonging to a cluster and the
average neighborhood probability. The new probability is

pn(x|θj) = p(x|θj)D(x) + (1−D(x))p̄(x|θj) (3.6)

3.2.4 Initialization of EM

The initialization step has a significant influence on the cluster result because the
EM algorithm only guarantees to converge to a local optimum. Consequently,
it is crucial to perform a good initialization of the EM algorithm. It is not
absolutely necessary to find the global optimum but a local optimum that allows
for a good foreground segmentation. There are two options for the initialization:
set the parameters θ of the Gaussian mixture model or set the probabilities
p(x|θ) for all data points and all clusters. In the case of a color image it is not
easy to obtain good initial values for θ. In contrast, we can roughly estimate
pixels to cluster membership based on the color values. It makes sense to convert
the image into the HSV color space because in this space the hue represents the
color property crucial for the clustering. But performing a simple clustering only
on the hue has turned out to be insufficient. Consider an image whose average
color is reddish. If one clusters with respect to hue, the result would be one
“big” red cluster representing the whole image. Additionally, in most images the
largest principal axis of an homogeneous image region is not parallel to the gray
axis. To take this into account, we first determine the principal axis

u = argmax
i∈{1,2,3}

 1
1
1

·ui
 (3.7)
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Figure 3.5: Initialization of the EM clustering: the EM only guarantees to
converge to a local minimum, thus, a good initial guess is necessary. We perform
this initialization as shown in the above workflow. Basically, all pixels in color
space are projected along the largest principal axis. Then, the projected 2D
colors are interpreted as hue and saturation. Fuzzy-k-means clustering is applied
to the (cyclic) hue values and pixel-to-cluster membership probabilities obtained
as output. We use this probabilities as input for the EM clustering approach,
which is applied to the 3D color values.

closest to the gray axis. The vectors ui are the column vectors of the matrix
U obtained from the singular value decomposition of the covariance matrix of
an image region. Then, the data points are projected along u and 2-dim data
points lying in the plane spanned by the other two principal axes are obtained.
For each data point the angle components of the polar coordinates are computed.
Note, that the angle is cyclic, and thus, not appropriate for a common metric
like the euclidean distance. To minimize the side effects of the cyclic property
to the metric, we search for an angle αmin ∈ [0◦, 360◦) in the cyclic color space
with minimal point density and shift the point set about −αmin. Then, fuzzy-k-
means clustering is applied. Figure 3.5 illustrates the whole initialization steps.

3.2.5 Hierarchical Image Clustering

The number of clusters is an input for clustering algorithms like EM and k-means.
Consequently, the optimal number of clusters for a given data set cannot be de-
termined by the clustering algorithm. In most cases it is application dependent,
and thus, an appropriate method to determine it lies in the responsibility of
the user of the clustering algorithm. Typically, “only” a quality measure for
the clustering result has to be defined that is used to decide how many clusters
perform best.

Basically, there are two options to estimate the optimal number of clusters.
One can either test different number of clusters up to a limit N in a brute force
manner i.e. apply the clustering algorithm with 2, 3, · · · , N clusters and chose the
best one. This would indeed give the optimal number of clusters but, of course, is
very expensive. Thus, we have decided to use a hierarchical clustering approach,
which is less time consuming. There are two main approaches for hierarchical
clustering, agglomerative and divisive. We use a divisive method because of two
reasons. First, agglomerative clustering can have quadratic complexity. Second,
the divisive approach has the advantage that we do not need to subdivide all
clusters down to single image regions. The reason for this early exit is that we
are interested in a homogeneous color region with a specific color distribution
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(in our case skin). Consequently, we can skip the subdivision of regions whose
mean vector is not close enough to the color of the destination object. This
yields a further speedup of the hierarchical clustering.

To take into account the distribution parameters of an image at the skin/non-
skin classification step, we define an image space mean value m̃t. Let m be the
mean value and [U, S, V t] := svd(C) the SVD of the covariance matrix of the
whole image, and mt the mean value of a image cluster. Then m̃t is computed
as follows:

m̃t :=
(
U ·S 1

2 ·V t
)−1

(mt −m) (3.8)

It can be geometrically interpreted as the difference vector of the mean values of
the cluster and the whole image, scaled by the standard deviation of the image.

In order to be able to segment the image regions belonging to the target object
(here skin), we need to learn the color distribution of the target object. We used
a set of images captured under several illumination conditions and labeled the
skin regions manually. We approximated the skin color by a multivariate Gaus-
sian and transformed it in the same way into image space as described above.
The learned mean value, denoted by m̃S is compared during the hierarchical
clustering against the mean value of each cluster.

During clustering the modified mean vector m̃i of each cluster is compared to
m̃S. If m̃S ·m̃i < ε for some user defined ε, the cluster is classified as a region
that does not contain the region representing the target object.

During the hierarchical clustering, we have chosen to use two clusters. This
choice is obvious because it works for more then two clusters in many cases.
Suppose fore example three clusters. One would cluster two of them into one
cluster and the third into the other one. The “two clusters” can be subdivided
in the next step. Of course, theoretically, it can also happen, that one of the
three underlying clusters is subdivided. If the split cluster is our target cluster,
it is expected to be separated in the next iteration in the hierarchy. Hence,
the computation time is higher, but the segmentation quality is expected to be
sufficient.

As a consequence of using two clusters in the hierarchical subdivision, pixels
with a probability near 0.5 are expected to be at the border between potentially
new clusters. If the clusters approximate two image regions well, pixels with a
probability near 0.5 should lie close to an edge of the image. In other words,
D(x), introduced in Section 3.2.3, and p(x|θj) should be proportional. We utilize
this to calculate the stopping criterion: if∑

p(x|θ)∈[0.5−δ,0.5+δ]

D(x) > εB (3.9)

the clusters are split, otherwise not.

3.2.6 Experimental Results

For experimental evaluation, we captured several images under different illu-
mination conditions. Some images also contain skin colored background. We
empirically found that parameter l, used in Section 3.2.3 to determine the neigh-
borhood size for pixel probability averaging, works best if set to the value 3. We
observed no further smoothing improvement for larger values of l and a smaller
value would result in no or an asymmetric neighborhood. The parameter k that
determines the neighborhood size to calculate the edge distance image depends
on l because at a pixel we need to know if an edge in the l× l neighborhood
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Figure 3.6: Hierarchical clustering: Each image region represents a cluster in
color space. In each iteration, the EM algorithm is applied to a cluster using
two prototypes (kernels). As result, a subdivision of the cluster into two clusters
is obtained. The edge image is utilized to decide if the subdivision is necessary.
If the subdivision is necessary, the clusters are processed recursively. Otherwise,
the cluster is compared with the skin direction vector to compute the probability
to be skin. Each point in the cluster corresponds to a pixel in the input image.
The probabilities are used to compute the final skin segmentation.

exists. Thus, we need k ≥ l. The edge distance map is also used to calculate
the stopping criterion. Because normally we do not find the region boundaries
determined by color space clustering exactly at the edge pixels, we need some
tolerance. Therefore, a higher value of k would be better. But the higher k, the
higher the computation cost for the edge distance map. As a compromise we
set k := 5. For the parameters εB and δ used in Section 3.2.5 for the stopping
criterion, δ := 0.05 and εB := 0.06 perform best for our test images.

To our knowledge, previously presented skin segmentation methods use a
static skin model or different initialization methods (e.g. a face detector) to
estimate the skin color. Our approach only uses the information of a rough skin
color direction relative to the background. We compare our method to the well
know approach [JR02] because both can be used as initialization for finer (skin)
segmentation. We use the Matlab sourcecode provided by [SSA00]. They used
the method from [JR02] to initialize their own approach. To make a fair com-
parison, we disabled the morphological filter. It is clear that on both methods
a morphological filter or other filters could be applied as post processing step,
but this would falsify our results. Figure 3.7 shows some results obtained using
[JR02] and our approach. The images have a resolution of 250 × 250. On an
Athlon 64 X2 Dual the algorithm needs about 0.4 seconds. The examples show
that we can obtain a better detection rate. False positives occur only in small
regions. In images with a non-Gaussian skin color distribution our algorithm
will detect smaller parts of the skin.

The weak point of the approach is the EM algorithm, which often does not
converge to the global optimum. For this purpose we have tested a clustering
algorithm that does less depend on the initialization and converges more often
to a better local maximum or even to the global maximum.
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Figure 3.7: Segmentation results: The original images (left), segmentation ob-
tained by [JR02] (middle) and our approach (right).

3.3 Replacing EM by Matrix Neural Gas

We replace the EM algorithm by the matrix neural gas (MNG) [AHH08]. The
main difference between the EM algorithm an the MNG is the way the proto-
types2 are updates. The EM algorithm uses the distances between the points3

and prototypes with respect to the metric d. In contrast, MNG uses the ranks
between points and prototypes. Given the prototypes w1 · · ·wk and a set of
points x1 · · ·xn. The rank of a prototype-point pair (wi,xj)

kij = |{wl | d(xj ,wl) < d(xj ,wi)}| (3.10)

is the number of prototypes that are closer to xj than prototype wi. This allows
MNG to be more likely to converge to the global optimum. We apply MNG to
the image in color space. The prototype positions are initialized randomly. We
use the skin color distribution histogram from [JR02] to classify each cluster as
skin or non-skin. An image region is classified as skin if the mean (prototype
position of a cluster as an output of the MNG) is classified as skin according to
the skin color distribution from [JR02].

We have also replaced the way to determine the number of clusters that per-
form best: we tested several numbers of clusters and chose the best one, i.e.
first, we cluster the image into k = 2 clusters, then we evaluate the quality of
the result, and then use k = 3 clusters and so forth. (In contrast, our approach
proposed in Sec. 3.2 uses a hierarchical subdivision)

In order to determine the best number of clusters, we need a measure to
compute the quality of the clustering result. We tested three different quality
measures.

2 Each prototype represents the center of a cluster.
3 Points denote an element of the dataset to be clustered, in our case the color value of a pixel
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Tag Description
SetA, SetI , SetN complex BG, bad illumination
SetB , SetC , SetG, SetH , SetJ , SetK , SetL simple BG, good illumination
SetD, SetE , SetF simple BG, bad illumination
SetM , SetO complex BG, good illumination

Table 3.1: An overview of our ground truth dataset. We have image sequences
taken under different illumination conditions and with simple and complex, in-
cluding skin colored, background.

The first quality measure, Border Length (BL), measures the length of the
cluster borders in image space. The shorter the borders are, the better the
clustering result is.

The idea behind the second quality measure, Border Edges (BE), is similar
to the first one, but in contrast, we do not use the border length itself but the
edge response (obtained by an edge detector) across the borders. Higher values
denote a better clustering quality.

The third quality measure, Color Space Compactness (CSC), tests the prox-
imity of all pixels to the corresponding cluster center in color space using the
Mahalanobis distance. The matrix for the Mahalanobis distance is computed
by the MNG algorithm.

The three measures can, of course, also be combined into a single measure,
e.g. by a weighted sum of the individual measures. Optionally, one can obtain
good weights by using learning methods e.g. boosting.

3.4 Comparative Evaluation

We compared our approach from Sec. 3.2, the modification using the matrix
neural gas clustering from Sec. 3.3 and the approach proposed in [JR02]. For
simplicity, we will denote the approaches in the following as HybridClustering,
NeuralGasColorClustering, and RehgJones (in this order).

Because our focus is the quality evaluation for application to hand tracking we
have generated our own ground truth dataset containing different hand poses.

3.4.1 Ground Truth Data

To obtain the ground truth dataset, we manually labeled a large number of im-
ages. The ground truth dataset consists of 15 different image sequences. All
sequences consist of images showing a single person at different postures and
under different background and illumination conditions. The dataset consists
of 483 labeled images. The original image sequences are larger by a factor of
20. We have labeled only every 20th frame. The reason is that manually la-
beling images is extremely time consuming, and additionally, we do not expect
a significant change of the image (skin) color(s) in less than 20 frames. Five
image sequences contain a complex background. With complex background we
mean that several objects are visible in the background, potentially skin colored
or highly textured. In contrast, the other sequences have a simple background.
Simple means that the whole background has a homogeneous color. Six se-
quences have bad illumination conditions. A detailed overview of the conditions
for all sequences is shown in Table 3.1, and example pictures are given in Fig.
3.8.
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(a) SetA (b) SetB (c) SetC

(d) SetD (e) SetE (f) SetF

(g) SetG (h) SetH (i) SetI

(j) SetJ (k) SetK (l) SetL

(m) SetM (n) SetN (o) SetO

Figure 3.8: Our ground truth dataset consists of 15 different image sequences
taken under various conditions. Each of the above images shows one frame of
the image sequence.
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Figure 3.9: Segmentation results as color-coded images. The left image shows
a segmentation of moderate quality. Most parts of the skin are detected (true
positive; light green), but also large regions of non-skin are classified as skin
(false positive; light red). In contrast, in the right image the background is
segmented correctly (true negative; dark green), and only a few skin regions are
not detected (false negative; dark red).

3.4.2 Evaluation Method

First, we introduce the following notations:

• false positives are background pixels that are classified as skin,

• false negatives are skin pixels that are classified as background, and

• true positives and true negatives are correctly classified pixels.

Fig. 3.9 illustrates the four pixel types by an example. For evaluation, we use
receiver operating characteristic (ROC) curves. ROC curves visualize the rela-
tionship between false positives and true positives. Different relations between
false and true positives are generated by updating a skin threshold θ, which is
described in detail below.

The skin segmentation approaches compute for all image pixels a probability
to be skin color. In order to be able to compute false positives, false negatives
etc., we have to binarize the probabilities i.e. convert the skin probabilities to
binary values. The threshold used for binarization basically controls the trade-
off between the pixels classified as false negatives and false positives. In the
following we denote this threshold simply as skin threshold θ.

3.5 Results

The results are shown in Fig. 3.10. We observe that the HybridClustering ap-
proach performs best on average. The reason is that the ratio between the true
positives and false positives is higher compared to the other approaches, except
for a very low θ. But in real applications we do not want such a high false
positive rate. Surprisingly, RehgJones is superior compared to NeuralGasColor-
Clustering.

Comparing the ROC curves of NeuralGasColorClustering using the three dif-
ferent methods (BL, BE and CSC) to determine the “best” number of clusters,
we observed that CSC yields the best ratio between true positives and false
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Figure 3.10: We evaluate the segmentation approaches by receiver operating
characteristic (ROC) curve analysis. ROC curves visualize the relationship be-
tween false positives and true positives. The closer the curve is to the y-axis on
the left, the better the overall performance of the approach is.

positives. We have also tested a linear combination of all three cluster quality
measures, but we observed no increase in quality.

We also observed a high variance between the individual image sequences.
For visualization (Fig. 3.13), we have chosen three sequences, one with a simple
background (K), one with a complex background (M), and a sequence with a
skin colored background (N). The third sequence is the most challenging one for
all skin segmentation approaches. The ROC curve for the HybridClustering of
sequence N has to be explained because it looks abnormal. The curve consists
of two subparts (1st part at a positive rate of 0–0.15, 2nd part 0.5–1), which
on their own are “valid” ROC curves. The abnormality is that the second part
starts at a lower true positive rate than the first parts ends at. The reason lies
in the kind of the hierarchical clustering. The first part of the curve has higher
values of θ than the second part. HybridClustering tests the mean value of the
cluster at each subdivision if the probability to be skin is above θ. If the test
fails, the clusters are not further processed. But the final decision if a cluster
represents skin or not, is more smart. This can yield a cluster, which is first
classified as non-skin, but, finally, is classified as skin. But a further subdivision,
when using a lower θ, could result in both sub-clusters to be finally classified
as non-skin, which can lead to a lower number of true positives. An example is
shown in Fig. 3.12.

For completeness, we want to mention that one can also analyze the segmen-
tation quality using Precision-Recall curves (Figure 3.11. From the definitions
of

Precision =
true positives

true positives+ false positives
(3.11)
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Figure 3.11: Precision-Recall curve of the skin segmentation approaches we
evaluated. Precision-Recall curves do not take into account the true negatives,
which is no necessarily advantageous.

(a) Original Image (b) Result for θ = 0.30 (c) Result for θ = 0.50

Figure 3.12: For HybridClustering, due to incorporating the skin threshold θ
into the hierarchy, in some cases a lower value of θ can lead to a lower true
positive rate.

and

Recall =
true positives

true positives+ false negatives
(3.12)

we see that Precision-Recall curves do not take the true negatives into account.
On the one hand, the analysis is independent of large uncritical regions (i.e.
image parts that are easily classified as background by all skin segmentation
approaches). On the other hand, image regions that are not that “clearly” clas-
sified as background are not taken into account, but they should be.

The main drawback of clustering-based approaches is the computation time.
Even if they are applied to images of low resolution (100 K Pixels) the clustering
step still needs about 0.5 seconds. This is prohibitive for a real-time tracking
system. Additionally, we cannot guarantee that a clustering based approach
as presented above never fails. This leads us to the idea to combine the seg-
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(a) RehgJones (b) HybridClustering

(c) NeuralGasColorClustering
using BL

(d) NeuralGasColorClus-
tering using BE

(e) NeuralGasColorClus-
tering using CSC

Figure 3.13: We have chosen three image sequences to analyze the influence of
different illumination and background conditions on the segmentation quality.
The sequences also illustrate the deviation of the ROC curves between the in-
dividual datasets. The most challenging image sequence is sequence N , which
contains a large skin colored background region.

mentation results of several frames to generate color distributions of skin and
background and utilize these distributions for fast segmentation.

3.6 Combining Multiple Frames to Improve
Segmentation

To compensate outliers (falsely segmented frames) and to significantly reduce
the computation time, we combine our high quality clustering-based approach
with a fast histogram-based approach (a simple histogram look-up per pixel).

Consider a good estimation of the skin color distribution. The distribution
can be represented by a histogram. The skin color segmentation based on his-
togram look-ups is extremely fast. We have implemented the histogram-based
segmentation on the graphics hardware. The parallelization is trivial because
the segmentation is independent for each pixel. The challenge is to obtain a
good skin color estimation. We utilize our clustering-based segmentation from
Sec. 3.2 to learn the skin color distribution.

Let us assume the clustering needs about 1 second. At start-up of the track-
ing, we use the first frame as input for the clustering-based segmentation. To
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Figure 3.14: We use our skin detection approach presented in Sec. 3.2 to estimate
the skin color. Then, we use the results to generate histograms representing
the skin and background color distributions. These histograms are then used
for the real-time skin segmentation. This approach has two advantages, first
the clustering based approach is computationally too intensive for real-time
applications and second, we can combine the clustering-based skin detection
results of multiple frames, which increases the segmentation robustness.

initialize the skin color histogram, we use an initial (not necessarily good) guess
of the skin color (e.g. the skin color histogram from [JR02]). After the clustering
is finished we update the histogram. We use a learning rate α to interpolate
between the current histogram values and the new values obtained from the
clustering. The histogram should not be completely overwritten because of two
reasons. First, not all color values representing skin are observed at every frame,
and thus, potentially in the next frame the skin color changes or previously oc-
cluded skin reappears. Second, if the clustering-based approach fails because of
a bad conditioned color distribution or the clustering algorithm converges to a
local optimum by far worse that the global optimum, the resulting wrong skin
color estimation is partially compensated.

Figure 3.14 illustrates the basic idea of the approach. In practice, following the
argumentation of [JR02], we found that 643 histogram bins perform best. We
also tested several learning rates α for the histogram update. In most setups a
value between 0.1 and 0.5 works best. For α < 0.1 the skin color does not adapt
appropriately to new situations e.g. varying illumination or the hand moving
from the light into the shadow. At a learn rate α > 0.5 a fail of the clustering
approach has a too high impact, which causes the hand segmentation to fail in
the subsequent frames until the next clustering is performed correctly.

Finally, we want to mention that we perform some post-processing of the
clustering result, e.g. a morphological filter to remove noise (single pixels) and
region growing to fill small wholes (which occur at over- and underexposed
skin parts). Then, the post-processed result is used to update the skin color
histogram.

3.7 Conclusions

In this section we presented a novel skin color segmentation approach based
on color space clustering. We use the EM algorithm for image segmentation.
But in contrast to conventional image segmentation, our goal is to separate
skin from other image parts, and not to separate image parts spatially. The
results are promising, but two problems remain. First, the EM algorithm does
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only converge to a local maximum. Second, skin color is not always normally
distributed4.

We have also tested a similar clustering-based skin segmentation approach by
replacing the EM algorithm by Matrix Neural Gas clustering, which is expected
to has better convergence properties.

We compared both approaches to a well known approach proposed by Rehg
and Jones [JR02]. Our approach turned out to work best, and surprisingly
the Matrix Neural Gas based approach performs worst. We assume that the
image space smoothing, we use in our EM-based approach, better supports the
convergence to an optimum than the Matrix Neural Gas does.

Finally, we presented an approach to combine the clustering-based skin detec-
tion results into a fast and robust histogram-based skin segmentation approach.

4 The EM algorithm assumed the skin and background color to be normally distributed.



Chapter 4

Similarity Measures

As already mentioned in Sec. 4.2.2, in this thesis we use model-based approaches
for hand tracking. Model-based approaches basically test a set of hypotheses
about the hand pose against the input image. The best matching hypothesis is
used as the final estimate of the hand pose in the current frame. Often, multiple
hypotheses are used instead of only one, i.e. not only the best matching but
the best k matching poses are retained. There are several ways to fuse multiple
matches. For example, one can compute a weighted average of the k matches or
just use them as a rough estimate for the next frame. Another alternative is to
apply an outlier detection to the k matches per frame. One can also incorporate
multiple frames into the outlier detection.

But, regardless of the effectiveness of fusion and filtering approaches, they can-
not reveal more information about the observation than the similarity measure
provides. Consequently, it is crucial to use the best possible similarity measures.

Finding a high quality similarity measure is a challenging task because of
several reasons, such as noise in the input images and the 3D to 2D projection
(from scene to image) i.e. a large amount of information is lost. Even if the
hand could be captured in 3D (for example represented by a voxel map), due to
varying hand geometry (real hand to real hand, and real hand to hand template),
the computation of a good similarity measure is still a challenging task.

It is also hard to discriminate between the image regions corresponding to the
hand and those corresponding to the background because the only differences
are the color values in the input image, and these color values may overlap sig-
nificantly between object and background. Recently, cameras delivering depth
images became available. Depth information could help to obtain a better hand
segmentation and resolve ambiguities. However the resolution of the depth im-
ages is still very low.

In this chapter, we present several novel improvements of existing similarity
measures, and completely new measures. Each similarity measure has its advan-
tages and disadvantages. Generally, there is no “optimal” similarity measure.
The method of choice depends on the conditions the hand has to be tracked
on. Roughly one can say that the more assumptions can be made about the
setup (e.g. uniform background, hand geometry, illumination conditions, poses
to be tracked), the faster and potentially simpler similarity measures can be
used. Consequently, the tracking approach will also work more robustly in these
situations. But, generally, none or only one of the simplifying preconditions is
given, and in such situations more powerful methods have to be used to get a
hand pose estimate at all. The similarity measures we present in this thesis are

43
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designed for different cases, for example, segmentation-based approaches assume
that the hand can be segmented at appropriate quality. This is a constraint, but
if it is fulfilled the approach similarity measure works fast and reliably. In Sec-
tion 4.1.3 we present such approaches. If such conditions are not given i.e. the
hand cannot be segmented, more general and robust methods are needed. We
present such a method in Section 4.1.4. Of course, approaches that work in more
general cases need to take more information into account, and consequently, are
computationally more expensive. In Section 4.2 we will present a novel edge
based similarity measure that work on the edge gradient. Edge-based similarity
measures potentially can resolve ambiguities that silhouette area-based measures
are not able to resolve.

4.1 Silhouette Area-Based Similarity Measures

Silhouette-area based similarity measures are very effective and fast for applica-
tion to articulated object tracking. The measure is continuous with respect to
changes in pose space and robust to noise. Basically, the segmented silhouette of
the target object is compared to a hypothesis also represented by its silhouette
area. The more similar both silhouettes are, the higher the matching probabil-
ity is. In the following, we will first give an overview of related work and then
motivate and present our novel silhouette area-based similarity measures.

