
N E W G E O M E T R I C A L G O R I T H M S A N D
D ATA S T R U C T U R E S F O R C O L L I S I O N

D E T E C T I O N O F D Y N A M I C A L LY
D E F O R M I N G O B J E C T S

David Mainzer

Dissertation, 2015

Copyright © 2015 David Mainzer, New Geometric Algorithms and Data
Structures for Collision Detection of Dynamically Deforming Objects

First printing, October 2015

N E W G E O M E T R I C A L G O R I T H M S A N D
D ATA S T R U C T U R E S F O R C O L L I S I O N

D E T E C T I O N O F D Y N A M I C A L LY D E F O R M I N G O B J E C T S

Doctoral Thesis
(Dissertation)

to be awarded the degree of

Doctor rerum naturalium (Dr. rer. nat.)

submitted by

David Mainzer
from Mühlhausen/Thüringen, Germany

approved by the

Faculty of Mathematics/Computer Science and
Mechanical Engineering

Clausthal University of Technology

Date of oral examination
24. September 2015

Chairperson of the Board of Examiners
Prof. Dr. Michael Kolonko

Chief Reviewer
Prof. Dr. Gabriel Zachmann

Reviewer
Prof. Dr. Sven Hartmann

Dedicated to my family.

A B S T R A C T

Any virtual environment that supports interactions between virtual
objects and/or a user and objects, needs a collision detection system
to handle all interactions in a physically correct or plausible way. A
collision detection system is needed to determine if objects are in
contact or interpenetrates. These interpenetrations are resolved by a
collision handling system. Because of the fact, that in nearly all sim-
ulations objects can interact with each other, collision detection is a
fundamental technology, that is needed in all these simulations, like
physically based simulation, robotic path and motion planning, vir-
tual prototyping, and many more. Most virtual environments aim
to represent the real-world as realistic as possible and therefore, vir-
tual environments getting more and more complex. Furthermore, all
models in a virtual environment should interact like real objects do,
if forces are applied to the objects. Nearly all real-world objects will
deform or break down in its individual parts if forces are acted upon
the objects. Thus deformable objects are becoming more and more
common in virtual environments, which want to be as realistic as pos-
sible and thus, will present new challenges to the collision detection
system. The necessary collision detection computations can be very
complex and this has the effect, that the collision detection process is
the performance bottleneck in most simulations.

Most rigid body collision detection approaches use a Bounding Vol-
ume Hierarchy (BVH) as acceleration data structure. This technique
is perfectly suitable if the object does not change its shape. For a soft
body an update step is necessary to ensure that the underlying ac-
celeration data structure is still valid after performing a simulation
step. This update step can be very time consuming, is often hard to
implement and in most cases will produce a degenerated BVH af-
ter some simulation steps, if the objects generally deform. Therefore,
the here presented collision detection approach works entirely with-
out an acceleration data structure and supports rigid and soft bodies.
Furthermore, we can compute inter-object and intra-object collisions
of rigid and deformable objects consisting of many tens of thousands
of triangles in a few milliseconds. To realize this, a subdivision of the
scene into parts using a fuzzy clustering approach is applied. Based
on that all further steps for each cluster can be performed in paral-
lel and if desired, distributed to different Graphics Processing Units
(GPUs). Tests have been performed to judge the performance of our
approach against other state-of-the-art collision detection algorithms.
Additionally, we integrated our approach into Bullet, a commonly
used physics engine, to evaluate our algorithm.

ix

In order to make a fair comparison of different rigid body collision
detection algorithms, we propose a new collision detection Bench-
marking Suite. Our Benchmarking Suite can evaluate both the per-
formance as well as the quality of the collision response. Therefore,
the Benchmarking Suite is subdivided into a Performance Benchmark
and a Quality Benchmark. This approach needs to be extended to sup-
port soft body collision detection algorithms in the future.

x

Z U S A M M E N FA S S U N G

Jede virtuelle Umgebung, welche eine Interaktion zwischen den vir-
tuellen Objekten in der Szene zulässt und/oder zwischen einem Be-
nutzer und den Objekten, benötigt für eine korrekte Behandlung der
Interaktionen eine Kollisionsdetektion. Nur dank der Kollisionsde-
tektion können Berührungen zwischen Objekten erkannt und mittels
der Kollisionsbehandlung aufgelöst werden. Dies ist der Grund für
die weite Verbreitung der Kollisionsdetektion in die verschiedensten
Fachbereiche, wie der physikalisch basierten Simulation, der Pfadpla-
nung in der Robotik, dem virtuellen Prototyping und vielen weite-
ren. Auf Grund des Bestrebens, die reale Umgebung in der virtuellen
Welt so realistisch wie möglich nachzubilden, steigt die Komplexi-
tät der Szenen stetig. Fortwährend steigen die Anforderungen an die
Objekte, sich realistisch zu verhalten, sollten Kräfte auf die einzelnen
Objekte ausgeübt werden. Die meisten Objekte, die uns in unserer
realen Welt umgeben, ändern ihre Form oder zerbrechen in ihre Ein-
zelteile, wenn Kräfte auf sie einwirken. Daher kommen in realitätsna-
hen, virtuellen Umgebungen immer häufiger deformierbare Objekte
zum Einsatz, was neue Herausforderungen an die Kollisionsdetekti-
on stellt. Die hierfür Notwendigen, teils komplexen Berechnungen,
führen dazu, dass die Kollisionsdetektion häufig der Performance-
Bottleneck in der jeweiligen Simulation darstellt.

Die meisten Kollisionsdetektionen für starre Körper benutzen eine
Hüllkörperhierarchie als Beschleunigungsdatenstruktur. Diese Tech-
nik ist hervorragend geeignet, solange sich die Form des Objektes
nicht verändert. Im Fall von deformierbaren Objekten ist eine Aktuali-
sierung der Datenstruktur nach jedem Schritt der Simulation notwen-
dig, damit diese weiterhin gültig ist. Dieser Aktualisierungsschritt
kann, je nach Hierarchie, sehr zeitaufwendig sein, ist in den meisten
Fällen schwer zu implementieren und generiert nach vielen Schritten
der Simulation häufig eine entartete Hüllkörperhierarchie, sollte sich
das Objekt sehr stark verformen. Um dies zu vermeiden, verzichtet
unsere Kollisionsdetektion vollständig auf eine Beschleunigungsda-
tenstruktur und unterstützt sowohl rigide, wie auch deformierbare
Körper. Zugleich können wir Selbstkollisionen und Kollisionen zwi-
schen starren und/oder deformierbaren Objekten, bestehend aus vie-
len Zehntausenden Dreiecken, innerhalb von wenigen Millisekunden
berechnen. Um dies zu realisieren, unterteilen wir die gesamte Szene
in einzelne Bereiche mittels eines Fuzzy Clustering-Verfahrens. Dies
ermöglicht es, dass alle Cluster unabhängig bearbeitet werden und
falls gewünscht, die Berechnungen für die einzelnen Cluster auf ver-
schiedene Grafikkarten verteilt werden können. Um die Leistungsfä-

xi

higkeit unseres Ansatzes vergleichen zu können, haben wir diesen
gegen aktuelle Verfahren für die Kollisionsdetektion antreten lassen.
Weiterhin haben wir unser Verfahren in die Physik-Engine Bullet in-
tegriert, um das Verhalten in dynamischen Situationen zu evaluieren.

Um unterschiedliche Kollisionsdetektionsalgorithmen für starre
Körper korrekt und objektiv miteinander vergleichen zu können, ha-
ben wir eine Benchmarking-Suite entwickelt. Unsere Benchmarking-
Suite kann sowohl die Geschwindigkeit, für die Bestimmung, ob
zwei Objekte sich durchdringen, wie auch die Qualität der berech-
neten Kräfte miteinander vergleichen. Hierfür ist die Benchmarking-
Suite in den Performance Benchmark und den Quality Benchmark
unterteilt worden. In der Zukunft wird diese Benchmarking-Suite
dahingehend erweitert, dass auch Kollisionsdetektionsalgorithmen
für deformierbare Objekte unterstützt werden.

xii

A C K N O W L E D G E M E N T S

Prof. Dr. Gabriel Zachmann

First of all, I wish to express special thanks to my supervisor. He
always helped and supported me with good suggestions, comments,
and insightful discussions, both while he was with Clausthal Univer-
sity as well as with Bremen University. This has been a considerable
contribution to my work.

Prof. Dr. Sven Hartmann

Furthermore, I also would like to express my gratitude to Prof. Dr.
Sven Hartmann for accepting the co-advisorship and giving useful
comments on this work.

Computer Graphics Group at University of Bremen

Since working alone is impossible nowadays, I would like to thank
my colleagues René Weller and Daniel Mohr for the fruitful coopera-
tive work.

Department of Computer Science of the Clausthal University

Also my colleagues from the Department of Computer Science of
the Clausthal University supported me on this work, especially Jens
Drieseberg, René Fritzsche, Dr. Stefan Guthe and Michael Köster.

My Family

Thanks for giving me my very own computer, and the financial sup-
port throughout my study.

Last but not least, my Brother Christoph

I cannot tell you how thankful I am, for your support over all the
years. Thank you.

xiii

C O N T E N T S

1 introduction 1

1.1 Contributions 4

2 a brief overview of the complex area of colli-
sion detection 7

2.1 Collision Detection and Response 8

2.1.1 Collision Detection Queries 12

2.1.2 Further Information on Collision Detection . . 13

2.2 Deformable Objects 14

2.3 Deformable versus Rigid Body Collision Detection 15

2.4 Animation 16

2.5 Broad-Phase Collision Detection 18

2.6 Narrow-Phase Collision Detection 21

2.7 Sophisticated Narrow-Phase Collision Detection: SaP 26

2.8 Continuous Collision Detection 29

2.9 Parallel Collision Detection 30

2.9.1 CPU . 31

2.9.2 Hybrid CPU — GPU 32

2.9.3 GPU . 32

2.10 Time-Critical Collision Detection 33

2.11 Related Fields 33

2.11.1 Excursus: Ray Tracing 33

2.11.2 Excursus: Volumen Rendering 35

3 a biref introduction into massively parallel

computing 37

3.1 The Graphics Hardware 38

3.2 Performance of Parallel Computing 40

3.2.1 Amdahl’s Law 40

3.2.2 Gustafson’s Law 42

3.2.3 Conclusion . 43

4 scene subdivision for collision detection 45

4.1 BSP-Tree 45

4.1.1 Advantages and Disadvantages 46

4.2 2 D Kd-Tree 46

4.2.1 Advantages and Disadvantages 47

4.3 Uniform Grids 48

4.3.1 Advantages and Disadvantages 48

4.4 Clustering — C-Means 48

4.4.1 Clustering and Classification 51

4.4.2 Advantages and Disadvantages 51

4.5 Fuzzy Clustering — Fuzzy C-Means 52

4.5.1 Stopping Criterion 53

4.5.2 Advantages and Disadvantages 53

xv

xvi contents

4.6 Our New BNG Approach for Hierarchy Construction 53

4.6.1 Batch Neural Gas for BVH Construction . . . 54

4.6.2 Batch Neural Gas Hierarchy Construction . . 57

4.6.3 Results . 60

4.6.4 Improvements of Batch Neural Gas for Hier-
archy Construction 61

4.7 Future Work 64

5 our novell collision detection approach 65

5.1 Scene Subdivision 65

5.1.1 Data Points for the Scene Subdivision Process 66

5.1.2 Clustering Process 67

5.2 Sweep-Plane Technique using PCA 73

5.2.1 PCA to Determine a Good Sweep Direction . 73

5.2.2 Principal Curves to Determine a Better Sweep
Direction . 75

5.2.3 Implementation 78

5.2.4 Thread Management 80

5.3 Fast Triangle-Triangle Intersection Test 81

5.4 Collision Detection Based on Fuzzy Scene Subdivision 82

5.5 Accuracy and Limitations 83

5.6 Benchmark for Deformable Objects 84

5.6.1 Implementation and System Details 84

5.6.2 Cloth on Ball Benchmark 85

5.6.3 Funnel Benchmark 87

5.7 Excursus: Our New Benchmarking Suite for Rigid
Objects 89

5.7.1 Overview of the Benchmarking Suite 89

5.7.2 Performance Benchmark 90

5.7.3 Force and Torque Quality Benchmark 93

5.7.4 Results . 97

5.7.5 Conclusions and Future Work 105

5.8 Future Work 106

6 technical details and applications 107

6.1 Data Flow 107

6.2 Sequence Diagram 108

6.3 Implementation 109

6.4 Bullet Physics 2.78 109

6.4.1 Disadvantages 110

6.5 Integration into Bullet Physics 110

6.5.1 Disadvantages 111

6.6 Our Collision Detection in Action 112

7 peroration 113

7.1 Summary 113

7.2 Where the journey can go? 114

7.2.1 Quality of Contact Information 115

7.2.2 Point Clouds 115

contents xvii

7.2.3 Haptics . 115

7.2.4 Natural Interaction 116

Appendix 117

a reference sheets 119

publications 121

bibliography 123

glossary 161

1
I N T R O D U C T I O N

1962 — SpaceWar!1 2014 — Thief 4
2

Figure 1.1: Evolution in video games between 1962 and 2014.

Probably there does not exist an area in which a graphics display
cannot be used to support the end user. Therefore, computer graph-
ics can be found in many areas such as science, engineering, medical,
business, industry, art, education and training. In recent years the de-
gree of optical realism of computer simulations has increased signifi-
cantly. This important increase is mainly attributable to the computer
games scene, where optical realism is basic desire (Figure 1.1 depicts
an example of the improvements in computer games over the years).

Nonetheless, it is not the optical component only, that makes vir-
tual environments more realistic, but also naturalistic sound, inter-
action metaphors and optical correct behavior of the virtual objects
within a scene to external influences caused by the simulation or user.
We anticipate that a virtual object interacts in the same way like real-
world objects do. This basically means that objects, which collide in
the virtual world, should act as real items in the real-world. In the
case of objects are rigid, then they will repel each other or will break
up in its individual components. On the other hand, if objects are
soft bodies they will deform. Thus a virtual environment should
behave identically. Realizing such realistic behavior may through
complex calculations to simulate such a world. Furthermore, virtual
environments getting more and more detailed. To accomplish this,
a huge amount of primitives or complex functions to modeling ob-
jects are used within virtual environments. Recognizing this, new
algorithms have to especial tailored to satisfy-more complex virtual
environments and extensive requirements going forward.

1 Steve Russell invented SpaceWar! which is one of the first video games.
2 Thief 4, ©Square Enix, 2014

1

2 introduction

An abstract geometric model usually represents every object in a
virtual environment. Most current graphics hardware uses triangles
as primitives for rendering. Consequently, a polygonal representation
is a natural choice for scenes and objects within this scene and there-
fore, most real-world models are composed of complexes of triangles
[Eri05; SAM09]. A further possibility to represent a virtual object
is using a mathematical function, like B-Splines or the most general
form Non-Uniform Rational B-Spline (NURBS). Another possibility
to create a complex object is the usage of basic primitives (for exam-
ple spheres, boxes and cylinders) called Constructive Solid Geometry
(CSG). It should be noted, that the polygon soup is the most generic
polygonal representation of an object [Eri05; VB04].

Such an abstract geometric model can be used to simulate a real-
world scene, although the virtual objects will not interact like a real-
world object. The reason for this is, that an abstract geometric model
has no physical existence, per se. Consequently, virtual objects can
pass through each other. It is therefore necessary to prevent virtual
objects to interpenetrate.

In fact, we have to detect whether two objects are in contact or
not. This technique, to determine if two or more objects are in con-
tact, is called collision detection. In order to ensure solidness, and
guarantee that objects act, as the user expected, when they come into
contact, i. e., no interpenetration, a so-called collision handling system
is needed. Collision detection is a problem of kinematics, while colli-
sion response is a problem of dynamics [Eri05; OD99]. The problem
of collision detection has its roots in computational geometry and
robotics. Hahn [Hah88] figured out that the collision detection pro-
cess takes the most computation time in most sequences when the
objects are close enough. In most cases the collision detection pro-
cess takes over 95% of the computation time. Since this publication
faster collision detection approaches have been presented, but exact
collision detection remains the bottleneck in most simulations.

The current trend in computer architecture focuses on multi-core
Central Processing Units (CPUs) and many-core Graphics Process-
ing Units (GPUs). That is why new algorithms have to fully exploit
the potentials of this trend in computer architecture. The beginning
of true Multiple-Instruction, Multiple-Data (MIMD) parallelism goes
back to Conte di Menabrea [Con43] “Sketch of the Analytical Engine
Invented by Charles Babbage” composed in 1843. The first varia-
tion of a Single-Instruction, Multiple-Data (SIMD) parallel computer
can be traced back to the 1970’s [HP12]. Most modern CPU designs,
like Intel’s Multi Media Extension (MMX) technique or Intel’s Stream-
ing SIMD Extensions (SSE) system introduced in 1999, also supports
SIMD instructions, in order to improve the performance of multi-
media use, primarily video encoding and decoding. Further impor-
tant parallel computing architectures are Multiple-Instruction, Single-

introduction 3

single instr . multiple instr .

single data SISD MISD
multiple data SIMD MIMD

Table 1.1: Classification of computer architectures using Flynn’s taxonomy
[Fly72].

Data (MISD)—i. e., the Space Shuttle flight control computers—and
Single-Instruction, Single-Data (SISD)—corresponds to the Von Neu-
mann architecture [Neu45]. An overview of common parallel com-
puter classes is shown in Table 1.1.

In 1999 NVIDIA popularized the term GPU, while marketed the
GeForce 256. NVIDIA’s first technical definition of a GPU was:

“. . . a single-chip processor with integrated transform, lighting, tri-
angle setup/clipping, and rendering engines that is capable of pro-
cessing a minimum of 10 million polygons per second.”

NVIDIA, August 31, 1999

In previous years, the GPU mainly has been used to transform,
light and rasterize triangles in 3 D graphics applications only [Ngu07].
Therefore, at the beginning a GPU was focused on handling graph-
ics primitives such as triangles. In 1997–1998, when Intel introduced
the Pentium 2 and NVIDIA the RIVA TNT graphics card, the num-
ber of transistors on a GPU overtook the number of transistors on a
CPU (transistor counts of about 8 M) [Wil13]. Brodtkorb, Dyken, Ha-
gen, Hjelmervik, and Storaasli [Bro+10] and Owens, Houston, Lue-
bke, Green, Stone, and Phillips [Owe+08] demonstrated that using
the GPU instead of the CPU can drastically speedup certain algo-
rithms. The principal reason for this is the massive performance
of GPU, compared to the CPU. The GPUs were still growing expo-
nentially in performance due to massive parallelism, while CPUs hit
the serial performance ceiling (see Figure 1.2). Therefore, parallelism
seems to be a forward-looking technology of increasing performance.
Furthermore, data volumes have increased extensively over the last
decades and arbitrarily large data sets can be efficiently parallelized
described by Gustafson’s Law [Gus88]. Understandably, parallelism
will only affect the performance of parallel code sections, which leads
to the problem, that the serial part of the code becomes the bottleneck
[BHS13]. This is often referred to Amdahl’s law [Amd67]. These two
laws, Amdahl’s and Gustafson’s Law, are common used to predict or
estimate parallel performance. Further information can be found in
Section 3.2. Today the GPU is one of the most famous SIMD comput-
ing device.

4 introduction

Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10Apr-12Aug-13Dec-14

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

4000

4250

4500

4750

5000

5250

5500

5750

T
he

or
et

ic
al

G
FL

O
P/

s

GeForce 780 Ti

GeForce GTX Titan

GeForce GTX 680

GeForce GTX 580

GeForce GTX 480

GeForce GTX 280

GeForce 8800 GTX

GeForce 7800 GTX
GeForce 6800 Ultra

GeForce FX 5800

Tesla K40
Tesla K20X

Tesla M2090

Tesla C2050

Tesla C1060

Pentium 4

Woodcrest
Harpertown

Bloomfield

Westmere Sandy Bridge

Ivy Bridge

NVIDIA GPU Single Precision
NVIDIA GPU Double Precision
Intel CPU Single Precision
Intel CPU Double Precision

Figure 1.2: Development of the theoretical number of floating-point opera-
tions for CPU and GPU over the last years [Nvi14, Section 1.1].

Those key features should be considered when designing a new
algorithm, especially when the computation time—needed to solving
a problem—is a key specification. However, not all approaches are
focused on speed only, in many cases the accuracy is a main issue
too. Our novel collision detection approach focuses on accuracy and
speed at the same time. To achieve this, we use the GPU as computing
device and we are working on the real input data without the need
of an acceleration data structure.

1.1 contributions

Detecting intersections between moving geometric objects was in
most cases a very complicated problem. Therefore, the virtual en-
vironment has to determine all colliding objects, or, more precisely,
all intersecting primitives in the whole scene to compute a phys-
ically plausible collision response. Thus, collision detection is in
most complex applications the computational bottleneck [BWK03;
BFA02; VT94]. Let us assume that a scene consists of two objects,
each of them consisting of n primitives. A straightforward collision

1.1 contributions 5

detection approach will test each primitive of one object against all
primitives of the other object; this approach is also called brute-force
collision detection. This leads to a complexity of O(n2) [MP78] (see
Chapter 2). A quadratic complexity is completely unsuitable for
time sensitive applications and therefore, faster collision detection
approaches are needed. However, there are situations, where ev-
ery primitive collides with all other primitives within the scene (see
Figure 2.3) and therefore, O(n2) intersections occur. Thus, collision
detection approaches—which support every kind of object and ob-
ject configuration—have a theoretical complexity in the worst-case of
O(n2).

For example, in games, collision detection and response can be de-
scribed as “if it looks right, it is right.” [Eri05, Section 2.2.2], but
other applications, e. g., virtual surgery simulator, path planning and
so on, need a much higher accuracy for the collision detection pro-
cess. Furthermore, to increase the realism of virtual environments
soft bodies become more and more important in nearly all applica-
tions. Thus, our novel collision detection approach focuses on speed
and accuracy as the main issue, while it supports soft and rigid body
collision detection.

An overview of the complex area of collision detection is provided
in Chapter 2. Since this field has been investigated by research over
decades, we are focusing on collision approaches for deformable ob-
jects only. Anyway, we also introduce some techniques for rigid body
collision detection and some techniques, which are suitable for rigid
and soft body collision detection.

As we mentioned before, and Figure 1.2 depicts, parallel comput-
ing becomes more and more important. In Chapter 3 a short overview
about the field of massively parallel computing is presented. Fur-
thermore, we have a closer look at the GPU, which we use for our
approach as computing device.

Most collision detection approaches subdivide the space into re-
gions to faster reject non-colliding parts of an object or whole objects.
Chapter 4 gives an overview of commonly used methods for space
subdivision. Furthermore, we introduce a clustering approach, which
we use for the scene subdivision process. Clustering provides a stable
and fast method to create a well-suited partitioning of a scene, even
if objects strongly deform and move.

In Chapter 5 we present our novel collision detection approach,
which is based on fuzzy scene subdivision. Our method runs entirely
on the GPU and therefore, no communication between CPU and GPU
is necessary. We use a Principal Component Analysis (PCA) for each
cluster of the clustering process to determine the best sweep direction
for the Sweep-and-Prune (SaP) algorithm. Furthermore, we tested the
performance of our approach in commonly used benchmarks. The

6 introduction

results show that our algorithm is as fast as other state-of-the-art ap-
proaches but even more flexible to use more than one GPU only.

This is followed by an technical look at our collision detection ap-
proach (see Chapter 6). In this chapter we provide a data flow and
sequence diagram. Furthermore, we depict the integration of our ap-
proach into a physically based simulation. This serves primarily to
check whether behavior and performance of our collision detection
approach in a real-world scenario.

In summary, this thesis has the main goal to provide a fast and
accurate collision detection for soft bodies which runs in real-time.
However, our approach is still not a universal solution that is suitable
for every scenario. Thus also other collision detection approaches
have the right to exist, e. g., some approaches are especially tailored
for collision detection between rigid bodies or focusing on speed only
and therefore, they approximate the geometry or use a probability
measure to decide if a collision occurs or not.

2
A B R I E F O V E RV I E W O F T H E C O M P L E X A R E A O F
C O L L I S I O N D E T E C T I O N

Figure 2.1: Virtual neurological surgery performed with a scalpel (human
brain consists of 30 k triangles and scalpel consists of 1 k trian-
gles). Intersecting primitives (triangles) are marked in red.

The area of collision detection has matured from its beginnings
around 20-25 years ago to a huge area with a large body of literature,
many diverse applications in virtual reality, computational mechan-
ics, medical simulation, games, animations, computational material
science, etc., [ES99; Eri05; HKM95; LCN99; Ren+10; YW93], and a
large number of methods and principles that were proposed over the
course of that time period. Thus it is impossible to discuss all meth-
ods in this chapter. Therefore, we will discuss only some often used
techniques for spatial partitioning, e. g., spatial hashing, octrees, kd-
trees, etc. and for topological methods, e. g., SaP, BVH, and so on.
Some of these methods are described in Sections 2.5 to 2.7. Since par-
allelization getting more and more important we present an overview

7

8 a brief overview of the complex area of collision detection

of different parallel collision detection approaches in Section 2.9. We
close this chapter with some related fields, which can benefit from
collision detection data structures also.

2.1 collision detection and response

Collision detection’s main focus is to recognize possible interferences
between virtual objects, which can move in space or deform in case
of deformable geometry. A virtual environment composed of n
objects {O0,O1, . . . ,On−1}, each containing a number of primitives
Oi = {pi0,pi1, . . . ,pik}, i = 0, . . . ,n− 1, k ∈ N. A collision detection
approach determines, if objects intersect or not: Oi ∩Oj 6= ∅, i =

0, . . . ,n− 1, j = 0, . . . ,n− 1, and, if self collisions are ignored, ∀i 6= j ,
and, if desired, provide the intersecting primitives, pia ∩ p

j
b 6= ∅.

Let us assume that a scene consists of a given number of objects
with a total of n primitives and any one primitive can potentially
collide with any other primitive. A straightforward collision detec-
tion approach requires (n− 1) + (n− 2) + . . .+ 1 = n(n−1)

2 pairwise
primitive intersection tests which is in O(n2) [MP78].

In most real-world scenarios few number of primitive intersection
pairs occurs and therefore, testing all primitives against each other are
unnecessary in many situations. Most collision detection approaches
aim to run in real-time or output-sensitive running time [Cla94] and
consequently, they have to eliminate as much as possible of the un-
necessary O(n2) primitive intersection tests to reach this goal. One
way of achieving this is to exclude entire objects or large parts of
objects to be tested against each other in an early stage of the col-
lision detection process. This process can be thought of as a series
of filters, which come once after each other like in a pipeline [Zac00]
(Figure 2.2 shows an example of a collision detection pipeline). The
concept of a linear sequence of modules used for pipelining is com-
monalty used in computer graphic, e. g., the rendering pipeline, local
illumination pipelines, global illumination pipelines and the haptic
pipeline [Bar97; Fol+94; MEP92]. The main objective of these pipelin-
ing steps is to reduce the number of non-colliding objects or primi-
tives. Like we showed before brute-force collision detection is not a
suitable approach because of its high computation time. Therefore,
better techniques have been developed to speedup this process. In
the following sections we have a closer look at some commonly used
techniques in the field of collision detection.

To improve the performance of collision detection the number of
objects or primitives tested for intersection has to be reduced and
therefore, the collision detection process is often subdivided into two
phases: the broad-phase (or so-called n-body processing) and the narrow-
phase (or so-called pair processing) [Eri05].

2.1 collision detection and response 9

Application

Collision
Handler

Virtuel Objects Collision
Front-End

Collision
Objects

Collision Matrix

Exact Collision
Detection

Neighbor
Filtering II

Neighbor
Filtering I

Geometric transform-
ations are used to
positioning objects

Narrow-phase Broad-phase

C
ol

li
si

on
D

et
ec

ti
on

Pi
pe

li
ne

Figure 2.2: An example of a collision detection pipeline with some filtering
modules [Wel12; Zac01].

The main focus in the broad-phase of the collision detection is to
identify objects or groups of primitives that may be colliding and ex-
clude as rapidly as possible those groups of primitives or whole ob-
jects that definitely are not intersecting. The result of this phase is a
list of all pairs of potentially colliding primitive groups or objects, the
so-called Potentially Collision Set (PCS). The PCS has to be checked
for intersections in a second phase, the narrow-phase. Within the nar-
row-phase some filters can be used to further speedup the collision
process [Zac01].

There are many physics simulation libraries, like Bullet [Cou12],
Unity3D [Cre10], Unreal Engine [Int12; Moo12], Open Dynamics En-
gine [Dru+10] and Simulation Open Framework Architecture (SOFA)
[Fau+12], which implements different modules and techniques in the
collision detection pipeline to eliminate non-colliding parts or objects
as early as possible. It should be noted that the collision detection
process is only a small part within those physics engines and there-
fore, implementing a fast and accurate collision detection is not the
main focus in most cases.

There are a few requirements, which affect the design of a collision
detection pipeline and thereby, fundamentally the collision detection
algorithm. The mainly used factor to differentiate collision detec-
tion algorithms is the support of rigid bodies and/or deformable
objects. Basically all collision detection algorithms, which support
deformable objects, can handle collisions between rigid bodies also.
However, collision detection approaches focus on rigid bodies only
will in any case outperform approaches, which support both types of
models.

Another important design factor, while creating a new collision de-
tection pipeline, are the underlying geometric acceleration data struc-
tures, which usually are set up in a pre-processing step. Collision

10 a brief overview of the complex area of collision detection

detection algorithms for deformable objects normally require other
data structures or they have to implement additional modules in the
collision detection pipeline to ensure that used data structures are
valid after a simulation step (see Section 2.3).

Furthermore, the underlying abstract geometric model, to repre-
sent the objects in a virtual environment, can also be used to clas-
sify collision detection approaches. Most approaches use a polygonal
representation, e. g., triangles or quads and therefore, many polygo-
nal-based collision detection approaches exist. An efficient algorithm
for creating tight-fitting Oriented Bounding Boxes (OBBs) was pre-
sented by Gottschalk, Lin, and Manocha [GLM96]. In the initial phase
they build up a hierarchical representation of models using OBB-trees.
Within collision detection process they use a separating axis theorem
to check whether or not two OBBs intersect. But the only optimal so-
lution for OBB computation is in O(n3) and very hard to implement
[ORo85]. Curtis, Tamstorf, and Manocha [CTM08] introduced Repre-
sentative-Triangles to improve the performance of collision handling.
A Representative-Triangle is a standard geometric triangle with ad-
ditional mesh feature information. Furthermore, they can combine
their approach with existing BVHs and their approach supports both
inter-object and self-collision detection. For a fast continuous col-
lision detection approach Redon, Kheddar, and Coquillart [RKC02]
combine Interval Arithmetic (IA) and hierarchies of OBBs. Tang, Cur-
tis, Yoon, and Manocha [Tan+09] combine different techniques to im-
prove the culling efficiency. To cull large regions they use a novel
formulation for continuous normal cones. To remove all redundant
elementary tests between non-adjacent triangles they introduced so-
called Procedural Representative Triangles. Other approaches support
tetrahedral meshes, which are commonly use to represent volumet-
ric deformable models and therefore, collision detection approaches
for this data structure exists. Teschner, Heidelberger, Müller, and
Gross [Tes+04] and Teschner, Heidelberger, Müller, Pomerantes, and
Gross [Tes+03] developed an algorithm, which use a hash function
for compressing a regular spatial grid. They make use of optimized
parameters, such as hash function, hash table size and spatial cell size
to speedup their collision detection approach. Special collision detec-
tion approaches have been developed even for the more rare object
representations, like using a mathematical function, B-Splines or the
most general form NURBS [GGK06; LG98; PG03].

Lau, Chan, Luk, and Li [Lau+02] described a method, which com-
bines an Axis Aligned Bounding Box (AABB) hierarchy with a bit-
field. This approach supports both inter-collision and self-collisions
of deformable objects. Page and Guibault [PG03] introduced an ap-
proach, which creates OBBs on the fly using the surface control points.
Weller and Zachmann [WZ09] introduced a novel data structure for
rigid body collision detection, which they called Inner Sphere Tree

2.1 collision detection and response 11

(IST). The main idea behind ISTs is to bound objects from the inside
with a set of non-overlapping spheres. A key feature of this approach
is the possibility to compute the penetration volume, which is related
to the water displacement of the overlapping region. Weller, Frese,
and Zachmann [WFZ13] presented a parallel collision detection ap-
proach for rigid bodies, which has a linear worst-case running time
for arbitrary 3 D objects. Therefore, they use the ISTs to fill the objects
with spheres. Furthermore, they use a hierarchy of grids to decide if
two spheres are close together or not. Because of the fact that spheres
within an object do not overlap and they have minimum radii, only
a known number of spheres can overlap a cell of the grid. This en-
ables the possibility to predefine the maximum number of spheres
within a cell and thus the total maximum duration of the collision
detection process. A novel GPU-based collision detection method for
deformable parameterized surfaces was introduced by Greß, Guthe,
and Klein [GGK06]. They build up an AABB hierarchy from the
geometry image for every object individually. The whole computa-
tion process is outsourced to the GPU. Weller, Klein, and Zachmann
[WKZ06] proposed a model to estimate the expected running time of
a collision detection process using an AABB hierarchy.

Creating a complex object from basic primitives (for example
spheres, boxes and cylinders) is called CSG. Therefore, Tilove [Til84]
use primitive redundancy and spatial localization to reduce the CSG-
tree efficiently. Su, Lin, and Yen [SLY96] convert the CSG object
model into a Bounding Volume (BV) representation and later use this
representation in the collision detection process. Both models are in-
tegrated in a hybrid model. A Divide-and-Conquer (DAC) approach
is used to identify possible colliding regions in a fast way in combina-
tion with an adaptive BV selection strategy. Su, Lin, and Ye [SLY99]
described a collision detection approach for CSG, which mainly takes
advantages of the CSG Divide-and-Conquer paradigm. In addition
to that, they use efficient distance-aided collision detection for convex
BVs. Kim, Oh, Yoon, Kim, and Elber [Kim+11] use a hierarchy of
Coons [Coo67] patches to approximate the BVH of free-form NURBS
surfaces.

Another important model representation is a set of points, also
called point clouds, which has become more and more popular in
the last years. Cheap 3 D scanning devices, like Microsoft’s Kinect
[Iza+11] or a simple webcam [PRD09], are the reason for this. Fur-
thermore, nearly everyone owns a webcam and thus a 3 D scanner is
widely available [RHL02]. Currently Google is developing a tablet
with a 3 D scanning software, called Project Tango. Furthermore,
point clouds are well-suited for represent complex models [BWG03;
KZ04b; KZ04c; Pfi+00; RL00; Zwi+02]. Klein and Zachmann [KZ04a]
presented the first approach for collision detection of point clouds.
Their time-critical collision detection approach detects intersection

12 a brief overview of the complex area of collision detection

of the underlying implicit surfaces. Therefore, they create a hierar-
chy containing of the sample points beside with spheres covering a
part of the scanned surface. Klein and Zachmann [KZ05] proposed
an approach to reconstruct the intersection curve between two point
clouds. Thus, they use interpolation search along the shortest path
within a proximity graph. Figueiredo, Oliveira, Araújo, and Pereira
[Fig+10] introduced an efficient collision detection approach for point
clouds. Therefore, they divide the scene graph into voxels. For ev-
ery voxel they use an R-tree hierarchy of AABBs for fast collision
queries. Pan, Chitta, and Manocha [PCM11] compute the collision
probability for every data point. Furthermore, they use a stochastic
traversal of BVHs to accelerate the computation. Pan, Sucan, Chitta,
and Manocha [Pan+13] introduced an efficient approach, which can
handle large sensor generated data sets of point clouds received at
real-time rates. Therefore, they use a high-dynamic AABB tree as
broad-phase culling technique and use an octree, holding the point
cloud data, as proximity data structure. Radwan, Ohrhallinger, and
Wimmer [ROW14] proposed a collision detection approach for point
clouds, which use a screen-space representation for point clouds. Be-
cause the underlying surface is 2 D, they reduced the 3 D point clouds
into a number of thickened layered depth images.

All these features, like support of rigid bodies or soft objects, the
underlying geometric acceleration data structures, or the underlying
abstract geometric model to represent the objects, can be used to
classify collision detection algorithms. However, there exists further
classification features for collision detection, i. e., accurate or approx-
imate, off-line or real-time, CPU-, GPU-based or hybrid, hierarchical
or non-hierarchical methods.

Nevertheless, it must be mentioned that the theoretical complexity
of most collision detection approaches is in the worst-case in O(n2), if
no constraints for the used objects or object configuration exists. Such
a worst-case scenario is the collision between two Chazelle1 polyhe-
dra shown in Figure 2.3.

2.1.1 Collision Detection Queries

Interference detection or intersection testing problem is the most evident
collision detection query. Therefore, the collision detection algorithm
answering the Boolean question: for a given configuration; do object
A and B interpenetrate or not. The advantages of this query lie in
the fact that it is fast and easy to implement. Thus, it is used in most
collision detection approaches. However, for deformable collision de-
tection a Boolean result is not enough and all parts, which are in
contact or interpenetrate must be detected. In Section 2.3 we discuss

1 Chazelle [Cha84] showed that a Chazelle polyhedron can not be partitioned into
fewer than Ω(n2) convex parts.

2.1 collision detection and response 13

Figure 2.3: One example of a worst-case for collision detection algorithms is
the intersection of two Chazelle polyhedra.

why we need to determine all contact points to deal with intra- and
inter-object collisions in a correct way.

In principle, approximate queries—the quality of the answer is only
required to be accurate up to a predefined margin of error—are nearly
in all cases easier to handle than exact collision detection queries.
Most computer games are using approximate queries but in the most
critical applications, e. g., virtual surgery and physically correct sim-
ulations exact collision detection queries are required.

In the case of an intersection, some applications require more infor-
mation, e. g., penetration depth, colliding primitives and/or intersection
volume. If objects are not intersecting than some applications need
closest points between two objects A and B. It should be noted that
the closest point is not necessarily unique; there can be an infinite
number of closest points. In dynamic scenes sometimes the next time
of collision is needed, called the Time of Impact (ToI). Many simula-
tions use the ToI to control the time step size in their simulation cycle
[Eri05].

2.1.2 Further Information on Collision Detection

Since collision detection is a fundamental technique in every physi-
cal based simulation or any simulation, where interactions between
objects are important, many researchers have investigated it over
decades. Naming and discussing of all existing approaches lie far

14 a brief overview of the complex area of collision detection

beyond the scope of an overview. However, we wish to provide a list
of the most important publications in this area, but without raising
a claim to completeness: the most cited books in the widely field of
collision detection are Ericson [Eri05], Van Den Bergen and Bergen
[VB04], Eberly [Ebe03], Coutinho [Cou01], Zachmann and Langetepe
[ZL03], Overmars [Ove88], Baraff and Witkin [BW92], Foley, Van
Dam, Feiner, Hughes, and Phillips [Fol+94] and furthermore, their
are many surveys available also, Lin and Gottschalk [LG98], Jiménez,
Thomas, and Torras [JTT01], Kockara, Halic, Iqbal, Bayrak, and
Rowe [Koc+07], Avril, Gouranton, Arnaldi, et al. [A+09], Teschner,
Kimmerle, Heidelberger, Zachmann, Raghupathi, Fuhrmann, Cani,
Faure, Magnenat-Thalmann, Strasser, and Volino [Tes+05].

2.2 deformable objects

co
nt

in

uous deformation

approxim
ated deformation

Figure 2.4: The blue circle represents the continuous connected surface of
a model M ∈ R2. The black dots are points on the surface of
the model M, the material coordinates, which are connected by a
discrete polygonal representation (red lines).

A deformable model is defined by an initial state, often called as
rest or equilibrium configuration. This initial state represents the sur-
face of an object without the influence of any external forces, like cavi-
tation, inflation pressure or wind. Furthermore, a deformable model
consists of a set of material parameters. These parameters define
how the model deforms, under the influence of external forces. We
define the initial state of a model as a continuous connected surface
M ∈ Rn. All coordinates mi ∈ M, with i is the index of coordinate,
are points of the object, represented byM, and they are called material
coordinates. In the discrete case—e. g., polygonal models or CSG—M

2.3 deformable versus rigid body collision detection 15

consists of a fixed number of points that samples the initial state of
the model.