4.1.1 Related Work

Silhouette area-based approaches can be divided into two classes. The first class
needs a binary silhouette of both the model and the query image. The second
class compares the binary model silhouette area with the likelihood map of the
query image.

A simple method belonging to the first class is proposed in [DMR06]. They
assume that the hand is in front of a homogeneous, uniformly colored back-
ground. After applying skin segmentation to extract the foreground, hand size,
foreground center, and differences between extrema are used to detect the hand
position and then recognize some simple gestures, e.g. an open hand or a fist.

A more robust approach is proposed in [LWH04] and [WLH01]. First, the
difference between the model silhouette and the segmented foreground area in
the query image is computed. Then, the exponential of the negative squared
difference is used as silhouette matching probability. A slightly different measure
is used by Kato et al. [KCX06]. First, they define the model silhouette area AM ,
the segmented area AI and the intersecting area AO = AI∩AM . The differences
AI −AO and AM −AO are integrated in the same way as described above into
the overall measure.

In [OH99], the non-overlapping area of the model and the segmented sil-
houettes are integrated into classical optimization methods, e.g. Levenberg-
Marquardt or downhill simplex. [NSMO96] first compute the distance trans-
form of both the input image and the model silhouettes. Regarding the distance
transformed images as vectors, they compute the normalized scalar product of
these vectors. Additionally, the model is divided into meaningful parts. Next,
for each part, the area overlap between the part and the segmented input image
is computed. Then, a weighted sum of the quotient between this overlap and
the area of the corresponding model part is computed. The final similarity is
the sum of the scalar product and the weighted sum.
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Figure 4.1: Similarity computation, as proposed by Stenger et al. [STTC06,
Ste04], between a hand hypothesis represented by the silhouette foreground
F and background B and the input image represented by the skin likelihood
map. To reduce the computational complexity of the näıve approach (mid-
dle) with O(#Pixels) to O(contour), Stenger et al. utilized the row-wise prefix
sum(right).

In [ASS04, SKS01] a compact description of the hand model is generated.
Vectors from the gravity center to sample points on the silhouette boundary,
normalized by the square root of the silhouette area, are used as hand represen-
tation. During tracking, the same transformations are performed to the binary
input image and then the vector is compared to the database.

A completely different approach is proposed by Zhou and Huang [ZH05]. Al-
though they extract the silhouette from the input image, they use only local
features extracted from the silhouette boundary. Their features are inspired by
the SIFT descriptor [Low99]. Each silhouette is described by a set of feature
points. The chamfer distance between the feature points is used as similarity
measure.

All the aforementioned approaches have the same drawback: to ensure that
the algorithms work, a binary segmentation of the input image of high quality
is a pre-requisite. Binarization thresholds are often difficult to determine.

To our knowledge, there are much fewer approaches working directly on the
skin color likelihood map of a segmentation. The skin likelihood map contains for
each pixel the probability that it belongs to a region consisting of skin. In [ZH03]
the skin color likelihood is used. For further matching, new features, called
likelihood edges, are generated by applying an edge operator to the likelihood
ratio image. However, in many cases, this leads to a very noisy edge image.

In [STTC06, Ste04, SMFW04], the skin color likelihood map is directly com-
pared to the hand silhouette. Given a hypothesis, the silhouette area F (Fig.
4.1) of the corresponding hand pose and the neighboring rectangular background
B of a given size are used to compute the the similarity measure. In the skin
likelihood map, the joint probability of all pixels that correspond to F is com-
puted and the inverse probabilities corresponding to B respectively. The fore-
and background joint probabilities are combined to the final similarity measure.
The drawback of this measure is that its complexity linearly depends on the
number of pixels, and thus on the image resolution and hand size in the input
image.
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Stenger et al. [STTC06, Ste04] proposed a method to reduce the computation
complexity to be linear to the contour length. To this end, he utilized the
prefix sum as acceleration structure. First, the product in the joint probability
is converted into sums by simply computing the joint probability in log-space.
The row-wise prefix sum in the log-likelihood image is computed. The original
product along all pixels in a row reduces to three look-ups in the prefix sum.
With this, he reduced the computational complexity of the similarity to be
linear to the contour length which is the square root of the naive computation
complexity. Figure 4.1 illustrates the basic idea.

[WP09] uses a completely different segmentation-based approach by requiring
the user to wear a colored glove. The descriptor is based on the gloves color
coding. Each of the colors correspond to a specific part of the hand. In a prepro-
cessing step, the authors generate a database, containing descriptor instances
for a large number of hand poses. During tracking, they compare the database
to the hand observed in the input image using a Hausdorff-like distance between
the centers of the color regions. The disadvantages of the approach are that a
homogeneous background is needed and a special glove is necessary.

Our approach presented in this section is inspired by [STTC06]. A tracking
approach needs to compare a large number of hand hypotheses to a lot of input
image positions. Each comparison includes a similarity measure computation.
Thus, it is very important to keep the computation time of the measure as low
as possible. To this end, we propose a novel representation of the hand pose
silhouettes by axis-aligned rectangles. Combined with the integral image, we
are able to further reduce the complexity of the similarity measure computation
from linear to near-constant time.

Of course, there is a lot of previous work on object and hand tracking based
on stereo cameras and some recent work based on depth cameras, which recently
became affordable. Our approach works well on conventional monocular cameras
and should be compared with such approaches. But, of course, our approaches
can be extended to utilize stereo and depth information. I want to refer to the
end of the chapter for a detailed examination on utilizing stereo and depth for
hand tracking.

Our new similarity measures, we present in this section, are based on the com-
parison of distributions. The segmentation-based approaches compare the distri-
bution of segmentation likelihood values that correspond to the hand silhouette
to those corresponding to the image background. Our color-divergence based
approaches, analogue, compare three-dimensional color distributions. The seg-
mentation likelihood and color distributions can be normalized and interpreted
as probability densities. For an extensive survey of similarity/distance measures
between probability density functions, we want to refer to [Cha07].

Our representation has several advantages and opens new possibilities. We
will go into details in this chapter.

The following section first describes our method to compute the rectangle set
representation and explains how to achieve near-constant matching time utilizing
the integral image.

4.1.2 Hand Silhouette Representation

In order to explain our novel representation of silhouette areas, we first need to
make some definitions.

Definition of Hand Template T:
Given a hand pose θ and a viewpoint by the rotation matrix R, the hand model
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Figure 4.2: Our approach: computation of the similarity measure between a
hand hypothesis represented by the silhouette foreground F and background B,
and the input image represented by the skin likelihood map. The näıve approach
(middle) has a computation complexity of O(#Pixels) (green area). In contrast,
the computation complexity of our approach is in the number of green points
because we have to evaluate the integral image only at these points.

from Sec. 2 is rendered to an image. The image is thresholded such that only
fore- and background information remains. Next, it is converted into the binary
image T with T (x, y) ∈ {0, 1}. The foreground is represented by 1 and the
background by 0.
For convenience, we also use the following set representation of templates.
Definition of Hand Silhouette S:

The hand silhouette S is the set of all pixels in the template T corresponding
to the foreground, i.e. S = {(x, y) |T (x, y) = 1}. The neighboring background
is defined analog by S̄ = {(x, y) |T (x, y) = 0}.
We propose to approximate a template T by a set of axis-aligned rectangles.

More precisely, we have two rectangle sets, one representing the hand silhouette
S and a second the background S̄. With such a representation, one can perform
template matching at arbitrary resolutions in near-constant time with respect
to the template size and image resolution. Figure 4.2 illustrates the idea of our
approach.
We denote the integral image (Fig. 4.2 right) of a gray scale image I by II:

II(x, y) =
∑

0≤i≤x
0≤j≤y

I(i, j) (4.1)

Let R be an axis-aligned rectangle with upper left corner u and lower right
corner v, both inside I (Fig. 4.3). Utilizing the integral image, one can compute
the sum of the area R of all pixels in I by four look-ups:∑

(i,j)∈R

I(i, j) = + II(vx, vy)

− II(vx, uy − 1)

− I(ux − 1, vy)

+ II(ux − 1, uy − 1)

(4.2)

We compute a set of n mutually non-overlapping rectangles R = {Ri}i=1···n
that cover S. Assuming a constant covering accuracy, the number of rectangles
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Figure 4.3: The integral image can be utilized to compute the sum of an axis-
aligned rectangular area (a) by four look-ups (b – e).

n depends on the shape of the silhouette area, and thus, varies slightly from
silhouette to silhouette. Figure 4.10 shows some example silhouettes and their
approximation by rectangles.

In the following, we denote a set of rectangles that approximate S with RS .
To obtain a good approximation, one has to minimize the non-overlapping area
A (Fig. 4.4) of S and RS ,

A = min
RS

∣∣∣(S ∪ ⋃
Ri∈RS

Ri) \ (S ∩
⋃

Ri∈RS

Ri)
∣∣∣ (4.3)

The smaller the number of rectangles |RS |, the fewer look-ups in the integral
image are necessary, and thus, the faster the matching is. But, generally, the
fewer rectangles are used to approximate a silhouette, the more inaccurate the
representation is, i.e. A is too large. Obviously, there is a trade-off between
A and |RS |. But, in practice, the real hand in the input image has a slightly
different appearance (finger length, thickness etc.) than the hand model used
for matching. Additionally, real hands themselves are also different in geometry
and, consequently, also in shape. Accordingly, it is unnecessary to compute a
very accurate approximation of the hand silhouette, and it is even a waste of
computational power and memory. What we need is a representation of the hand
silhouette that keeps the qualitative shape (separate hand parts like fingers and
palm) and a coarse information about the relative position of the hand parts.
This can be provided by our rectangle sets approximating the hand silhouettes.
Now because it is obvious that we cannot achieve and also do not need an
approximation error A = 0, we will denote the silhouette approximation |RS |
by representation. The computation of |RS | i.e. solving Eq. 4.3 is by far not
trivial.

A lot of work solving similar problems exists. One has to differentiate between
rectangle covering [KR99, WS90, HLL06] and partitioning [LTL90, OT01] prob-
lems. Covering allows an arbitrary overlap between the rectangles in RS , parti-
tioning does not. Most covering and partitioning algorithms compute solutions
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minimize 
red area 

Figure 4.4: We minimized the non-overlapping area (right, red area) to get
an as good as possible approximation of a template silhouette by axis-aligned
rectangles (left). Note that the rectangle approximation is chosen extremely
coarse for better visualization of the non-overlapping area. In practice, the
rectangle approximation is by far better.

under the constraint that the rectangles lie completely inside the polygon to be
covered. Our problem is similar to standard partitioning in that we do not allow
overlaps between the rectangles RS , but it differs from partitioning because we
do not require the rectangles to lie completely in the silhouette S. In fact, we
even encourage a solution where some rectangles lie slightly outside due to the
reasons mentioned in the previous paragraph. Therefore, we can allow A > 0,
which usually leads to solutions with much smaller numbers of rectangles RS .

In the following, we present two approaches to obtain a solution with A < δ,
where δ is application-dependent. The first approach computes a near-optimal
solution using dynamic programming. But due to the high complexity, in prac-
tice, it is only applicable to low resolution images i.e. a very coarse hand template.
The second approach computes a good, but not the optimal solution, through
a greedy algorithm. The approach is fast enough even for detailed hand pose
silhouettes and has the advantage that the accuracy of the covering is a freely
adjustable parameter.1

First, the hand model is rendered at a high image resolution to obtain the
template T . The rectangle representation of the template silhouette S and
background S̄ can be computed in the same way. We will explain our algorithms
exemplarily by hand of the template silhouette S.

1 This enables us to generate a representation optimized for different applications. For example,
if an extremely fast but not very accurate tracking is needed, we use a more coarse represen-
tation with fewer rectangles.
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τ = 0.1 τ = 0.5 τ = 0.9

Figure 4.5: Rectangle covering results using our dynamic programming approach.
The parameter τ controls the benefit to cover the foreground. Lower τ causes
more background to be covered in order to also cover more of the foreground.

4.1.2.1 Rectangle Covering Computation using Dynamic
Programming

For simplification, we normalize the image dimensions of the hand template
T to be in [0, 1]. Next, we subdivide T into r×s uniform boxes and obtain a
coarse representation Trs of T . Let additionally Srs be the foreground silhouette
extracted from Trs. The rectangles to cover Srs are aligned at the raster defined
by the boxes in T .

In the first step of our dynamic programming approach, we perform the fol-
lowing initialization: we define a benefit value g(Ri) for each feasible rectangle
Ri in Srs, which indicates the benefit of a rectangle when included in the final
set of covering rectangles RS . This value is computed as:

gτ,θ(Ri) = −θ +
∑

(x,y)∈Ri

(T (x, y)− τ) (4.4)

Note that despite computing the rectangles at the coarse r× s grid, the benefit
still is computed at the original high-resolution template T . The parameter
τ ∈ [0, 1] controls the penalty to cover a background box by a rectangle and
the gain to cover a foreground box. For a value close to 0, the algorithm covers
more background boxes in order to cover more foreground boxes as well. If τ is
close to 1, the rectangles tend to cover no background rectangles, and thus, are
nearly completely inside the silhouette. Figure 4.5 shows example results with
different values for τ . Henceforth, we assume τ = 0.5. In Sections 5.2 we will
need different values for τ .

The parameter θ adds a penalty to each rectangle Ri in the covering set R.
The parameter controls the aforementioned trade-off between the covering error
A and the number of rectangles in R. Because θ is a local control parameter, we
cannot directly control the global error A. Instead, we set θ to an initial value,
compute the covering, evaluate the error A, and if it is too high, we decrease θ
and run the algorithm again.

Using the benefit function from Eq. 4.4, we obtain the following optimization
function for our rectangle covering problem:

R∗τ,θ = argmax
R∈P∅

∑
Ri∈R

gτ,θ(Ri) (4.5)
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Figure 4.6: Rectangle covering solved by a dynamic programming approach:
The left image illustrates the optimal substructure property and the right image
the overlapping subproblems.

with

P∅ = {R ∈ P(R) | ∀Ri, Rj ∈ R, i 6= j : Ri ∩Rj = ∅} (4.6)

is the subset of the power set with mutually non-overlapping rectangles. R
denotes the set of all axis-aligned rectangles in the hand template image T , and
P(R) the power set of R. R∗τ,θ is the optimal covering of the silhouette S for
template T under the fixed parameters τ and θ. For simplicity, we will omit
both parameters in the notation for the optimal covering and use R∗ instead of
R∗τ,θ.

To prove that the optimal solution can be computed using dynamic program-
ming, we have to show that the optimal substructure (illustrated in Fig. 4.6a)
property holds:

Given a rectangle R1 in T , assume R1 or a subset is part of the optimal
covering, i.e.

∀R ∈ R∗ : R ⊆ R1 ∨ R ∩R1 = ∅ (4.7)

Let also D(R1) denote the ”benefit” value of this sub-covering. Then the optimal
solution R∗1 of the sub-problem R1 is in the optimal solution of T , i.e. R∗1 ⊆ R∗.
Assume, this is not the case, then replace R̄ = {R|R ∈ R∗ ∧ R ⊆ R1} by R∗1.
By assumption D(R1) is optimal, thus, R∗ \ R̄∪R∗1 is a better solution. This is
a contradiction. Thus, the covering problem exhibits the optimal substructure
property.

Additionally, to show that it is worth to use dynamic programming, we have
to have overlapping sub-problems (illustrated in Fig. 4.6b): Let us assume, we
have two sub-problems: the optimal covering R1 of R1 and R2 of R2 with
R1 ∩ R2 = R3 6= ∅. To compute R1 and R2, it is necessary to compute R3.
Thus, the overlapping sub-problem property holds.
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Area to be covered An optimal solution A solution obtained
using Eq. 4.8

Figure 4.7: Construction of a theoretical area (left) whose optimal rectangle
covering cannot be solved using Eq. 4.8 because we cannot subdivide the optimal
covering using a horizontal or vertical line without intersecting (and thus cutting)
one of the rectangles. On the right, a solution that can be computed using Eq.
4.8 is shown. Note that the covered area is still optimal but the number of
rectangles is not minimal.

Let Ru
v =R

ux,uy
vx,vy denote a rectangle with upper left corner u and lower right

corner v. We use the following recursive equation to compute the covering:

D(Rx,yx+1,y+1) = g(Rx,yx+1,y+1)

D(Ru
v) = max

{
g(Ru

v),

max
ux<x<vx

{
D(Rux,uy

x,vy
) +D(Rx,uy

vx,vy
)
}
,

max
vx<y<vy

{
D(Rux,uy

vx,y ) +D(Rux,y
vx,vy

)
} }

(4.8)

Note that one can construct cases (see Fig. 4.7) whose optimal solution cannot
be computed using Eq. 4.8. For this special cases the above recursive formula
will not deliver the optimal solution. A full subdivision considering all sub-
rectangles, of course, would still yield the optimal covering.

In our implementation, we try a number of different solutions r× s = 1 ×
1, · · · , 32×32. As soon as the covering accuracy criterion is fulfilled, we terminate
the computation. Of course, higher resolutions are possible, but need a high
computation time.

4.1.2.2 Rectangle Covering Computation using a Greedy Algorithm

We propose a greedy algorithm to compute a representation of a template T by
a set of axis-aligned rectangles R ⊂ R, where R denotes the set of all rectangles
in the image T . For an axis-aligned rectangle R ∈ R we define its benefit:

F (R) =
∑
x∈R

(T (x)− τ) (4.9)

Similar to the dynamic programming approach, the parameter τ ∈ [0, 1] allows
us to control the penalty for background pixels covered by a rectangle in the
solution R. But in contrast to the benefit function (Eq. 4.4) of the dynamic
programming approach, we do not need the parameter θ to penalize the number
of rectangles. In the greedy approach, we successively add rectangles to the
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a b c d e f
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Figure 4.8: Rectangle covering using our greedy approach: rectangles are added
successively. First, the biggest connected foreground region is searched for and
a sufficiently small rectangle dropped (a). Then the size of the rectangle is opti-
mized greedily by moving the edges of the rectangle (b). This step is repeated
(c-k) until some criterion is fulfilled. Image (l) shows an example result with 50
rectangles.

solution until some criterion (e.g. number of rectangles or covering accuracy) is
fulfilled.

We initializeR with the empty set. At each iteration j in the greedy algorithm,
we try to find Ropt

j = argmaxR⊂RF (R). Because we have no knowledge about

Ropt
j , we use a two-step search strategy to estimate this rectangle. Our search

strategy basically works as follows:

We denote the set of all axis-aligned rectangles in a region X by R(X). Note
that we already have introduced R(T ) = R. The first step of the greedy covering
algorithm is a recursive search. For a rectangle/image X, we define the function

M(X) = argmax{F (R) | R ∈ R(X), size(R) = (
width(X)

2
,

height(X)

2
)}
(4.10)

At recursion level 0, we compute R0
max = M(T ), at recursion levels i > 0

Rimax = M(Ri−1
max). We stop at recursion level k, if Rkmax is completely inside the

foreground of T .

In the second step, we optimize the size of the rectangle Rkmax. This is done by
simply moving the rectangle borders as long as F (Rkmax) grows. We obtain the
final rectangle Ropt

j . Note that τ influences the optimization result. The higher
τ is, the more covering a background pixel will be penalized. For example, if
τ = 1, then Rimax will never cover any background pixel.

We add the rectangle Ropt
j to our final solution R = R ∪ {Ropt

j }. The region

Ropt
j is then erased from the foreground in T and the first and second step are

repeated until the desired covering accuracy A < δ from Eq. 4.3 is achieved.
The algorithm in this form, however, has one problem. Consider a configuration
as shown in Figure 4.9. There is a rectangle R1 that contains a large number
of small foreground regions, i.e. F (R1) is large and another rectangle R2, with
F (R2) < F (R1), but that contains just one fairly large region, which itself can
contain a rectangle R′2. It can happen that the area of R′2 is larger than any of
the foreground regions in R1. However, the algorithm so far would still choose
R1 first.
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Figure 4.9: Illustration of the necessity for step three in our covering algorithm,
which basically detects ill posed regions and temporarily disables them for the
first step. As consequence, in the next few iterations, other image parts are
processed. We reenable the region as soon as no larger foreground regions are
found in other image parts.

Figure 4.10: Example silhouettes approximated by a set of rectangles. The
upper row shows rectangles approximating the foreground, the lower one the
rectangles approximating the background.

Consider, for instance, a rectangular region R1 not larger than (w2 ,
h
2 ) in T

with a huge number of small foreground regions and a second region R2 that
contains only one large foreground region in which a much greater rectangle can
be fitted in. If F (R1) > F (R2), the algorithm tends to fill more and more small
rectangles into R1, while R2 still contains big uncovered regions. This behavior
is undesired.

To overcome this problem we extend the greedy algorithm by a third step. We
test whether the rectangle Ropt

j from the second step is larger than a threshold r.
If the test fails, we do not add the rectangle to RS and further disable the region
Ropt
j for the following iterations. If, at any time, the whole image T is disabled

for search, all disabled search regions are enabled again for searching and r is
set to the size of the largest rectangle found by the recursive search in the first
step. There is one problem left: the initialization of the threshold r. We set
it to r = size(T ). The reason is that we have the demand that our algorithm
works for all cases, even if the template T contains only foreground pixels. If
r would be set to a smaller value, we could not obtain the optimal solution in
this case, which, of course, is one rectangle, covering the whole template image.
Example coverings computed by the algorithm are shown in Figure 4.10.
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(0,0)

(w,h)

Figure 4.11: During the rectangle covering computation using our greedy ap-
proach, regions in an integral image have to be updated after deleting rectangle
R: the origin is at the top left corner. Only the regions consisting of R and R1,
R2 and R3, which are on the right and/or bottom of R are affected (see Eq. 4.1).

F can be evaluated by four lookups in the integral image IT of T (see Eq. 4.2),
which can be precomputed at initialization. Let w and h be the width and height
of T . Then, the complexity of the first step can be described by the following
recursive formula:

T (w·h) = c· w
2
· h

2
+ T (

w

2
· h

2
) (4.11)

which is in O(w·h). It is trivial to see that the complexity of the second step is
O(w·h). The update cost of IT after erasing Ropt

j in T is also linear in the size
of T . Figure 4.11 illustrates the regions that need to be updated. Therefore, the
overall complexity of our rectangle covering algorithm is O(|RS |·w·h). For step
two, we also tried the well-known Nelder-Mead optimization (Numerical Recipes
implementation). In our experience, however, the quality of the resulting rect-
angles was never better and sometimes much worse, while the computation time
was about a factor 1000 higher.

In summary, we developed two approaches to compute a rectangle representa-
tion of template silhouettes. The first approach uses dynamic programming and
computes a very good solution, but can only be applied to a very low-resolution
silhouette model. The second approach uses a greedy approach to compute the
rectangle set covering a silhouette. It is significantly faster and the trade-off
between number of rectangles and accuracy of the rectangle representation can
be precisely controlled. The approach computes a sufficiently good rectangle
covering. In the following sections, the approaches are evaluated and compared
against each other with respect to quality and run-time.

4.1.2.3 Results

In order to obtain the most meaningful results of the rectangle covering ap-
proaches with regard to hand tracking, the rectangle covering should be applied
and tested against a set of hand poses representing the whole high-dimensional
hand pose space. Due to the huge size of the pose space, this is impractical. For
this reason, we have to make a compromise, and thus, decided to use a smaller,
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Figure 4.12: An area with many axis-aligned contour parts (left image) can be
approximated by fewer axis-aligned rectangles than an area with more “diagonal”
contour parts (right image).

Figure 4.13: We use 100 hand pose silhouettes to test our rectangle covering
approaches. A few of them are shown here to get a better overview of the test
set.

but still representative set of hand pose silhouettes. Representative in terms of
using some hand silhouettes that can be well represented by axis-aligned rectan-
gles and several hand poses that are ill posed for rectangle covering algorithms.
For example, a silhouette with many non-axis aligned contour parts is more diffi-
cult to be approximated by axis-aligned rectangles than a silhouette with many
axis-aligned contour parts. The problem is illustrated in Figure 4.12. We have
chosen a set of 100 template silhouettes sampled from the open hand rotating
along the z-axis (in-plane rotation). Figure 4.13 shows a representative subset
of the test set.

Both rectangle covering approaches allow to cover a small amount of the back-
ground region in order to cover larger parts of the foreground region without
using more rectangles (illustrated in Fig.4.4). First, we have taken a look into
the correlation between the not covered silhouette foreground (false negatives)
and the not correctly covered silhouette background (false positives). Let S be
the hand silhouette area (defined in Sec.4.1.2) and R the rectangle covering. In
the following, we interpret the rectangles in R as a set of pixels to make them
“comparable’ with the silhouette area S. We define the false negatives

FN = S \ S ∩
⋃
Ri∈R

Ri (4.12)
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Figure 4.14: Covering accuracy: dynamic programming (left) vs. greedy (right)
approach. The left image illustrates the impact of the coarse grid, the dynamic
programming approach has to be computed on due to its high computation
complexity. The left image shows that the rectangles are aligned on the grid, and
thus, are not always able to cover the silhouette in the best way. In contrast, the
greedy approach (right image) is able to cover the silhouette at pixel accuracy.

and the false positives

FP =
⋃
R∈R

R \

(
S ∩

⋃
Ri∈R

Ri

)
(4.13)

We have investigated the relation between FP and FN for different covering
accuracies. For the definition of the covering accuracy we refer to Eq. 4.14
below. For now, it is sufficient to know that it depends on the FP and FN values
and a perfect covering yields an accuracy of 1. Because rectangles covering a
silhouette are and should be as large as possible, the achievable accuracy is not
a continuous parameter. However, we can set a minimum accuracy, and the
approach computes a solution that has at least the requested accuracy, if it is
possible to achieve it. If an overlap between the rectangles covering a silhouette
and the background is allowed (FP > 0), a covering solution has a limited
maximum accuracy. In short, the accuracy goal we set, is an average accuracy,
and the accuracy achieved by a covering solution has only approximately this
accuracy. Figure 4.15 shows the dependence between the false positives and false
negatives for different accuracies. Each curve consists of measures at different
values of the overlap-control parameter τ (see Eq.4.4 and Eq.4.9).

The first observation when comparing the results of both approaches is that
the minimum false negative values of the dynamic programming approach are
higher than for the greedy approach. The reason is simple: due to the coarse
grid (low number of boxes) the covering solution in the dynamic programming
approach always keeps some small parts of the silhouette uncovered, while the
greedy approach works at the full resolution and is able to cover the whole
silhouette with a minimum amount of overlap to the background. Figure 4.14
illustrates this fact by an example covering for both approaches. The second
observation is that in the plot of the greedy approach, some accuracies start with



58 CHAPTER 4. SIMILARITY MEASURES

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
F

al
se

 P
o

si
tiv

es
False Negatives

accuracy 1.00
accuracy 0.95
accuracy 0.90
accuracy 0.80
accuracy 0.70
accuracy 0.60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.050.10.150.20.250.30.350.40.450.5

F
al

se
 P

o
si

tiv
es

False Negatives

accuracy 1.00
accuracy 0.95
accuracy 0.90
accuracy 0.80
accuracy 0.70
accuracy 0.60
accuracy 0.50

Figure 4.15: The plot shows the correlation between the false positives (FP) and
false negatives (FN) of the dynamic programming (left) and the greedy (right)
approach. The amount of FP and FN is controlled in our approaches by the
parameter τ (Eq.4.4 and Eq.4.9)

very similar values and then, while increasing the overlap control parameter τ
(i.e. decreasing FP and increasing FN), the false negatives do not monotonically
increase as expected. The reason for this is the varying actual accuracy of the
computed covering, as already explained above. For example, at the curve with
the accuracy goal of 0.8 and a low value of τ , we cannot achieve the accuracy
of 0.8 (it is slightly lower). While τ increases, the accuracy can reach 0.8, and
after τ further increases, the accuracy slightly exceeds 0.8 and we obtain a lower
FP and FN rate.

Disregarding this anomaly, the global tendency of the curves is as expected:
the lower the false positives, the higher the false negatives, and of course, the
higher the average accuracy, the more the curve converges to the optimal case
consisting of zero false positives and false negatives.

Next, it is important to evaluate the covering accuracy, i.e. how good the
rectangle set represents the silhouette area subject to the number of rectangles.
We expect on an average case that only a small set of rectangles is needed for
a sufficiently good representation, but for a perfect covering of the silhouettes,
the number of rectangles will converge to O(|∂S|) (∂S denotes the contour of
the silhouette with respect to an arbitrary but fixed resolution). The covering
accuracy

A = 1− FP + FN

2|S|
(4.14)

has a value of 1 for a perfect rectangle covering solution with zero false positives
and zero false negatives. The false positives and negatives are both normalized
by the silhouette area |S| to obtain a resolution independent measure. The rea-
son we also normalize the false negatives FN by the foreground silhouette size
is that any useful covering will not contain rectangles that cover more of the
background region than of the silhouette foreground region. Consequently, any
useful covering will result in an accuracy A > 0. Figure 4.16 shows the depen-
dence between the covering accuracy A and the number of rectangles needed to
achieve this covering quality.

First, we observe that the number of rectangles in the dynamic programming
solutions are significantly lower. This is due to the coarse grid we perform the
algorithm on. But, of course, the maximum accuracy that can be obtained is
lower, too. Second, one can see that the increase of accuracy with respect to
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Figure 4.16: The plots show the correlation between the overall covering accu-
racy i.e. how good a rectangle set represents a hand silhouette for both dynamic
programming (left) and greedy (right). Each curve is generated with a different
value of the overlap control parameter τ .

the number of rectangles first grows fast, and then becomes smaller and smaller,
and finally, asymptotically approaches 1. The reason is obvious: the first few
rectangles in a covering solution are large, and thus, with only a few rectangles,
most parts of the silhouette can be covered. The less parts of the silhouette stay
uncovered, the smaller non-rectangular shaped those parts are and the more
rectangles are needed to cover them. The third observation is that the higher
the allowed overlap (lower τ) between the covering rectangles and the image
background is, the lower the overall accuracy is because we penalize both, false
positives and false negatives, but, of course, also the fewer rectangles the covering
solution consists of. For a large allowed overlap (τ ≤ 0.5) the accuracy is low
too, but the highest accuracy at a fixed number of rectangles is not achieved
at τ = 1, as expected. For example, taking a look at the results of the greedy
approach and comparing the accuracy of the curves at y > 300 (y = number
of rectangles) shows that the highest accuracy is achieved by the curve τ = 0.9.
These results legitimates our idea to allow the covering rectangles to overlap
slightly with the background.

As already mentioned above, the dynamic programming approach has to be
applied to a coarse resolution to keep the computation time acceptably low. But,
of course, it is theoretically very interesting, if and how much better it works
than the greedy approach at the same resolution. But it is impracticable to
apply the dynamic programming approach at a resolution of e.g. 1024 × 1024.
Thus, we have chosen the other way for comparison and applied the greedy-
approach to the same low resolution as the dynamic programming approach.
We compare the approaches at the image resolution 64×64 and 128×128 pixels.
We have set τ = 0.95 (overlap control) because, in practice, we would only allow
a small amount of overlap between the covering rectangles and the background.
Figure 4.17 shows the result. The ratio between the accuracy and the number of
rectangles for both approaches are close to each other. But for lower accuracies,
surprisingly, the greedy approach has a better ratio between the accuracy and
#rectangle. We have taken a deeper look into the algorithm and found that
the reason lies in the discretization of the dynamic programming approach. As
already mentioned in Sec. 4.1.2.1, we start the dynamic programming approach
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Figure 4.17: Covering accuracy comparison of the dynamic programming and
the greedy approach at two image resolutions. In practice, the dynamic pro-
gramming approach can only be applied to a low resolution due to the high
computational complexity. For this reason we compare the approaches at an
image resolution of 64 × 64 (left) and 128 × 128 (right) pixels. The red curves
are generated by first computing the covering at a grid size of 1 × 1 and then
refining the grid until the desired covering accuracy is reached up to a maximum
grid size of 64 × 64. However, computing the covering immediately at 64 × 64
yields better results (green curve).

at a very coarse grid of 1× 1, and only refine the grid if the desired accuracy is
not reached. But computing the solution at a more coarse grid, of course, can
not yield the optimal solution for the full resolution. To eliminate this error
source, we have recomputed the covering using the full resolution grid. The
results (also found in Fig. 4.17) prove that the grid size is the reason for the
quality discrepancy. Consequently, if the computation time is unimportant, we
should prefer the latter method.

Finally, we have measured the computation time of both approaches at dif-
ferent accuracies. The result plot in Figure 4.18 shows as expected that the
dynamic programming approach needs significantly more computation time at
a similar covering accuracy. Both approaches show a strong increase in compu-
tation time after exceeding an accuracy threshold: about 0.85 for the dynamic
programming approach and 0.95 for the greedy approach. The reasons are the
following: the dynamic programming approach starts at a very coarse level of
only 1× 1 boxes and increases the number of boxes if the accuracy goal cannot
be reached with the low number of boxes. Because the time complexity is in
O(r2s2(r+ s))2, the computation time increases strongly, where r and s are the
number of boxes per row and column.

In contrast, the greedy approach needs to find regions of the silhouette not yet
covered, becoming smaller and smaller, and consequently, needs more rectangles
(=iterations) to achieve an increase in accuracy.

One might think that the computation time is not relevant because the tem-
plate generation is done offline. But consider the large hand configuration space.
To track the full-DOF hand, one needs hundreds of thousands of templates. This
would result in a computation power by far too high.

2 The time complexity can trivially be derived from Eq. 4.8
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Figure 4.18: Computation time of our two proposed approaches to compute a
rectangle covering of silhouettes. If an accuracy higher than 0.85 is needed, the
greedy approach should be chosen due to its significantly lower computation
time.

4.1.2.4 Summary

In summary, the main advantage of our hand silhouette representation is the fol-
lowing: our template representation is very compact and resolution independent.
This is crucial because in real setups, the distance of the camera to the object is
varying, and thus, different sizes of the templates are needed, which is trivially
handled by our approach by scaling the rectangles themselves. Consequently, we
do not have to keep template sets for different scales in memory. Furthermore
we can efficiently perform object tracking on high resolution images because the
matching cost is resolution independent. In the following section, we will present
novel similarity measures that utilize the rectangle-based representation.

4.1.3 Segmentation-based Similarity Measures

As already mentioned in the introduction (Section 1) a goal of this thesis is
to eliminate error prone steps from the hand tracking pipeline. One of these
steps is the thresholding of the foreground segmentation. To avoid this step we
will present several novel silhouette area-based similarity measures that work
directly on the segmentation likelihood map.

4.1.3.1 A Similarity Measure Based on the Joint Probability

In the previous section, we have developed an algorithm to compute for each
template a resolution-independent compact representation consisting of axis-
aligned rectangles. In the following, we will use this representation for fast
template matching.

Our goal is to compare a template S to an input image I at a given position
p using the joint probability (see Stenger et al. [Ste04]). The first step is the
segmentation of the target object (in our case the human hand). We use the
color likelihood instead of the binary segmentation, because binarization needs
a threshold, which is not easy to be determined in most cases, and thus, is a
source of errors. In the following, the skin color likelihood image of an input
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Figure 4.19: Overview of our approach using rectangle sets to approximate a
silhouette. This speeds up the similarity computation by a factor 5–30 compared
to the approach proposed by Stenger et al. [STTC06].

image I is denoted by L̃ with L̃(x, y) ∈ [0, 1]. Given a template silhouette S
as defined in Sec. 4.1.2, and a position p in the input image the template is
matched to, we utilize the joint probability

JS(p) =
∏
x∈S

L̃(x) (4.15)

to compute the similarity measure between a template and the input image. To
convert the product in the joint probability into sums, we take the pixel-wise
logarithm: L(x, y) = log L̃(x, y).
Utilizing Eq. 4.2, we can compute the joint probability at position p by:

PS(p) =
∑

Ri∈RS

( IL(

(
vix
viy

)
+p)

+ IL(

(
uix
uiy

)
+p)

− IL(

(
vix
uiy

)
+p)

− IL(

(
uix
viy

)
+p) )

(4.16)

IL denotes the integral image of the log-likelihood image L. Note that PS(p)
is the logarithm of the joint probability JS(p) from Eq. 4.15. The rectangle
set RS approximates only the template foreground. To get the appropriate
matching probability for a template, one has to take into account the background
distribution, too.
Fortunately, the set of background pixels S̄ of a template image, obviously,

can be approximated by a set of rectangles with the same algorithm described
in the last section. Having computed RS̄ , we can compute PS̄ .
PS and PS̄ are resolution-dependent and need to be normalized.
In the following, we explain the normalization for PS . PS̄ can be normalized

analogously. A näıve approach is to normalize PS by the number of actually
matched pixels for a template. There are two reasons that speek against this
normalization method. The first one is that we want a “smart” matching at the
border, i.e. when the template is partially outside the input image. The second
reason is explained in Sec. 5.2.2.
For each pixel not covered by any rectangle, including all pixels of the template

image that are outside the borders of the input image, we assume a likelihood
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Figure 4.20: The joint probability of the segmentation likelihood that corre-
sponds to the template silhouette area has a big disadvantage: the two images
show two cases: in the left image, the segmentation is very good and yields a
probability of 1 for the foreground, but the index finger is flexed, and thus, does
not match to the template (red hand contour). In the right image, the segmen-
tation yields a likelihood value of p < 1 (for each pixel to be foreground). But
in contrast to the left image, the index finger matches as well. Thus, the right
template matches better to the input image, but the joint probability-based
similarity measure yields the same similarity measure as the left template.

value of 1
2 . The value is motivated by the assumption that for a pixel not yet

observed, the probability to be foreground or background is equal. Let us denote
the number of pixels of rectangle Ri inside the input image at position p in an
input image by Np

Ri
. Then we normalize PS as follows:

PNS (p) =
1

|S|

(
PS(p) + log(

1

2
)(|S| −Np

R)

)
(4.17)

with
Np
R =

∑
Ri∈RS

Np
Ri

(4.18)

The normalized probability PN
S̄

of the background is calculated analogously.
The final joint probability is

P = exp(
1

2
(PNS + PNS̄ )) (4.19)

where PS̄ is the background joint probability. Treating the joint probabilities
for the foreground and background equally takes care of the fact that different
template shapes have different areas relative to their bounding box used in
the template: in a template with fewer foreground pixels, the matching of the
background pixels should not have a bigger weight than the foreground pixels
and vice versa. To determine the size of the target object one has to match
the templates at different scales. This can be done easily by scaling the corner
values for all rectangles accordingly. No additional representation has to be
stored. Comparability between the same template at different sizes is ensured
by the normalization.
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Figure 4.21: Similarity measure based on the normal distribution: We compute
the distribution of the likelihood values that correspond to the template fore-
ground (inside the red hand contour) and the likelihood values that correspond
to the background (outside the red hand contour). As a simplification, we can
assume that the segmentation likelihood values are approximately normal dis-
tributed. Then, we only have to compute the mean and standard deviation of
both normal distributions, which is easily done utilizing our rectangles represen-
tation. Then, the normal distributions corresponding to the template silhouette
area (red gaussian) and the background (blue gaussian) are compared against
each other. Dissimilar normal distributions yield a high template matching sim-
ilarity (right example) and similar distributions a low matching similarity (left
example).

So far, we have presented an approach for an efficient computation of the joint
probability as a similarity measure. But using the joint probability as similarity
measure is not necessarily the best option because of several reasons. First, it
has to cope with numerical problems at likelihood values close to 0. One has
to use a minimum probability to avoid similarities too low (1n ·0 is still zero).
Second, the joint probability is not able to discriminate between an overall weak
segmentation probability of the whole foreground and a high probability for
most parts of the foreground, but a very low probability of a small foreground
part. Figure 4.20 illustrates the problem.

To address this problems, we have developed similarity measures that take
care of the probability distribution corresponding to the template silhouette
and the background.

4.1.3.2 A Similarity Measure Based on the Normal Distribution

With the assumption that the probability distribution is approximately normal
distributed, we can estimate the mean and covariance, and then, use the dissimi-
larity of the normal distributions between the fore- and background as matching
similarity. Figure 4.21 illustrates the idea by an example.

In the following, we will explain how we can compute the mean and variance
utilizing our rectangle representation introduced in Sec.4.1.2. The computation
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method is the same for the template foreground S and the background S̄, re-
spectively.

To compute the similarity measure we need the input image I, the skin like-
lihood image L̃, the integral image IL̃ of the likelihood image and the set of
rectangles R = {Ri}i=1···n representing a template region. Additionally, we
denote the sum of all pixels over the rectangle Ri in I by II(Ri) =

∑
x∈Ri

I(x).
The mean µ can be trivially computed by:

µ ∝
∑
Ri∈R

II(Ri) (4.20)

The variance can be computed by

σ2 ∝
∑
Ri∈R

∑
x∈Ri

(
L̃(x)− µ

)2

(4.21)

This formula would implicate a two step computation, i.e. we have to go two
times over the image to compute the variance. Therefore, we utilize that
V ar(X) = E[(X − µ)2] can be rewritten to E[X2] − E[X]2, which leads us
to

σ2 =

(
1

|R|
∑
Ri∈R

1

|Ri|
∑
x∈Ri

L̃(x)2

)
− µ2 (4.22)

If we compute, in addition to the integral image IL̃, the integral image of the
pixel-wise squares of the likelihood values

IL̃2(x, y) =
∑

0≤i≤x
0≤j≤y

L̃(i, j)2 (4.23)

we arrive at the final formula to compute the variance of the likelihood values
of a template area.

σ2 ∝
∑
Ri∈R

IL̃2(Ri)−

( ∑
Ri∈R

IL̃(Ri)

)2

(4.24)

The advantage of this formula is that we pre-compute the two integral images
once per input image. In contrast, in the näıve approach in Eq.4.21, one has to
go two times over the input image for each similarity measure (i.e. each time,
a template is matched to the input image), and for each input image a huge
number of similarities have to be computed.

Having computed the mean and variance of the likelihood values that corre-
spond to the template foreground and background resp., we have to compare
both normal distributions to obtain the final matching probability. The method
to compare the normal distributions should measure as good as possible how
different the distributions are. This means, the measure should yield a value of
0 if the normal distributions do not overlap at all and a value of 1 if they are
identical. Let us denote the mean of the fore- and background by µfg and µbg,
and the standard deviation by σfg and σbg respectively. We used the following
dissimilarity measure:

D =
G(µbg|µfg, σfg) +G(µfg|µbg, σbg)

2
(4.25)
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Figure 4.22: The histogram-based similarity measure computes the distribution
of the segmentation likelihood values that correspond to the template silhouette
area (red bins) and surrounding background (blue bins). Both histograms are
then compared for dissimilarity. Similar histograms indicate a low matching sim-
ilarity (left example) and a low histogram similarity a high matching similarity
(right example).

G(x|µ, σ) = σ
√

2π N (x|µ, σ) denotes the unnormalized Gaussian function.
The assumption that the skin color is normal distributed allows for a fast sim-
ilarity measure computation. But it is a simplification and the real underlying
distributions can strongly deviate from the normal distribution. For this reason,
we have also developed a non-parametric method to compare the distributions.

4.1.3.3 A Similarity Measure Based on Histograms

Histograms are a simple and powerful instrument to represent distributions. To
compute the histogram, one has to count all the values that contribute to the
distribution. Utilizing our rectangle representation of the template silhouettes,
we are not able to compute the histogram. But with the assumption that the
variation in small image areas is limited, we can use the mean value to repre-
sent all pixels inside the rectangle. Thus, to compute the histogram of the skin
likelihood distribution, we count |R| times the mean value, instead of counting
each pixel inside the rectangle separately. Let L̃ denote the segmentation like-
lihood map, H the histogram of the segmentation values that correspond to a
template silhouette area S, R the rectangle representation of S, and δij the
Kronecker-Delta symbol. Then

H(s) =
∑
x∈S

δL(x),s

≈
∑
Ri∈R

|Ri|δµi,s

(4.26)

with

µi =
1

|R|
∑
x∈Ri

L̃(x) =
1

|R|
IL̃(Ri) (4.27)
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We can improve the histogram-based distribution estimation by taking the stan-
dard deviation into account. For this purpose we distribute the likelihood values
over the mean neighborhood in the histogram utilizing the 3σ-rule of the normal
distribution:

H(s) ≈
∑
Ri∈R

(
|Ri|·

3σi∑
k=−3σi

N (k;µi, σ
2
i )δk,s

)
(4.28)

The standard deviation σi is computed in the same way as σ in Eq.4.24 but
simplified to one rectangle:

σ2
i =

1

|Ri|
(IL̃2(Ri)− IL̃(Ri)

2) (4.29)

In the following, the histogram representations of the fore- and background are
denoted by HS and HS̄ . To compare the segmentation distributions, correspon-
ding to the silhouette foreground S and background S̄ resp., we propose that the
näıve comparison of the normalized histograms is not a good similarity measure
because normalizing both histograms will not take the size of the foreground
and background region into account. But the larger the background region S̄
is, the lower the weight of an overlap between the foreground and background
values will be. Thus, the penalty for mismatching regions between the image
segmentation and the template will be lower. To avoid this, we use another idea
for comparison. We measure the number of segmentation values from S̄ that
overlap with the values in S, i.e. the more values in HS̄ are found in HS , the
lower the matching similarity is.

More precisely, we use the following matching similarity:

1∑
iHS(i)

∑
i

max(HS(i)−HS̄(i), 0) (4.30)

The more the bins in HS̄ overlap with HS the lower the similarity measure will
be. If at least as many segmentation values as found in the foreground, are
found in the background, the matching similarity is 0. If there is no overlap
between HS̄ and HS , the matching similarity is 1.

So far, we have presented novel similarity measures utilizing the segmenta-
tion likelihood map. The goal was to achieve a higher robustness with respect
to segmentation errors compared to approaches based on a binary segmenta-
tion. In the following section, we will go a step further and present approaches
that does not need any kind of segmentation at all. We will also see, that the
segmentation-based approaches can be seen as a special case of the segmentation-
free approach(es).

4.1.4 Segmentation-free Similarity Measures

In this section, we propose a new class of similarity measures based on the color
distribution divergence. Our similarity measure works directly on the color im-
age. The basic idea is to compare the color distribution of the foreground and
background regions for each hypothesis. The more divergent the color distribu-
tions are, the higher the probability that the hypothesis is observed is. In a way,
our novel approach can be viewed as turning the classical matching approach
upside-down: instead of first forming a hypothesis about the color distribution
of the object and then checking whether or not it fits the expected shape, we
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Figure 4.23: Segmentation-free similarity measures: we turn the classical ap-
proach upside-down and first test different shape hypotheses and then check the
color distribution while classical approaches first estimate the color distribution
(which is error-prone because it is not known well for real images) and then
check the shapes.

first form a hypothesis about the shape and then check whether or not the color
distribution fits the expectation (illustrated in Fig. 4.23).

Consequently, the only a priori knowledge are the template descriptors of the
object shapes in each pose. We do not need any knowledge about the object
color distribution, and thus, no segmentation at all.

The idea behind our approach can be explained as follows. Given a template
and a position in the input image, the pixels that correspond to the foreground
and the background in the template, resp., are determined. These form a hy-
pothesis about the object pose. If the object pose, represented by the template,
is actually found at the given position, the foreground and background color dis-
tributions must be different. If a different, or no shape is found there, the color
distributions of foreground and background must overlap each other significantly.
For illustration, Fig. 4.24 shows an example. Consequently, the dissimilarity be-
tween the two distributions can be used as a measure for template similarity.

Because the similarity computation time is very critical for real-time object
tracking, the color distribution estimation has to be done as fast as possible. A
good representation for the color distribution would be the color histogram. The
dissimilarity between the distributions then, could, for example, be computed
by the Kullback-Leibler divergence. But computing color histograms for each
position, scale and template is very expensive. Even if we use only 32 bins per
dimension, which is very coarse, there are 32,768 bins to be updated for each
matching operation. (This is in contrast to the skin segmentation based method
that uses scalar values, and thus needs only a 1D histogram, which can be
computed much faster.) Thus, the Kullback-Leibler divergence is not feasible,
because the computation of the histograms would take too long. A second
disadvantage of a histogram-based representation is that there are possibly not
enough color pixels to densely fill all histogram bins belonging to the inherent
color distribution. Representing the color distributions by a normal distribution
does not have these disadvantages.