When an external force is applied on a deformable model some
material coordinates mi may change their location and move to a
new position def(mi). In the case of a discrete representation of the
model only the points representing the surface are moving under the
forces (see Figure 2.4). Because the function def(mi) defines a new
location for all material coordinates mi, def(mi) can be seen as a
vector field defined on M. Another possibility is to define the move-
ment of the material coordinates mi by a displacement vector field
posDV(mi) = def(mi) −mi. For further information on definition
of deformable objects and the influence of external forces we want to
refer to [Nea+06; Ter+87].

Cloth simulation [Ter+87; Wei86] is a typical application of de-
formable collision detection. Therefore, many approaches, which are
especially well-tailored for cloth simulation have been developed. La-
fleur, Magnenat-Thalmann, and Thalmann [LMT91] use a thin force
field around each object within the scene to detect collisions. Provot
[Pro97] divides the piece of cloth recursively in zones imbricating
with each other. In every iteration of the simulation, the BV for
each zone is computed. Furthermore, they use a BV-tree to elimi-
nate quickly all collision tests. For cloth simulation Bridson, Fedkiw,
and Anderson [BFA02] use a voxel based collision detection approach
introduced by McNeely, Puterbaugh, and Troy [MPT99].

2.3 deformable versus rigid body collision detection

— collision, self-collision and resting contact —

The focus of this dissertation lays on accurate collision detection be-
tween many deformable objects in an extremely dynamic environ-
ment. Nevertheless, we want to show up some key differences be-
tween the two main categories—deformable vs. rigid body—of colli-
sion handling. Since collision handling for rigid bodies has been re-
searched for almost three decades, it has been well-investigated, but
collision handling for deformable objects introduces new problems.

Soft collision detection needs to determine all contact points to cre-
ate a realistic and correct simulation including those due to self-colli-
sions, whereas collision detections for rigid objects are ignoring self-
collisions in most cases. This is one of the main differences between
rigid and soft collision detection as well as the underlying accelera-
tion data structure.

Rigid body collision detection mostly uses sophisticated and most
often time consuming data structures, which are created once a time
at the beginning of the collision handling process. This data struc-
tures allows efficient and fast collision detection queries within the
simulation at different timestamps. Using these data structures for

16 a brief overview of the complex area of collision detection

deformable collision detection introduce the problem that some parts
of a soft body can deform and therefore, most acceleration data struc-
tures have to be updated in every simulation step. Depending on the
kind of deformation an update of the underlying acceleration data
structure can be quite extensive.

Additionally, some rigid body simulations only need one pair of
contact points, which improve the performance of the collision han-
dling again. However, a simulation with support for deformable bod-
ies needs to determine all contact points to deal with intra-object and
inter-object collisions appropriately. Only when all contact points
are taking into account, the situation of resting contact between de-
formable parts of the object and/or different objects can be solved in
a physically correct or plausible way [BFA02].

2.4 animation

“There is no particular mystery in animation . . . it’s really very
simple, and like anything that is simple, it is about the hardest thing
in the world to do.”

Bill Tytla, Walt Disney Studios, 1937

An animation introduces a new variable to the object representa-
tion, the time parameter. This parameter can be interpreted as a func-
tion, which changes the position of an object or a set of points over
the time. For the collision detection process we are only in parame-
ters, which can change the geometry representation. There are two
common ways to influence the object representation:

• Scene graphs are generally used for rigid body simulations and
therefore, altering the transformation in a transform node of the
scene graph is a common way to animate the object. This type
of motion is often referring to as placement change. Placement
change uses three types of transformations: translation, rotation
and non-uniform scaling on (part of) the model.

• Changing the underlying geometric object directly is another
way to animate a model. This type of motion is often referring
to as deformation. This type is most commonly used for polyg-
onal objects, which can change its shape, like fluids, cloth, or
skin.

A scene graph is a hierarchical structure of groups of objects. Ev-
ery group of objects has their own local coordinate system, which is
placed in their parents’ coordinate system. With this technique a com-
plex object can be generated easily. In most cases a scene graph is a
Directed Acyclic Graph (DAG). A DAG is a directed graph with no
directed cycles, but a single node can have multiple parents. A scene
graph has typically two types of nodes: grouping node and leaf node.

2.4 animation 17

• A grouping node combines all child nodes as a subgraph. There-
fore, a group node represents the union of all objects hold by its
children. Group nodes include all kind of transformations and
state switching, e. g., material properties, Level-of-Detail, user
defined properties, and more.

• A leaf node is rendered and all operations in the tree before are
effected to this node. The node can include objects, sounds,
lights, camera and many more.

Till today, most placement changes, we can find in interactive 3 D
simulations, are rigid motions but we are focus on deformable objects
only and therefore, rigid motion is beyond the scope of this work. For
further information we refer to Ericson [Eri05] and Van Den Bergen
and Bergen [VB04].

Computer graphics researcher investigated the physically moti-
vated deformation of models over three decades. Lasseter [Las87]
discussed the squash and stretch principle, which can be occur if an
object is moving. Squash and stretch is important in many parts of
animation, e. g., facial animation, muscle simulation, and so on. In
the same year Terzopoulos, Platt, Barr, and Fleischer [Ter+87] intro-
duced differential equations that model the behavior of deformable
objects as a function of time. Solving these differential equations
create a physically plausible and realistic animation. In the years
that followed, more and more researchers have focused on the topic
of visually and physically plausible animation of deformable objects
and fluids. A high fidelity approximation of material properties such
as plasticity, elasticity, or flexibility approach, which is physically
motivated, has been presented by [JP99; ST92; TF88]. A physically
plausible behavior of an object within a scene makes interactions
with the object much easier. The interactor can predict the effect
of an interaction and therefore, planning a sequence of impulse to
interact with the environment is possible.

For non-physically motivated geometry representations, like para-
metric curves and surfaces, and free-form deformations, we refer
the interested reader to following approaches: Sederberg, Cardon,
Finnigan, North, Zheng, and Lyche [Sed+04] and Sederberg, Zheng,
Bakenov, and Nasri [Sed+03] use t-splines, which are a generalization
of non-uniform B-spline surfaces. Llamas, Kim, Gargus, Rossignac,
and Shaw [Lla+03], Milliron, Jensen, Barzel, and Finkelstein [Mil+02],
and Spillmann, Tuchschmid, and Harders [STH13] presented some
geometric warps and deformation approaches, which are indepen-
dent of geometric model representations. Botsch and Kobbelt [BK05]
developed a parallel space deformation technique using GPU. Fur-
thermore, methods based on differential surface properties have been
developed by [BK04; IMH05; Nea+07; Sor+04; Yu+04]. For deforma-

18 a brief overview of the complex area of collision detection

tion in character animation, especially character skinning reference is
made to [JT05; KJP02; McA+11; WP02].

For a physically motivated geometry representation different ap-
proaches exist. Most researchers use a simple explicit Finite Element
Method (FEM), because this method is easy to understand and is
straightforward to implement [Deb+01; Mül+02; OH99]. A physi-
cally-based character skinning approach was presented by Deul and
Bender [DB13].

For the sake of completeness, we want to give a coarse overview
of some other methods used to simulate deformable motion [Nea+06,
Section 1]:

• Lagrangian Mesh Based Methods

– Continuum Mechanics Based Methods

– Mass-Spring Systems

• Lagrangian Mesh Free Methods

– Loosely Coupled Particle Systems

– Smoothed Particle Hydrodynamics (SPH)

– Mesh Free Methods for the solution of Partial Differential
Equations (PDEs)

• Reduced Deformation Models and Modal Analysis

• Eulerian and Semi-Lagrangian Methods

– Fluids and Gases

– Melting Objects

The deformation process of the objects generally is duty of the un-
derlying physics engine and therefore, not focus of this work. Most
physics engines are using a collision detection system to decide if the
current state of the virtual world is valid or not. Therefore, we have
integrated our collision detection approach in Bullet, a commonly
used physics engine (see Section 6.5).

2.5 broad-phase collision detection

The focus in the first part of the collision detection pipeline—the
broad-phase—is to eliminate as much as possible of the false-positive
inter-object collisions from further investigation (see Figure 2.2). To
achieve this, typically the geometry of an object is fully encapsulated
by a Bounding Volume (BV). A BV has a much more simple shape,
which results in a more cheaper overlap test, than testing the whole
complex geometry they girdle (few examples of BVs are shown in Fig-
ure 2.5). We discuss the types of BVs more in detail in the Section 2.6.

2.5 broad-phase collision detection 19

Most objects consist of thousand or even millions of primitives, test-
ing every primitive against each other is in almost every case to ex-
pensive. The reason to use a BV is that testing two BVs for overlap
can be done very quickly.

(a) AABB (b) OBB (c) Convex Hull (d) Sphere

Figure 2.5: Typical types of BVs

A brute-force implementation of broad-phase—in order to deter-
mine whether some BVs overlap or not—will test a BV of one object
against all the others’ BVs in the scene. This leads to (n− 1) + (n−

2)+ . . .+ 1 = n(n−1)
2 pairwise BV intersection tests, which has a com-

plexity of O(n2), where n is the total number of BVs in the scene.
The Axis Aligned Bounding Box (AABB) is one of the most com-
monly used BV [Eri05]. Woulfe, Dingliana, and Manzke [WDM07]
introduced a completely hardware-based broad-phase collision de-
tection approach on Field-Programmable Gate Array (FPGA) using
AABBs, but even this full hardware-based approach has a complexity
of O(n2) and therefore, it is limited to a small amount of AABBs. As
early as 1981, Edelsbrunner and Maurer [EM81] have proven that the
optimal algorithm to find all intersections of n AABBs has a complex-
ity of O(n·log2 n+ k) where k is the number of intersecting objects,
or AABBs respectively.

More efficient algorithms, such as spatial subdivision or topological
methods, achieve an average complexity of O(n·logn), but worst-case
complexity is still in O(n2).

Spatial partitioning divides space into regions and verified if the BV
of two or more objects overlap the same region. Afterwards, these
objects, which are in the same region, are passed to the second phase
of the collision detection pipeline, the narrow-phase. Grids, trees
and spatial sorting are the commonly used spatial partitioning meth-
ods. Some examples for these spatial partitioning methods are regu-
lar grids, spatial hashing technique [Mir97; PKS10], octrees [PML97;
Zho+11], kd-trees [Ben75; BF79; Zho+08], BucketTree [GDO00], R-
trees [Gut84; HKM95] and Binary Space Partitioning (BSP) [FKN80].
Under certain conditions spatial partitioning, because of their static
nature, can arise inefficiency especially regarding the use of dynamic
scenes. This can be because objects are vary greatly in size or an
improperly tuned region size is used. For simulations, where the ob-
jects are relatively close in size, and their possible bounds are well-

20 a brief overview of the complex area of collision detection

defined, spatial grids can be an excellent and fast choice. Uniform
grids, for example, can be updated very fast and this spatial parti-
tioning method is especially well-suited to be parallelized. Le Grand
[Le 07] presented a parallel approach using a uniform grid for broad-
phase collision detection for particles, while exploiting efficient up-
date and access of uniform grids. Pabst, Koch, and Straßer [PKS10]
extended the approach described by Le Grand [Le 07] and presented
a hybrid CPU/GPU collision detection for deformable surfaces with
self-collision. Another commonly used spatial partitioning method is
BSP-tree. Thibault and Naylor [TN87] use BSP-trees to represent an
exact representation of arbitrary polyhedra of any dimension. There-
fore, they use Boolean expressions on boundary representation as a
CSG tree and producing a BSP-tree as the result. Chrysanthou and
Slater [CS92], Snyder and Lengyel [SL98], and Torres [Tor90] elab-
orated different strategies to update spatial data structures. How-
ever, often a periodic reconstruction of the tree is required because
in highly dynamic scenes the tree may degenerate after several sim-
ulation steps. Luque, Comba, and Freitas [LCF05] use an advanced
BSP version, called Semi-Adjusting BSP-tree, to subdivide the scene.
Their approach use several strategies to alter cutting planes, and defer
updates based on the restructuring cost. With this technique they can
handle even highly dynamic scenes without a complete restructuring
of the BSP-tree.

In comparison with spatial partitioning, topological methods are
based on the relative position of the objects to each other. This means
that objects, which are far away, are not checked for intersection.
Baraff [Bar92] introduced one of the most common used topological
method, called sort and sweep. Cohen, Lin, Manocha, and Ponamgi
[Coh+95] referred to this technique as Sweep-and-Prune (SaP) and
this designation became generally accepted by most researchers. This
approach projects the boundary of the objects’ BV on one or more
axes. This is followed by an overlap test for all BV intervals on all
projection axes. An overlapping of objects BV intervals on all axes
means, that their BV intersect and these pairs have to be passed to
the narrow-phase. The worst-case complexity of this approach is in
O(n·logn+ k), where n is the number of BVs and k is the amount of
overlapping BVs [Bar92; Lin93]. Like for all other approaches more
and more parallel solutions have been developed. Avril, Gouranton,
and Arnaldi [AGA10] introduced a multi-threading version of the
SaP algorithm. They use the three coordinate axes as projection plan.
Liu, Harada, Lee, and Kim [Liu+10] perform a parallel SaP using
Compute Unified Device Architecture (CUDA). Furthermore, they
use PCA to determine the best sweep direction for the SaP algorithm,
additionally they use spatial subdivision to reduce false-positive
overlaps once more. Shellshear [She14] use a multi-threading 1 D
version of the SaP algorithm for collision detection for deformable

2.6 narrow-phase collision detection 21

cables. Their approach is especially well-suited for cables with a
huge amount of moving segments. The Section 2.7 describes the SaP
approach in greater detail.

The quality and the time needed for the broad-phase collision de-
tection process depends on the used algorithm. In this context, qual-
ity means how many pairs of the PCS, detected by the algorithm, are
passed to the exact collision detection phase, although there is not
an intersection between them. Zachmann [Zac01] pointed out that
the brute-force approach—testing n2+n

2 BVs—performs very well,
because of its very small constant factor. The brute-force approach
reached its quadratic running time only for many more than 100 ob-
jects in a scene. This may explain why most researchers focus on
improving and accelerating the narrow-phase. The following section
gives a detailed description of the narrow-phase.

2.6 narrow-phase collision detection

Most introduced acceleration data structures, like BVs, BSPs, kd-trees
(see Section 4.2 for more details), et cetera can be used to accelerate
both broad- and narrow-phase processing. In the broad-phase pro-
cessing, acceleration data structures are used to represent the whole
object in a scene and to cull away entire objects or groups of objects,
which are far away. On the other hand, in the narrow-phase the accel-
eration data structures represent parts of a complex object, to perform
fast and cheap overlap tests, before performing expensive primitive-
primitive intersection tests. The focus in the broad-phase is on creat-
ing a list of possible colliding object pairs, whereas the focus in the
narrow-phase is to carefully check these pairs for collision.

A brute-force implementation of the narrow-phase takes every pair
of the PCS list P(A,B), and will test all primitives of object OA’s
geometry again all primitives of object OB’s geometry. This brute-
force approach will be in O(n·k), while n is the number of primitives
of object OA and k is the number of primitives of OB. Due to the
fact, that in most scenes the complexity of objects are much higher
than the number of objects within a scene, a quadratic complexity for
the narrow-phase is not a feasibility in nearly all situations. That is
the reason why so many different approaches exist to speed up the
narrow-phase collision detection.

It must be noted that in the case of soft collision detection all kind
of collisions—collisions between objects and self-collisions—must be
considered and therefore, not only objects which are in the PCS are
going further investigations. In the narrow-phase all objects have to
be checked for self-collisions, which can be done natively by checking
a primitive of the object against all other primitives of the same object.

The narrow-phase part of the collision detection process can be
subdivided into three challenges:

22 a brief overview of the complex area of collision detection

1. Remove all definitively non-colliding pairs and find which sub-
objects are really intersecting.

2. Determine all needed proximity/contact information, e. g., ex-
act contact points where objects are touching (inter-penetrating),
surface normal at that contact points, penetrating distance or
penetration volume.

3. Detect resting or persistent contacts, i. e., equivalent contact
points from previous simulation steps.

Level 0

Level 1

Level 2

Figure 2.6: An example of a simple BVH using AABBs as Bounding Volume.
On the left side a geometric object is subdivided recursively into
subsets of their primitives or groups of primitives. The right
part of the Figure depicts all BVs for corresponding level of the
hierarchy. A higher number of level leads to a finer structure of
BVs.

For rigid body collision detection the common data structure, used
to reduce the number of intersection tests, are BVHs (see Figure 2.6).
To generate a BVH, a geometric object is recursively divided into
groups of primitives encapsulated by a BV, which are subdivided
again. This procedure is repeated until the BV bounds a predefined
number of primitives. Every object can be used as a BV, but most of
them will not serve as an effective BV. There are some requirements
to be an effective BV:

• Tight fitting to well-approximate the bounded object

• Efficient intersection/overlap test

2.6 narrow-phase collision detection 23

• Efficient creation

• Efficient updating (transformation)

• Memory efficient

• Well-suited for hierarchy construction

However, most of these requirements are contrary. Some BV ap-
proximate the shape of an object better but the intersection test is
much more expensive. Furthermore, in the case of deformable ob-
jects a BV which approximate the underlying geometry perfectly
at the beginning of a simulation could perform poorly at the end,
because of an intensively deformation. Commonly used BVs are
AABB in a global reference [Hah88; LA01], or in a local reference
of the model [Ber98], OBB [GLM96], spheres [Hub96; PG95; Rit90],
k-Discrete Oriented Polytopes (k-DOP)2 [Klo+98; Klo98; Zac98a],
Fixed-Direction Hulls (FDHs) [KZ97], or convex hull (few examples
of BVs are shown in Figure 2.5). Other often used BVs are sphere-
swept volumes. Therefore, a sphere slides along the border of an
object, e. g., point, line, rectangle and so on. Figure 2.7 depicts some
simple sphere-swept volumes, however every convex object can be
used as swept volume but most more complex objects have a more
expensive intersection test.

(a) Sphere-Swept
Point (SSP)

(b) Sphere-Swept
Line (SSL)

(c) Sphere-Swept Rectangle (SSR)

Figure 2.7: Some simple examples of sphere-swept volumes.

Because of the fact that the best BV is very dependent on the un-
derlying problem further types have been suggested as BV. For exam-
ple, cones [Ebe02; Hel97], cylinders [Ebe00; Hel97; Sch+00], spherical
shells [Kri+98], Quantized Orientation Slabs with Primary Orienta-
tions (QuOSPO) [He99], ellipsoids [CWK03; RB92; Wan+04; WWK01],
and zonotopes [GNZ03].

But there is more required than just a BV to generate a good BVH.
Therefore, numerous parameters must take into account and choose
wisely.

• Type of Bounding Volume: AABB, OBB, sphere, . . .

2 k-DOPs are polytopes based on the AABB.

24 a brief overview of the complex area of collision detection

• Type of tree (binary, 4-ary, . . .)

• Insertion/bottom-up/top-down construction method

• Heuristic to subdivide/group object’s primitives or BVs

• How many primitives in each leaf of the BVH

We already introduced the most commonly used BV in the Sec-
tion 2.5. Another parameter is the maximum number of children per
node, typical is a binary, but also quad- or n-ary trees are possible.
The next parameter is the technique used to construct the hierarchi-
cal tree. There are three mainly used construction techniques: inser-
tion methods [Bec+90; GS87], bottom-up methods [Bar+96], and top-
down methods [TR98]. During the hierarchy construction process a
heuristic is needed to decide if a BV is subdivide—top-down con-
struction approach—or if BVs or on the first level object’s primitives
are grouped—bottom-up approach. The last parameter specifies the
number of primitives stored in a leaf of the BVH and therefore, a
maximum number of elements a leaf BV encloses. Over time, some
different BVHs have been developed, for example Quadtrees [Sam84],
Boxtree [Bar+96; Zac95] and k-DOP trees [Klo+98; Zac98b].