4.1.4.1 A Parametric Color Divergence-based Similarity Measure

We use one multivariate Gaussian to represent the foreground and background,
resp.. In our application to hand-tracking, we observed that the approximation
of the color distribution of the human hand by one Gaussian is sufficient in most
cases. Of course, the background region should not be chosen too large in order
to obtain an appropriate approximation by one Gaussian. Now, it remains to
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Figure 4.24: Example of the color distribution of a human hand and a back-
ground. The image is decomposed into the hand and the background. The first
two images show the hand and the corresponding 3D color histogram. The last
two images show the surrounding background and its color distribution. The
color distributions of the hand and the background are quite different and can
be used as similarity measure for hand shape matching.

compute the means and covariance matrices of the foreground and background
regions, which will be described in the following section.

Assume the means, µfg, µbg, and the covariances of the foreground and back-
ground regions, Σfg, Σbg, given in color space. Then we use the following color
distribution similarity:

D =
G(µbg|µfg,Σfg) +G(µfg|µbg,Σbg)

2
(4.31)

with the unnormalized Gaussian function G(x|µ,Σ) = |(2π)3Σ)|1/2N (x|µ,Σ).
Using the normal distribution itself in Eq. 4.31 would result in lower dissimi-
larity values for higher covariances while having the same separability of the
distributions.

4.1.4.2 Fast Color Distribution Estimation

Of course, we want to use our rectangle representation of the template silhouettes
in order to compute the color distributions as fast as possible. This is done in a
similar way as in the 1-dim case in Section 4.1.3.2.

The mean is computed in the same way as in the 1-dim case by:

µ ∝
∑
Ri∈R

II(Ri) (4.32)

The covariance matrix cannot be computed exactly using the rectangle represen-
tation because the off-diagonal entries cannot be computed using II. We could,
of course, compute the integral image of I2 with I2(p) = I(p)I(p)T (the 3-dim
version of Eq.4.23). But this would need 6 additional integral images (6 and
not 9, because I(p)I(p)T is a symmetric matrix) and thus, result in too much
memory accesses and a high latency per frame. Therefore, we have decided to
estimate the covariance matrix in the following way.

We let each point inside a rectangle Ri be represented by the mean

µi = II(Ri)/|Ri| (4.33)
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of the rectangle. The covariance can now be estimated by

Σ ∝
∑
x∈R

xxT − µµT

=
∑
Ri∈R

∑
x∈Ri

xxT − µµT

≈
∑
Ri∈R

|Ri|·µiµT
i − µµT

(4.34)

It turned out that we run into numerical problems if the variance inside a
rectangle is too small. This yields a covariance matrix with all entries close
to zero. To overcome this problem, we apply a thresholding to the covariance
matrix such that we do not allow the variance along the principal axes to be
smaller than a threshold ε. We utilize the singular value decomposition to apply
the thesholding and obtain the new covariance matrix ΣN .

Σ = USV T singular value decomposition

SN (i, i) = max(S(i, i), ε) i = 1, . . . , 3

ΣN = USV T

(4.35)

To avoid obtaining too crude an approximation of the covariance matrix, we
subdivide big rectangles and use the mean values of the sub-regions to compute
the covariance matrix. We have tested two alternatives. The first one is a simple
subdivision of the rectangle into rectangular blocks of equal size. The second
method is an adaptive subdivision: we subdivide a rectangle successively until
the covariance estimated by all sub-rectangles does not significantly change any-
more. We expected the second method to yield better results, but it has the
disadvantage that the covariance matrix is fluctuating when slightly moving the
template position in the input image. This disturbs the mode finding (i.e. de-
tecting the most probable matching position in the input image) by our method
described in Sec. 5.3. Hence, the simpler subdivision method could work bet-
ter for us. Please note that our algorithm could also take image segmentation
results into account. From another point of view, the segmentation-based ap-
proach can be seen as a special case of the color divergence-based method by just
interpreting the segmentation results as a gray scale image. More generally, we
are not limited to any specific dimensionality of the input, i.e. we could easily
incorporate other modalities such as depth values and even combine different
input modalities.

We have observed that many backgrounds close to the hand cannot be rep-
resented appropriately by a multivariate gaussian. To overcome this problem,
we will present a different similarity measure, which basically mixes parametric
and non-parametric representations of color distributions.

4.1.4.3 A Hybrid Color Divergence-based Similarity Measure

The similarity measure presented in the following does not explicitly need to
compute the color distribution of the silhouette background S̄. This has the
advantage that a complex background, which in most cases is not normal dis-
tributed, can be handled as well. We still use the method from Eq. 4.32 to
compute the normal distribution of the template foreground. Utilizing the fore-
ground distribution, we compare the mean color of each background region to



4.1. SILHOUETTE AREA-BASED SIMILARITY MEASURES 71

the foreground distribution. The higher the responses, the more similar the color
distributions are, and thus, the lower the matching probability of the template
to the input image is. Let R̄ be the rectangle representation of the silhouette
background S̄, then the similarity measure is

D2 =
1

|R̄|

|R̄|∑
i=1

G(µi|µfg,Σfg) (4.36)

After some early tests with this similarity measure, we found that small back-
ground regions that are very similar to the foreground color, i.e. G(µi|µfg) > ε,
are not penalized adequately. Even more precisely, we are interested only in
such background regions, and not in background regions that have a completely
different color distribution than the foreground. For this reason, we modified
Eq. 4.36 such that we take only regions into account with

G(µi|µfg,Σfg) > ε (4.37)

From the 3-σ rule, we know that about 97% of the area under the gaussian is in
the distance smaller than three times the standard deviation. For application
to our similarity measure, this means that 97% of the foreground color is in the
3σ range of the color mean.3 Thus, we have set ε=G(3, 0, 1)=exp(−0.5·32).

For the sake of completeness, we have also tested other color spaces (HSV
and Lab) to investigate if the foreground and background distributions could be
better separated by our color divergence-based similarity measures in those color
spaces. We found, that none of them works better than the RGB color space.
The reason is that the color distributions of objects are not better separable and
also not more Gaussian distributed than in RGB.

For estimating the covariance matrix, we have empirically found that a subdi-
vision of the rectangles in blocks of 5% of the template size works best. A denser
subdivision gives only marginal improvement in the quality while increasing the
computation time substantially.

4.1.5 Results

In the following, we evaluate and compare our proposed similarity measures.
For this purpose, we use a template dataset consisting of 2220 templates. The
hand is rotated around the z-axis (inplane rotation) and the fingers, except the
thumb, are flexed for each hand orientation. Figure 4.26 shows some example
poses.

Due to the lack of ground truth data4 we have decided to capture a single
real image and superimpose the whole template set with the real image. In this
way, we obtain our ground truth data by combining real images with an artificial
hand model. This yields an input dataset consisting of images, each containing a
hand pose from the template dataset. Figure 4.28 shows some example images.

We used two real images. The first image, with a storage rack in the back-
ground, has a complex background with a few skin colored books. The second
image, showing a red door, seems to be simple but the color of the door is very

3 Of course, the color values are 3D and we have a 3D vector as mean and a 3 × 3 covariance
matrix. We used the simplified scalar σ just for the sake of clarity.

4 Labeling real images, containing hand poses is extremely time consuming. Please note that
position, orientation, and finger angles would have to be labeled manually for each frame.
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Figure 4.25: Area-based similarity measures are continuous with respect to
changes in hand pose, while for example edge-based measures are not. An exam-
ple motion (the two images on the left) shows the change in the silhouette-area
(middle) and the edge-response (right). While the difference of the silhouette-
areas is minimal (middle, light blue area), a new strong, large edge (right, high-
lighted by a red ellipsoid) appears.

Figure 4.26: Some example poses of our template dataset we used to evaluate
our similarity measures.

close to skin color, and thus, skin segmentation approaches will fail (Fig. 4.27)
We have chosen this background to test whether our divergence-based similarity
measure works as well.

For each of the two backgrounds we generated three input datasets, each uses
a different artificial hand model. This allows us to evaluate the impact of varying
hand shapes to our similarity measure. The first artificial hand is identical to
the hand used to generate the template dataset. The second artificial hand has
about 10% thinner fingers. In the third artificial hand we modified the relative
length of the fingers (we reduced the length of the index, ring and pinky by
about 8%).

For evaluation, we matched the whole template dataset at 5 different scales
(the middle scale is the correct size) to each input image. We determined the
best matching template for each image. Then, we computed the RMS error
between the correct hand pose (obtained from the ground truth) and the best
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Figure 4.27: An example image with a skin colored background (left). Skin
segmentation approaches will most often fail (right). But our segmentation-free
similarity measures are still able to detect the hand pose.

Figure 4.28: Some input image examples. We used real images as background
and superimposed our artificial hand model at various poses. In this way, we
overcome the problem of missing ground truth data. We use three different
artificial hands (left, middle and right column) and two different backgrounds
(upper and lower row).

match. For comparison, hand orientations and finger angles are normalized such
that the difference in orientation/angle is in [0, 1].

Figure 4.29 shows the results for the dataset with the storage rack and Fig.
4.30 for the dataset with the red door as background. Due to space limitations,
we use the following abbreviations in the figures

• seg joint prob is the segmentation-based similarity measure from Sec. 4.1.3.1

• seg gauss is the segmentation-based similarity measure from Sec. 4.1.3.2

• seg histo is the segmentation-based similarity measure from Sec. 4.1.3.3

• color div is the color divergence-based similarity measure from Sec. 4.1.4

• color hybrid is the modified version of color div from Sec. 4.1.4.3

The average RMS error for all similarity measures is between 0.01 and 0.02,
and thus, very small. The RMS between the different similarity measures is
minimal. The seg histo method is slightly better than the other two. This is not
a surprise because the skin color distribution is modeled and compared in more
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Figure 4.29: Results for the storage rack dataset. Each plot shows the results
for a different hand model in the input images. Each bar shows the mean and
standard deviation of the RMS error for a different similarity measure. An RMS
error of 1 indicates the maximum error possible.
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Figure 4.30: Results for the red door dataset. Each plot shows the results for a
different hand model in the input images. Each bar shows the mean and standard
deviation of the RMS error for a different similarity measure. An RMS error of 1
indicates the maximum error possible. Note that for this dataset, we tested the
segmentation-free similarity measures only because a skin segmentation would
fail, and consequently the segmentation-based measures, too.

detail. Figure 4.31 shows an example image in which seg histo is superior. Com-
paring both of the color divergence-based measures, there is no clear “winner”,
but their overall quality is comparable to the skin segmentation-based ones in
the first dataset.

After taking a deeper look into the results, we observed that the template
size and orientation is correct for every frame. Only the finger angles are some-
times mismatching. The main reason for the mismatch is the dark skin color
of the flexed fingers (Fig. 4.32a). The skin segmentation often classifies the
dark skin color as background (Fig. 4.32b), which leads to a mismatch for the
segmentation-based approaches (Fig. 4.32c).

Similar mismatches can be observed on matches using the color divergence-
based measures. They use a gaussian to model the color distribution of the
hand. This could lead the dark skin color of the flexed fingers to be outside the
gaussian because the relative size of the dark region is too small. Consequently,
the similarity measure yields a higher similarity for templates that propagate
the dark region to be background (Fig. 4.32d).

To conclude the results, if the skin segmentation works well, we should use a
segmentation-based approach because of the lower computation time. But if the
segmentation is expected to be of low quality, a color divergence-based similarity
measure should be used instead.
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seg joint prob seg gauss seg histo color div color hybrid

Figure 4.31: Example results using our skin segmentation-based approaches (1-3)
and for comparison, our segmentation-free approaches as well (4-5). For com-
pleteness, we also provide results for the “red door” dataset using all similarity
measures, including the segmentation-based in the second row.

a b c d

Figure 4.32: Too dark skin colors (a) yield errors of the skin segmentation (b),
and then, the wrong template (c) yields the highest similarity. Image (d) shows
a mismatch using one of our color divergence-based approaches.

A more detailed evaluation using real images with real hands will help to fur-
ther find out the weakness and strength of all similarity measures. But manually
labeling the images is a too time consuming task.

4.1.6 Summary

In this section, we have presented novel similarity measures based on the hand
silhouette area. Additionally, we presented a novel representation of the silhou-
ette area by axis-aligned rectangles. This allows us for a resolution independent,
extremely fast similarity measure computation.

Our first three similarity measures need the hand to be segmented from the
background. But in contrast to most previous approaches, we do not need
an error prone binary segmentation, but just a likelihood map containing the
probabilities for each image pixel to be skin. This yields a much more robust
matching result. We have also presented two novel color divergence-based sim-
ilarity measures that do not need a segmentation at all. They directly work
on the color image, which further increases the robustness. Basically, we first
use the hand shape as hypothesis and obtain the hand and background color
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Figure 4.33: Silhouette area-based similarity measures cannot resolve all am-
biguities. Two example hand poses (left) illustrate the problem. Using the
silhouette-area as feature does not allow to distinguish between both poses be-
cause the difference area (middle image, light blue area) is by far to small. In
contrast, edge features allows us to distinguish both poses because the edges sig-
nificantly change (right, highlighted by a red ellipsoid) between the two poses.

distribution as a result. The approach can trivially be extended to integrate
other input modalities such as range images.

Generally, silhouette area-based similarity measures have the advantage that
they are robust to noise because small errors minimally contribute to the overall
similarity. A second advantage of area-based approaches is the continuity of
the similarity measure. Small changes of the hand pose yield small changes of
the silhouette area, and thus, small changes of the similarity measures. This is
not the case for all measures, for example edge-based similarity measures can
produce large similarity changes for small hand pose variations. Figure 4.25
shows an example.

The disadvantage of area-based approaches, especially using a monocular cam-
era, is that several hand poses are hard to be distinguished because the silhou-
ettes are too similar from a fixed point of view. Such cases are, for example,
fingers in front of the palm with a moderate flexion as shown in Figure 4.33. For
this purpose, we have investigated edge-based approaches, which are expected
to resolve many ambiguities area-based approaches are not able to handle.

4.2 Continuous Edge Gradient-Based
Similarity Measure

Edge gradient features are complementary to silhouette area-based features.
While the silhouettes information utilizes the hand foreground and background,
the idea of edge features is the border between fore- and background and even
more important the separation of the fingers from the palm. The idea is to dis-
ambiguate hand poses that are unable to be distinguished using the silhouette.
A further advantage of edge features is that they are fairly robust against illu-
mination changes and varying object color. However, edges are not completely
independent of illumination, color, texture, and camera parameters. Therefore,
a robust algorithm for efficient template matching is needed.

In this section, we propose a novel edge gradient-based similarity measure
for detection of articulated objects. In contrast to other edge-based matching
approaches, ours does not need any binarization or discretization during the
online matching. This is facilitated by a novel continuous edge gradient operator.
Our method mainly consists of two steps. The first step, basically, estimates
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the edge density in the templates and query image through kernel functions.
The second one is the similarity measure between template and query image
itself. The similarity measure can be formulated as a convolution, which can be
computed very efficiently in Fourier space.

4.2.1 Related Work

Most of the edge-based approaches need binary edges, i.e. an edge extraction
is applied to both a projection of the hand model and the input image. Next,
a similarity or, equivalently, a distance measure between the edges is defined
to compute the similarity between a hypothesis and the input image. In order
to outline the most popular distance measures, we first have to introduce some
notations. Let IA and IB be two edge images and A and B the set of coordinates
of the edge pixels.

Then, one can use the Hausdorff distance from A to B as distance measure
between IA and IB . The directed Hausdorff distance with respect to metric d
[HKR93] is defined as the maximum of all distances from each point in A to its
nearest neighbor in B:

H(A,B) = max
ai∈A
{min
bj∈B
{d(ai, bj}}. (4.38)

The generalized form uses the kth largest distance instead of the maximum,

H(A,B) = kth
ai∈A
{min
bj∈B
{d(ai, bj}} (4.39)

where kth returns the k-largest value. The value k can be used to control the
number of outliers that are tolerated. In the area of hand tracking, IA would be
used as template and IB as input image.

An approximation of the Hausdorff distance is the chamfer distance, which re-
places the max operator by the sum. The directed chamfer distance [BTBW77],
[Bor88] C from set A to B is defined as

C(A,B) =
1

|A|
∑
ai∈A

min
bj∈B

d(ai, bj) (4.40)

The chamfer distance can be formulated as a convolution of image IA with the
distance transform of image IB , and then, computed faster in Fourier space.
Chamfer matching for tracking of articulated objects is, for example, used
by [STTC06], [AS01], [AS02], [AASK04], [GP99], [SMFW04], [KCX06] and
[LDDD07]. A disadvantage of the chamfer distance is its sensitivity to outliers.

Both, chamfer and Hausdorff distance can be modified to take edge orienta-
tion into account, albeit with limited accuracy. One way to do this is to split
the template and query images into several separate images, each containing
only edge pixels within a predefined orientation interval [TNS+06], [STTC06].
To achieve some robustness against outliers, [STTC06] additionally limited the
nearest neighbor distance from a point of set A to set B by a predefined upper
bound. A disadvantage of these approaches is, of course, the discretization of
the edge orientations, which can cause wrong edge distance estimations.

[OH97] integrated edge orientation into the Hausdorff distance. They modeled
each pixel as a 3D-vector. The first two components contain the pixel coordi-
nates, the third component the edge orientation. The maximum norm is used
to calculate the pixel-to-pixel distance. [SMFW04] presented a similar approach
to incorporate edge position and orientation into chamfer distances.
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Edge orientation information is also used by [SVD03] as a distance measure
between templates. They discretized the orientation into four intervals and then
generated an orientation histogram. Because they do not take the edge intensity
into account, the weight of edge orientations resulting from noise is equal to that
of object edges, which results in a very noise sensitive algorithm.

In [AS03] the templates are stored as a set of line segments, each line contains
information of its position, orientation, and length. In the input image, the line
extraction thresholds are set such that most lines belonging to the target object
are found. This results in very low thresholds, which has the disadvantage that
many edges caused by noise are extracted, too. Consequently, the image becomes
highly cluttered. Matching is formulated as finding the best correspondences
between template and input lines. Because a large number of edges, produced by
noise, are processed in the line matching step, the probability of false matching
is highly dependent on the input image quality and background.

[LMSO03] combine image edges with optical flow and shading information.
They use a generalized version of the gradient-based optical flow constraint,
that includes shading flow. Using this model, they track the articulated motion
in the presence of shading changes. A forward recursive dynamic model is used
to track the motion in response to data derived 3D forces applied to the model.

[PS09] search for the fingers. Basically, the finger candidates are identified
by the finger boundary edges. They first compute the edge response using the
Sobel operator. Next, the image is convolved by a specific kernel containing the
finger contour distance constraints. The candidates are scored by evaluating the
image content around the candidate location. Hysteresis thresholding is applied
and finally the center position of the fingers detected using Camshift. Applying
a second Camshift to the skin segmentation gives the hand center. The hand
principal axis is computed as the difference between the center of the fingers
center and the center of the palm.

4.2.2 Overview of Our Approach

Before describing our approach, we introduce the following notation:

T = {Tk} is a set of templates with k = 0, . . . , l−1,
Wk ×Hk is the size of Tk,
Ek is the binarized edge image of Tk,
I a query image of size WI ×HI ,
Ic,k ⊂ I a sub-image of size Wk ×Hk and centered at c ∈ [0,WI ]× [0, HI ],
EI the edge intensity image of I, and
SI(k, c) a similarity measure between Ic,k and Tk with the co-domain [0, 1],

in the sense that the value 1 indicates a perfect match.

Our approach consists of two stages. First, the template set T and the query
image I are preprocessed to allow efficient edge-based template matching; sec-
ond, the matching itself is performed, which computes a similarity value for all
templates Tk and all sub-images Ic,k for all query image pixels c.

The templates are preprocessed in two steps. First, we generate the template
set representing the object to be tracked (in this thesis, the human hand) in
different states and viewpoints by rendering an artificial hand model and pro-
jecting it to a 2D image. An edge gradient operator is applied and finally the
binary edges extracted by the Canny edge detector. Note, that we keep the edge
gradient information at the edge pixels. The gradient is then mapped in a way
such that is can be compared easily and correctly (see Section 4.2.3). Second,
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Figure 4.34: In order to achieve a consistent gradient distance, we map gradients
as shown here, before actually comparing them. That way, our edge similarity
measure returns low “distances” for the edge gradients in both situations shown
here. The vi denote the original gradients, ui are the intermediate ones, and wi
are the final ones that are further used.

we transform the template image such that the similarity between template and
query image can be calculated efficiently by a convolution (Section 4.2.4).

Before computing similarities, we extract the edge intensities and gradients
from the query image and map them, just like the preprocessing for the tem-
plates. In order to overcome the problem of multiple edges caused by noise,
shadows, and other effects, we further transform the image appropriately (Sec-
tion 4.2.5).

4.2.3 Consistent Gradient Distance

Depending on background color and illumination, the edge gradient points into
the foreground or away from it (see Figure 4.34). Thus, edges whose orientations
differ by π need to be treated as identical. Taking this into account, the similarity
between two gradient vectors v1 and v2 could be simply calculated by |v1 ·v2|.
However, later, we want to express this similarity as a convolution operator,
but the absolute value is non-linear and, consequently, cannot be performed in
Fourier space. This would greatly increase the computation time (details are
described in Section 6.3).

Therefore, we propose to map the gradient vectors such that the mapped
gradient can be used in a similarity measure in Fourier space. We define our
mapping function v̂ = f(v) as follows:

θ = arctan
vy
vx

(4.41)

θ′ =

{
θ θ ≥ 0

θ + π θ < 0
(4.42)

v̂ = (v̂x, v̂y) = ‖v‖2 ·(cos(2θ′), sin(2θ′)) (4.43)

Now, we can calculate the similarity between v̂1 and v̂2 simply by v̂1·̂v2. Fig-
ure 4.34 illustrates the problem and our mapping.

To achieve higher robustness, we avoid to apply any kind of edge binarization
algorithm to the input image, because this would introduce at least a threshold
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parameter, which is always difficult to adjust. Instead, we interpret the edge
intensity values of the input image as probabilities of the corresponding pixel to
be an edge.

In the next section, we develop an algorithm that calculates an edge similarity
that utilizes these probabilities directly. By contrast, common approaches like
chamfer or Hausdorff matching need a binarized input image.

4.2.4 Computing the Similarity of Edge Images

In this section, we describe the core of our approach, the matching of a template
Tk and a query image I. We assume we are given the following information:

Lk = {c | Ek(c) = 1} the edge pixel list;

ĜT and ĜI the mapped edge gradients of the template and query image,
resp., additionally with each gradient vector normalized to
length one;

N (x) the pixel neighborhood of x with size n× n;
K : R→ [0, 1] a unimodal function (kernel function) with the maximum at

K(0) = 1;

A possible choice for K is the Gaussian function. In the following we will use a
kernel function with bounded support:

K̃(x, h, n) =

{
K(‖x‖2h ) ‖x‖∞ ≤ n
0 otherwise

(4.44)

As explained previously, we do not have a discrete set of edge pixels in the
query image, and, thus, cannot calculate directly a distance from each edge pixel
e ∈ Lk to the closest edge pixel in I. Instead, we use probabilities to estimate
the distance: the higher the probability and the nearer a pixel in the query
image is to a template edge pixel, the lower the distance should be. The mean
probability of a neighborhood of e is used as inverse distance measure, so that
a small distance results in a high mean value and vice versa. The weight of the
neighboring pixels is controlled by the choice of the kernel function K and its
parameter h. Because only close pixels are relevant for the similarity measure,
we only take into account a neighborhood of each template edge pixel of size
n ∈ N.

To compute the similarity SI(k, c), we calculate for each edge pixel e in the
template image the probability P c,k(e) that an edge in the query image is close
to it:

P c,k(e) =
1

2
+

1

CK

∑
p∈N (e)

K̃(p− e, h, n)EI(c + p)ĜT (e)·ĜI(c + p) (4.45)

with the normalization factor

CK = 2·
∑

p∈N (e)

K̃(p− e, h, n) (4.46)

Note that ĜT (e)·ĜI(c + p) is a 2D scalar product; because it is in [−1, 1], we
have to use an offset. Figure 4.35 illustrates the idea behind this measure.