Weghorst, Hooper, and Greenberg [WHG84] introduced a cost
function to analyze the computation cost for hierarchical structures
of BVs in the context of ray tracing. This cost function was used by
Gottschalk, Lin, and Manocha [GLM96] also, but within the context
of collision detection. The total cost to check two hierarchies, which
approximate two complex models, for intersection was quantified by
Gottschalk, Lin, and Manocha [GLM96] as:

TI = Nv·Cv +Np·Cp (2.1)

with

TI Total cost function for intersection test

Nv Number of BV overlapping tests

Cv Cost for average overlap test

Np Number of primitive pairs tested for interference

Cp Cost for average primitive pair test

The Eq. (2.1) is well-suited for measuring of the hierarchy traversal
cost associated with performing a single intersection detection check
between two complex models. In the case of a deformable model the
shape of this object can change and therefore, the BVH can become in-
valid. To ensure that the BVH is valid we have to maintain an update
step. Taking this into account will extend the previously introduced
cost function TI (see Eq. (2.1)) to:

2.6 narrow-phase collision detection 25

TUI = Nu·Cu +Nv·Cv +Np·Cp (2.2)

where Nv, Cv, Np, and Cp are defined as in Eq. (2.1) and

TUI Total cost function for hierarchy updates and intersection tests

Nu Number of BV updates

Cu Cost for average BV update

Optimizing a BVH is in most cases problem specific; furthermore,
lowering one factor often raises others. Another problem using BVH
is the update procedure to ensure the BVH is still valid. This process
depends on the degree of deformation, like we show in Eq. (2.2). In
the case of a high degree of deformation we need to update all the
BVs. Therefore, the update cost function will be Nu ·Cu, with Nu
number of all BVs in the scene, for the update process only. It should
be noted, that a BVH for deformable models has usually more BVs
than primitives in the scene. Kopta, Ize, Spjut, Brunvand, Davis, and
Kensler [Kop+12] use tree rotations to efficiently refitting the BVH.
In static scenes this technique can be used to off-line improving the
quality of the BVH. This approach is fast, has minor update time and
will not degenerate the tree. But their results showed that in some
cases the quality of the tree got worse. That problem will increase
in highly dynamic scenes. It should be mentioned that hierarchies
for deformable collision detection are in most cases based on AABB
[Ber98; Smi+95] or k-DOP tree structures because of their faster up-
date procedure, which is necessary for deformable models.

The attentive reader will already have noticed that nearly all BVs
are convex. There are two main issues using convex BVs in the con-
text of collision detection. The first one is the existence of separating
plane if two convex models do not intersect. The other reason is
that the minimal distance between two convex models is a local min-
imum. Therefore, a simple gradient ascent algorithm (often referred to
as hill-climbing algorithm) will find the minimum distance [KT06]. Tak-
ing this in mind it is possible to generate efficient collision detection
algorithm for convex objects. The first group of collision detection
approaches for convex objects we discuss are closest-features based
algorithms. Closest-features are vertices, edges, or faces from each
object, which are next to the real closest point between two objects.
The Lin-Canny algorithm [LC91] introduced in 1991 is the first clos-
est-features based collision detection approach ever. Till today this
algorithm is one of the most well-known closest-features based algo-
rithm. Mirtich [Mir98] presented Voronoi-Clip, or V-Clip, a collision
detection approach using the boundary representation of a polyhe-
dral model. This approach tracks the closest-features between convex
models. Concave objects are also supported; they are subdivided
into convex subparts. Another very efficient method to determine

26 a brief overview of the complex area of collision detection

the minimum distance, and therefore, the intersection between two
convex objects is the Gilbert-Johnson-Keerthi (GJK) distance algorithm,
commonly referred to as the GJK algorithm [GJK88]. This approach
uses two sets of vertices and constructs a convex hull for each input
set. Now the algorithm computes the minimum Euclidean distance,
beside the closest-points between two convex hulls. Gilbert and Foo
[GF90] presented an extended version of the standard GJK approach
to support arbitrary convex point sets, e. g., point clouds. The GJK al-
gorithm does not work on the two input point sets directly, for the dis-
tance computation process it uses the Minkowski difference between
both sets. Another convexity based collision detection algorithm is
Chung–Wang separating-vector algorithm [CW96]. This approach effi-
cient computes a separating axis, which in the case of two convex
objects does not intersect with the objects. All convexity-based algo-
rithms are not especially well-suited for deformable models, because
objects which are convex at the beginning of a simulation, can become
concave after some simulation steps. One possibility is to subdivide
the concave object into convex parts but doing this every frame will
lead to a high computation time. Another important fact is that all
these approaches do not support self-intersections and therefore, ev-
ery object has to be further investigated by another algorithm.

2.7 sophisticated narrow-phase collision detection :
sweep-and-prune

Figure 2.8: This example depicts the projection process of different types of
BVs (AABB, sphere and OBB) onto an axis.

Like we mentioned in the Section 2.5 the Sweep-and-Prune (SaP)
approach is a topological method which is based—in the case of a
broad-phase approach—on the relative position of objects to each
other. The narrow-phase focuses primarily on the exact collision de-
tection on the level of primitives. Therefore, the relative position of
primitives to each other is more important. To achieve this, the BVs

2.7 sophisticated narrow-phase collision detection : sap 27

enclose the primitives and the exact collision detection process can be
described as a problem of finding all overlapping pairs of BVs.

If we project the boundary of all BVs onto all axes (see Figure 2.8),
this problem can be reduced to searching all overlapping one-dimen-
sional intervals along all axes. Figure 2.8 depicts that using AABBs
as BV is the most suitable variant. For rigid body collision detec-
tion different data structures have been investigated to solve this
problem. These data structures are segment trees and interval trees
[Ove88; SW82], and R*-trees [Bec+90; BS09]. R*-trees are well-suited
for querying n-dimensional problems, but it is not clear how these
data structures can be used for highly dynamic simulations, where
nearly all BVs move and/or change their size.

For the R3 case algorithms exist with a time complexity of O(n·
logn+ k), where k is the number of pairwise primitive overlap tests.
Preparata and Shamos [PS85] showed that a general d-dimensional
Bounding Volume intersection test can be solved in O(n·logd−2 n+

k). But it should be noted that these algorithms are output-sensitive.
Therefore, in worst-case scenario exact collision detection approaches,
which have to find and test all intersecting pairs, are still in O(n2).

We start with the simplest case, 1 D, and abstracting this method to
a more complex 2 D or dD rectangular range searching problem. Let
us assume that there is a scene containing a number of primitives n.
For each primitive pi, i = 0, . . . ,n− 1, we compute the corresponding
AABB, hereinafter referred to as BBi. The main idea is now to project
all BBi onto an axis. Each BBi spans an interval [Si,Ei] ⊂ R1 for each
primitive pi on the axis. The problem is to determine for all pairs i
and j, whether the intervals [Si,Ei] and [Sj,Ej] overlap or not.

This problem can be solved with the Sweep-and-Prune algorithm.
Sorting all intervals along an axis provides information about pos-
sible colliding BVs because, two BVs i and j collide, iff one of the
four cases [Si,Sj,Ej,Ei], [Sj,Si,Ei,Ej], [Si,Sj,Ei,Ej], or [Sj,Si,Ej,Ei]
occurs (see Figure 2.9). Detecting all intersecting intervals is often
referred to as sweep step.

During the sweep process an additional list of active intervals,
which is initially empty, is maintained. A primitive pi is added to the
active interval list at the moment their Si value is passed the sweep
process. A primitive pi will be removed from the active interval
list when their Ei value is encountered. When the sweep process
adds a new primitive pi to the active list, the interval of pi overlaps
with all primitives in the current active interval list. This procedure
determines all pairs of overlapping intervals that have to be further
investigated. The time need to sort the n primitives is in O(n·logn).
The sweep process is in O(n) and the output process is in O(k), where
k is the number of overlapping BV intervals. This results in an overall
complexity in O(n·logn+ k), which is the optimal running time to
solve this problem.

28 a brief overview of the complex area of collision detection

S1 E1S2 E2S3 E3 S4 E4S5 E5

Figure 2.9: The example scene consists of three different models colored in
blue, red and green. For all primitives in the scene, their BV is
projected onto an axis. For every BV the projected AABB interval
is represented by an opening (Si) and a closing (Ei) bracket, with
i is the ID of the corresponding BV.

Theorem 2.7.1 (1 D Range Searching) A fixed number of points n can be
stored in a balanced binary tree. This results in a space complexity of O(n)
and a construction time in O(n·logn). To report all points in a query range
the algorithm has a complexity of O(n·logn+ k), with k is the number of
reported points [Bar92; Ber+08; Ove88].

Because of the fact that in dynamic scenes the movement and de-
formation of objects is not very heavily from frame to frame sort-
ing the list from the beginning every frame is not necessary. There-
fore, Baraff [Bar92] advises to use insertion sort [SW11] to permute the
nearly sorted list into a sorted one. Insertion sort is in O(n+ s), where
s is the number of swaps to order the input list. Zachmann [Zac00]
used Bubblesort [SW11] to utilized temporal coherence. Assuming
coherence, this approach will be in O(n+ s) for the 1D BV problem.
Therefore, the introduced algorithm is efficient and makes an extreme
simplify exploitation of coherences within a scene available.

To extend this approach to more than one dimension, for each di-
mension in dD an independent interval for all primitives pi is needed,
[Svi ,Evi], v = 1, . . . ,d. Now all intervals are sorted like in the 1D case,
and d active interval lists are maintained. If two BV intervals overlap
in all d dimensions, both primitives can potentially intersect and an
exact intersection test has to be performed. Therefore, this approach
is simple to extend to more than just one dimension.

For most 3 D scenes, sorting on just two axes remove most of the
false-positives cases. Furthermore, omitting one dimension will re-
duce the memory overhead.

2.8 continuous collision detection 29

2.8 continuous collision detection

Non-continuous collision detection discretized time and therefore, ob-
jects position is changing discontinuous from one time step to the
next one. Choosing a good time step t is important for many simula-
tions. Figure 2.10 depicts the movement of two objects for three differ-
ent time step values. A non-continuous collision detection approach
will only detect a correct collision for t = 0.5 (see Figure 2.10a). For
t = 0.75 the collision will be recognized too late and for t = 1 the colli-
sion will be missed completely (see Figure 2.10b and 2.10c). This can
result in visual artifacts in physical-based simulations, e. g., a colli-
sion between two objects is detected by the collision detection system
and they bounce away from each other, although a collision cannot
be detected visually. Another problem is the so-called tunneling ef-
fect, which occurs if objects move too fast, or the time step between
two collision queries is too large, the object could pass through an-
other one or collide with the backside and move to a wrong direction.
To avoid this kind of errors, the exact time of collision between the
objects needs to be determined [Cou05]. To solve this problem of
continuous collision detection, or often-called dynamic collision detection,
some different techniques have been developed.

t = 0

t = 0.5

(a) Collision recognized
correctly

t = 0

t = 0.75

(b) Collision recognized
too late

t = 0

t = 1

(c) Collision missed

Figure 2.10: Simulation states for different step size t.

The simplest technique is to simulate continuous collision detection.
Therefore, we use a smaller time step size for the collision detection
process than used for the visual system. Boolean rigid body collision
detection algorithms only need a few milliseconds, depending on the
object’s configuration, whereas visual interactive applications usually
need an update rate about 30 frames per second, which means that
around 30 milliseconds passes between two static collision detection
tests. This technique is called pseudo-continuous collision detection and
makes it possible to perform more static collision detection checks
between two steps of the visual simulation [HKM96].

Conservative advancement, presented by Brian Mirtich [Lin93; Mir96;
MC95], is another simple technique for continuous collision detec-
tion. Therefore, this approach computes a lower bound of the first
time of contact—or, to be more precise, the times of discontinuities—
between two convex objects. The non-penetration constrain is guar-

30 a brief overview of the complex area of collision detection

anteed by taking smaller time steps if the simulator tends to creep
up to each discontinuity [Mir00]. Mirtich [Mir00] noted that conser-
vative advancement become intractable with many bodies within a
scene. Coumans [Cou05] presented a specialized form of conserva-
tive advancement. Bergen [Ber04] used a deformed Minkowski sum
in combination with ray casting.

A further possibility for continuous collision detection is the use of
swept volumes. Therefore, the swept volume encloses the BV of an
object or primitive at time step t0 and the BV of this object or primi-
tive at time step t1. Eckstein and Schömer [ES99] showed that using
swept volumes could be done efficient for different BV types like
AABB, OBB and more. Redon, Kheddar, and Coquillart [RKC02] use
Interval Arithmetic (IA) to compute inter-penetration times between
object’s features (vertices, edges and faces). For the continuous colli-
sion detection check they derive a continuous overlap test for moving
OBBs. Weller and Zachmann [WZ06] presented an event-based ap-
proach where they use a new acceleration data structure, the kinetic
separation list. The main idea is to transform the continuous problem
into a discrete one. This step reduces the number of BV checks sig-
nificantly. Their approach is fifty times faster than the classical swept
volume algorithm.

However, many more approaches that focus on accuracy instead of
the running time have been developed also. Snyder, Woodbury, Fleis-
cher, Currin, and Barr [Sny+93] use IA and interval Newton methods
to speedup their approach. This algorithm is very well-suited for
computer graphics animations but is not fast enough to perform real-
time interactions [Sny95]. Canny [Can86] uses quaternions instead
of Euler angles for the objects trajectories. A down side of this ap-
proach is the high computational complexity, which does not run in
real-time for large models. Using screwing’s [KR03] to parameterize
object’s trajectories is another way to move models. Redon, Kheddar,
and Coquillart [RKC00] combine screw motion with IA. Von Herzen,
Barr, and Zatz [VBZ90] provided a continuous collision detection ap-
proach for time-dependent parametric surfaces. Therefore, they use
Lipschitz bounds in combination with binary subdivision to find the
first time of impact.

2.9 parallel collision detection

As we mentioned in the introduction and explain in detail in
Section 3, parallel computing has become more and more important.
Therefore, many parallel collision detection approaches have been de-
vised in the last decades. Zachmann [Zac01] pointed out several pos-
sibilities to parallelize the collision detection process and they are
pipelining, concurrency, coarse- and fine-grain parallelization. In this

2.9 parallel collision detection 31

Section we present some multi-core CPU, hybrid CPU/GPU and full
GPU-based approaches.

2.9.1 CPU

Huagen, Zhaowei, and Qunsheng [HZQ01] build a hybrid Bound-
ing Volume Hierarch in parallel to speedup the collision detection
process. Their approach focuses on MIMD systems and furthermore,
they support multi-threading also. This provides the possibility
to run on both single processors as well as on multi-processors.
Lario, Garcia, Prieto, and Tirado [Lar+01] analyzed an Open Multi-
Processing (OpenMP)-based parallelization of a virtual cloth simula-
tor. Therefore, they use OpenMP to parallelize the Multilevel Polak-
Ribiere (MPR) algorithm [PR69]. Furthermore, they showed that their
solution can efficiently using up to 16 processors. Thomaszewski and
Blochinger [TB07] presented an approach for distributed memory
architectures. Therefore, they use a data parallel framework (Single-
Program, Multiple-Data (SPMD)) to seamless integrates the parallel
collision handling phase into the physical modeling phase. Selle,
Su, Irving, and Fedkiw [Sel+09] use a recursive median split to dis-
tribute the particles of the cloth mesh to different processors. They
synchronize the BV position data to every processor. Therefore, they
have a full hierarchy for all primitives, inclusive points, segments,
and triangles, which they use in the traversal step on every processor.
Furthermore, their approach uses a Gauss-Seidel ordering step to en-
sure each pair process seeing the newest data. Thomaszewski, Pabst,
and Blochinger [TPB08] analyze previous simulation steps to sub-
divide the problem into equally computational parts. Furthermore,
they use key techniques for parallel physically-based simulations to
eliminate the two major bottlenecks of the simulation—the solution of
the linear system and the collision handling process. Tang, Manocha,
and Tong [TMT09] presented a multi-core approach for continuous
collision detection. They parallelize incremental hierarchical compu-
tation among multiple cores of GPUs. This approach scales very well
with the number of cores. Kim, Heo, and Yoon [KHY09] use a feature-
based BVH to speedup the collision detection process. They intro-
duce a novel task decomposition method for BVH-based approaches.
Furthermore, they use a dynamic task assignment method for the
distribution process, to achieve better utilization of the available com-
putation power. Before a simulation step is performed Hermann,
Raffin, Faure, et al. [H+09] subdivide a task dependency graph to
disturb tasks between processors. Therefore, they extract tasks from
the sequential algorithm and generate from this input a data-flow
graph. To avoid expensive graph partitioning processes, they limit
the intensity of the changes between two frames. Tang, Manocha, and
Tong [TMT10] use fine-grained front-based decomposition to spread

32 a brief overview of the complex area of collision detection

the computation process among 8 core and 16 core PCs. To detect
all inter-object collisions as well as self-collision they use an adaptive
rebuilding process. Their timings show 6.4×− 7.7× speedups in the
overall running times on 8 cores, and 10.1×− 13× speedups on 16

cores.

2.9.2 Hybrid CPU — GPU

Kim, Heo, Huh, Kim, and Yoon [Kim+09] presented an approach us-
ing a BVH. The BVH traversal and culling steps are performed on the
CPU, while elementary tests are completely performed on the GPU.
They introduce a lock-free parallel algorithm for main loop of the col-
lision detection by using a novel task decomposition method. Pabst,
Koch, and Straßer [PKS10] use a master-slave system, where a master-
thread on the CPU delegates the work to slave-threads. Every single
slave-thread performs the computation at their assigned GPU. Fur-
thermore, all slave-threads are running asynchronous, which enables
overlapping master/slave CPU/GPU computations.

2.9.3 GPU

Wong and Baciu [WB05] showed that using GPU as computing de-
vice is much faster instead of using the CPU. Therefore, they sub-
divide the collision detection process in a set of fine-grained tasks.
Govindaraju, Lin, and Manocha [GLM05] run visibility queries on
the GPU to reduce primitive intersection tests, which are not in close
proximity. Greß, Guthe, and Klein [GGK06] presented a collision
detection approach for deformable parameterized surfaces. They rep-
resent the individual parameterized surfaces by stenciled geometry
images, which they use to create a BVH. This BVH serve as a ba-
sis for the optimized collision detection approach. Lauterbach, Mo,
and Manocha [LMM10] use data parallelism to perform fast hierar-
chy construction, updating, and traversal steps. Therefore, they use
a tight-fitting BV, like OBB and SSR. Furthermore, using tight-fitting
BVHs are extremely advantageous for GPUs. Tang, Manocha, Lin,
and Tong [Tan+11] use a hierarchical culling in combination with the
generation of different streams to reduce the computation. Further-
more, using a deferred front tracking method reduces the memory
overhead. Pan and Manocha [PM12] presented an approach, which
use a clustering scheme and collision-packet traversal to perform an
efficient collision detection process. They use a hierarchical traversal
scheme that performs workload balancing.

2.10 time-critical collision detection 33

2.10 time-critical collision detection

Many simulations focus on running in real-time to be highly interac-
tive, such as virtual prototyping, 3 D video games, and fly simulators.
Most applications simulate more or less physically correct behavior.
The reason for this is, that humans cannot distinguish between sim-
ulations are physically correct and physically plausible (up to some
degree) [BHW96]. This opens up the possibility to be less accurate
while speedup the collision detection, if real-time collision response
is a crucially depending. Therefore, approaches which approximate
the object’s shape or using probabilities to decide if objects intersect
or not are interesting alternatives.

Hubbard [Hub96] approximates the object surface by a hierarchy
of spheres. Level 0 is the object’s bounding sphere. A deeper level of
the hierarchy use unions of successively more spheres, representing
the object’s surface. For the collision detection process this approach
tests each level of the hierarchy for overlap and stops if a critical
computation time is reached.

Klein and Zachmann [KZ03b] presented a framework that allows
an application to control speed and quality of the collision detection.
They use a probability measure to decide if a pair of BVs contains
intersecting polygons or not [KZ03a]. Since our focus is on exact col-
lision detection these techniques are not sufficient for our approach.

2.11 related fields

Acceleration data structures for geometric queries are not only re-
stricted to the field of collision detection only. There are many
other fields that could benefit from these data structures. Just to
name a few, without any claim to completeness: ray tracing (see Sec-
tion 2.11.1), volume rendering (see Section 2.11.2), occlusion culling
[GSF99; GKM93; YG07; Zha+97], view frustum culling [AM00; Cla76],
backface culling [Van94; ZH97], object tracking [MZ10], audio ren-
dering [Tsi+07; WS04], robot motion planning [Ber+08] and path
planning [Gay+05].