Then, we define the overall similarity as the mean probability

SI(k, c) =
1

|Lk|
∑
e∈Lk

P c,k(e) (4.47)
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Figure 4.35: We estimate the similarity between a template edge (dashed line)
and a query image edge, which is represented by intensities (gray solid curves),
by multiplying a kernel that is centered around each template edge pixel (cir-
cles) with the edge intensities. The intensity value of the template edge pixel
(triangles) visualize the “closeness” of query image edges.

Since the kernel function K and parameters h and n are fixed, the normalization
factor CK is constant. Therefore, we can rewrite Eq. 4.45 as

P c,k(e) =
1

2
+
∑

p∈N (e)

ηT (p, e)·ηQ(c+ p) (4.48)

with

ηT (p, e) =
1

CK
K̃(p− e, h, n) ĜT (e) (4.49)

ηQ(x) = EI(x) ĜI(x) (4.50)

and insert it into Eq. 4.47

SI(k, c) =
1

2
+

1

|Lk|
∑
e∈Lk

∑
p∈N (e)

ηT (p, e)ηQ(c+ p) (4.51)

Because K̃ is zero everywhere outside its support, we can rewrite the inner sum
as a sum over all pixels in Tk. Similarly, the outer sum can be rewritten, yielding

1

2
+

1

|Lk|
∑
y∈Dk

(
Ek(y)

∑
x∈Dk

ηT (x,y)ηQ(c+ x)

)
(4.52)

where Dk = [0,Wk]× [0, Hk]. We rewrite again:

1

2
+
∑
x∈Dk

(
ηQ(c,x)

1

|Lk|
∑
y∈Dk

Ek(y)ηT (x,y)

︸ ︷︷ ︸
ẼTk

(x)

)
(4.53)

Notice that ẼTk
can be calculated offline. Finally, we arrive at

SI(k, c) =
1

2
+
∑
x∈Dk

ηQ(c+ x)·ẼTk
(x). (4.54)

SI(k) is called the confidence map of I and Tk and is basically generated by
correlating ẼTk

with EIĜI (see Eq. 4.48). It can be calculated efficiently in
Fourier space by expressing the correlation as a convolution by flipping the
image ẼTk

. Since ηT , ηQ ∈ R
2, we compute Eq. 4.54 independently for each

component x and y, so that they are scalar-valued correlations.
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So far, we have described a robust and fast method to compute the edge
similarity between a query image and a set of templates. One remaining problem
is that a query image often contains multiple edges close to each other, which
are, therefore, also close to the appropriate template edge. For instance, a cable,
which produces a shadow, causes four instead of two strong edges. Depending
on the edge orientation, this causes severe over- or underestimation of P c,k(e).

The next section describes our method to overcome this problem by prepro-
cessing the query image. Note that this will only marginally increase the com-
putation time because the computational complexity is linear in the number of
pixels in the input image (see Section 4.2.8). Furthermore, most of the overall
matching time is consumed by the similarity computation itself, which strongly
depends on the number of templates.

4.2.5 Preprocessing the Query Image

In the following, we assume that the query image contains intensities only, and
that the edge gradient for each pixel is given.

It is obvious that the larger the intensity of an edge pixel is, the higher its
weight should be in the similarity measure 5 defined in Section 4.2.4. This could
easily be incorporated into Eq. 4.45 by normalizing it with the query image
neighborhood. However, this would have the disadvantage that the lower the
number of significant edges, the lower the signal to noise ratio would be. In
the extreme case of a region that contains no useful edges, the measure matches
only to noise and, thus, has no significance.

Therefore, we propose an approach that does not exhibit this problem: we
preprocess the query image, such that at each pixel, the intensity weighted edge
information of the neighborhood is stored. Note that intensity values and gra-
dients of the neighborhood are combined in different ways, which are explained
in the following.

The new edge gradient at each pixel is computed as the weighted average
gradient of its neighborhood:

G̃Q(x) =
f(x)

‖f(x)‖2
(4.55)

with

f(x) =
∑

p∈N (x)

K

(
x− p

h

)
I(p)ĜI(p). (4.56)

Thus, the higher the edge intensity at a pixel is, the more important its orienta-
tion information is.

In contrast to orientations, intensities should not be averaged, because in
regions with many strong edges, for example caused by shadows, one would get
an unrealistically high new intensity. Instead, keeping just the intensity of the

5 Of course, not all object edges produce the same edge response intensity, but in general they
tend to be stronger than edges from background noise. One can also try to apply some
preprocessing to the edges such as taking the logarithm of the edge intensities or trying to
find the optimal threshold that separates real edges from the background, but without a model
of the shape, object edges are hard to be discriminated from background noise. Thus, in real
applications, one has to rely on images with a good edge response.
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img space

edge intensity

Figure 4.36: Our query image preprocessing takes the maximum (dotted line)
of the weighted kernel functions (dashed lines) in the neighborhood. This is a
much better choice than the weighted average (solid curve). Notice that the
max preprocessing yields a response of the same magnitude in the left and the
right example, whereas the average produces undesirable varying responses.

strongest neighboring edge, weighted by distance, is a much better choice. This
is realized by the following function:

I(x) = max
p∈N (x)

K

(
x− p

h

)
I(p) (4.57)

Figure 4.36 shows by way of an example that this yields the desired result, in
contrast to the weighted average.

4.2.6 Massive Parallel Implementation

Our method lends itself well to implementation on modern GPUs using the
stream programming model, which we describe in this section using the CUDA
programming environment [Nvi08]. Since the convolution kernel size in both
Eqs. 4.56 and 4.57 is fairly small, it is more efficient to implement the complete
query image preprocessing directly in a single CUDA kernel,6 without FFT.

We load the image into a 2D texture. For each output pixel, the CUDA kernel
executes a loop over the (2n + 1)× (2n + 1) neighboring pixels performing the
algorithms described in Sections 4.2.5. The confidence map SI(k) is calculated
componentwise for the x and y directions (see Section 4.2.4), and the results
are summed up. Calculating each component (x, y) of S can be formulated as
a linear convolution. The kernel size is equivalent to the size of the template
images (see Eq. 4.54), and thus relatively large. To accelerate the confidence
map generation, one should perform the convolution through multiplication in
Fourier space.

SI = F−1(F (EIĜ
x
I )F (flip(ẼxTK

)) + F (EIĜ
y
Q)F (flip(ẼyTK

))) (4.58)

F and F−1 denote the Fourier transform (FT) and the inverse FT, resp.. Be-
cause of the linearity of the (inverse) Fourier transform

F−1(F (Ix ∗ IxT + Iy ∗ IyT )) =

F−1(F (Ix ∗ IxT ) + F (Iy ∗ IyT ))

we can accumulate the results of the convolution in Fourier space and save one
inverse FT. In the above formula, ∗ denotes the convolution operator.

The template images are preprocessed and Fourier transformed offline. Since
with many object localization applications, a lot of localizations are performed

6 In the context of stream processing, the term “kernel” denotes a function that is applied to
each item in a stream (i.e., a homogenous array).
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with the same set of templates, it makes sense to upload all Fourier transformed
templates to the GPU memory. This greatly improves memory access speed
during the computation of the confidence map. In our implementation, we use
the FFT library from NVIDIA.

Due to the high number of templates and the limited number of memory on
the graphics hardware, the memory consumption of each Fourier transformed
template is an important factor. In the following section, we will discuss, how the
memory usage of the Fourier transformed templates could heavily be reduced.

4.2.7 Compression of the Templates

The Fourier transformation of query and template images have to be performed
in a common spatial domain. Its width/height is the sum of the query and
template image width/height, rounded up to the next power of two for most effi-
cient calculation. Therefore, storing the Fourier transformed template consumes
a huge amount of memory. However, by construction our templates contain only
low frequencies (Section 4.2.4). The idea to skip the higher frequencies of the
Fourier transform is straightforward. The remaining question is how many of
the higher frequencies can be skipped without losing significant information in
the template while saving as much memory as possible.

Crucial for further object detection algorithms are the confidence maps, ge-
nerated by convolving a query image with a template. We can compress the
template images as long as the confidence map, generated by the compressed
template, here denoted with SfI , does not differ too much from the exact confi-

dence map SI , generated by the uncompressed template ẼT . More specifically,
for a set of templates and the query image, at each position in the query image,
the best matching template index and its similarity value is of further interest.
This information is given by the combined confidence map defined as

SI(x, y) = max
k∈[0,l−1]

{SI(k, x, y)} . (4.59)

Let FT = F (ẼT ) be the Fourier transform of a preprocessed template image

ẼT and F fT the Fourier transformed template, containing only f percent of the

frequencies in x- and y-direction stored in FT . The storage cost of F fT is by

the factor (f/100)2 lower compared to FT . The error we make when using F fT
instead of FT to generate the combined confidence map between a query image
I and a set of templates T , is defined as the RMS (root mean square) error
between the exact combined confidence map SI , based on FT and the combined
confidence map SfI based on F fT :

EI(f) =

√
1

WIHI

∑
x,y

(
SI(x, y)− SfI (x, y)

)2

(4.60)

To become as independent as possible from the query image I we use the average
RMS error of a large set of query images {Ij |j = 1 ... N}:

E(f) =
1

N

N∑
i=1

EI(f) (4.61)

We captured 8 different image sequences (four sequences with different back-
ground and amount of edges, each of them captured under two different lighting
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Figure 4.37: For each template dataset: the average root mean square error of
combined confidence maps built using templates with only the lower f percent of
the image frequencies. The error is measured relative to the combined confidence
map using the uncompressed templates (all frequencies).

conditions) with a total of about one thousand frames. Each sequence contains
images showing pointing hand, open hand, and open-close gestures as well as
images without a valid hand pose. Figure 4.37 shows the plot of the average
RMS error for different f . We have decided to set f = 19/12/15 for template
dataset 1/2/3 respectively.

4.2.8 Results

In our datasets, we use the human hand as the object to be detected. In the field
of articulated object detection and tracking, the chamfer and Hausdorff distance
measures are most often used as distance measure for edge images. Stenger
showed in [Ste04] that the chamfer outperforms the Hausdorff matching for
human hand templates. Therefore, we compare our method with the chamfer
matching algorithm.

For comparison, we need an appropriate measure for the ability of the methods
to localize an object at the correct position in the query image. Given a query
image I, both the chamfer and our method generate a confidence map SI(k)
for each template Tk. Now let (x̂, ŷ) be the true location of the object in the
query image and ĉ the matching value at (x̂, ŷ) of the template, delivering the
best match according to the approach used. Obviously, the fewer values in all
confidence maps are better than ĉ, the better the matching algorithm is.This
is the idea of our quality measure of the matching algorithms. Our quality
measure is an indicator for the number of other matching values in SI that
are higher or lower. The higher the quality measure of the approach is, the
more matching values at other then the correct position are lower and thus the
better the template matching approach is. The chamfer matching, of course,
returns distances, not similarity values, but the chamfer matching output can
be converted easily into similarity values by inverting them.

In detail, we use the following quality measure:

QI =
1

N

∑
0≤x<WI
0≤y<WH

(SI(x̂, ŷ)− SI(x, y)) (4.62)
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Figure 4.38: 1D example of our quality measure: the true location p of the target
object is determined manually, v is the value at p in the combined confidence
map. Our quality measure is basically the sum of the signed gray areas over the
whole confidence map.

Figure 4.39: Each row shows three examples of our rendered hand, which we
used to generate the templates (pointing hand in the 1st row, open hand in the
2nd one and open-closing hand in the 3rd one)

with

N = WIHI(max−min) (4.63)

where min and max are the smallest and largest value in SI , resp.. We manually
determined the true object positions (x̂, ŷ). Thus, the higher the value QI , the
better the method works for the query image and template set. Figure 4.38
illustrates the measure by a 1D combined confidence map.
Of course, a better quality measure would also take into account the index

of the true template. Unfortunately, we did not yet have the time to manu-
ally label the templates. But we observed that at the true position, the best
matching template reported by our algorithm looks very similar to the object
in the input image in most frames. Video sequences, demonstrating this obser-
vation, can be found at http://cgvr.informatik.uni-bremen.de/research/
handtracking/index.shtml.
As test data we used RGB images of resolution 320×256. We converted them

to gray scale, then applied a Gaussian filter of size 3 × 3 to reduce noise, the
Sobel filter to extract the edge gradient, and finally a non-maximum suppression

http://cgvr.informatik.uni-bremen.de/research/handtracking/index.shtml
http://cgvr.informatik.uni-bremen.de/research/handtracking/index.shtml
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Figure 4.40: One frame of each of our three datasets: pointing hand (left),
open hand (middle), open-close gesture (right). The images in the first row are
the originals, the images in the second row are the combined confidence map
generated by chamfer matching, and those in the third row are generated by our
approach. Notice that with our approach, the maxima in our confidence maps
are much more significant. Canny edge image with thresholds 20 and 100 (2nd
column), Combined confidence map generated by chamfer based matching(3rd
row) and Combined confidence map generated by our approach.

Figure 4.41: Test data set 2 is an open hand rotating in the image plane. Canny
thresholds are 20 and 100.

filter. The resulting images are then transformed as explained in Section 4.2.5.
All preprocessing is performed on the graphics hardware in CUDA.

Some query images contain edge response values differing strongly from the
average, for example, a very bright object in front of a black background. To
overcome this problem, the logarithm can be applied to the edge intensities. We
have found that, in practice, some scenarios work better with, some without this
modification. The main reason is that the edge noise is often intensified.

We used three datasets for evaluation (see Figures 4.40, 4.41, 4.42). Dataset 1,
consisting of 200 frames, is a pointing hand moving in the image. The templates
(see Figure 4.39) are 300 renderings of an artificial 3D hand model representing a
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Figure 4.42: Test data set 3 is an open-closing sequence of the hand. Canny
thresholds are 20 and 60

pointing gesture. Each template is generated from a different camera viewpoint.
In dataset 2, an open hand is tested. The length of the dataset is 200 frames,
too, and the number of templates is 300 as well. Dataset 3 shows an open-closing
sequence of a human hand, consisting of 135 frames. Again, the templates are
created using the 3D hand model, with its fingers opening and closing, rendered
from three different camera angles.

The template edges are extracted through the Canny edge detector from the
depth buffer of the renderings. Here, we have well-known conditions, so we can
manually optimize thresholds for the Canny detector. As kernel function we
have chosen the Gaussian function K(x) = e−

1
2x

2

. The bandwidth parameter
h, needed in Eq. 4.44, has been manually optimized; it depends only on the
templates, not on the query images. We set n = d3he (three sigma rule for
Gaussians) and h = 3.3 for dataset 1 and h = 4.0 for datasets 2 and 3. The
resolution of the template images depends on the object shape, distance, and
orientation relative to the camera. For our experiments we have an average
template size of 80× 80.

For the chamfer based template matching algorithm we used the parameters
proposed by [STTC06] (6 edge orientation channels and a distance threshold
of 20). He found that this method outperforms the method without taking
orientations into account. We manually optimized the thresholds needed for the
edge binarization algorithm (Canny) for each dataset.

Figures 4.43, 4.44 and 4.45 shows the quotient QGM/QCF of the quality
measure of the two approaches for all frames. QGM denotes the quality measure
for our approach and QCF for the chamfer based approach. Clearly, in most
parts of datasets 1 and 3 our approach works better than the chamfer based
method. Only in the last third of dataset 2, chamfer matching works better. In
these frames, none of the templates matches well the orientation of all fingers.
Closer inspection suggests that a lot of orientations in these frames happen to
be discretized to the right bin in the chamfer based method, which makes it
produce a better match with the right template.

We measured about 1.1 frames per second with our datasets, which comprises
the preprocessing of the query images and the convolution with 300 templates.
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Figure 4.43: The quotient of the quality between our approach and the chamfer
based approach is shown. A value greater than 1 indicates that our approach is
better.
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Figure 4.44: The quotient of the quality between our approach and the chamfer
based approach is shown. A value greater than 1 indicates that our approach is
better.
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Figure 4.45: The quotient of the quality between our approach and the chamfer
based approach is shown. A value greater than 1 indicates that our approach is
better.
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The limiting factor of the computation time of the matching process is the FFT
and inverse FFT, which consumes over 90% of the total time.

All these approaches work on 2D images captured from traditional cameras,
i.e., one dimension is lost due to the projection to 2D. Consequently, there
are a lot of ambiguities that cannot be resolved using one camera only. This
ambiguities can partially be alleviated by additional depth information.

4.2.9 Conclusions

We developed an edge similarity measure for template matching that does not
use any thresholds nor discretize edge orientations. Consequently, it works more
robustly under various conditions. This is achieved by a continuous edge image
similarity measure, which includes a continuous edge orientation distance mea-
sure. In addition, we are able to formulate the edge distance measure as a
convolution. Consequently, it lends itself very well for implementation on mod-
ern GPUs. We generate a confidence map in only 3 ms. In about 90% of all
images of our test datasets, our method generates confidence maps with fewer
maxima that are also more significant. This is better than a state-of-the-art
chamfer based method, which uses orientation information as well.

So far, we have presented our novel similarity measures based on the hand
silhouette area and on edges. This two features are complementary and have
proven to work well for many approaches. But there are also other options to
define similarity measures using other inputs.

4.3 Future Work on Similarity Measures

In the following, we will discuss other features, which are also worth to be payed
attention. First, we will give an overview of approaches using range images. We
expect the importance of range images for hand tracking will increase in the fu-
ture as soon as the resolution and accuracy of the cameras increase sufficiently.
Next, we will give a short overview of approaches based on visual hull recon-
struction, and finally, discuss the potential application of keypoint detectors
and descriptors for hand tracking.

4.3.1 Approaches Based on Additional Depth
Information

In the recent years, cameras providing depth information became more and
more available. For several years, Time of Flight (ToF) cameras are available
but still very expensive. In 2010, Microsoft released a low-price alternative to
the ToF cameras: the Kinect. The technique behind the Kinect is completely
different (the distortion of a set of projected points is used to estimate the depth),
but the output is similar. Since 2012, the Kinect is also available for desktop
computers. Depth information is basically very interesting for application to
hand tracking, but the resolution of the depth image and the error of the depth
data is still too high to be used as a stand-alone device for high-dimensional hand
pose estimation. For this reason, we have not yet tested and implemented the
approach utilizing depth information. But our color divergence based approach
(Sec. 4.1.4) can trivially be extended to integrate depth information as already
mentioned in the corresponding section.
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But in the near future, if the resolution and accuracy of depth values will
be heavily increased, we expect that depth cameras will become an important
technology to improve hand tracking. In addition, depth information could be-
come a replacement for edge features from conventional cameras, because of all
edges belonging to hand and finger borders that are relevant for matching are
also visible in the depth images. The reason is that at these borders, there is al-
ways a depth discontinuity which results in different depth values. Additionally,
depth images also have area information, and thus, can be used for area-based
similarity measures. Consequently, depth images have the potential to combine
the advantages of area-based and edge-based similarity measures.

For this reason, we want to give a short overview of currently available tracking
approaches utilizing depth information. A way how we can integrate depth
information in the approaches presented in this thesis is given in the future
work (Section 7.3.2).

[GAW+06] used two cameras positioned at the same distance as the human
eyes. A foreground segmentation was applied, filtered and edges based on the
segmentation extracted. Both segmentation and edges are used to compare the
hypothesis to the input images. A particle filter is used for hand pose prediction.
The input images from the two cameras are treated separately and combined as
a last step in the tracking pipeline.

A disparity map is generated in [DF98] to estimate the depth at all image
positions. A hand model consisting of cones and spheres is matched to the
depth image using an ICP (Iterative Closest Point) technique. They have to
initialize the tracker manually and only moderate frame-to-frame movements
are allowed. A prediction of the hand pose in the current frame based on the
last frame is done using Kalman filtering.

In recent years, time-of-flight (ToF) cameras, delivering per-pixel depth infor-
mation, came up. Compared to depth reconstruction from stereo cameras, the
time-consuming reconstruction procedure is not necessary anymore. But the
resolution is very low (up to 200 × 200) and the depth values are very noisy,
especially at locations with high discontinuity in depth.

[DK11] used the Kinect to detect the fingers in front of a large screen to
replace expensive touch displays. The depth values are thresholded and further
postprocessed to segment the fingers. The right hand can be distinguished from
the left hand. The proposed system is a “cheap and acceptable alternative to
other techniques”.

[GSP+10] used projective geometry to match the hand template to the depth
image. First, a part of the 27-dimensional configuration space was sampled
and a dimension reduction using PCA performed. A particle filter in the low-
dimensional space was used to find the hand pose in the next frame. Their
distance measure between the hand hypothesis and the input image uses both
image coordinates and depth information.

In [HMB11], hand poses are estimated using a ToF camera. The depth infor-
mation was primarily used to segment the hand from the background. Features
like finger tips, finger-likeness and palm candidates are extracted. A graph is
built based on the features and the candidates/nodes best meeting some specific
conditions are considered as finger tips and palm. Additionally, the knowledge
of the palm pose in the previous frame is taken into account. The approach is
able to detect two hands simultaneously.

ToF cameras are also utilized for whole body pose estimation. [HBMB09]
reproject the depth image data onto 3D. The reprojected pixels form a point
cloud. They model the human body as a graph with 44 nodes, and then apply
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the SOM (self-organizing-map) algorithm to match the graph to the point cloud.
Based on the positions of the graph nodes, the human body pose is estimated.
The authors mention that the approach works well as long as the arms do not
move in front of the body, i.e. there is no overlap. This makes the approach
extremely difficult to be applied to hand tracking because most of the hand
poses include overlaps between the fingers and the palm.

Recently, [SFC+11] adapted the idea of “tracking by classification” to human
body tracking. They partition the body into 31 parts. Then, they train a
decision forest to be able to classify each part. They use a simple but effective
difference of two depth values classifier for each node in the trees. The feature is
inspired by [LLF05]. After classification of each position in the depth image, they
compute the body part positions by the mean shift algorithm. The approach
is fast enough for real-time applications and well-suited for parallelization but
the effort in man power and computation time to handle the huge number of
shapes the body has is very large. Applied to hand tracking, this effort would
be even higher due to the larger shape variability of the hand. We believe that
the shape variability is too high to obtain a robust hand tracking approach in
this way. Additionally, we estimate that [LLF05] needed at least 5 man-years
to for the implementation and generation of the human pose database. In our
opinion, applied to hand tracking, the amount of man-years needed would be
even higher. This would exceed this application by far.

[OKA11a] integrated the Kinect into their hand tracking algorithm. The hand
is localized conventionally through skin segmentation. Hand pose estimation
is formulated as an optimization problem. The difference-of-the-depth-values
between the hypotheses and the Kinect data are added to the objective function.
They use Particle Swarm Optimization (PSO) as optimization function. The
main drawback of their approach is that they do not use the depth information
to localize the hand, which could make the localization significantly more robust
to cluttered background and bad illumination conditions.

Similar to depth information, approaches based on visual hull reconstruction
use 3D information for object detection and tracking. Usually, they use a set
of conventional cameras. For the sake of completeness, we will give a short
overview of approaches based on visual hull reconstruction.

4.3.2 Approaches Based on Visual Hull Reconstruction

One can also try to reconstruct the visual hull of the hand first, and then estimate
the hand pose based on the reconstruction.

Visual hull reconstruction is a challenging task. [Joh11] shows that a high
quality reconstruction requires a high quality foreground segmentation and a
lot of cameras surrounding the hand. Furthermore, the visual hull computation
is very time consuming, and cannot be computed in real-time in scenes with a
complex background.

But, using a more simple visual hull reconstruction, one can coarsely estimate
the hand pose or recognize a few hand gestures.

[UMIO03] first reconstruct a rough voxel map of the observed hand. The
hand in each image was first segmented and then the different 2D silhouettes
combined to generate the 3D shape. The hand hypothesis is fitted in 3D to the
reconstructed voxel model to find the underlying hand pose.

A similar approach is used in [SK07, SKSK07] to detect the global position
and orientation of the hand. Simultaneously, they can recognize four different
gestures. The hand is captured using 3 near-infrared (NIR) cameras. The hands
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are segmented using background subtraction. The foreground segmentation is
reprojected onto 3D for all cameras. The 3D hand volume is reconstructed
by intersecting the re-projection volumes. Finger tips are detected and, based
on the number and relative position, the gesture classification is performed.
They are able to detect two hands simultaneously in real-time and tested its
functionality in multiple applications, e.g. games.

Such visual hull based approaches are very limited in their application to
hand tracking, because the cameras have to be positioned around the hand, the
background has to be very simple and the reconstructed visual hull is to coarse
or computationally too expensive.

Recently, similar to the visual hull reconstruction, a 3D scene reconstruction
utilizing depth images (using the Kinect) is proposed [IKH+11, INK+11]. But
the camera has to move around in the scene to be able to reconstruct the scene.
Applied to hand detection one would need a moving camera and several seconds
to reconstruct the visual hull of one hand pose.

So far, we have discussed how 3D information such as range images and the
visual hull could be used for pose estimation. In the following section, we will
consider a completely different approach.

4.3.3 Using Keypoints for Hand Tracking

The idea is simple: detect keypoints [Low99, BTG06, RD06, RRKB11] for each
hand template and store the descriptors [Low99, BTG06, CLSF10, RRKB11]
in a database. During tracking, apply the same keypoint detector to the input
image and compare the corresponding descriptors to the database. The best
matching template determines the hand pose in the input image. Obviously, we
have described a similarity measure but the question is, whether it is suitable
for hand tracking. We argue that this is not the case because of the following
reason.

Keypoint-based approaches make the strong assumption that the object to be
tracked is sufficiently textured, unique keypoints can be found, and the keypoints
can be discriminated from each other. Often, the objects are assumed to be
rigid. Both assumptions do not hold for the human hand. Even if it would,
keypoint detectors/descriptors are only able to recognize the identical object
under different lighting conditions, noise and viewpoints. Thus, as application to
hand tracking, if two hand poses (hand template and input image) are compared,
a match is only found if they are very similar in geometry and texture. As a
consequence, one could not work with templates generated from a synthetic 3D
hand model, but instead all templates would have to be captured from a real
hand in all possible poses. This is not practical.





Chapter 5

Fast Template Search
Strategies

The hand pose space forms a manifold in a high dimensional space. Depending
on the hand model the pose space has up to 27 dimensions.1

Consequently, in a typical tracking application, a huge number of templates
have to be matched. Additionally, at initialization, there is no previous knowl-
edge about position and state of the target object. Thus, one has to scan the
input image with a huge number of different templates to find the hand pose
and position. Of course, it is prohibitive to compare all templates to the in-
put image due to the real-time tracking condition. Thus, smart acceleration
data structures, which reduce the number of templates, and also the number of
positions in the input image, the templates have to be matched to, are crucial.

5.1 Related Work

Many approaches avoid the problem of simultaneous object detection and pose
estimation by a manual initialization, or they assume a perfect image segmenta-
tion. A manual initialization means that the approach needs to know the object
location and pose at the previous frame. Making the assumption that the object
does not move very fast allows the approach to apply a local image space and
pose space search. Perfect image segmentation trivially allows to determine po-
sition and size of the object. This also heavily reduces the search space because
the location of the object has not to be found, which significantly simplifies the
pose estimation task.

In [SKS01], an approach is proposed that needs both, manual initialization
and a perfect segmentation. They convert the hand silhouette into a descriptor,
which is used to compare the query silhouette against the database. Local
PCA is applied to further reduce the dimension of the descriptor. To avoid an
exhaustive search, they assume an initial guess and search for the best match in
the low-dimensional neighborhood.

Manual initialization is also needed in [SMFW04]. They use nonparametric
belief propagation, which is able to reduce the dimension of the posterior dis-

1 The 27th dimension is the torsion angle of the thumb. The reason, this additional DOF is
often included into the hand model, is that the flexion and abduction angles cannot describe
all valid thumb positions due to its complex joint configuration and the surrounding muscles
and tissue.
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tribution over hand configurations. They integrate edge and color likelihood
features into the similarity measure, and consequently, they do not need the
hand to be perfectly segmented.

Similar preconditions are needed in [dLGP10, dLGPF08]. The similarity mea-
sure is integrated into an objective function, which is then optimized by gradient
descent methods. Hand texture and shading informations are used in [dLGPF08]
and skin color in [dLGP10].

[LWH04] uses a two-stage Nelder-Mead (NM) simplex search to optimize the
hand position. They sample the hand pose space using a CyberGlove. The first
NM search is constrained to the samples to avoid getting invalid hand poses.
The second NM stage is a refinement and performs an unconstrained search in
the continuous configuration space. They employ edge and silhouette features
to measure the likelihood of the hypothesis.

[OKA11b] proposed a hand tracking approach that is designed to handle in-
teractions with simple objects like cylinders and spheres. They manually initial-
ize the hand pose and then optimize the objective function using the particle
swarm optimization (PSO) algorithm. The objective function consists of two
parts. The first part contains the incremental fitting of the hand model to the
input image. This is done using the chamfer distance between binary edges, and
the overlapping area between the hand silhouette and the binary segmentation.
The second part penalizes self-penetration of the hand and penetration of the
hand with the object the hand is interacting with.

Often, in real applications, neither a perfect segmentation nor an initial pose
is given. A manual initialization is always tedious or not possible at all. Thus,
several approaches are developed to search in the whole configuration space
to be able to estimate the object pose in (near) real-time. This is even more
challenging if the position of the object has to be detected as well. Particularly
for objects with a high shape variability such as the human hand, localization
and detection cannot be done separately because neither the appearance nor the
location is known in advance.

Exemplar-based matching is basically the same task as image retrieval (image
database query), as for example used by several Internet search engines. Given
a query image and an image database, the task is to find the images in the
database most similar to the query image. Converted to the problem of pose
estimation, the database contains the object in all poses and the query image
corresponds to the input image (e.g. obtained using a camera).

Many image database query approaches extract salient features e.g. color his-
tograms, texture information and coarse object silhouettes from the image. A
descriptor is built based on the features and often further compressed to obtain
a very compact descriptor that can be compared extremely fast to the database.
Due to the very large databases, comparing all descriptors still is too slow, and
thus, acceleration data structures are utilized for nearest neighbor search (in
many applications, the approximate nearest neighbor is sufficient).

Hashing, for example, is a popular data structure in the image retrieval re-
search field. Several variants of hashing are used, e.g. semi-supervised hashing
[WKC10], locality sensitive hashing (LSH) [KD09, KG09] and modulo-based
hashing with a complex binary image descriptor as hash key [TFW08]. Image
database query approaches try to find visually similar looking images, for exam-
ple, identify images that contain a specific landscape or the same object such as
a car.
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Object detection approaches, in contrast, need to find images from the
database that best match with respect to specific features e.g. the silhouette
or edges. Basically, one only needs to use different features to be able to apply
image retrieval techniques to object detection. But the very compact image
retrieval descriptors are not able to characterize the object silhouette or edges
appropriately. Thus, the descriptor has to be redesigned and the acceleration
data structure adapted.

Such an approach is for example proposed by [SVD03]. They extended the
LSH to the needs of human pose estimation. They learned a set of binary hash
functions offline from training examples. Each hash function is trained from
a training example pair, and hash values of +1 or -1 are assigned, depending
on whether the distance between the elements of the pair is below or above a
threshold. A subset of hash functions are selected that minimize the classifi-
cation error. Given a query image, the corresponding hash value is computed
and LSH utilized for a fast nearest neighbor search in a database consisting of
example poses.

Hashing is also used by [APPK08] for digit and hand pose classification. Bi-
nary hash functions are built from pairs of training examples, each pair building
a line in the pose space. The hash values are in {0, 1} depending on whether the
projection of the input to the line is between two predefined thresholds or not.
The projection is computed using only distances between objects (e.g. digits or
hand pose images). The binary hash functions are used to construct multiple
multibit hash tables.

The idea to convert the evaluation of similarity measures to vector distances
is used in [AASK04, AASK08]. They used an Euclidean embedding technique
to accelerate the template database indexing. A large number of 1D embedding
is generated. An 1D embedding is characterized by a template pair. AdaBoost
is used to combine many 1D embeddings into a multidimensional embedding.
A database retrieval is performed by embedding the query image, and then,
comparing the vector in the embedded Euclidean space to all database elements.
Each embedding needs the similarity computation between the input image and
all pairs of templates characterizing the high-dimensional embedding.

Several other approaches are proposed to reduce the computation time and
the number of the similarity measures for exemplar based object detection. A
relevance vector machine (RVM) is used in [AT04] to reduce the number of
human pose examples, the input has to be matched to. They extract the shape
silhouette and encode it using histogram-of-shape context descriptors to get
some robustness to silhouette errors. The vector quantization of the descriptor is
used as an input for the RVM. They “train the regressors on images resynthesized
from real human motion capture data”. Pose estimation is formulated as a one-
to-one mapping from feature space to pose space.

Thayananthan et al. [TNS+06] also used a RVM. They used skin segmentation
and edges as matching features. From a training set of 10.000 hand templates,
455 are retained. The RVM’s are trained using an EM type algorithm to learn
the one-to-many mapping of templates.

The most often used acceleration data structure are hierarchies. Hierarchies
can be built in pose or feature space. A model-based tracking approach for mul-
tiple humans is proposed in [GD96]. They build a combined hierarchy over the
set of humans and the pose space of each human. In order to search for the pose
of the ith human in the scene, they synthesize humans with the best pose pa-
rameters found earlier. Then, they search for the best torso/head configuration
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of the ith human while keeping the limbs at their predicted values. Chamfer
matching is used for hypothesis testing.

In contrast, a feature space hierarchy is utilized in [Gav00]. They use an
agglomerative clustering approach based on the chamfer distance between object
edges to build the hierarchy. Cluster prototypes represent the nodes in the
corresponding tree. Given a query image, the matching starts at the root node
and successively visits the child nodes. For each node, the subtree is only further
traversed if the chamfer distance to the query image is below a threshold. They
have measured a speedup of three orders of magnitude.

[TPS03] used a hierarchical approach for hand gesture tracking with applica-
tion to finger spelling. They use a small database consisting of real hand images.
The hand silhouette is extracted utilizing skin segmentation. Applying Fourier
Transform to the silhouette, they obtain a high-dimensional feature vector. They
build a hierarchy by recursively applying PCA-based vector quantization to the
vectors.

[STTC06] proposed an approach that hierarchically partitions the hand pose
space. “The state space is partitioned using a multi-resolution grid”. The
nodes at each level are associated with non-overlapping sets of hand poses in the
state space. “Tracking is formulated as a Bayesian inference problem”. During
tracking, they process only the sub-trees yielding a high posterior probability.

A “degenerated” version of hierarchical matching is cascading-based match-
ing. The idea of a classical hierarchy is to keep the computation time low by
minimizing the number of matches in the upper tree levels. In contrast, the
idea behind cascading is to still match all candidates, but heavily reduce the
computation time for each match. In this way, the root node consists of a very
fast but inaccurate measure, and the leaf/leaves of more expensive and accurate
measures.

The idea of cascading was first proposed in [VJ01]. They use a large set
of features and learn the most discriminating one utilizing AdaBoost. Then,
they combine “increasingly more complex classifiers in a cascade, which allows
background regions of the image to be discarded early while spending more
computation time on more promising object-like regions”. For evaluation, they
applied their approach to face detection.

The idea of cascading is also used in [HSMP01] for face detection. First, they
perform feature reduction by choosing relevant image features using statistical
learning approaches. Second, they build a hierarchy of classifiers. “On the
bottom level, a simple and fast classifier analyzes the whole image and rejects
large parts of the background. On the top level, a slower but more accurate
classifier performs the final detection”.

In [AS02], cascading is used for hand shape classification. Four different
similarity measures are employed, based on edge locations, edge orientations,
finger locations and geometric moments. “Database retrieval is done hierarchi-
cally by quickly rejecting the vast majority of all database views” using finger
and moment-based features. They reported that they could reject 99% of the
database in this step. Then, the remaining candidates are ranked by a combi-
nation of all four similarity measures.

In our approach, we propose to use a feature space hierarchy. We are able
to discard most of the image position and scale candidates very early with only
a few and fast similarity computations. Only for very likely candidates the
template tree is deeply traversed, which is also the main advantage of cascading.
Thus, our approach combines the advantages of cascading and hierarchies and
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Figure 5.1: A small hierarchy consisting of four templates (1,2,3,4) illustrates
the idea of our hierarchy. Each leaf represents a template. Inner nodes represent
a set of templates. Consequently, the root node represents all templates. Each
node consists of the intersecting area (red area) of the templates it represents.
For example, the left child of the root node represents templates 1 and 2, and
consists of the intersecting area of templates 1 and 2, and only this area. For
the sake of clarity, we have also visualized the superposition of the templates,
an inner nodes represents (gray regions). Please note that we have to model the
background region as well, which is omitted here for visual purposes.

merges them into a new method. With this, our approach is able to apply a fast
and simultaneous hierarchical search in image and pose space. In contrast, most
previous approaches, utilizing acceleration data structures, need to perform a
separate search in pose space and image space (i.e. object localization) due to
their design properties. The reason is that they are only able to apply their pose
estimation method to a fixed position in the input image. This approach then
has to be applied to all image positions and different scales.

In the following section, we will present our hierarchy. In the next section we
will present our image space search strategy that is combined with our hierarchy
into our simultaneous image and pose space search approach.
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Figure 5.2: The figure shows a simple template hierarchy generated by our
approach in Sec. 5.2.1. In each node, we compute a representation of the in-
tersection area of the template silhouettes by axis-aligned rectangles (green).
Additionally, we have to model the silhouette background, which is processed in
the same way. The rectangle representation is visualized in red. Each node in
the tree consists of the two rectangle sets (green and red).

5.2 Construction and Traversal of Our
Template Hierarchy

In this section, we propose an approach to build a hierarchy to reduce the
matching complexity from O(n) to O(log n) with n=#templates. Our hierar-
chy utilizes information about the spatial similarity of template silhouettes, and
not only distance measures between templates. This yields the great advantage
that silhouette areas, shared by a set of templates, are matched only once and
not separately for each template. This leads to a template hierarchy, the con-
struction of which is guided by the area of intersection. This greatly reduces
the computation time. Figure 5.1 illustrates the idea of the construction of our
hierarchy by means of a small example.

Each node in the template hierarchy represents a set of templates. The root
node represents the whole template set the hierarchy is build of. Each inner node
represents a set of templates, which consists of the disjoint union of the templates
of the child nodes. Each level of the tree, thus, represents the whole template set.
Each leaf represents exactly one template. In each node we store the intersection
area of all template silhouettes the node represents. The templates themselves
are not stored in the nodes.
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Figure 5.3: Workflow of the subdivision algorithm of our template hierarchy.
The input is a set of templates (upper left box). The output is the rectangle
representation of the intersection area of the template set (upper right box).
A node is subdivided into k child nodes by transforming the templates into
the Euclidean space, which characterizes the difference of their silhouette area.
Child nodes are determined by a clustering algorithm. The child nodes are
processed recursively until only one templates is left.

Let us denote a template by T (as defined in Section 4.1.2), and a set of
templates by T1,n = {T1 . . . Tn}. A node in our hierarchy that represents T1,n

consists of the intersection area

I1,n(x, y) =

n∧
i=1

T (x, y) (5.1)

Equivalently, we can describe the intersection area through the set description
S of the silhouette area:

SI1,n(x, y) =
n⋂
i=1

Si (5.2)

Utilizing our template hierarchy, we initially search for areas matching to the
root node, and then refine the search by traversing down the tree. For example
given the skin segmentation of an input image, we first search for skin regions
of appropriate size, and then, while traversing down the tree, we match more
and more precisely the foreground region to find out if it is a hand pose at all,
and if so, which hand pose it represents.

We want to mention that not only the silhouette area S, but also the back-
ground S̄ has to be matched, and consequently, has to be stored in the template
hierarchy as well. The background is computed in the same way as the fore-
ground. For simplicity, we will explain our approaches only using the silhouette
area S.

In the following, we will explain the generation of our template hierarchy, and
in the subsequent section how we use the hierarchy for efficient matching.

5.2.1 Hierarchy Generation

The hierarchy utilizes our representation of the template silhouettes by axis-
aligned rectangles presented in Section 4.1.2. Consequently, for each node we
compute a rectangle representation of I1,n from Eq. 5.1 and save the resulting
rectangle set in each node instead of I1,n, which yields a much more compact
representation (Fig. 5.2) and fast matching as proposed in Sec. 4.1.3.
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5.2.1.1 Subdivision Criterion

In order to minimize the matching effort, we subdivide the template set of size
n into K subsets, such that the intersection area of the templates within each
subset is maximized. The basic idea is to identify areas in the superposition that
are covered by at least n/K templates and at most n−1 templates. Additionally
those areas should have the shape of axis-aligned rectangles. In other words, we
want to subdivide the templates such that each subset can be covered by as few
axis-aligned rectangles as possible. We do not take the intersecting area of all n
templates into account because this area is common to all templates, and thus,
not appropriate to be used to distinguish them.

To achieve this, we define a distance measure between the template silhouettes
that is based on axis-aligned rectangles and not directly on the intersection itself.

First, we superimpose the template set T , subtract the intersecting area of all
templates, and then normalize the resulting image values to [0, 1]. We denote this
image in the following by HS . Second, we apply our algorithm from Sec. 4.1.2
with τ = 1/K (see Eq. 4.9) to HS . The result is the rectangle set R. For each
template Tj we compute the intersecting area vij with each rectangle Ri ∈ R:

vij = |Tj ∩Ri| (5.3)

For each Tj we define a vector vj = (v1
j , · · · , vmj ), m = |R|. Next, we cluster

the template set T into K disjoint subsets {T1, . . . , TK} by applying the batch
neural gas clustering algorithm [CHHV05] to the set of vectors vj using K
prototypes. Performing many test runs showed that the clustering algorithm
does its job well.

This method is applied recursively to T1, . . . , TK , until only one template is
left per set, which yields our template tree. The root node is represented by the
whole template set T . Its children are {T1, . . . , TK} and so on.

For each node in the template tree, we compute a rectangle representation of
the intersection of all templates contained in this node (Fig. 5.1) with τ close
to 1. Only the rectangle representation for each node (Fig. 5.2) is stored and
later used for matching. In contrast to the independent approximation of each
silhouette by rectangles (Fig. 4.10), most parts of the silhouette intersection
areas are covered only once. A workflow of the subdivision algorithm is given
in Fig. 5.3.

5.2.1.2 Determine Number of Child Nodes

We dynamically determine the optimal number of child nodes for each node in
the hierarchy. For this end, we start with k = 2 nodes and compute the rectangle
covering R of HS . We test if |R| > 0 i.e. at least one rectangle is fitted. If the
test fails, we increase k, recompute R, and test again and so forth until the test
succeeds. This method has the great advantage that we ensure that the new
intersecting area is well suited to be represented by axis-aligned rectangles.

5.2.1.3 Rectangle Covering Optimization

We can further reduce the number of rectangles, and consequently, speedup the
matching by reusing the area of each node in its child nodes. The idea, also
outlined in Figure 5.4, is as follows:
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Figure 5.4: A small example template set (left) and our corresponding template
hierarchy (except the leaves, which are represented by the templates themselves).
Each node in our template hierarchy represents a set of templates. The node
itself consists of the intersection area of this templates (right image, red and
black area). For an arbitrary node n, the intersecting area of a child node is a
superset of the intersection area of n. During tracking, we reuse the common
intersecting area (right image, black area) of parent and child nodes and newly
match only the additional intersecting area (red area) of the child node.

given an arbitrary set of templates T1,k, and an arbitrary subset Tπ(1),π(i) with
1 ≤ i ≤ k and π is the permutation function. Using the notation from Eq. 5.2,
it is easy to see that

SI1,k ⊆ SIπ(1),π(i) (5.4)

Applied to our template hierarchy, SI1,k represents an arbitrary inner node
and SIπ(1),π(i) one of its child nodes. During matching, we start from the root
node and traverse down the tree i.e. SI1,k is matched prior to SIπ(1),π(i), and
thus, the SI1,k can be reused for matching. Consequently, we only have to
match D = SIπ(1),π(i) \ SI1,k (red area in Fig. 5.4) in the child node. This, of
course, implies that in the child node we only have to store D. This could also
lead to a more compact template hierarchy and less memory consumption.

We expect only a small amount of optimization, because the number of rect-
angles needed to cover a 2D area does not depend on its size but rather on its
shape. To test how many rectangles we actually can save with this optimization,
we used the same template dataset as for the evaluation in Section 4.1.2 (open
hand with in-plane rotation, 100 templates). The result in Figure 5.5 shows that
we can save some rectangles. A small example of a rectangle covering solution
with and without the optimization is shown in Figure 5.6.

5.2.2 Template Tree Traversal

Based on our template hierarchy, constructed in the previous section, matching
a template set T simply amounts to a hierarchy traversal. While moving down
the tree, more and more parts of the templates are matched to the input image.

Processing a node simply consists of matching the intersection area of the
templates the node represents, and the corresponding background, utilizing sim-
ilarity measures we have presented in Sec. 4.1.3 and 4.1.4.

If we use the rectangle covering optimization method from Sec. 5.2.1.3 the
template hierarchy is traversed in a cumulative way. We can reuse the match-
ing results from the parent nodes. How to do so is explained in the following
paragraph.

Let us denote the set of nodes in a template tree by {nj}j=1,··· ,|Tree|, the
rectangle set at node nj by Rj , the parent of node nj by np(j) and the joint
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Figure 5.5: Evaluation of the optimized hierarchy: we use a dataset of 100
templates (open hand, in plane rotation) to evaluate our hierarchy optimization
that is able to further reduce the number of covering rectangles. The fewer
rectangles we have, the less memory the hierarchy consumes and also the faster
the matching is.

probability at nj , evaluated at position p in an input image, by Pj(p). Using
Eq. 4.16, the joint probability at node nj is:

Pj(p) = Pp(j)(p) + PSj (p) (5.5)

with

Proot(p) = PSroot
(p) (5.6)

Nodes, representing template (sub-)sets that are more similar to the object in
the input image than other nodes, should yield higher matching probabilities.
This is not trivially given because the shape described by the rectangles from
the root to the current node become more and more detailed, and consequently,
more and more parts of the silhouette area have to match to obtain a high
similarity measure. Thus, without a normalization, the highest matching scores
would always be achieved in the root node, which, clearly, is not what we want to
obtain. For example, using the joint probability of the segmentation likelihood,
we can use the normalization already introduced in Eq. 4.17 (replace PS(p) by
Pj(p)).

To get a more robust matching approach, we use multi-hypothesis tracking,
i.e. we follow m paths from the root node to the leaves in parallel until we reach
a leaf or PN is below a predefined threshold. Contrary to intuition, it is not
necessarily the best choice to descend into those branches that seem to offer the
highest probability. We have tested three strategies: best-first search, breadth-
first search and a custom traversal method, which we denote with early-exit
search (testing the node with the lowest probability first). We experimentally
found that early-exit search works by far best. In other words, this strategy
finds the correct template in much more frames than the other two strategies.
We presume, the reason is that, if nodes with lowest probability are visited first,
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Figure 5.6: A small template hierarchy demonstrates the difference between
our template hierarchy without the optimization (left) and with the optimiza-
tion from Sec. 5.2.1.3 to minimize the number of rectangles (right). The gray
areas are superimposed hand template silhouettes, the green areas represent the
rectangles our template hierarchy consists of.

they are rejected early by the threshold test. Thus, more ”space” is left for
nodes that match better to the object in the input image.

In this section, we have presented a template hierarchy, exploiting the similar-
ity between silhouette shapes. In the following, we will evaluate the quality and
the run-time of our algorithm and compare it to a state-of-the-art approach.

5.2.3 Evaluation of the Matching Quality

We have chosen to use the joint probability-based similarity measure to evaluate
our approach. This similarity measure is also used by Stenger et al. [STTC06].
He also proposed a method to speedup the similarity measure utilizing prefix-
sum applied on segmentation-likelihoood image lines. In the following, we will
denote this method from [STTC06] as line-based matching (LBM), our method
utilizing our rectangle representation as rectangle-based matching (RBM), and
ours including the hierarchy hierarchical RBM (HRBM).