2.11.1 Excursus: Ray Tracing

Whitted [Whi80] introduced the basic concept of ray tracing in 1980.
With ray tracing it is possible to render photo-realistic images from a
virtual scene (see Figure 2.11). Therefore, a light ray is traced back-
wards from the point of view to all light sources. Should a ray hit an
object within the scene, an additional ray is shot to the light sources
and moreover. Furthermore, refracted and reflected rays are traced
recursively through the scene. This technique offers the opportunity
to simulate global illumination effects, if a ray hits a surface three

34 a brief overview of the complex area of collision detection

Figure 2.11: Virtual scene rendered with Blenders new unbiased rendering
engine called Cycles. Ray tracing offers many possibilities, like
reflections, refractions, and shadows

new types of rays—reflection, refraction, and shadow—can be gener-
ated. The general principle is to find all intersections between rays
and objects within the scene. The problem of testing for intersection
is closely related to collision detection and therefore, the geometric
acceleration data structures are very similar.

Kay and Kajiya [KK86] use object’s normals to generate a convex
hull as BV. Furthermore, they create a hierarchy of this BV to speedup
the ray tracing process. Goldsmith and Salmon [GS87] introduced
an automatically BVH generation method for use in ray tracing. A
hierarchical grid as acceleration data structure for dynamic scenes
has been used in [RSH00]. Wald, Slusallek, Benthin, and Wagner
[Wal+01] provided a new algorithm, which perfectly uses caches and
SIMD instructions. Furthermore, they exploit image and object space
coherences. This leads to an implementation, which can render com-
plex scenes at interactive rates. Foley and Sugerman [FS05] presented
two kd-tree traversal approaches, which are especially well-suited
for GPU implementation. They showed that their implementation is
much faster than using a uniform grid as acceleration data structure.
Wald, Boulos, and Shirley [WBS07] use for the BVH construction step
a variant of the Surface Area Heuristic (SAH). Additionally they do
not change the structure of the BVH, thus only the BVs have to be
updated from one frame to the next one. Last but not least, a new
packet-frustum traversal scheme is to pack rays and trace them to-
gether.

Over time and as progress has been made in computer hardware
more and more parallel approaches have been developed. The paral-
lel power allows the rendering of dynamic scene in near real-time pro-
cessing time [Dje+07; Hor+07; Kan+13; Par+10]. Buck, Foley, Horn,
Sugerman, Fatahalian, Houston, and Hanrahan [Buc+04] and Carr,

2.11 related fields 35

Hall, and Hart [CHH02] showed in experiments that GPU can out-
perform CPU implementations for ray-triangle intersection tests.

2.11.2 Excursus: Volumen Rendering

Figure 2.12: Volume rendering of a human’s head with torso (Osirix Manix
data set).

The main idea of volume rendering is to render a 2 D image from
a 3 D discretely sample data set. Most data sets are acquired by
Computed Tomography (CT), Magnetic Resonance Imaging (MRI),
or MicroCT scanner. There are some commonly used techniques to
generate a 2 D image from a volume data set. One technique is to ex-
tract isosurfaces from the data set and rendering them as polygonal
meshes or by rendering the 3 D data set directly as voxels. To gener-
ate an isosurfaces from a 3 D set the marching cube algorithm [LC87]
is typically used. For direct rendering a transfer function is needed
to map opacity and color to the output pixels. It should be noted that
direct rendering is a much more computational intensive task.

Volume ray casting is a technique to generate high quality images
from data sets. Therefore, a huge amount of rays are traced through
the data set or the generated isosurface. This is again closely retailed
to the process of collision detection—intersection test between a ray
and a surface or a voxel based representation—and therefore, the
geometric acceleration data structures are very similar.

The approach presented by Laur and Hanrahan [LH91] based on
a pyramidal volume representation. Furthermore, they fit an octree
to the pyramid to improve the performance of the volume rendering
process. Lin and Ching [LC96] use an octree to efficiently determine
all cells the isosurface intersects. Neubauer, Mroz, Hauser, and We-
genkittl [Neu+02] presented a new technique for fast perspective vol-
ume visualization. Therefore, the volume is divided into cubic sub-
volumes. Which are stored in a hierarchy. For efficiently traverse
through the 3 D data set Parker, Shirley, Livnat, Hansen, and Sloan
[Par+98] use a multi-level spatial hierarchy. Leven, Corso, Cohen,

36 a brief overview of the complex area of collision detection

and Kumar [Lev+02] use an octree in combination with a tetrahedral-
ization for volume rendering process. To accelerate the ray tracing
for volume rendering Jamriška [Jam10] represents the distance fields
by sparse block grid data structure. Knoll, Thelen, Wald, Hansen,
Hagen, and Papka [Kno+11] presented an efficient method for vol-
ume rendering by raycasting using the CPU. They deploy coherent
packet traversal of an implicit BVH to exploit empty or homogeneous
space. Fraedrich, Auer, and Westermann [FAW10] presented an ap-
proach for high quality volume rendering of SPH data using a novel
view-space discretization of the simulation domain. Their approach
is based on recent work on GPU-based particle voxelization for the
efficient resampling of particles into uniform grids. Hassan, Fluke,
and Barnes [HFB12] use a kd-tree to speed up the the volume ren-
dering process over a GPU-cluster. Kroes, Post, and Botha [KPB12]
presented a GPU-based approach with support for physically based
lighting, which improve optical realism.

3
A B I R E F I N T R O D U C T I O N I N T O M A S S I V E LY
PA R A L L E L C O M P U T I N G

“Concurrency has long been touted as the “next big thing” and
“the way of the future,” but for the past 30 years, mainstream soft-
ware development has been able to ignore it. Our parallel future has
finally arrived: new machines will be parallel machines, and this
will require major changes in the way we develop software.”

Herb Sutter and James Larus, Microsoft, 2005 [SL05, Section 1]

CPU GPU

Figure 3.1: This Figure compares the amount of threads available on a cur-
rent CPU and GPU. The Intel® Core™ i7-4960X CPU has 72

threads in total, 6 cores with 12 threads for each core. The
NVIDIA GeForce GTX TITAN has 2688 CUDA cores, which are
equivalent to the CPU threads.

As already mentioned in the introduction (Section 1), the cur-
rent trend in computer architecture focuses on multi-core CPUs and
many-core GPUs (see Figure 3.1). A multi-core CPU focuses on fast
serial processing, for which the cores are latency-optimized. In con-
trast to this, many-core GPU focuses on scalable parallel processing,
for which the cores are throughput-optimized. Since the performance
of the GPU increases faster than the power of the CPU in the last
years, more and more investigations to perform General Purpose
Computation on GPUs (GPGPU) have been done (see Figure 1.2). In
2007 NVIDIA introduced CUDA, which opens the general public the
power of the GPU-computing and to perform GPGPU. NVIDIA in-
dicates that their exits 1000’s of GPU-accelerated applications using
CUDA and 1000’s of published research papers using CUDA. Fur-
thermore, there are many other applications using Open Computing
Language (OpenCL) to use the GPU as a coprocessor. All these ele-

37

38 a biref introduction into massively parallel computing

ments clearly show that currently the main focus lies on GPU-based
approaches.

Therefore, a huge amount of investigation has been done to fully
exploit the GPU hardware, thus many applications and algorithms
has been developed. Thus, we can mention only a few approaches
performing GPGPU at this point and these are: simulate the dy-
namics of clouds on graphics hardware [Har+03], implement differ-
ent ray tracing approaches [CHH02; Par+10; Pur+02], perform Fast
Fourier Transform (FFT) [MA03], implement linear algebra operators
[KW03], solve sparse matrices [MA03], solve the Navier-Strokes equa-
tions [Har05], sort huge input data [GZ06], compute a space filling
sphere packing for arbitrary objects [WZ10], Batch Neural Gas (BNG)-
based hierarchy construction [Wel+14], and many more.

3.1 the graphics hardware

SMX1 SMX2 SMXn−1 SMXn

Reg Reg Reg Reg

SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

. . .

Constant Memory

Texture Memory

Global Memory

Figure 3.2: With the Kepler architecture NVIDIA introduced the new Next
Generation Streaming Multiprocessor (SMX)-design. With the
new SMX-design NVIDIA increases the number of processing
units up to 192 CUDA cores per SMX.

The Figure 3.2 provides a simplified presentation of a GPU. In this
Section we use notations introduced by NVIDIA, for a conversion
between CUDA and OpenCL notations we want to refer to Table A.1.

3.1 the graphics hardware 39

The massively parallel GK110 chip of NVIDIA GeForce GTX TI-
TAN has 2688 Streaming Processors (SPs) (14 SMXs, each with 192

SPs). Every CUDA device has several different memory types: Global,
texture, constant, shared and register memory. Every memory type
has both advantages and drawbacks. Using a wrong memory type
within the application can drastically slow down the computation
process. In Table 3.1 we give a short overview of access times for
different memory types. Registers are the fastest way to access data

#clock cycles memory type

0 Register memory
1–2 Shared memory

4 or 64 Constant memory (same or diff. location)
100’s Global GDDR5 memory

Table 3.1: Different memory types with the corresponding access time. The
constant memory has two different access times, on the one hand,
if all threads access the same memory location, and on the other
hand if all threads access different memory locations.

on GPU but there are only 64 k 32 bit register per SMX on GPUs with
CUDA Capability between 3.5 and 5.0. Furthermore, registers are
only accessible within one thread. The size of shared memory de-
pends on the GPU version; the NVIDIA GeForce GTX TITAN has a
size of 64 KB per SMX of shared memory. Threads within the same
SMX can only access this memory. Consequently, no information be-
tween different SMXs can be shared using this kind of memory. All
these three memory types are only existing as long as the kernel is
running. That means it is not possible to store computation results
within these memory and use the results in another kernel call. The
constant and global memories hold their values as long as the ap-
plication is running. The size of the constant memory is 64 KB and
therefore, only suitability for a few frequently used read-only data.
The constant memory can be access from any thread running at the
same time. The global memory is the slowest, but also the memory
with most space on the GPU—NVIDIA GeForce GTX TITAN has a
total of 6144 MB. Any thread running on the GPU has read and write
access to this memory. To get best performance this memory should
be access in a coalesced way (see Figure 3.3) [Nvi14].

40 a biref introduction into massively parallel computing

coalesce
good

stride
not so good

random
bad

Figure 3.3: Examples of memory access pattern.

3.2 performance of parallel computing

In this Section we want to show some parallel techniques and meth-
ods to compare the performance of parallel approaches and systems.
A multiprocessor consists of np processors, with np ∈N. The parallel
fraction value of a program is given by F ∈ [0, 1]. For the rest of this
Section we use the following parallel performance notations, which
are commonly used [KP12]:

Sp =
T1
Tp

— speedup value

Ep =
Sp

np
— efficiency value

(3.1)

where T1 is the serial computation time of a program, Tp is the paral-
lel wall clock time for executing the program. In parallel computing
two laws are commonly used to predict and estimate the parallel per-
formance of a program: Amdahl’s Law and Gustafson’s Law. In the
following we want to take a closer look at these two laws.

3.2.1 Amdahl’s Law

“For over a decade prophets have voiced the contention that the
organization of a single computer has reached its limits and that
truly significant advances can be made only by interconnection of a
multiplicity of computers in such a manner as to permit co-operative
solution . . . The nature of this overhead (in parallelism) appears to be
sequential so that it is unlikely to be amenable to parallel processing
techniques. Overhead alone would then place an upper limit on
throughput of five to seven times the sequential processing rate, even
if the housekeeping were done in a separate processor . . . At any
point in time it is difficult to foresee how the previous bottlenecks in
a sequential computer will be effectively overcome.”

Gene M. Amdahl, 1967 [Amd67, p. 483]

Amdahl’s Law uses the parallel fraction value F and the number of
processors np to estimate the maximal expected improvement, while

3.2 performance of parallel computing 41

parallelizing parts of a program. This leads to the following defini-
tion:

Sp =
T1
Tp

=
T1

T1· Fnp + T1·(1−F)
≤ 1

1−F
(3.2)

and an estimation of the maximal expected improvement:

maxSp =
1

1−F
(3.3)

if the number of processors np → ∞. The Eq. (3.3) is referring to
as Amdahl’s Law. Amdahl’s Law tells us that for a fraction value
F ≈ 1.0, the maximal expected improvement is very small, indepen-
dently how many processors np are available. Figure 3.4 depicts the
importance of the parallel fraction value F on the maximal expected
speedup value for the function np

1+F·(np−1) [KP12].

5

10

15

20

25

30

35

40

45

50

1 4 16 64 256 1024 4096 16384 65536

m
ax

im
al

ex
pe

ct
ed

im
pr

ov
em

en
t

number of processors

parallel fraction

F = 0.99
F = 0.98
F = 0.95
F = 0.90
F = 0.75
F = 0.50
F = 0.25

Figure 3.4: The correlation between the parallel fraction value of a program
and the maximal expected speedup. If more parts of a program
can be parallelized then the maximal expected speedup increase.

The Figure 3.4 shows that programs with a high parallel portion
will benefit most from a higher number of processors.

It should be noted that Amdahl’s Law is one of the most pessimistic
estimation in view of the maximal estimated speedup. Its scale lin-
early, which means using 10 times the number of processors can
speedup a program at most about 10. The Amdahl’s Law ignores
some facts, which also have positive effects on the speedup factor,
e. g., cache per processor, interprocessor communication, and more.
For example, suppose you have 10 times the number of processors,
and then you have 10 times of cache size also. Therefore, in some
cases the whole or large parts of the problem can be loaded into the
cache memory and the processors do not need to access the very slow
main memory, which will increase the speedup again. Furthermore,
Amdahl’s Law assumes that the size of a problem is fixed. Increasing
the size of a problem, also increase the part, which can be parallelized.

42 a biref introduction into massively parallel computing

There is also the fact that the greater a problem increase in size; the
smaller is the proportion of initializations and synchronization.

Therefore, a more accurate speedup formula is needed, which con-
sidered caching, interprocessor communication and some more.

3.2.2 Gustafson’s Law

For the Gustafson’s Law some more notations are needed. The size of
a problem is given by n. Tcom is the time needed for communications
between the processors. The Gustafson’s serial fraction value is given
by:

s =
T1s

T1s +
T1p
np

(3.4)

with

T1s = T1·(1−F) and T1p = T1·F [KP12].

This will result in a speedup factor definition, which takes interpro-
cessor communication into account:

Sp =
T1s + T1p

T1s +
T1p
np

+ Tcom

(3.5)

It should be noted that all provided speedup equations are based
on a simple bimodal program structure. This means that a program
is executed either serially or in parallel by np processors. In most
real-world programs several parts of a program have different degree
of parallelism. To estimate the speedup for an OpenCL or a CUDA
platform the number of processors np has to be replaced by the ratio
of GPU parallel speed to the CPU speed, given by rGC. This leads to
a formula equally to Eq. (3.2), which is the basis of Amdahl’s Law.

maxSrGC =
1

F
rGC

+ (1−F)
(3.6)

Exploiting Gustafson’s serial fraction value Eq. (3.4) leads directly to
the Gustafson’s Law:

Sp = np + (1−np)·s
lim
s→0

Sp = np
(3.7)

If the sequential execution time is much smaller than the parallel
execution time s ≈ 0—which is true for a larger problem size—the
estimated speedup value is np. For a more complex program struc-
ture than the bimodal we want to refer to a more general approach
[Don+98].

3.2 performance of parallel computing 43

3.2.3 Conclusion

Both laws, Amdahl’s Law and Gustafson’s Law, are important to es-
timate the improvement of a problem using a massively parallel ar-
chitecture. Amdahl’s Law is very pessimistic but it provides a value
of an expected improvement, which should be achieved at least. Gus-
tafson’s Law, which takes the synchronization and cache usage into
account, is a more optimistic law. However, this law expects a very
huge input data set, which not hold for all real-world problems. Con-
sequently, both laws should be taken into account to obtain a good
maximal expected improvement. Furthermore, the laws show that a
good parallelization of a problem is very important to maximize the
speedup of a procedure.

4
S C E N E S U B D I V I S I O N F O R C O L L I S I O N D E T E C T I O N

(a) BSP-tree (b) kd-tree (c) Uniform grid

Figure 4.1: This example shows three different techniques for space parti-
tioning.

In the Section Broad-Phase Collision Detection we already men-
tioned some methods for space partitioning, like uniform grids, BSP-
trees, kd-trees (see Figure 4.1) and clustering, a technique known
from data mining. In the following, we will have a further look at
them and show their advantages and disadvantages. Due to the fact
that we focus on deformable collision detection, not only the relative
position of objects to each other is important, but rather the relative
position of the primitives of all objects to each other. Therefore, all
following techniques examine in the context of acceleration of primi-
tive intersection tests. Furthermore, we developed a new volumetric
method, which use BNG for hierarchy construction step, to represent
3 D objects by a sphere packing.

4.1 bsp-tree

BSP-trees have been invented in the context of 3 D computer graphics
by Naylor, Amanatides, and Thibault [NAT90] and Naylor [Nay93].
A BSP-tree stores spatial information about objects in a scene. This
information is often used to perform geometrical operations in the
field of Computer-Aided Design (CAD), collision detection, ray trac-
ing and many more.

In Algorithm 4.1 we present a short overview on the BSP construc-
tion process. Constructing the smallest BSP-tree is Non-Deterministic
Polynomial Time (NP)-complete and therefore, nobody does this in
practice. A much better approach is to use a heuristic to find ap-
proximately-optimal trees. Agarwal, Erickson, and Guibas [AEG98]
presented a BSP-tree algorithm, which has a construction time of
O(n·log3 n+ k·logn) and an update time of O(log2 n) for 3 D scenes,
where k is the number of intersecting primitives.

45

46 scene subdivision for collision detection

Algorithm 4.1 BSP-tree construction steps
Input: list L of primitives of all objects
Output: BSP-tree

choose a primitive P from the input list L
create a BSP-tree node N
add P to N’s polygon list
remove P from L
for all primitives in the list L do

if primitive is completely in front of node containing P then
add primitive to PFRONT

end if
if primitive is completely behind node containing P then

add primitive to PBACK
end if
if primitive is intersected by node containing P then

split primitive
add new primitives to PFRONT and PBACK respectively

end if
end for
apply this algorithm to all primitives in PFRONT and PBACK

4.1.1 Advantages and Disadvantages

Since a BSP-tree uses split planes, which are not axis-aligned, ad-
ditional information have to be stored, like plane’s normal and dis-
tance from the origin [AT11]. The prevailing belief has been that
the quicker traversal of the BSP-tree also speedup intersection tests.
However, subdividing primitives who are intersected by a subdivi-
sion plane displays another problem. In this way the number of
primitives can be raise drastically. Another problem, which may oc-
cur within high dynamic scenes—objects are moving widely and/or
change their size—is that updates may degenerate a BSP-tree and this
will result in notable performance loss. To prevent this, the BSP-tree
has to be completely rebuilt from time to time, which will notably
reduce the frame rate at this time of the simulation.

4.2 2 d kd-tree

A kd-tree is an extended version of a binary search tree and was
invented by Bentley [Ben75] in 1975. While a binary search tree is
used for 1 D range searching problems (see Section 2.7), a kd-tree is
employed when the range searching problem has a higher dimension.
In the 1 D case you can recursive split the points into two subsets of
equal size; one subset holding values greater than a splitting value
and the other subset holds the values smaller than the splitting value.
The root of the tree stores the splitting value and the two subsets are
stored recursively in two subtrees.

For the 2 D problem each data point has two values, a x- and a y-
coordinate. The data set is first split on x-coordinate into two subsets,

4.2 2 d kd-tree 47

next on each subset is split on y-coordinate, then again x-coordinate,
and so on. This procedure can be directly adopted on the nD case.

A kd-tree can be constructed recursively, like you can see in Algo-
rithm 4.2. The depth is zero in the first call, because we start at the
root of the tree. The depth value d is used to decide the splitting axis.
The algorithm will return the root node of the resulting kd-tree.

Algorithm 4.2 2 D kd-tree construction steps
Input: list L of primitives of all objects, kd-tree depth d
Output: kd-tree t

function buildKdTree(L, d)
if L contains only a single point then

return leaf holding this point
else if d is even then

subdivide L with a vertical line l using a split criterion
into L1 (left of or on l) and L2 (right of l)

else
subdivide L with a horizontal line l using a split criterion
into L1 (below of or on l) and L2 (above of l)

end if
tleft ← buildKdTree(L1, d+ 1)
tright ← buildKdTree(L2, d+ 1)
create node t holding l
make tleft left child of t
make tright right child of t
return t

end function

Theorem 4.2.1 For n data points a kd-tree can be constructed in O(n·
logn) time and need O(n) space. The output-sensitive query time for a kd-
tree is in O(n1−

1
d + k), where k is the number of reported points and d the

dimension [Ber+08; Bra08].