In the following, we will evaluate the difference between the methods with
regard to resolution-independence, computation time, and accuracy. We gene-
rated templates with an artificial 3D hand model. We used the templates also
as input images. There are two reasons to use such synthetic input datasets.
First, we have the ground truth and, second, we can eliminate distracting in-
fluences like differences between hand model and real hand, image noise, bad
illumination, and so on.

We generated three datasets for evaluation. Dataset 1, consisting of 1536
templates, is an open hand at different rotation angles. Dataset 2 is a pointing
hand rendered at the same rotation angles as dataset 1. In dataset 3, consisting
of 3072 templates, we used an open hand with abducting fingers. Additionally,
for each position of the fingers, we rendered the model at different rotations.

First, we compared the matching quality of the three approaches. RBM and
HRBM were evaluated at five different template approximation accuracies (see
Eq. 4.14). We expected LBM to work best on the artificial datasets because,
for each input image, there is one exactly matching template. For evaluation
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Figure 5.7: The matching quality of our two methods (RBM and HRBM). Just
for reference, the quality of LBM [STTC06] is also plotted (LBM has no notion
of template accuracy).

Figure 5.8: Two example configurations for the pointing hand, open hand and
abducting fingers datasets. As you can see, the overlapping area in the pointing
hand templates are smaller, and thus, the probability for mismatching is lower,
too.

we used an input image resolution of 256×256 and compared each template at
5 different scalings (from 70×70 up to 200×200). All three approaches always
found the correct location of the hand in the input image. Thus, for evaluation,
we define the matching quality as the ratio of

# frames where the correct template was ranked among the top 10

# frames in the input sequence
(5.7)

at the correct position in the images. Please see Fig 5.7 for the results. The
quality of RBM is as expected: the higher the rectangle approximation accuracy
is, the higher the matching quality is. One notices that the matching quality in
the pointing hand dataset is very high even at low rectangle approximation ac-
curacy. We have taken a closer look at the datasets and found that the pointing
hand has fewer similar 2D template shapes at different hand state parameters
(i.e. less information loss during projection from 3D to 2D). The main reason
for this is that the pointing hand shape is much more asymmetric with respect
to varying parameters as rotation and scale (for example a sphere is completely
symmetric with respect to rotation). Figure 5.8 shows some examples. The
results for HRBM at higher accuracy are slightly lower compared to RBM. The
reason is that, in contrast to utilizing a “flat” set of templates, the matching
algorithm never considers all templates because the tree traversal prunes large
portions of the set of templates, which is the purpose of a hierarchy. Thus, utiliz-
ing any kind of hierarchical matching increases the likelihood of missing the best
match, because that could happen to reside in a branch that was pruned. The
quality of HRBM also depends on the clustering algorithm and the rectangles
used to approximate the templates. This is the reason for the decreasing match-
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Figure 5.9: Each plot shows the average computation time for all three ap-
proaches: LBM [STTC06], RBM (our approach), HRBM (our approach incl.
hierarchy). Clearly, our approaches are significantly faster and, even more im-
portant, resolution independent.

ing quality at the abducting fingers dataset at higher rectangle approximation
accuracy.

Second, we examined the dependence between the input image resolution and
computation time. We have decided to use RBM and HRBM at a rectangle
approximation accuracy of 0.75 because the plots in Figure 5.7 show that the
matching quality is at most 3% lower than in the LBM method. We used
input images at 5 different resolutions. We averaged the time to compute the
joint probability for all frames at 49 positions each. The computation time of all
three approaches are measured on a Intel Core2Duo 6700. The result is shown in
Figure 5.9. Clearly, LBM’s computation time depends linearly on the resolution,
while our approaches exhibit almost constant time.

So far, we have discussed how to efficiently match a set of templates to a
particular position in the input image in O(log #templates) using a template
hierarchy. But for object detection we still have to find the object (in our case
the hand) in the input image. The brute-force method i.e. matching the template
hierarchy to each position in the input image at a large number of scales is by
far computationally too expensive.

5.3 Coarse-to-Fine and Hierarchical Object
Detection

In this section, we will describe, how we combine our hierarchy with an image
space search method utilizing function optimization methods (i.e. quasi-Newton)
to obtain a fast and efficient object detection and pose estimation approach.

First, we match the template, which represents the root node in the template
hierarchy, to the input image at a large, template-dependent step size. For the
k best matches in the image, we use a hill climbing method to find the local
maximum in the likelihood map, i.e. the position in the input image that matches
best to the template. Second, we replace the template in the root node by the
templates of the child nodes and perform a local optimization. Again, we keep
the k best child nodes, and then, apply hill climbing again and so on, until we
reach the leaves of the template hierarchy. Finally, the best match, obtained by
comparing templates on leaf nodes, determines the final estimation of the object
(hand) pose and position observed in the input image.
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Algorithm 1: objectDetection( I, H, k )

Input: H = template hierarchy, I = input image, k best hypothesis

Output: M = k best matches, each containing a target object position
and pose

coarsely scan I with root(H), take k best matches, → match candidates C

apply local optimization to each candidate ∈ C → new set C // we use

[PTVF07]

while C not empty do
foreach c ∈ C do

if c.template is leaf in H then
M ∪ {c} →M

else // note: c.template is a node in H
Cnew ∪ { ( c.pos,templ) | templ ∈ children of c.template }
→ Cnew

apply local optimization to Cnew → C

k best matches of C → C
k best matches of M →M

During the generation of the template hierarchy, we use τ ≈ 1 (Eq. 4.9, 4.4)
to ensure that for each inner node, we do only cover regions that are foreground
for all templates, the node represents, by rectangles. Of course, the rectangles
covering the background are computed in the same way. This ensures that only
regions that correspond to foreground/background for all templates in the node
are used to compute the fore-/background color distributions.

It remains to estimate the scan step size such that no local maximum in the
confidence map is missed. Consider the confidence map as a function. From the
sampling theorem, we know that we have to sample a function two times the
highest frequency to be able to fully reconstruct the function. For application to
our approach, we have to determine the highest frequency of the confidence map.
Of course, we cannot exactly determine the highest frequency without comput-
ing the confidence map, but we can estimate the highest frequency based on the
template the confidence map is generated from. Actually, we are only interested
in the frequency of the confidence map in the neighborhood of the target object
(in our case the human hand). The object is represented by the template sil-
houette. Consequently, we can estimate the confidence map by autocorrelating
the template with itself. This can be done offline, and depends only on the
template itself. Note that inner nodes in the hierarchy can be considered as
templates, too. Taking the distance of the hand from the camera into account,
we have to match the hand at multiple scales, which yields a 3D confidence map.
Thus, we have to compute the 3D scan step size i.e. we need to compute the
autocorrelation in 3D.

Algorithm 1 and Figure 5.10 illustrate our coarse-to-fine hierarchical detection
approach.

5.3.1 Results

For evaluation, we combined our coarse-to-fine and hierarchical approach with
two of our similarity measures: the segmentation-based measure from Sec. 4.1.3.1
and the color divergence-based measure from Sec. 4.1.4.1.
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Figure 5.10: Illustration of our coarse-to-fine and hierarchical detection ap-
proach. First, we coarsely match the root node of the template hierarchy (a) to
the input image (b). For the best k matches (here 4), we perform a function
optimization to find the best matching image position (c). Next, we use these
matches as an estimate for the positions (e) for the child nodes in the template
hierarchy (d) and search for the local maxima again. When arriving at the leaves
of the hierarchy, we use the best match as final hand pose estimate (f).

The approach with both similarity measures are tested on three datasets. The
first dataset is a hand moving in front of a skin-colored background. Thus, most
of the background would be classified as object foreground, too, and no hand
silhouette would be visible at all. Approaches based on skin color segmentation
would completely fail under such conditions. The second dataset consists of a
heterogeneous background. Several background regions of moderate size would
be classified as skin, but in contrast to the first dataset, the hand silhouette often
is clearly visible after skin segmentation. The third dataset contains almost no
skin-colored background and, thus, is well suited for skin segmentation. One
would expect a good tracking result by a segmentation based algorithm.
For each dataset, we tested four different hand movements, all of which include

translation and rotation in the image plane. The four hand gestures are: an
open hand, an open hand with additionally abducting the fingers, an open hand
with additionally flexing the fingers, and a pointing hand. Overall, we have 12
different configurations.
Due to the lack of ground truth data, the quality is best evaluated by a

human observer; computing an error measure (e.g. the RMS) between the re-
sults of two approaches does not make any sense. Therefore, we provide video
sequences 2 taken under all above setups. We compare our coarse-to-fine hier-
archical approach against a brute-force search in image space, but utilizing the
hierarchy i.e. matching the hierarchy to each individual position in the input
image at different scales. We combine the search strategies with two different
similarity measures: joint probability of skin-segmentation likelihood map (Sec.
4.1.3) and our color-divergence-based similarity (Sec. 4.1.4). The reason, we use
this measures is that they behave fundamentally different. The segmentation-
based measure first searches for large foreground regions. In contrast, the color
divergence-based measure first searches for shapes described in the template
hierarchy.

2 http://www.youtube.com/watch?v=ZuyKcSqpkkE,
http://cgvr.informatik.uni-bremen.de/research/handtracking/videos/mohr isvc2011.avi

http://www.youtube.com/watch?v=ZuyKcSqpkkE
http://cgvr.informatik.uni-bremen.de/research/handtracking/videos/mohr_isvc2011.avi
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Figure 5.11: Each group shows the results for a specific input dataset. Each
bar within each group shows the mean and standard deviation of the RMS error
between the brute-force and our coarse-to-fine detection. An RMS error of 1
indicates the maximally possible error.

In the brute-force approach, we have chosen a scan step size of 12 pixels in
x and y direction and 10 template scalings between 200 and 800 pixels. In all
cases, the input image resolution is 1280× 1024.

In the brute-force approach, the whole template hierarchy is traversed at each
position separately. This needs several minutes per frame. To achieve an ac-
ceptable detection rate, one can stop traversing the hierarchy if the matching
probability is lower than a threshold τ . The risk with thresholding is that all
matches could be below the threshold and the hand is not detected at all. 3 We
have chosen τ = 0.7, which works well for our datasets. Note that our coarse-
to-fine detection approach does not need any threshold and consequently does
not have this disadvantage.

The brute-force approach will have, of course, slightly higher quality, but it will
cost significantly more computation time, depending on the scan step size and
the threshold τ . In order to examine the error of our coarse-to-fine hierarchical
matching, we compared it to the brute-force dense sampling approach.

Using both our novel method and the brute-force method, we determined the
best match for each image in the video sequence. For ease of comparison, hand
positions, orientations, and finger angles were normalized. These will be called
configurations in the following. Then, we computed the RMS error between the
two configurations over the whole video sequence.

Figure 5.11 shows the results for each data set. Obviously, our method per-
forms better in the “open hand” and “abducting finger” sequence. The reason is
that “pointing hand” and “moving finger” templates have a smaller intersection
area in the root node. This increases chances that the tree traversal finds “good”
matches for nodes close to the root in image areas were there is no hand at all.
Consequently, fewer match candidates remain for the true hand position during
hierarchy traversal.

3 For example the shape (e.g. relative finger length or thickness of the hand) of the hand in
the input image and the hand represented by the template can be different, depending on the
person, whose hand is being tracked. Varying shape difference results into different template
matching probabilities and consequently different optimal values of τ .
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Figure 5.12: Workflow of our coarse-to-fine and hierarchical detection approach.
First, the root node of the template tree is matched to the input image. Next,
the k best match candidates are collected and further processed by matching
the child notes. Then, the k best candidates are collected again and the tree
further traversed successively until the leave nodes are reached. Leave nodes
represent a template each and lead us to the final matches.

We also measured the average computation time for each dataset (10 frames
per dataset). The computation time to detect and recognize the hand in the
input image is about 3.5s for the brute-force approach. This, of course, is
only achieved by using a manually optimized threshold τ , such that, for most
positions in the input image, only the root node or a small part of the hierarchy
is traversed. Our coarse-to-fine approach needs about 1.6s per frame (and no
thresholding). Finally, we have experimented with the maximum number of
iterations of the function optimization in our coarse-to-fine detection, in order
to obtain the optimum balance between quality and computation time. A value
of 3 provides good results, while lower values lead to significantly worse results.

5.4 Massive Parallel Coarse-to-Fine and
Hierarchical Object Detection

Modern graphics hardware has a very high potential to accelerate computer vi-
sion applications. We want to utilize this enormous computation power. But
the approach to detect the hand pose in the input image in Sec. 5.3 is not ap-
propriate to be implemented in the massive parallel programming paradigm. In
this section, we present a modification of the coarse-to-fine hierarchical approach
that is well suited for massive parallel architectures. The idea behind the par-
allelization is that one has to compare the template data set (i.e. the hierarchy)
to a lot of image positions at a large number of scales. These matches are inde-
pendent of each other and can easily be parallelized. The challenging task is to
convert the local maximum finding into a massive parallel algorithm. Because,
even utilizing the computation power of modern graphics hardware, matching
the template set to all image positions and scales is prohibitive.

The idea of our approach is to compare the template hierarchy level per level
but, in contrast to the coarse-to-fine hierarchical approach in Sec.5.3, we do not
apply a common, inherently serial numerical function optimization method. We
propose to use a multigrid approach that starts at the same grid size as our
coarse-to-fine detection approach. Then, we collect the best matches and refine
the grid adaptively at the best matches only. Match candidates from different
grid positions can be treated equal to candidates from different nodes originating
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Figure 5.13: The workflow illustrates the massive parallel approach to match a
template to an input image using the multigrid approach. Initially, the template
is matched to the image at a coarse grid and then successively refined at the
most promising candidates.

from the same level in the template tree. In addition to the efficient parallel
search strategy, we need an efficient massive parallel approach to compute the
integral image, which is needed for our rectangle-based matching. The integral
image has to be computed only once per input image, but the computation time
should not be neglected anyway.

5.4.1 Computation of the Integral Image on the GPU

Blelloch [Ble90] has proposed an efficient approach to compute the prefix sum
of an array. This approach can be extended to be applied to n arrays in parallel.
(In our implementation, we use the CUDPP library for CUDA). We can now
easily compute the integral image in two steps: first, apply the prefix sum to all
rows of the image, and second, to all columns in the image.
We want to note that, in practice, it is inefficient to apply the prefix sums to

columns because of the inefficient memory access. Therefore, we have transposed
the image after the first step, and applied again a row-wise prefix sum. The result
is the transposed integral image.

5.4.2 Hierarchical Multigrid Pose Estimation

Hence, the initial step in matching the template hierarchy begins at the root
node. At each node in the hierarchy we utilize a multigrid approach (Fig 5.13)
to find all local maxima in the likelihood map. Initially, the grid covers the
entire input image and the entire initial scale range, and the grid resolution is
the same as in the initial search step in the sequential algorithm proposed in
Sec. 5.3. Then, we recursively further refine the matches locally around the
best match candidates. In order to keep the most probable hand poses and
locations, we use a multi-hypothesis approach i.e. we always follow the k best
match candidates and not only the most probable one. Therefore, the next step
involves identifying the k best match candidates.
To efficiently determine the k best matches in a massive parallel way, we

perform a parallel sorting (we use radix sort) to the match candidates. Then,
the k best matches are trivially selected. Next, we generate a series of 3D
bounding boxes (image dimensions and scale) for each of these k best matches,
with dimensions equal to the step size used in the initial match. Hence, each
of the k best matches of the initial match yields a set of 8 new points to be
matched against the root node, 4 points surrounding the X,Y coordinates of the
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Figure 5.14: The computation time linearly depends on the number of candi-
dates used in the multi-hypothesis tracking as shown in the left image. The
computation time also depends linearly on the image resolution (right image).

initial point at 2 separate template sizes each. This step is iteratively performed
for the k best matches of each iteration using bounding boxes of dimensions
reduced at each iteration until we arrive at a set of bounding boxes of size 1
pixel. At this point, we obtain the k best matches for a node against the input
image.

In the next step, to traverse the hierarchy, we consider the k best matches
obtained from matching the root node and generate bounding boxes for each
candidate to be matched against each of the children of the previous node. The
size of the bounding box at any template size at this step is taken as the step size
calculated for that template size in the initial matching against the root node,
reduced by a given input factor. We then repeat the previous step, refining
each match iteratively using the multigrid approach and sorting them at each
iteration to obtain the final k best matches after comparison with each of the
child nodes. We obtain the child nodes only for those nodes that are matched
with the k best matches and repeat the traversal procedure till we obtain matches
against leaf nodes only. Since each leaf node represents a single template, we
can efficiently compute the best matches using a parallel sort.

5.4.3 Results

The input images in our experiments have a resolution of 1280x1024 pixels and
the template sizes range from 200 to 800. The value of k denotes the number
of best matches to consider after each iteration of the multigrid approach. We
measured the average computation time for various values of k (Fig 5.14, left
image). We used a template set of 1200 templates. For evaluation, we used an
Nvidia GTX480 graphics card. We have decided to use our color divergence-
based similarity measure for the run-time tests because it is computationally
more expensive than the other similarity measures proposed in Sec.4.

When calculated on the GPU, the generation of the integral image for each
color channel takes an average total of about 9.5 ms as compared to 150 ms for
the CPU implementation. Hence, the massive parallel integral image computa-
tion is about 16 times faster.

The matching of the template set against the input image achieves a significant
computation speedup compared to the implementation on the CPU. On average,
we need about 120 ms for the computation on the GPU compared to about 8250
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Figure 5.15: We match a template (left) to an input image (middle) using
our multigrid approach. The confidence map (right) illustrates the actually
evaluated positions in the input image. We can see that only a few positions
have to be matches, which saves a lot of computation time.

ms on the CPU implementation. Hence, the massive parallel matching approach
is about 69 times faster.

Figure 5.15 illustrates the number of points in the input image that have to
be evaluated.

5.5 Edge-Based Hierarchy

The silhouette area is well suited for hierarchy generation because the intersec-
tion area of a set of templates is never empty if the templates are aligned. But
edges do not have this nice property. Previous approaches proposed to build
a hierarchy in pose space and use edges as matching feature during traversal.
But this is disadvantageous compared to a feature space hierarchy because the
subdivision in pose space often is not similar enough in feature space to be rep-
resented appropriately by a common set of features. Matching always is done in
feature space4, and consequently, such a pose space hierarchy always has large
matching errors.

For this reason, we developed an approach to integrate edge features into a
feature space hierarchy. The idea is similar to our silhouette area-based hier-
archy: for a set of templates, we identify the edges common to all templates,
having a small, but nonzero error tolerance. Then, the node is represented by
the common edges (analog to the intersection area). But first tests of the hierar-
chy show that the maxima in the confidence map (similarity measure likelihood
map) are very small. This is not well suited to detect an object in the image
because the image has to be sampled (for matching) very densely to ensure not
to miss a maximum, which potentially could be the true hand pose.

One can, of course, use other acceleration data structures e.g. hashing for
edge-based templates. But then, we have to fuse the results of the edge-based
matching with our silhouette area-based hierarchy at the end of the tracking
pipeline. Naturally, it would be significantly better, if the features could be
matched in each step, i.e. combine the edge features and silhouette area into
one measure, and then build a common acceleration data structure. If we would
use other data structures than our template hierarchy, we would lose the nice
properties of our hierarchy.

An additional argument against edges are the upcoming depth cameras. The
depth images contain the relevant edges needed for matching, but not the unde-

4 As long we do not have cameras that are able to capture the pose directly, we have to extract
features from images and match the features.
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sired edges produces by texture, wrinkles and so forth. However, depth image
information is best compared using the silhouette area enriched with depth in-
formation.

For this reasons, we have not further invested more time into edge features
and building acceleration data structures based on edges.

5.6 Multiple Cameras

In this thesis, we apply our approaches to monocular camera tracking, but it
is easy to extend them to multiple cameras. The most often used and näıve
approach is to perform the matching separately to each camera stream. Using
a multi-hypothesis tracking, which is trivially done in our approaches, the k
best matches of each camera are compared against each other. All matches
that are not found in all or most of the cameras are skipped. The pose with
the highest matching probability of the remaining matches is used as final hand
pose. In Section 7.3 (future work), we will discuss a more sophisticated idea for
multi-camera fusion utilizing the special structure of our template hierarchy.

5.7 Conclusions

In this chapter, we have presented a novel feature space template hierarchy based
on the intersection area of template silhouettes, which, additionally, utilizes our
representation of the templates. Our hierarchy reduces the computational com-
plexity of the matching algorithm for a set of templates from linear to logarithmic
time. The template representation is very memory efficient. For example, we
need about 5.5 KByte per template at an average accuracy of 0.98.

We have also presented a coarse-to-fine and hierarchical object detection ap-
proach using function optimization methods and multi-hypothesis tracking to
reduce the computation time with only a small loss in accuracy. Compared to
the brute-force detection approach (that uses thresholding during template tree
traversal to significantly prune the tree), our approach is about 2.2 times faster
and about as reliable as the brute-force approach. However, our approach does
not need any thresholding, and consequently, works much more robustly.

Additionally, we presented a multi-grid approach, which can be seen as a
massive parallel version of our coarse-to-fine and hierarchical detection approach.
We have implemented our approach in Cuda and tested it on a modern GPU.
We obtained a further speedup of about a factor 70.





Chapter 6

Framework

Figure 6.1: Our hand tracking framework. A template set consisting of the open
hand with in plane rotation is currently matched to an input image. For the
best matching position, an artificial hand model is rendered and superimposed
to the original image.

In this chapter, we give a short overview of the framework, developed to test
the novel approaches presented in this thesis. The framework is designed such
that it is easy to integrate and test new methods in all parts of the hand tracking
pipeline.

For a maximum flexibility, we have designed a base class responsible for the
input images. We have inherited a class to grab images from industrial cameras
(CameraLink communication standard) and a class to load image sequences
from file. The latter is essential for a quantitative evaluation and comparison of
different tracking approaches.

We can load arbitrary template datasets from file, and thus, are not limited to
a static set of hand poses. We can even load templates representing completely
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Figure 6.2: Dataflow of our hand tracking framework. Note that we show only
the most important parts. An arbitrary path (except edge gradient similarity
combined with the hierarchy) starting at the “template dataset” and an input
modality (“image sequence from file” or “camera”) and ending at one of the
“output” modalities can be chosen. In this way, we can test our similarity mea-
sures and the template hierarchy with and without our coarse-to-fine detection
approach. Finally, we can send the k best matches to one of the output modali-
ties.

different objects. Consequently, the framework is able to detect and estimate
arbitrary objects templates can be generated for.

We can easily select any of the similarity measures presented in Chapter 4.
If a segmentation-based similarity measure is selected, we can chose between
background subtraction and the three skin segmentation approaches presented
in Chapter 3. The segmentation results are combined into a histogram-based
representation as explained in Section 3.6. The learning rate, which controls the
update speed of the skin color distribution, can freely be adjusted online or the
learning can be disabled at all.
We can choose whether we want to match all templates from the database to

all image positions or only to an image part at an arbitrary, but fixed, step size.
We can optionally enable the template hierarchy presented in Section 5.2. By
instantly enabling/disabling the hierarchical matching, we are able to visually
evaluate the template hierarchy. In the same way, we can enable or disable
our coarse-to-fine and hierarchical detection approach from Section 5.3, which
further reduces the computation time significantly.

We have integrated several options to store and visualize the result of the
hand tracking. Most important for early tests of new ideas is the visual output.
In the framework, we visualize the input image in a window and superimpose
the best matching hand template. We can either show the artificial hand model,
or the rectangle set representing the hand silhouette area. This is, particularly,
important for debugging.
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We can also step through the k best matches. This allows us to see how
good the similarity measure ranks the templates. Excluding the problem of
ambiguities, the top matches according to the similarity measure should be
similar to the pose in the input image.

We can also visualize the confidence map, which represents the matching prob-
ability of the best matching hand pose for each image position. This allows us
to instantly get a first visual impression of the quality of the similarity measure.
For example, we can immediately identify false positives i.e. high similarities in
the background, or we can see how significant the peak at the correct hand pose
in the input image is.