4.2.1 Advantages and Disadvantages

Kd-tree is a quite popular data structure in practical applications and
conceptually easy to understand and implement. Furthermore, some
highly parallel kd-tree approaches exist, which aim to build up the
kd-tree in real-time [SSK07; Zho+08].

Just like all other static data structures, a kd-tree needs to be up-
dated frequently to be able to handle dynamic scenes or deformable
objects correctly. This update procedure is necessary to ensure that
the data structure is still valid after a simulation step. Therefore, a
kd-tree can be build up from scratch for every simulation step or a
complex update procedure has to be implemented. However, it must
be taken into account that in a highly dynamic scene an update step
can lead to a very inefficient kd-tree, which results in a deeper tree
and therefore, in a slower query response.

48 scene subdivision for collision detection

4.3 uniform grids

A uniform grid is another very efficient technique to subdivide the
space. Therefore, the space is subdivided into a number of regions,
or grid cells, of an equal size. Only if two primitives overlap the
same cell they could possibly be in contact. If the size of the grid cell
is small, then only primitives who are very close together sharing the
same grid cells. The computation process of the grid cell coordinates
for a data point xi is very fast and simple:

cellCoorx,y,z =
xix,y,z

cellSize
(4.1)

Neighbor cells from a given cell coordinate are also trivial to locate.
In view of the performance, the number of cells is most important

for all grid based approaches. The number of cells of a grid depends
directly on the size of the cells. Therefore, choosing a good cell size
is most important.

4.3.1 Advantages and Disadvantages

Uniform grids are very easy to implement and will perform very well
if a good cell size is used. However, a fixed cell size is a downside for
any deformable simulation. At the beginning of a simulation setting
cellSize = valuea can perform very well but after some simulation
steps the grid could be too fine or too coarse. Updating the cell size
at running time leads to many other problems. How to determine
the best cell size at running time? What if the size of the primitives
varies very widely? All these problems have to be handle with if you
use a uniform grid for deformable collision detection.

4.4 clustering — c-means

Clustering is a commonly used approach for data analysis and in-
terpretation to discover structures in the data [And73; Bez81; Dub87;
DHS12; Fuk90; JMF99; KR09; KKP05]. The essential component of
any kind of clustering or classification is the concept of dissimilarity
(distance) or dual similarity. Owing to this concept it is possible to
determine how close together two data points are and, based on this
result, move them into the same cluster or in two different clusters.
The dissimilarity function d(a,b) between the two data points a and
b must comply with the following conditions:

d(a,b) ≥ 0 ∀ a,b and a 6= b
d(a,a) = 0 ∀ a
d(a,b) = d(b,a)

(4.2)

4.4 clustering — c-means 49

Since the focus of this work is on 3 D object interactions, in this con-
text a method is appropriate for the clustering of points in Euclidean
space, which is called sum-of-squares method. In order to use the dis-
tance as clustering criteria a more restrictive concept is needed. For
any data points a, b and c the triangular inequality has to be fulfilled:

d(a,b) + d(b, c) ≥ d(a, c) (4.3)

In the Table 4.1 we present some distance functions. Each func-
tion describes a different view of the data points in context of their
geometrical properties [Ped05].

Hamming distance (L1 norm) d(a,b) =
n∑
i=1

|ai − bi|

Euclidean distance (L2 norm) d(a,b) =

√√√√ n∑
i=1

(ai − bi)2

Tchebychev distance (L∞ norm) d(a,b) = max
i=1,2,...,n

|ai − bi|

Table 4.1: A set of some common distance functions for clustering.

Subdividing or partitioning n data points into c clusters is in most
cases a non-trivial problem. Webb [Web03] gave a formula to deter-
mine the number of non-trivial partitions for this problem:

1

c!

c∑
i=1

(−1)c−i
(
c

i

)
in (4.4)

The Eq. (4.4) shows that the number of all possible partitions in-
creases very fast and therefore, enumerate all possible partitions is in
most cases unfeasible. In practice a suboptimal solution works fine in
most cases. This solution may be determined by the minimization of
a certain objective function. The toughest challenge is to determine a
suitable objective function, which describes as exactly as possible the
problem. Minimizing this problem provides an extremely meaningful
structure in the set of data points. Assuming we want to subdivide
a set of n data points in Rd into c clusters, we compute a sum of
dispersion between the data points xi and a set of prototypes (cluster
center points) v1, v2, . . . , vc:

Q =

c∑
i=1

n∑
k=1

uikd(xk, vi) (4.5)

with d(xk, vi) being a given fixed distance function (e.g. Euclidean
distance, or any lp-Norm in general, see Table 4.1) between the data
points xk and vi, the center point of cluster i. Furthermore, Eq. (4.5)
contains a partition matrix U = [uik], i = 1, 2, . . . , c, k = 1, 2, . . . ,n,

50 scene subdivision for collision detection

which allocates the data points to the clusters. In the simplest case the
entries in the partition matrix U are 0 or 1. A data point xk belongs
to cluster ci when uik = 1. For the simplest case, the binary one,
Gordon and Henderson [GH77] specific two requirements, which the
partition matrix must fulfill:

A cluster ci is non-trivial, i. e., a cluster does not include all data
points and it includes at least one data point:

0 <

n∑
k=1

uik < n, i = 1, 2, . . . , c (4.6)

Furthermore, a data point belongs to exactly one cluster ci:

c∑
i=1

uik = 1, k = 1, 2, . . . ,n (4.7)

Theorem 4.4.1 (Minimization of Q) The partitioning process can be de-
scribed as an optimization problem with constraints:

minQ with respect to prototypes v1, v2, . . . , vc and U satisfies the condi-
tions of Eq. (4.6) and Eq. (4.7) [Ped05; Web03].

Many different approaches have been developed to solve this opti-
mization problem. One of the best-known method, to clustering data
this way, is c-means, or so-called k-means [DHS12; Mac+67; Web03].
The c-means clustering algorithm directly tries to minimize the quan-
tization error [BB95]. The time complexity of the c-means clustering
algorithm is O(n·c·d·riter), where n is the number of data points, c the
number of clusters, d the number of dimensions and riter the number
of iterations. Bezdek [Bez81] described the basic iterative algorithm
as follows:

Algorithm 4.3 c-means
Input: set of data points xk
Output: partition matrix U

for all data points xk do
choose a cluster ci randomly

end for
for all clusters ci do

compute the centroid
end for
repeat

for all data points xk do
assign to best cluster (mini d(xk, vi))

end for
for all clusters ci do

update cluster centroid (use new cluster assignments)
end for

until no improvement or until #maxIterations

4.4 clustering — c-means 51

4.4.1 Clustering and Classification

On the basis of the clustering process a meaningful structure in the
data set has been detected, which makes it possible to set up a classi-
fier now. A prototype (cluster center point) represents a cluster and
therefore, it is the center point of the classifier. A nearest neighbor
classification rule specifies that a data point xk is a member of cluster
ci just when it is the closest to the prototype vi of cluster ci:

i = min
j
d(xk, vj) (4.8)

Eq. (4.8) defines a region for each cluster in the feature space. The
shape of this region depends on the distance function d(. . .) (see
Table 4.1 for some examples of distance functions and Figure 4.2 for
the corresponding cluster shapes).

(a) Hamming
(L1 norm)

(b) Euclidean
(L2 norm)

(c) Tchebychev
(L∞ norm)

Figure 4.2: Examples of distance functions—shape of the clusters for differ-
ent distance types (see Table 4.1). A plane consisting of 8.5 k
triangles is subdivided into 4 clusters. A triangle is assigned to
a cluster if their membership value is at least 0.7.

4.4.2 Advantages and Disadvantages

In general, researchers from both the optimization and the data han-
dling have heavily investigated the c-means clustering algorithm.
Therefore, the c-means algorithm is a very easy to implement and
robust, highly efficient and very fast clustering approach. Further-
more, the algorithm runs incrementally and can be parallelized easily.
Some disadvantages of the basic c-means algorithm, like being sen-
sitive to outliers, clustering results depends on cluster initialization
and performing poorly for non-global clusters—easily gets stuck in
local optima—, are sometimes dominated by the advantages, and par-
ticularly corrected in new versions of the c-means approach [Wu12].

Pelleg and Moore [PM99] use a kd-tree to improve the perfor-
mance of the c-means clustering approach. Weber and Zezula [WZ97]
showed that bounding trees do not scale well while the dimension
increase. Takizawa and Kobayashi [TK06] presented an effective

52 scene subdivision for collision detection

parallel implementation scheme of c-means clustering. For the sub-
division of a large-scale c-means clustering task their approach use a
DAC procedure. Other full GPU based implementations have been
developed by Farivar, Rebolledo, Chan, and Campbell [Far+08] and
Wu, Zhang, and Hsu [WZH09].

4.5 fuzzy clustering — fuzzy c-means

The fuzzy c-means algorithm is a soft, or fuzzy, version of the well-
known c-means clustering algorithm. In the classical c-means clus-
tering algorithm (see Section 4.4) every data point is associated with
only the nearest cluster center point. In the fuzzy version of the c-
means algorithm, fuzzy c-means, every data point has a membership
value uik in the range of 0 and 1 for every cluster. The algorithm tries
to minimize the total error, which is the sum of the squared distances
of each data point to each cluster center, if we use the Euclidean dis-
tance, weighted by the membership of the data point to each cluster,
for all data points.

Assuming we want to subdivide the scene into c clusters, we com-
pute a sum of dispersion between the data points xk and a set of
prototypes (cluster center points) v1, v2, . . . , vc:

Q =

c∑
i=1

n∑
k=1

u
p
ikd(xk, vi) (4.9)

with d(xk, vi) being a given fixed distance function (e.g. Euclidean
distance, or any lp-Norm in general, see Table 4.1) between the data
points xk and vi, the center point of cluster i.

Furthermore, Eq. (4.9) contains the fuzziness factor p, p > 1, and
a partition matrix U = [uik], i = 1, 2, . . . , c, k = 1, 2, . . . ,n, which
allocate the data points to the clusters. A fuzziness factor p = 1

means that the algorithm is doing a hard clustering, like the c-means
algorithm, and if p→∞ the membership will be equal in all clusters.
The fuzzy clustering algorithm will iteratively optimize Eq. (4.9). In
each iteration, all elements uik of the partition matrix U are updated
using Eq. (4.10).

uik =
1∑c

j=1

(
d(xi,vk)
d(xi,vj)

) 2
p−1

(4.10)

In the next step the algorithm updates the cluster centers vk:

vk =

∑n
i=1 u

p
ik·xi∑n

i=1 u
p
ik

(4.11)

The algorithm repeats these steps until the movement of the center
point of all clusters is smaller than a predefined stop criterion. The
time complexity of fuzzy c-means clustering algorithm is O(n·c2 ·d·

4.6 our new bng approach for hierarchy construction 53

riter), where n is the number of data points, c the number of clusters,
d the number of dimensions and riter the number of iterations.

4.5.1 Stopping Criterion

The stopping criterion is used to determine if the clustering process
has reached a steady state and further investigation will not improve
the result anymore. Therefore, in most cases, the partition matrices
of two successive iterations are compared. If the value of ‖U(run +

1) −U(run)‖ is smaller than a predefined threshold ε, the clustering
process stops. To be more specific, the biggest change in the partition
matrix can be used:

‖U(run + 1) −U(run)‖ = max
i,k

|uik(run + 1) − uik(run)| (4.12)

The value of the threshold ε depends on the underlying application;
normally a value between 10−3 and 10−5 is used.

4.5.2 Advantages and Disadvantages

The fuzzy version of the c-means algorithm has the same advan-
tages and disadvantages like the standard c-means approach (see
Section 4.4.2), because with a fuzziness factor p = 1 the fuzzy ver-
sion will perform the same clustering results. The fuzzy c-means
algorithm has one particular advantage: one data point can belong to
more than just one cluster, which is very important for our collision
detection approach (see Section 5.1.2).

4.6 excursus : our new batch neural gas approach for

hierarchy construction

Another clustering algorithm is Neural Gas (NG). The basic algo-
rithm of the NG uses a special version of the c-means algorithm (Sec-
tion 4.4), which takes neighborhood ranking into account [Cot+06;
MBS93]. Cottrell, Hammer, Hasenfuß, and Villmann [Cot+06] intro-
duced a batch version of the NG, so-called Batch Neural Gas (BNG),
which shows much faster convergence than the standard NG ap-
proach.

BNG is a very robust clustering algorithm, which can be formu-
lated as stochastic gradient descent with a cost function closely con-
nected to quantization error. Like c-means, the cost function min-
imizes the mean squared Euclidean distance of each data point to
its nearest center. But unlike c-means, BNG exhibits very robust be-
havior with respect to the initial cluster center positions (the proto-
types): they can be chosen arbitrarily without affecting the conver-

54 scene subdivision for collision detection

gence. Moreover, BNG can be extended to allow the specification of
the importance of each data point.

In the following we will give a quick recap of the basic BNG algo-
rithm. Given points xj ∈ Rd, j = 0, . . . ,n and prototypes vi ∈ Rd, i =
0, . . . , c initialized randomly, we set the rank for every prototype vi
with respect to every data point xj as:

kij := |{vk : d(xj, vk) < d(xj, vi)}| ∈ {0, . . . , c} (4.13)

In other words, we sort the prototypes with respect to every data
point. After the computation of the ranks, we compute the new posi-
tion for each prototype:

vi :=

∑n
j=0 hλ(kij)xj∑n
j=0 hλ(kij)

(4.14)

These two steps are repeated until a predefined stop criterion is
met. In the original publication by Cottrell, Hammer, Hasenfuß, and
Villmann [Cot+06] a fixed number of iterations is proposed. Indeed,
after a certain number of iteration steps, which depends on the num-
ber of data points, there is no further improvement.

The convergence rate is controlled by a monotonically decreasing
function hλ(k) > 0 that decreases with the number of iterations t.
We decide to use the function proposed in the original publication
[Cot+06]: hλ(k) = e−

k
λ with initial value λ0 = c

2 , and reduction

λ(t) = λ0

(
0.01
λ0

) t
tmax , where tmax is the maximum number of itera-

tions. These values have been taken by Martinetz, Berkovich, and
Schulten [MBS93] also.

4.6.1 Batch Neural Gas for BVH Construction

Like we mentioned before, in computer graphics objects are usually
represented only by their surface, e. g., by a polygonal mesh or as
an implicit NURBS surface. Consequently, most work on BVHs have
been spent on these object representations. Recently, Weller and Zach-
mann [WZ09] presented a new volumetric method to represent 3 D
object by a sphere packing, called Inner Sphere Trees (ISTs). The ba-
sic idea is to fill a typical 3 D surface representation from the inside
with a set of non-overlapping spheres with different radii. These in-
side sphere packings allow the computation of the penetration volume
as penetration measure for collision queries, if two objects are inter-
sect. According to Fisher and Lin [FL01, Section 5.1], this penetration
measure is “the most complicated yet accurate method” to define the
extent of intersection.

However, constructing a BVH of such sphere packings is a difficult
task, because traditional methods that are optimized for surface rep-
resentations are not automatically also suited for a volumetric BVH.

4.6 our new bng approach for hierarchy construction 55

For instance, BVH construction methods that were designed for clas-
sical outer sphere trees, like the medial axis approach [BO04; Hub95]
work well if the spheres constitute a covering of the object and have
very similar size, but in the scenario of ISTs they use disjoint inner
spheres that exhibit a large variation in size. Other approaches based
on the k-center problem work only for sets of points and can be hardly
extended to spheres.

For the construction of BVHs on sphere packings, we extend the
classical BNG clustering method. In its pure form, BNG partitions
a set of data points into a pre-defined number of clusters by mini-
mizing the mean squared Euclidean distance of each data point to
its nearest center (prototype). Furthermore, we adopt an extension
called magnification control that enables us to take also the spheres’
volume into account.

The BNG algorithm adds a single point, a so-called prototype, for
each cluster to the sphere packing and moves them iteratively un-
til some convergence criterion is met. The movement depends on
the distance of the prototypes to all data points. Unfortunately, this
procedure requires a lot of convergence steps and consequently, is
relatively slow. Moreover, we have to start such a time consuming
step for each BV in the BVH individually. Even if the construction
of the BVH is a pre-processing step that has to be done only once, it
should not waste too much time. For instance, if we want to add one
or more new objects to an interactive real-time simulation we usually
do not want to wait for minutes until the BVH for these objects have
been constructed.

To eliminate this limitation and to construct a BVH in a few sec-
onds, we developed a novel massively parallel version of BNG that
is especially optimized for the construction of BVHs. Our novel algo-
rithm for BVH construction runs entirely on the GPU and in general,
it does not require any time consuming communication between CPU
and GPU during the whole BVH construction. Moreover, it reduces
the theoretic complexity of the hierarchy construction of O(n·logn)
for the CPU version to O(log2 n) using only a linear number of pro-
cessors O(n). Our novel parallel approach is easy to implement and
robust against the start positions of the prototypes, therefore it will
not stuck in local optima. Our CUDA implementation shows a sig-
nificant speed up compared to the CPU version (see Section 4.6.3).
Moreover, our results show that the BNG-based BVHs perform much
better than BVHs that are constructed using simple heuristics for the
sphere partitioning.

Magnification Control

In its pure version, the BNG only takes the location of the centers of
the spheres into account. Experiences have shown that this already
produces reasonable results for the collision detection query perfor-

56 scene subdivision for collision detection

mance. However, this procedure does not yet take the radii of the
spheres into account. This is, because BNG uses only the number of
data points and not their importance for the hierarchy construction
process. The result of this is that the prototypes tend to avoid regions
that are covered with a very large sphere, due to the fact that, cen-
ters of big spheres are recognized as outliers and therefore, they are
placed on very deep levels in the hierarchy. It is far better, however,
to place bigger spheres at higher levels of the hierarchy in order to
get early lower bounds during distance traversal.

Therefore, we have to use an extended version of the classical
BNG, which takes the size of the spheres into account, to produce
a more efficient BVH. Our extension is based on an idea of Hammer,
Hasenfuss, and Villmann [HHV06], where magnification control is in-
troduced. The main idea is to add weighting factors for each data
point in order to “artificially” increase the density of the space in
certain areas. With weighting factors vol(xj), Eq. (4.14) becomes

vi :=

∑n
j=0 hλ(kij)vol(xj)xj∑n
j=0 hλ(kij)vol(xj)

(4.15)

where vol(xj) represents a control parameter to take care of the im-
portance of a given data point xj. Hammer, Hasenfuss, and Villmann
[HHV06] use a function of density to control the magnification. Due
to the fact that, IST use a sphere packing where all spheres are dis-
joint, we already know the density. Therefore, we can directly use the
volumes of each sphere as weighting factor: vol(xj) = 4

3πr
3.

Batch Neural Gas-based Hierarchy Creation

Figure 4.3: On the left: Dragon model with the corresponding dense
polydisperse sphere packing. On the right: Some spheres are
wrapped in a hierarchy, the parent sphere (blue) covers all its
leaf nodes (red), but not its direct children (green).

As we noted in Section 4.6.1, the IST use a volumetric polydisperse
sphere packing representation of the 3 D objects. In a polydisperse
sphere packing all spheres are located completely inside the object,

4.6 our new bng approach for hierarchy construction 57

and they do not overlap each other. However, the radii of the spheres
can vary from sphere to sphere. This characteristic allows us to ap-
proximate the object’s volume to any required accuracy—defined by
the smallest radii—by using space-filling sphere packings.

This sphere packing is used to create an inner BVH where the in-
ner spheres are the leaves of the hierarchy. In order to construct our
hierarchy we use a top-down wrapped hierarchy approach. Accord-
ing to the notion of Agarwal, Guibas, Nguyen, Russel, and Zhang
[Aga+04], in a top-down wrapped hierarchy inner nodes are tight BVs
for all their leaves, but they do not have to bound their direct chil-
dren (see Figure 4.3). In contrast to layered hierarchies, a wrapped
hierarchy produces tighter BVs for their inner nodes. In a top-down
hierarchy construction procedure, you begin at the root node of the
hierarchy, which covers all inner spheres and divide these part into
several subsets.

4.6.2 Batch Neural Gas Hierarchy Construction

Figure 4.4: This Figure depicts a BVH constructed with our new BNG clus-
tering algorithm with magnification control. The left image
shows the partitioning of the root sphere. Each of the 4 clusters
of the root node are shown in the right images with its corre-
sponding clustering. All inner spheres that are colored with the
same color are assigned to the same bounding sphere.

Summing up the just explained findings, one can describe the BNG-
based BVH creation process as follows: in the first step we compute
one bounding sphere for all inner spheres (inner spheres from sphere
packing, which are the leaves in the hierarchy), and store this sphere
as root node of the hierarchy. Therefore, we use an algorithm pro-
posed by Gärtner [Gär99] to compute the smallest enclosing sphere.
The next step is to subdivide the set of inner spheres into subsets. For
this procedure we use an extended version of the BNG algorithm with
magnification control. This procedure is repeated until a predefined
criterion is met, i. e., number of inner spheres the bounding sphere
encapsulate (Figure 4.4 depicts an example of hierarchical ISTs).

58 scene subdivision for collision detection

Parallel Hierarchical Batch Neural Gas

Like Figure 4.4 depicts, our extend version of the BNG algorithm
produces a very good partitioning of the inner spheres, however the
serial implementation is very slow. The current version of the BVH al-
gorithm executes O(n) BNG calls—a call has to be executed for each
hierarchy sphere—where n represents the number of inner spheres
and we want one sphere per leaf. Suppose we have a balanced tree
with a depth of O(logn), which results in an total running-time of
O(n·logn). It should be noted that there is a very high hidden con-
stant value, which results from the number of the BNG iteration steps.

A closer look at the BNG algorithm in its pure form, but also the hi-
erarchical BNG calls of our BVH creation method, depicts that these
steps are perfectly tailored for parallelization [Wel+14]. Using a lin-
ear number of processors O(n), it is possible to reduce the asymp-
totic running-time to O(log2 n). In the following section we give an
overview of our parallel hierarchical BNG implementation running
entirely on the GPU.

The rank for every prototype and the subtotal sum hλ(kij)vol(xj)xj
and hλ(kij)vol(xj) can be computed completely independently for
each sphere xj, on the first level of our hierarchy. By using a par-
allel scan algorithm [BH11; SHG08] we can compute the total sums∑n
j=0 hλ(kij)vol(xj)xj and

∑n
j=0 hλ(kij)vol(xj) in parallel too. The

decision about which spheres are assigned to which prototype can be
done in parallel as well. Therefore, we have to compute all distances
between a sphere and all prototypes and choosing the nearest proto-
type for the selected sphere. We perform a hard clustering, so each
sphere is assigned to exactly one prototype.

To create the next level of the BVH we have to insert new proto-
types for each prototype of the previous hierarchy level. The number
of new prototypes is given by the branching factor of the tree, i. e., a
branching factor of 4. Starting an own CUDA thread for each subset
of spheres will destroy the advantages of parallel computing. We will
discuss this approach in detail below.

The first step is to sort the spheres with respect to the prototype
that each sphere was assigned to (see Figure 4.5). Therefore, we use
a parallel sorting algorithm [SHG09], e. g., from the Thrust library
[BH11]. This procedure achieves that we can use fast parallel pre-
fix sum computations in the later steps. Once the sorting step we
insert 4 new prototypes for each prototype from the previous hierar-
chy level. Because each sphere is exactly assigned to one prototype
in the previous level allows us to compute all the values that are re-
quired by BNG, e. g., the rank, the subtotal sums hλ(kij)vol(xj) and
hλ(kij)vol(xj)xj, in parallel per sphere. It is necessary to ensure that
these values are computed for the correct prototypes, the new added
ones (see Figure 4.6).

4.6 our new bng approach for hierarchy construction 59

Prototype 1 4 3 3 4 2 1 4 3 3 2 4 4 2 1 1

Sphere 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Prototype 1 1 1 1 2 2 2 3 3 3 3 4 4 4 4 4

Sphere 0 6 14 15 5 10 13 2 3 8 9 1 4 7 11 12

Figure 4.5: The top two arrays show the indices of the spheres and the
prototype each sphere is assigned to after the initialization of the
BNG clustering. The next step is to sort the array of prototypes,
while we move the assigned spheres in the same way. Note, that
each sphere is assigned to exactly one prototype.

The last step is to sum up all subtotal sums to compute the new
position of the prototypes. As you will see from Eq. (4.15) we have
to compute

∑n
j=0 hλ(kij)vol(xj)xj and

∑n
j=0 hλ(kij)vol(xj). For-

tunately, we can use the results of the parallel prefix sum [BH11;
SHG08] we performed before. To compute the sums for each new
prototype, we have to subtract the prefix sum results at the borders
of our sorted prototype array, like we demonstrate in Figure 4.7.

Algorithm 4.4 provides a short overview of our complete parallel
hierarchical BNG implementation.

Algorithm 4.4 Parallel hierarchical BNG
while not on inner sphere level do

iteration = 0

while iteration < maxNumberIterations do
iteration++
in parallel sort prototype array
for all Spheres do in parallel

compute hλ(kij)vol(xj)xj and hλ(kij)vol(xj)
end for
in parallel compute prefix sum
for all Prototypes in level do in parallel

compute new position
end for

end while
end while

The parallel prefix sum and the parallel sorting of the prototypes
for n inner spheres can be computed with a linear number of pro-
cessors O(n) in O(logn) time. However, both algorithms are based
on an implicit balanced binary tree structure (for more details we re-
fer to [SHG09] and [SHG08]). All the “per sphere” operations of the
Algorithm 4.4 have a complexity of O(1). In the case of a balanced
tree, the outer while-loop has to be called O(logn) times. This leads
to an overall parallel running-time complexity of our algorithm of
O(log2 n). The memory consumption is O(n) because we have a pre-
defined number of spheres, depending on the density of the sphere
packing.

60 scene subdivision for collision detection

hλ(k1,j)vol(xj) 1.3 5.2 8.1 4.2 3.0 9.5 3.6 1.0 1.7 3.4 2.3 2.8 4.8 3.6 2.4 1.3

hλ(k2,j)vol(xj) 3.1 6.9 1.5 1.4 8.3 6.3 1.2 6.7 4.8 4.3 2.4 7.5 2.2 0.1 3.3 5.1

hλ(k3,j)vol(xj) 3.1 7.5 3.8 4.9 8.4 3.9 4.4 5.7 9.4 1.3 3.4 4.2 7.3 4.6 4.8 2.2

hλ(k4,j)vol(xj) 2.1 6.4 9.7 7.4 0.3 8.2 9.2 8.6 7.5 2.9 4.5 0.2 2.3 8.7 6.1 1.7

Prev. Prototype 1 1 1 1 2 2 2 3 3 3 3 4 4 4 4 4

Sphere 0 6 14 15 5 10 13 2 3 8 9 1 4 7 11 12

v1,1 . . . v1,4 v2,1 . . . v2,4 v3,1 . . . v3,4 v4,1 . . . v4,4

Figure 4.6: This Figure shows an example of a deeper level of the hierar-
chical BNG. Like we show in Figure 4.5, each sphere is assigned
to exactly one prototype. For each prototype v1, · · · , v4 from the
previous level, we add 16 new prototypes, v1,1, · · · , v4,4 and com-
pute all the values that are required by BNG, e. g., the rank, the
subtotal sums hλ(kij)vol(xj) and hλ(kij)vol(xj)xj. Because of
the fact that each sphere is exactly assigned to one prototype we
can re-use the memory allocated for the previous hierarchy level.
Thus, we have a constant number of memory usages because for
each level of the hierarchy we have a predefined number of pro-
totypes. Consequently, no memory transfer between CPU and
GPU is necessary.

4.6.3 Results

We implemented our algorithms using C++ for the CPU version and
CUDA for the GPU version. All tests were performed on an Intel I7
CPU with 8 GB main memory and a NVIDIA Gefore GTX 780 GPU
with 3 GB of memory.

We used complex 3 D models with very different shapes in our
timings: in particular, two animal models, a detailed model of the
human brain and a statue (see Figure 4.8). Additionally, we filled
all models with different numbers of spheres ranging from 2 k up to
100 k inner spheres.

Our results show, that our novel hierarchical BNG hierarchy cre-
ation algorithms outperforms the CPU significantly. More precisely,
we get an acceleration of a factor of 15 for all objects (see Figure 4.9).
Please note, that our algorithm is not optimized yet, i.e. we do not
use advanced CUDA acceleration techniques like shared memory. In
practice it is essential that there is not too much traffic between the
memories of the CPU and the GPU. In our algorithm there is almost
no traffic required. In our current implementation, we only have to
save the positions of the prototypes from the last iteration in the outer
loop of Algorithm 4.4. However, this is also not really necessary. In
the future, we plan to move the smallest enclosing sphere computa-
tion to the GPU too. Then, we only have to read back the whole

4.6 our new bng approach for hierarchy construction 61

hλ(k1,j)vol(xj) 1.3 5.2 8.1 4.2 3.0 9.5 3.6 1.0 1.7 3.4 2.3 2.8 4.8 3.6 2.4 1.3

Prefix–
∑

0.0 1.3 6.5 14.6 18.8 21.8 31.3 34.9 35.9 37.6 41.0 43.3 46.1 50.9 54.5 56.9 58.2

∑
1,i hλ(k1,j)vol(xj) 18.8 16.1 8.4 14.9

v1,1 v2,1 v3,1 v4,1

Figure 4.7: In order to update the position of the prototypes for the
next iteration in the BNG algorithm, we have to compute∑
hλ(kij)vol(xj) and

∑
hλ(kij)vol(xj)xj. To realize this we com-

pute the prefix sum (green array) for each of the four prototype
arrays from Figure 4.6. By subtracting the values at the borders
will directly deliver us the individual sum for each prototype.

Figure 4.8: The objects we used in our timings: a cow, a pig, a human brain
and a statue.

hierarchy once. We only have to allocate memory for the prototypes
once. This memory can be re-used for all iterations.

We also tested the performance of our BNG-based hierarchies for
collision detection queries. To do that, we implemented two simple
competing partitioning heutistics: First, we greedily choose the four
biggest spheres and partition the smaller spheres to the closest of
these large elements. Second, we sorted the spheres with respect to
the coordinate axis and choose the two axes with the largest extend.
Again, we assigned the intermediate spheres to the closest of the four
extreme spheres.

In our two test scenes (see Figure 4.10) we used penetration volume
queries. All tests were run on an Intel I7 processor. The collision
query algorithm uses hand optimized SIMD code. The results show
that the BNG hierarchies performed best in our entire query test runs.
Actually, they are more than a factor of 4 faster than the greedy choice
of outer spheres (see Figure 4.11). Surprisingly, the simple greedy
choice of biggest spheres performs well, but it is still 20% slower
than our BNG hierarchies.

4.6.4 Improvements of Batch Neural Gas for Hierarchy Construction

Our novel approach also opens up several avenues for future work. In
the previous section we already mentioned the planned parallel im-
plementation of the minimum enclosing sphere computation. How-

62 scene subdivision for collision detection

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

ti
m

e/
se

co
nd

s

number of spheres × 1000

cow object with different sphere packing densities

CPU Time
GPU Time

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

ti
m

e/
se

co
nd

s

number of spheres × 1000

brain object with different sphere packing densities

CPU Time
GPU Time

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

ti
m

e/
se

co
nd

s

number of spheres × 1000

pic object with different sphere packing densities

CPU Time
GPU Time

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30

ti
m

e/
se

co
nd

s

number of spheres × 1000

statue object with different sphere packing densities

CPU Time
GPU Time

Figure 4.9: CPU and GPU time for the BVH construction for some models
(see Figure 4.8) with different sphere packing densities.

ever, it would be also interesting to apply our algorithm to other vol-
umetric object representations than sphere packings, e. g., tetrahedra

4.6 our new bng approach for hierarchy construction 63

Figure 4.10: The test scenes for collision detection queries. On the left: cow
and pig. On the right: pig and statue.

0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

20 40 60 80 100 120 140 160 180 200

ti
m

e/
m

se
c

number of spheres × 1000

collision detection queries between pig and cow

BNG
biggest spheres

outer spheres

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60

ti
m

e/
m

se
c

number of spheres × 1000

collision detection queries between pig and statue

BNG
biggest spheres

outer spheres

Figure 4.11: On the left: Average time for collision detection queries in the
pig and cow scene. On the right: the same for the pig and statue
scene (see Figure 4.10).

or ellipses. This could improve the quality of the volume covering
because spheres do not fit well into some objects, especially if they
have many sharp corners or thin ridges. Another option could be the
investigation of our clustering-based BVH construction for classical
outer BVHs. Currently, most implementations of classic BVHs use tra-
ditionally a branching factor of two. Due to recent developments in
CPU technologies like SSE and Advanced Vector Extensions (AVX),
higher branching factors could accelerate queries significantly. How-
ever, in this case, also more sophisticated partitioning techniques for
the BVH construction are required because traditional heuristics for

64 scene subdivision for collision detection

binary trees may not work anymore. Finally, we would like to explore
other uses of inner bounding volume hierarchies, such as ray tracing or
occlusion culling. Note that the type of Bounding Volume chosen for
the “inner hierarchy” probably depends on its use.

4.7 future work

The creation of a good partitioning is very important to balance the
load onto different GPUs. Therefore, a good cluster generation is
unavoidable. Like we mentioned before the quality of the c-means
clustering algorithm depends on the cluster initialization, because
this approach can run in a local optima. The BNG algorithm instead
generates high quality cluster independently from the initialization
process. The downside of this approach is the high runtime.

In our case, a combination of both approaches can improve our
collision detection approach further. Therefore, we can use the BNG
algorithm for the initialization step to generate a high quality subdi-
vision of the scene. Because this step will be performed at the begin-
ning of the simulation only, the higher runtime can be neglected. In
the time critical phase, between the simulation steps, our data points
(primitives within the scene) are moving over the time. For the up-
date process of the cluster membership we can now use the very
fast fuzzy c-means clustering approach. A combination of both ap-
proaches will generate a high quality partitioning and will be runtime
sensitive.

5
O U R N O V E L L C O L L I S I O N D E T E C T I O N A P P R O A C H
B A S E D O N F U Z Z Y S C E N E S U B D I V I S I O N

In the chapters before, we have introduced some methods like
scene subdivision using fuzzy clustering or the SaP algorithm to
speedup the collision detection process. In this chapter, we will use
these techniques to define a novel collision detection approach for
rigid and deformable objects.

Our collision detection algorithm is completely executed on the
GPU and especially well-tailored to use the massively parallel per-
formance of the device. With our method we can handle the broad
phase as well as the narrow-phase within one single framework. Our
collision detection algorithm works directly on all primitives of the
whole scene, which results in a simpler implementation and can be
integrated much more easily by other applications. Due to the fact
that we are working on the primitives directly, no approximation er-
rors occur. Furthermore, we can compute inter-object and intra-object
collisions of rigid and deformable objects consisting of many tens of
thousands of triangles in a few milliseconds on a modern computer.
We have verified the performance of our novel collision detection with
commonly used benchmarks (see Section 5.6). Furthermore, we have
integrated our approach into Bullet, a widely used physics engine
(see Section 6.5). Additionally, we present our novel Benchmarking
Suite for rigid body collision detection in Section 5.7. With this Bench-
marking Suite it is possible to compare the time needed for a collision
detection and the quality of the computed force and torque.

5.1 scene subdivision

For the subdivision process of the virtual 3 D scene into independent
parts, we use a clustering algorithm, to be more precise, fuzzy c-
means. In Section 4.5 we gave an insight into the functionality of
this algorithm. The first question that needs asking here is why we
are using a soft clustering algorithm, although a soft clustering has a

65

66 our novell collision detection approach

higher complexity than a hard clustering algorithm. We use a fuzzy
clustering algorithm because the primitives, who are located on the
border between two neighboring clusters, have to be in both clusters.
If adjoining clusters are not connected, then in some cases collisions
across the border of the clusters would not be taken into account (see
Figure 5.13 and Section 5.1.2 for further information).

Another advantage—why we choose this algorithm for the clus-
tering step—is that the fuzzy c-means algorithm can be run incre-
mentally thus exploiting temporal coherence that is inherent in most
realistic scenes. For the next iteration the algorithm uses the last com-
putation result as starting point and iteratively minimizes the total
error with the new data points. This approach takes advantage of the
fact that the scene changes not very much from one frame to the next
one. Therefore, this algorithm is especially tailored for simulations
where objects are moving on a path from one place to another within
the scene, like in the most real-world scenarios.

Algorithm 5.5 Scene Subdivision
Input: list L of primitives of all objects, number of cluster c
Output: clustering

function computeClustering(c)
for all primitives in L do in parallel

compute center of mass . for every primitive ONE data point
end for
for all data points do in parallel

do clustering & generate partitioning matrix (membership values)
end for
for all elements in partitioning matrix do in parallel

map primitive to cluster(s) . one or more clusters
end for

end function

Algorithm 5.5 provides a short overview of the scene subdivision
process. In the first step we generate data points to represent the
primitives. In following steps these data points are used to classify
the primitives into a given number of clusters. In the last step the
membership value is used to determine to which clusters a primitive
belongs to. It should be noted that a primitive can be assigned to
more than one cluster.

The following sections describe each stage of the Algorithm 5.5 in
greater detail.

5.1.1 Data Points for the Scene Subdivision Process

A clustering process groups data points into a predefined number
of subsets, called clusters. Due to the fact, that we use triangles as
primitives, we decide to use the center of mass of each triangle to
represent the primitive, which becomes our data points. With this
step the data points for clustering was threefold decreased. For other
types of primitive—than a triangle—it can be possible that the cen-

5.1 scene subdivision 67

ter of mass does not represent the primitive very well. In that case
another representation is needed. The computation of the center of
mass can be performed in parallel perfectly. Furthermore, we have
a full coalesce memory access pattern (see Figure 3.3 for different
types of memory access pattern), while reading the coordinates for
each primitive, which results in a very fast computation process.

5.1.2 Clustering Process

(a) Armadillo is subdivided into 2

clusters.
(b) Human brain is subdivided into

10 clusters.

Figure 5.2: Example of object subdivision using fuzzy c-means clustering
algorithm.

Like we mentioned before we use a soft clustering algorithm, fuzzy
c-means (see Section 4.5 for more details), for the subdivision pro-
cess. We use all center of mass points as data points and subdivide
the scene into a given number of clusters. Figure 5.2 shows some
examples of object subdivision process with a soft clustering algo-
rithm. Due to the fact that we use a fuzzy clustering algorithm some
primitives can be assigned to more than one cluster. Primitives on
the border between two clusters have a smaller membership value
(ranged between 0 and 1), which means that they do not belong to
one cluster only. We assign a primitive to a cluster, if the membership
value is higher than a precomputed threshold.

Why soft clustering?

In Chapter 4 we introduced some clustering methods, a soft and a
hard clustering approach. The question also arises of whether we
are really have to use a soft clustering approach, or is it sufficient if
we use a hard clustering, which performs faster. For example, the
complexity of c-means clustering is in O(n·c·d·riter), while fuzzy c-
means has a complexity in O(n·c2·d·riter), where n is the number of
data points, c the number of clusters, d the number of dimensions
and riter the number of iterations.

68 our novell collision detection approach

t3t2
t4

t1

Cluster
Cl1

Cluster
Cl2

Figure 5.3: A simple scene—consisting of 4 primitives (triangles)—is subdi-
vided into 2 clusters, Cl1 and Cl2, by a hard clustering algorithm.
Primitives assigned to Cl1 are colored in light red and primitives
assigned to Cl2 are colored in blue. A red marker depicts the cen-
ter of mass. All center of mass points are used as data points for
the clustering process.

Suppose we use a hard clustering approach, like c-means, and we
use the center of mass of our primitives as data points. Now we
subdivide a scene into 2 clusters, for example see Figure 5.3. In this
example two primitives, triangle t1 and t2, are assigned to cluster Cl1
(primitives in light red) and two primitives, triangle t3 and t4, are as-
signed to cluster Cl2 (primitives in blue). Our collision detection ap-
proach will now perform all tests for all clusters independently. This
means that we have to perform one intersection test for primitives t1
and t2, and one intersection test for primitives t3 and t4. Primitives
assigned to different clusters are not tested for intersection and there-
fore, the intersection between primitive t2 and t3 will be missed. To
prevent this error from occurring, you have to check primitives on the
border between adjacent clusters for intersection too.