Optionally, we can send the match result, containing the hand position, orien-
tation and finger angles to other computers over the network using sockets.

Figure 6.2 gives an overview of the above described input and output options
and the combination options of our approaches.

6.1 Class Diagram

The UML class diagram in Fig. 6.3 shows the most important classes in the
framework. The class TemplateLoader is a placeholder for several classes used to
load the hand templates for the area-based and edge-based matching approaches.
We differentiate between skin detection and segmentation. The skin detection
(our approach proposed in Sec. 3) is responsible for the update of the skin color
distribution, which is necessary for non-static images (e.g. illumination changes).
The approach is not fast enough to be applied to each frame. For this reason,
we build a skin color and background color distribution histogram based on the
output of SkinDetection. These histograms are then used for a fast skin color
segmentation. The class SkinSegmentation is responsible for this task, which is
also a placeholder for a set of classes and functions. An association (connecting
lines between two classes) denotes that the classes communicate with each other.
An aggregation (connecting lines with a diamond) denotes that the class at the
end of the diamond controls the class at the other end of the connection.

The main class Tracker controls the segmentation, the similarity measure com-
putation and the search strategies. It is also responsible for the template dataset
(TemplateLoader) used for matching and the input images (ImageSource). The
class TemplateLoader can load an arbitrary and previously generated tem-
plate set. To keep the required memory low, we can choose to load only
the template representation needed for a particular similarity measure (edge-
based and area-based similarity measures need different template descriptors).
The class ImageSource provides input images from one of the sources. Cur-
rently, CameraLink cameras and image sequences from file are supported.
New sources can trivially be added by inheriting ImageSource. The class
AreaTemplateMatching contains all segmentation-based and color divergence-
based similarity measures. A pointer to the template dataset and the input
image is provided by Tracker. GradientTemplateMatching is responsible for
the edge gradient-based similarity measure. The input image and the template
dataset is also provided by Tracker.
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Figure 6.3: Class diagram of our most important classes of our hand tracking
framework.

6.2 Sequence Diagram

The sequence diagram in Fig. 6.4 shows how the classes interact. For simplicity,
we do not distinguish in the following between a class and an instance, which
is not a limitation because for each of the shown classes, only one instance is
currently used in our framework. The activation boxes (gray vertical rectangles)
denote that the corresponding class is currently processing a request. We omit-
ted the class TemplateLoader because the template set is loaded once at the
initialization.

The tracking starts by an image request from ImageSource. After the image
is sent from the source to Tracker, the SkinDetection (the approach presented
in Sec. 3.2) starts to detect skin color in a parallel thread. Asynchronously,
SkinSegmentation (Sec. 3.6) processes the current image (start segmentation),
and then, the template matching is performed by start detection in
AreaTemplateMatching (Sec. 4.1 and GradTemplateMatching (Sec. 4.2). The
match results are sent (send match result) back to Tracker, which is responsi-
ble for the output (e.g. to network, screen or file). After the class SkinDetection
has finished the skin color estimation, the skin and background color distribu-
tions in SkinSegmentation are updated (update skin color) to improve the
segmentation quality for future frames.
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Figure 6.4: Sequence diagram illustrating the most important data flow of our
overall hand tracking approach.

6.3 Implementation

The framework, including all approaches presented in this thesis, and the graph-
ical user interface (GUI) is implemented in the programming language C++. The
main reasons are the high efficiency with respect to computation time (fast bi-
nary code), and because all libraries, needed in our application, are available for
C++.

The following libraries are used in the framework:

• Boost for large file support



122 CHAPTER 6. FRAMEWORK

• Qt from Trolltech/Nokia for the GUI and platform independent file manage-
ment

• OpenGL for visualization and rendering of the artificial hand model

• OpenCV for low-level image processing

• Cuda programming language for the implementation of our massive parallel
algorithms

6.4 Summary

Using our tracking framework, we are able to optimize the tracking for different
situations. First, depending on the hand poses to be tracked, we can load the
appropriate template set from file. The similarity measure best working at a
given setup can be chosen e.g. if the camera is fixed and only the hand is visible,
background subtraction can be used. If more parts of the body are visible,
we can and should switch to skin segmentation. But, if the skin segmentation
quality is bad, we can use our edge gradient-based or color divergence-based
similarity measures. If only a few different hand poses or a rigid object has to
be detected, we can decide not to use our coarse-to-fine detection approach to
slightly improve the matching quality. If a large number of hand poses have to
be tracked, a large template set has to be loaded, and we need the hierarchy and
the coarse-to-fine detection approach to keep the pose detection and estimation
time low.



Chapter 7

Conclusions

7.1 Summary

In this thesis, we make several contributions to the area of articulated object
tracking with application to human hand tracking, from a novel skin segmenta-
tion approach, via new similarity measures through to fast template and image
search strategies for template matching. Among the contributions the most
important are:

• A new method for homogeneously color region segmentation in images with
application to skin color estimation. The method itself can be applied to any
kind of homogeneous colored surface. The approach is based on a divisive
hierarchical clustering in color space with spatial constraints that combines
global color with local edge information. Homogeneous color regions are mod-
eled as multivariate gaussians and parameters estimated by the EM algorithm.
The cluster representing the target region, for example skin, is identified by
comparing the mean value of each cluster with a vector obtained in a prepro-
cessing step. For this comparison, the image color distribution is taken into
account.

• An edge-based similarity measure for template matching that does not use
any thresholds nor discretize edge orientations. Consequently, it works more
robustly under various conditions. This is achieved by a continuous edge im-
age similarity measure, which includes a continuous edge orientation distance
measure. Our method is implemented as convolution on the GPU and thus is
able to compute the confidence map very fast. In about 90% of all images of
our test datasets, our method generates confidence maps with fewer maxima
that are also more significant. This is better than a state-of-the-art chamfer
based method, which uses orientation information as well.

• A very compact and resolution independent representation of template silhou-
ettes by sets of axis-aligned rectangles. The accuracy of this representation
can be adjusted by a parameter at this stage. We have proposed two novel
algorithms to compute such a rectangle covering. One approach, using dy-
namic programming, is able to compute a near-optimal solution with respect
to some parameters, but to the cost of a high computational complexity. The
other approach, using a greedy algorithm, is significantly faster at a similar
efficiency. (The efficiency is measured by the ration between the covering
accuracy and the number of rectangles).
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The template representation is very memory efficient. For example, at an
average accuracy (a perfect covering has accuracy 1) of 0.98 we need about
5.5 KByte per template.

• A set of silhouette area-based similarity measures for template matching with
near-constant time complexity utilizing our representation of the silhouette
area by axis-aligned rectangles: we proposed an efficient method to compute
the similarity measure based on the joint probability of the segmentation like-
lihood. Then, we revealed the disadvantages of this measure and developed
similarity measures based on the distribution of the segmentation likelihood
map without these disadvantages.

• A color divergence-based similarity measure that does not need any error-
prone feature extraction e.g. skin color segmentation. Thus, our method can
adapt much better to changing conditions, such as lighting, different skin
color, etc. Furthermore, segmentation-based approaches can be treated as a
special case of the color divergence-based approach.

In an application to hand tracking, we achieve good results in difficult setups,
where, for example, skin segmentation approaches will completely fail.

Additionally, it is straightforward to incorporate other input modalities into
our similarity measure, such as range images or HDR images.

• A template hierarchy based on the intersection area of the template silhou-
ettes. This hierarchy reduces the computational complexity of the matching
algorithm for a set of templates from linear to logarithmic time. By way of its
construction, our hierarchy is very deep, which further reduces the matching
time. This is in contrast to previously presented hand pose hierarchies. Ad-
ditionally, our hierarchy is able to early eliminate most of the non-matching
candidates, similar to the idea of cascading. In this way, our approach fuses
the advantages of conventional hierarchies and cascading. To build the hierar-
chy we utilize our representation of the templates by axis-aligned rectangles.

• We have also presented a coarse-to-fine and hierarchical object detection ap-
proach using function optimization methods and multi-hypothesis tracking
to reduce the computation time with only a small loss of accuracy.

We also presented a multigrid-based adaptation of the approach optimized
for the massive parallel programming paradigm. Using the color divergence-
based similarity measure, we achieved a speedup by about a factor 70.

In summary, we made contributions to several parts of the hand tracking
pipeline. One important part of the pipeline is a robust and fast similarity
measure. We improved the matching quality by novel segmentation-based and
segmentation-free measures and reduced the computation time significantly by
our rectangle-based representation. The largest speedup is achieved by our
template hierarchy in combination with our coarse-to-fine detection approach.

7.2 Discussion

Our similarity measures, currently, cannot yet resolve all ambiguities: for in-
stance silhouette area-based measures, on the one hand, use the 2D projection
of the hand, which does not allow to distinguish between different finger poses
with a very similar or identical silhouette. On the other hand, the matching
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accuracy of segmentation-based similarity measures depends on the segmenta-
tion quality itself. Of course, our similarity measures have some robustness to
segmentation errors because our approaches do not need a binary segmentation.
However, if the segmentation itself fails, the similarity measure cannot succeed.
For this purpose, we have presented segmentation-free similarity measures. We
believe that their potential is high, but currently, the color distribution model
is not able to handle arbitrary color distributions that occur in real images. We
will present ideas to overcome this problem in the next section.

The main problem of edge-based similarity measures, generally, is that they
suffer from weak edge responses. In many cases the edge response between
the fingers is too low, and in the whole image a high amount of edge noise
is observed. To alleviate these problems, we have presented an edge gradient-
based similarity measure that avoids thresholding and uses a robust gradient
comparison. However the overall matching quality is still limited by the edge
response in the input image.

Another limitation for all (including our) approaches are the cameras. Con-
ventional color cameras, for example, have a too low dynamic range and distort
the color values. This further reduces the quality of skin segmentation and edge
extraction. To overcome these limitations, the use of high dynamic range cam-
eras should be considered in the future. Range cameras are even more promising
to improve hand segmentation and edge extraction.

Currently, the overall matching quality of our approaches is also limited by
the number of templates. Of course, our template representation is very me-
mory efficient, but using hundreds of thousands of templates still needs more
(main/graphics) memory than current hardware provides. An option for the
future could be to roughly estimate the hand pose using our template-based
approach, and then refine the estimation by generating templates online.

The quality of our approaches is also limited by the artificial hand model.
Particularly the kinematic of the thumb is an everlasting problem. Additionally,
the hand shape varies from person to person. The more the hand differs from
the artificial hand model, the lower the matching accuracy is. To overcome
this problem, one could use an initialization procedure to determine the precise
hand geometry of the person to be tracked. However, this is a time consuming
process, and not practical or even not possible for all applications. Furthermore,
we would need to update our precomputed template representation (set of axis-
aligned rectangles), which is not straightforward.

We believe that the future of hand tracking research will focus on range images.
Currently, cameras providing depth information (ToF cameras, Kinect) have a
depth accuracy and a resolution too low to be used solely for full-DOF hand
tracking. First, approaches should combine current range images with high-
resolution color cameras. The range images will primarily be used for a more
robust segmentation of the hand. Later, when better depth cameras will be avail-
able, color cameras could completely be replaced. Of course, first approaches
using range images only, are presented, but they lack in accuracy. Assuming
that the quality of the range cameras is high enough, range images could be
used for a more accurate hand segmentation. Additionally, they can replace the
edge features extracted from conventional cameras because the edges of interest
(at the palm and finger contour), can also be obtained by deriving the range
image instead of the color image. But a lot of edge noise in the background
obtained from color images does not occur in the “edge image” of range images.
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However, the most important reason to use range images are the depth values
for each pixel, which could help to resolve ambiguities and would increase the
overall matching quality. But, of course, current range images have to cope with
noise, too.

7.3 Future Work

In the following, we will presents several ideas to further improve the approaches
presented in this thesis, and some ideas for additional methods that should be
integrated into the hand tracking pipeline to increase the overall performance.

7.3.1 Improving the Hand Model

Currently, we use a model consisting of cylinders, cones, and spheres and a
simple kinematic model. The hand geometry and also the kinematic can be
improved to generate more realistic hand poses. Especially the kinematics of
the thumb is an everlasting problem.

To improve the hand geometry and kinematics, we can build upon previ-
ous work in computer graphics [SKP08] and medical [HBM+92, HGwLB+95,
CLPF05] research.

Additionally, one has to consider the special properties of the configuration
space of the human hand. To track a real hand in all desired poses, one has
to sample the configuration space densely enough. However, the distance of
two hand poses in configuration space is not necessarily similar to the distance
between their generated templates. In fact, this is the case for most of the hand
poses. Often, two different poses produce more or less similar templates. It is
inefficient to add both templates to the database (used for matching). Conse-
quently, it is important to sample the configuration space regularly with respect
to the distance in the descriptor space.

One way to solve this problem is to first sample the configuration space uni-
formly and then compute the difference between the corresponding templates.
In regions with distances too large, the pose space can be further sub-sampled,
in regions with distances too low, the sampling can be sparsified. A more sophis-
ticated method could be to perform a dimension reduction to the pose space,
not using the pose values (joint angles) directly, but rather based on the tem-
plate distance. After dimension reduction, one can uniformly sample the lower-
dimensional space and reproject to pose space to obtain the final joint angles
to generate the templates. Especially due to the high-dimensional configuration
space and the huge number of templates, this might be a challenging task.

The above approach can also be used to further refine the hand templates.
In the low-dimensional space, for each hand pose sample, we can take several
additional samples and average the resulting templates. With this approach,
we expect to achieve smoother templates that are more robust to small pose
variations in the input image. We can use the same idea to model varying hand
shapes (e.g. finger length and thickness) by just taking the average of different
hand shapes.

7.3.2 Segmentation-Free Tracking

In our color-divergence-based similarity measure (Sec. 4.1.4), we currently use
a Gaussian to represent the fore- and background color distributions, which
limits the color distribution representation, and consequently, also the similarity
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Figure 7.1: The colored regions in the image (left) correspond to the equally col-
ored ellipsoids in the histogram (right). The color distributions can be coarsely
approximated by the normal distribution, in some, but not all cases. The color
distribution of the background regions is compared to the distribution of the
foreground. The less similar they are, the higher the matching probability of a
given hypothesis is.

computation. One can improve the color distribution representation, such that
multi-colored backgrounds and a more complex skin color distribution can be
handled better:

• For example, one can divide the foreground into multiple regions in image
space to handle situations, where the skin color cannot be approximated well
by the normal distribution. Examples for such cases are over- and under-
exposed images. For the background region (surrounding the hand in the
image), one can eliminate the necessity for an explicit color distribution. In-
stead, each small sub-region’s distribution (represented by its mean µi) can
be compared to the color distribution of the foreground (Figure 7.1). The
higher the similarity of the color distributions the higher the probability that
the silhouettes do not match and, thus, the hypothesis is not found there.

Let us assume we have estimated the foreground color distribution using a
Gaussian mixture model (GMM) consisting of K components with parame-

ters πfgj , µfgj and Σfgj and for all Nbg background regions the mean values

µbgi . Then, the dissimilarity could be computed by

D =
1

Nbg

Nbg∑
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πfgj G
(
µbgi |µ

fg
j ,Σ

fg
j

)
(7.1)

where G is an unnormalized Gaussian. Other dissimilarity measures could
be investigated as well.

• We still have some limitations with respect to the (color) distributions of
the fore- and background as a compromise to the computational efficiency.
One should analyze the influence of the limited color distribution representa-
tion by developing a precise, non-parametric model of the input data (color,
depth, etc.) e.g. histograms and kernel density estimation based representa-
tion. The challenging task is that the naive implementation of a histogram
has exponential complexity with respect to the data dimension, for example
for a gray-scale image (e.g. using a skin-color segmentation) we have a 1D
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Figure 7.2: Matching Fusion from multiple cameras: we fully integrate the
information from multiple cameras into our tracking approach. During matching
by tree traversal, at each level in the template hierarchy, we first compute the
match probabilities for all nodes in the current level and all cameras. Then, we
combine the probabilities of the trees, taking extrinsic camera calibration into
account. We expect to significantly improve the decision for tree traversal, and
thus, also the matching quality.

histogram with n bins, but for color and depth information we have n4 bins.
One can overcome this problem by approaching it from two sides as follows.

First, the domain of the input data (after a suitable PCA transform) could
be reduced by finding the, in most cases, relevant sub-domain of the values
that typically occur. For example using color, we have an approximate esti-
mation of the foreground color, i.e. in case of the hand, skin-color. Using this
information, we will only compute the reddish part of the color distribution.
If the foreground of the hypothesis matched is non-skin color, the color dis-
tribution is not of interest. It is only important that it is not skin colored.
One has to find out which parts of the domain space (e.g. color space) have
to be computed, and also how accurate the distribution representation has
to be.

One can also apply dimension reduction techniques ([vdMPvdH09] e.g. kernel
PCA or Isomap) to the domain of the input data exploiting the relationship
between the individual channels of the data. For example, the red, green
and blue values of skin depend on each other (consider shadows or specular
reflection on the skin).

Furthermore, we could preprocess the color images captured by a conven-
tional camera to alleviate the camera limitations (e.g. low dynamic range) and
overcome the annoying specular reflections. Klinker et al. [KSK88],[KSK87]
proposed an approach to correct negative effects introduced by cameras and
separate the matte image parts from the highlights. As a result, we expect the
color distribution of the hand and the background regions to be suitable for
simple parametric representations, which would decrease the computation time
and improve the quality of the similarity measure.

The color divergence-based approach is also well suited to be extended to
integrate other input modalities such as depth information, e.g. from a ToF
camera or the Kinect. So instead of computing a GMM in 3D space, one can
compute a GMM in nD, or even in higher dimensions. For example, instead
of just taking the color distribution into account, one can also integrate depth
values or use only depth values depending on the computational power of the
system.
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One way is to exploit the fact that continuously changing depth values in
image space indicate that they belong to the same object. Basically, this is the
same property that we utilize above for colors. This can be done sufficiently
well using currently available depth cameras.

A more interesting way is to enrich the hand templates with depth informa-
tion, and extend our similarity measure to incorporate in some way differences
in depth between the template and the input image. This approach needs depth
values in higher resolution and a better signal-to-noise ratio than current hard-
ware can deliver, but we expect these improvements to be available in the near
future.

7.3.3 Scalable Multi-Camera Fusion

Using multiple cameras could help to resolve a lot of ambiguities. We could fully
integrate the camera fusion into our hierarchical tracking approach. This could
not only help to resolve ambiguities, but also helps to eliminate false candidate
positions early. Additionally, it scales well with the number of cameras.

As explained in our preliminary work, we use a template hierarchy to find the
best matching templates. The hierarchical matching process basically computes
the matching probability of nodes in the template hierarchy and then, based on
these probabilities, decides which sub-trees are skipped and which ones are fur-
ther traversed. Utilizing the hierarchy, we can improve this decision process by
using multiple cameras to improve the computation of the matching probability
at each node. The idea behind the approach is illustrated in Figure 7.2.

To explain our idea, we first have to introduce some notations: Θ is the hand
pose space including the global position and orientation, T the descriptor space,
I : Θ→ T a mapping function from the hand pose space to the descriptor space,
Mi : Θ → Θ a transformation function from the camera space of camera i to
world space W, and P : T → [0, 1] the matching probability of Ti ∈ T for a
given image. Given N cameras, we plan to compute the matching probability
P̃ (θ) of hand pose θ ∈ Θ in world space.

Our camera fusion idea is as follows: each inner node in the template hierarchy
represents a set of templates. We compute the matching probabilities for each
node by matching it to all camera images. Next, we transform the templates
into a common (world) space 1 and then compute the overall probability for
each hand pose in world space.

P̃ (θk) = ◦Ni=1P ( I(M−1
i (θk)) ) (7.2)

with a composition function ◦. Next, we propagate the joint probabilities back
to the nodes in each template hierarchy (for each camera one hierarchy). The
decision, which node is visited further, is now based on the matches obtained
from all camera viewpoints, not only from one viewpoint.

Tracking by multiple cameras from different viewpoints allows us to take the
problem of discriminable templates into account. For a given viewpoint, there
are a lot of hand poses (each with a different orientation) that are hard to be
discriminated. By adding a second camera from a different viewpoint, such poses
can often easily be discriminated. Of course, we can further extend this approach
to three or even more cameras. Taking this into account, we do not need to build
a template hierarchy including all orientations, but only orientations that can

1 A template tj ∈ T , matched at each camera, corresponds to different parameters in world
space, i.e. Mi1 (I−1(tj)) 6= Mi2 (I−1(tj)).
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be discriminated well. Consequently, the number of templates can be reduced
significantly, which allows for a faster matching. This could lead to a faster and
more precise tracking approach. It depends on the constraints of the camera
setup, whether we optimize either the number and positions of the cameras or
the template set (if the cameras are given and fixed).

7.3.4 Fast High-Dimensional Outlier Detection

After the template matching process, which detects the best matching template
and position in the input image, one could apply outlier detection. For example,
if the hand moves partially outside the image, or is occluded, the template
matching approach might result in a low matching quality at the hand position,
while other positions in the input image, e.g. the face or left hand will have
higher matching probabilities. These false matches are outliers with respect
to the position/pose and can be handled appropriately using outlier detection
approaches for time series. Other reasons for outliers could be, for example,
image noise, differences between hand model and real hand, bad illumination,
partial occlusion, and so on. All these factors introduce additional noise in the
matching result.

For higher robustness, we could take into account the k best matches, and the
last n frames. The outlier detection would have to be done in real-time for k·n
points in the 27 dimensional hand configuration space. Thus, before applying
any kind of outlier detection, e.g. [GPT04, IHS06, BM07, CBK07, GBBK11] or
methods from robust statistics, we need some problem-specific transformation,
which we describe in the following.

A naive approach would use the matches from the last frame(s) as a kind of
database and try to classify the matches of the current frame as in- or outliers.
But this approach has to adopt some kind of hand motion model, which possibly
could be incorrect. Instead of increasing the overall matching accuracy, this
would decrease it. Thus, one should use a different idea (illustrated in Figure
7.3).

First, we could reduce the problem from 27 dimensions to 1 dimension utilizing
an appropriate distance measure in pose space and work on distances between
poses instead of the poses themselves. The distance is computed between two
consecutive matches in time. Taking into account the k best matches at the
last n time steps, it is prohibitive to compute the pose distances between all
combinations. Thus, we first perform a clustering [CHHV05] to the matches in
pose space, and then use the centers (prototypes) of the clusters in the outlier
detection approach.

Let us assume we have q, q�k, different clusters. Then, we have qn possible
combinations each yielding a different time series. Using an outlier detection,
we choose the time series with the maximum joint matching probability that is
not an outlier.

Note that this approach is different from predictive filtering, e.g. by a particle
filter. Predictive approaches have the disadvantage that they tend to drift away
from the true solution after some hundred frames.

7.3.5 Adaptive Multigrid Tracking

In Sec. 5.4 we presented a novel multigrid-based method for a massive paral-
lel object detection and pose estimation approach. One should consider other
subdivision approaches than using a grid. For example one could take the idea
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Figure 7.3: Outlier detection: outliers are not avoidable, especially when the
hand is occluded or crosses the image border. To overcome this problem, we can
apply a time series outlier detection approach to the tracking results to the latest
n frames. To avoid working in the high dimensional hand configuration space,
we detect outliers based on the pose difference. This also has the advantage that
our outlier detection tolerates larger inter-frame hand movements. To keep the
outlier detection computation time low, one can reduce the number of match
candidates utilizing a clustering algorithm.

of the Nelder–Mead method and replace the cube method for subdivision by
simplices. A refinement step is then followed by one Nelder-Meat optimization
step.
One can also investigate whether one simplex step performs best or more steps

are needed. Other optimization approaches than downhill simplex optimization
could be considered as well, for example, PSO (particle swarm optimization) is
also well suited for parallelization.
For further acceleration and to improve the robustness of the hand localization,

one can use depth cameras to separate the body or arm from the background.
One can modify the above proposed approach to prioritize the search to image
parts that are more likely to belong to the human body/arm.
The detection approach goes along with the multi-hypothesis tracking i.e. keep

the k best matches. Further evaluation should be made to reveal the dependence
between the number of templates, optimization approach and the value of k in
order to obtain comparable matching quality.
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