This is precisely the reason why we use a soft clustering for our
scene subdivision process, because we want an exact collision detec-
tion approach, which will not miss any collisions, and therefore, we
have to take intersections of primitives across the cluster border into
account.

Choosing the Number of Clusters

Determining a good number of clusters depends on the underlying
data set or, in our case, the 3 D scene. If the number of clusters is
to low then big parts of a scene are checked for collisions and this
can lead to unwanted false-positives in the PCA step of our collision
detection pipeline (see Section 5.2.1). On the other hand, a higher
number of clusters increases the number of primitives, which are as-
signed to more than one cluster and that will leads to a higher colli-
sion detection processing time, because the computation time of the
clustering process will increase. The overall complexity of the clus-
tering algorithm is in O(n·c2 ·d·riter), where n is the number of data

5.1 scene subdivision 69

Figure 5.4: Human brain is subdivided into 2 clusters (figure on the top).
Primitives which belong to exactly 1 (bottom left) or 2 clusters
(bottom right) are colored in blue.

points, c the number of clusters, d the number of dimensions and riter

the number of iterations.
Figure 5.4 shows a 3 D model of a human brain. In this example we

set the number of clusters to 2. Figure 5.4 depicts that only primitives
on the border of the two adjoining clusters are assigned to both clus-
ters. So the overall number of primitives in all clusters only increases
by a minimum number.

In contrast to Figure 5.4 we now use 4 clusters to subdivide the
human brain, see Figure 5.5. This Figure shows that there are only a
few primitives assigned to exactly one cluster, much more primitives
are assigned to 2 or 3 clusters. So the overall number of primitives,
which are assigned to the clusters, increase strongly compared to the
example where we only use 2 clusters.

70 our novell collision detection approach

Figure 5.5: Human brain is subdivided into 4 clusters (figure on the top).
Primitives which belong to exactly 1, 2, 3 or 4 clusters (from right
to left) are colored in blue.

Like we mentioned before, the number of clusters directly influ-
ences the performance of our collision detection approach. Figure 5.6
shows the collision detection time needed for some models with dif-
ferent configurations for the number of clusters.

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10

sp
ee

du
p

number of clusters

Human Brain
Cloth on Ball
Human Liver

Funnel
Female Pelvis

Stanford Bunny

Figure 5.6: Influence of the number of clusters on the collision detection time
needed for different models, e. g., human brain, Cloth on Ball
and Funnel benchmarking models, human liver, female pelvis
and the Stanford Bunny.

Our collision detection algorithm performs best if we choose 2 clus-
ters for the human brain model. It should be noted that this scene do
not change and therefore, there is no need to change the number of
clusters over the time.

5.1 scene subdivision 71

Let us assume that a scene consisting of 2 objects with a certain
distance between them. Then the scene should be subdivided into 2

clusters at least (see Figure 5.7).

(a) 2 human brain
models are
subdivided into 2

clusters.

(b) Primitives which
belong to exactly one
cluster are colored in
blue.

Figure 5.7: A scene consisting of 2 human brain models, which is subdi-
vided into 2 clusters. The illustration on the left shows that all
primitives from a model are assigned exactly to one cluster.

Using 4 clusters improves the speed of the collision detection algo-
rithm again. As you can see in Figure 5.8 each object is subdivided
into two parts. Thus we eliminate the limitations of the PCA process
(see Section 5.2.1). Furthermore, only a few numbers of primitives on
the border between the clusters are added into more than one cluster.

(a) 2 human brain
models are
subdivided into 4

clusters.

(b) Primitives which
belong to exactly
one cluster are
colored in blue.

(c) Primitives which
belong to exactly 2

clusters are colored
in blue.

Figure 5.8: A scene consisting of 2 human brain models, which is subdi-
vided into 4 clusters. The illustrations show that each brain is
subdivided into exactly 2 parts. Thus, a primitive can belong to
a maximum of 2 clusters.

Mapping Primitives to Clusters

The partitioning matrix contains all membership values indicating the
assignment of a primitive to each cluster. If the scene is subdivided
into 2 clusters and a primitive has a membership value of 0.5 for both
clusters, this means that this primitive lies precisely at the middle
of both clusters. Therefore, this primitive has to be added to both

72 our novell collision detection approach

clusters because it is located on the border between these clusters
(see Figure 5.13). To determine if a primitive is located on the border
or not the number of clusters is important. Like you can see the
membership value and the assignment to the clusters depends on
the number of clusters the scene is subdivided in. We use a simple
formula to determine if a primitive is added to a cluster or not:

threshold =
1

c
−

1/c
10

(5.1)

where c is the number of clusters. If the membership value for a
cluster is bigger than this threshold we assign the primitive to this
cluster.

Future Work

In the current implementation the number of clusters will not change.
However, this is not perfect in any cases. If the simulation change,
i. e., if a scene consists two objects and both objects are moving away
from each other, then both objects should be in different clusters and
in most cases each object should be subdivided again, so that we
have 4 clusters at least. The number of false-positives should also be
considered as the indicator in order to decide whether the number of
clusters should be decrease, increase or stay constant. This criterion
is very important because with the subdivision technique we try to
reduce the number of false-positives and therefore, this is a very good
measure.

Furthermore, the length of borders between all clusters should be
as short as possible. Thus, the number of primitives located on the
border will decrease and therefore, the number of primitives, which
are assigned to more than one cluster. The shape of all clusters and
therefore, the length of the cluster borders can be controlled by the
distance function (see Figure 4.2).

Like we already mentioned in Sections 4.4.2 and 4.7 the clustering
results of the fuzzy c-means algorithm depends on the cluster initial-
ization and perform poorly for non-global clusters, it gets stuck in a
local optima sometimes. Even if we never get stuck in a local optima,
we want to show up how you can compensate this disadvantage. To
realize this you can perform the first clustering step with a cluster-
ing algorithm, which will not run in local optima, like BNG. For the
first frame the higher running time can be neglected. After the ini-
tialization with BNG, which results in a high quality subdivision of
the scene, we can use the much faster fuzzy c-means algorithm. This
guarantees that our approach will be runtime sensitive and use an
optimal clustering as starting point.

The process to determine whether a primitive is assigned to a clus-
ter, depends on the fact if the membership value is greater than the
threshold value or not (see Eq. 5.1). Currently, we use a very simple

5.2 sweep-plane technique using pca 73

equation, which gives opportunities for improvements. It would be
preferable if the overlap between clusters is as small as possible and
as large as necessary.

5.2 sweep-plane technique using pca

As we stated in Section 2.7 the SaP approach based on the relative
position of primitives to each other. Therefore, this technique projects
the boundary of all BVs onto all axes. If, for example, primitives
are moving then in a significant amount of cases a huge number of
false-positives may occur, when we choose any of the fixed world
coordinate axes as sweep direction.

5.2.1 Principal Component Analysis to Determine a Good Sweep Direction

y

x
S1x

S1y

E1x

E1y
S2y

E2x

E2y

S2x

S3y

S3x E3x

E3y
S4y

E4x

E4y

S4x

1

2

3

4

PCA

(a) The initial scene consisting of a number of triangles with corresponding
BVs and the result of the PCA. As can clearly be seen the BVs of
triangle 1 and 2, and triangle 3 and 4 intersect.

y

x
S1x E1xS2x E2xS3x E3xS4x E4x

E4y E3y
E2y E1y
S4y S3y
S2y S1y

1 2 3 4

(b) Initial scene from Figure 5.9a, rotated so that the direction of the first
component of the PCA points along the x-axis. As can clearly be seen,
in this example the number of overlapping BVs reduced to zero.

Figure 5.9: Improvement of Sweep-and-Prune approach via Principal Com-
ponent Analysis.

74 our novell collision detection approach

Figure 5.9a depicts an example of a downside of using BVs, like
AABBs or OBBs. In our case, the best sweep direction is the one
that allows projection to separate the primitives as much as possible.
In order to achieve the best sweep direction, even if the primitives
move through 3 D spaces, we compute the PCA [Jol05; Liu+10] in
every frame, because the direction of the first principal component
maximizes the variance of primitives, after projection [Wu92].

The type of covariance analysis we perform is commonly used for
dimension reduction and statistical analysis of data [Eri05]. The co-
variance matrix Cov = [hij] for all data points x1, x2, . . . , xn is given
by:

hij =
1

n

n∑
k=1

(xk,i − meani)·(xk,j − meanj) , (5.2)

with meani and meanj is the mean of the i-th and the j-th coordinate
value of all the data points.

In the next step we compute the eigenvalues λ0, λ1, λ2, and the
corresponding eigenvectors u, v, and w of the covariance matrix Cov.
Computing the eigenvalues and eigenvectors of a matrix is in most
cases a nontrivial task. Golub and Van Loan [GV12] presented a nu-
merical technique, which is commonly used. For the decomposition
step, to compute the eigenvalues and eigenvectors of the matrix, we
use codes provided by Numerical Recipes in C++ [Pre+07]. With
those values it is possible to determine the axis along which the data
points have the largest variance. The three orthogonal eigenvectors u,
v and w define a new coordinate system where the x-axis points along
the axis with the largest variance. We can now transform the old co-
ordinates (xk,x, xk,y, xk,z) into the new coordinates (x′k,x, x′k,y, x′k,z) by
the linear transformation:

x′k,x

x′k,y

x′k,z

 =

ux uy uz

vx vy vz

wx wy wz

·
xk,x

xk,y

xk,z

 (5.3)

After the transformation by the eigenvectors, we project the BVs
onto the axis, which separates the primitives most.

In Figure 5.9b we move the direction of the first principal compo-
nent on the x-axis. Now we compute the BV intervals [Si,Ei] and use
the x-axis, more specifically the direction of the first component of the
PCA, respectively, as sweep direction. Comparing Figure 5.9a with
Figure 5.9b depicts the advantage of using the first principal compo-
nent as sweep direction. The number of false-positives great reduces.

As a consequence, combining SaP and PCA reduces the number of
primitive pairs tested for intersection and thus significantly reduces
the calculation time.

5.2 sweep-plane technique using pca 75

Limitation

Using the first principal component as sweep direction only, will nev-
ertheless produce false-positives, because of the dimensional reduc-
tion in the SaP step. The SaP technique, used to separate the primi-
tives, projects all 3 D BVs to 1 D intervals. This means, for example,
that in some cases primitives of the front side and primitives of the
backside of an object will be recognized as potentially colliding pairs,
even if there is a large distance between them (see Figure 5.10). This
recognition will result in an amount of unwanted false-positives.

Primitives
of front side

Primitives
of backside

Figure 5.10: On the left: A 3 D model of a flower vase. On the right: The
silhouette of the model with the corresponding PCA and the
overlapping intervals of primitives of the front side and primi-
tives of the backside.

To eliminate this kind of false-positives we subdivide the scene into
connected components using fuzzy c-means algorithm [Bez81; Ped05]
(see Section 4.5).

5.2.2 Principal Curves to Determine a Better Sweep Direction

A further possibility for the determination of a sweep direction is
the usage of principal curves. These nonlinear generalizations of
principal components were first introduced by Hastie and Stuetzle
[HS89] and Hattie [Hat84]. Hastie and Stuetzle [HS89] defined prin-
cipal curves as “self-consistent” smooth curves, which pass through
the “middle” of a d-dimensional distribution or data set. With this
technique we can reduce the limitation of using the PCA as sweep
direction (see Section 5.2.1).

Kégl, Krzyzak, Linder, and Zeger [Kég+00] presented a new algo-
rithm, which represents a principal curve as a polygonal line. This
approach is more robust than the Hastie-Stuetzle algorithm [HS89]
because it uses a better heuristic to adapt smoothing term to fit the
line segments to the data points. This approach tries to minimize
the average distance from the curve rather than from the vertices of
the curve (this is different from the other algorithms based on vec-
tor quantization, such as the Self-Organizing Map (SOM) [Koh90] or
the generative topographic mapping). Furthermore, their approach is

76 our novell collision detection approach

much faster than the Hastie-Stuetzle algorithm, particularly for huge
data sets [Kég99; Kég+00].

(a) A principal curve, consists of
one line segment.

(b) A principal curve, consists of
two line segments.

(c) A principal curve, consists of
three line segments.

(d) A principal curve, consists of
four line segments.

We implemented the approach presented by Kégl, Krzyzak, Linder,
and Zeger [Kég+00] in C++ and CUDA. For a number of data points
xi = x1, . . . xn ⊂ R this algorithm tries to find a polygonal curve with
k segments and a predefined length. Figure 5.11 shows the function-
ing of the algorithm. In the first step a straight line segment (a part of
the first PCA line) is used to fit the data points best (see Figure 5.11a).
In the following steps the algorithm increases the number of line seg-
ments (in the outer loop, see Algorithm 5.6) by adding a vertex to the
polygonal line (see Figure 5.11b-5.11h). If a new vertex is added to
the principle curve, the position of all vertices is updated in the inner
loop of the algorithm. The algorithm determines, if the number of
line segments exceeds a predefined number.

The inner loop of the algorithm (see Algorithm 5.6) is divided into
two steps, a projection step and an optimization step. In the projec-
tion step all data points are subdivided into regions, so-called “near-
est neighbor regions”, depending on to which segment or vertex they
are projected. In the optimization step the position of each principle
curve vertex is updated by a line search to minimize an objective func-
tion. This objective function consists of an average squared distance

5.2 sweep-plane technique using pca 77

(e) A principal curve, consists of
five line segments.

(f) A principal curve, consists of six
line segments.

(g) A principal curve, consists of
nine line segments.

(h) A principal curve, consists of ten
line segments.

Figure 5.11: A 3 D model of the upper human denture with the correspond-
ing principle curve containing of different numbers of seg-
ments.

term and a curvature penalty. These two steps are repeated till this
procedure converges.

Figure 5.11g shows that the principle curve, created with this algo-
rithm, passes through our 3 D data points. Using this curve as sweep
direction for the SaP algorithm will separate the data points best. It
is nevertheless noticeable that choosing to many line segments will
produce a degenerated principle curve (see Figure 5.11h). The next
step would be to straighten this curve, so that the resulting line can
be used as a sweep direction directly. Therefore, the 3 D model must
be deformed in the same way the principle curve is deformed. Here
one must insure, that no collisions are added or removed, while de-
forming the model.

Complexity

The complexity of the inner loop is controlled by the complexity of
the projection step, that is in O(n·k), where n is the number of data

78 our novell collision detection approach

Algorithm 5.6 Principal Curve
Input: xi data points

initialization
while #LineSegements < threshold do . outer loop

repeat . inner loop
projection
vertex optimization

until update objective function has converged
add new line segment

end while

points and k the number of line segments. The complexity for the
whole algorithm, if we add one segment at a time, is in O(n·k2). Us-
ing a good stop condition [Kég99, Section 5.1.1] will reduce the com-
putational complexity of the algorithm to O(n

5
3). Furthermore, the

complexity can be dramatically decreased if you add more than just
one vertex. Adding a new vertex at the midpoint of every segment
will reduce the computational complexity to O(n·k·logk).

Conclusion and Future Work

Our current implementation is not yet fast enough to outperform the
PCA approach. Therefore, the principle curve algorithm has to be
parallelized perfectly—which is nearly impossible with the current
approach—or a new algorithm to determine the principle curve in
parallel is needed.

Furthermore, the deformation processes of the model to convert
the principle curve into a line present several challenges. To use the
principle curve for the SaP technique, we have to transform the curve
into a line, while we transform the scene the same way. During this
transformation no collision should be added or removed within the
scene. Deforming a closed object can result in degenerated primitives,
which is unwanted in all cases. A useful solution for the deformation
process can be skinning [DB13; LCF00; Met92; Met96] or skeleton
animation [KJP02; RLN06], which are commonly used in character
animation and deformation.

5.2.3 Implementation

After the subdivision process the following steps (see Algorithm 5.7)
can be performed for each cluster independently and therefore, i. e.,
each cluster can be distributed to a different GPU or can be processed
in parallel on the same GPU (CUDA concurrent kernel execution).

In the first step, see Algorithm 5.7, we compute the PCA using the
center of mass as data points of each primitive assigned to this clus-
ter. To parallelize this computation we use some high performance
functions from the Thrust library1 [BH11]. To be more specific, we

1 http://thrust.github.com/

5.2 sweep-plane technique using pca 79

Algorithm 5.7 Sweep-Plane Technique Using PCA
Input: list L of primitives of all objects, number of cluster c
Output: colliding primitives

for all clusters do in parallel
compute PCA
transform primitives of cluster�

direction of first component of PCA points along x-axis
for all primitives assinged to this cluster do in parallel

compute Bounding Volume (AABB)
end for
sort BVs along x-axis
determine start and end position of each BV along x-axis
determine memory usage and number of threads per BV
create possible colliding pair list
for all pairs in possible colliding pair list do in parallel

perform overlap test on y-axis
if BVs don’t overlap on y-dimension then

remove pair from possible colliding pair list
end if

end for
for all pairs (i0, i1) in possible colliding pair list do in parallel

if i0 and i1 share an edge then
return no collision

end if
if i0 and i1 intersect then

return collision
end if
return no collision

end for
end for

use thrust::transform_reduce(...) and thrust::reduce(...) to determine
the covariance matrix. For the singular value decomposition we use
NR::svd(...) from Numerical Recipes in C++ [Pre+07].

After the PCA computation process we perform a transformation
step in the way that the direction of the first component of the PCA
points along the x-axis of the original coordinate system. Now we
compute the BVs for the transformed primitives (see Figure 5.9) in
parallel. We initiate for each primitive its own CUDA thread. Due
to the fact that we use Structure of Arrays (SoA) instead of Array of
Structures (AoS) for all data structures (coordinates of the primitives,
minimum and maximum coordinate values along each axis of each
Bounding Volume, and more), we can access the memory in com-
pletely coalesced way (see Figure 3.3 for different types of memory
access pattern).

For the SaP step we have to sort the array containing all start (Si)
and end (Ei) points of the BV intervals along the x-axis (we use an
array per dimension). For this purpose, we use the very fast paral-
lel sorting implementation from the Thrust library thrust::sort_by_key

(...). We have to perform a key-value sort because we use a tuple for
the BV representation, which contains of the BV minimum or max-
imum value as key and an identifier as data value. The identifier

80 our novell collision detection approach

0Position 1 2 3 4 5 6 7

SABounding Box ID (Start/End) SC SB EC EA EB SD ED . . .

1Type (Start/End) 1 1 0 0 0 1 0 . . .

0Prefix Sum of Type (pT) 1 2 3 3 3 3 4 . . .

ATriangle ID B C D

0Start Position (S) 2 1 6

4End Position (E) 5 3 7

ATriangle ID B C D

3− 0− 1pT [E] − pT [S] − 1 3− 2− 1 3− 1− 1 4− 3− 1

2Number of Threads 0 1 0 = 3

Figure 5.12: Determination of the minimal number of threads needed to
identify all possible colliding primitive pairs and worst-case
memory usage to store all these pairs.

states whether the key value is a minimum or maximum value and
to which primitive the BV belongs.

5.2.4 Thread Management

In this section we depict how we determine the minimal number of
working (CUDA) threads, which are needed to identify all possible
colliding pairs. Furthermore, we compute the worst-case memory
usage, i. e., the space needed to store all possible colliding primitives,
at the same time. Additionally, an array “Type” with the information
if at position j is a start (Sj → Type == 1) or an end (Ej → Type == 0)
point is created during the BV creation process (see Figure 5.12 upper
part).

On account of the fact that we want to avoid counting overlapping
BVs twice, we only consider the start point (Si) of a BV interval i.
If this is not taken into account, and we consider both the start (Si)
and end point (Ei) of the BV intervals, for example in the case of
[Sa,Sb,Ea,Eb], we will receive two intersections. Primitive a inter-
sects with primitive b, and vice versa. So, when we consider the start
point (Si) solely, we will get an intersection between primitive a and
b only, because Sb is in the interval [Sa,Ea], whilst Sa is not in the
interval [Sb,Eb].

To identify the number of working threads needed to do all inter-
section tests for a primitive, we need the amount of BV intersections
between the BV of a primitive and all other BVs for all primitives.
Therefore, a very suitable solution is the prefix sum algorithm from

5.3 fast triangle-triangle intersection test 81

the Thrust library thrust::exclusive_scan(...) using the “Type” array
as input (see Figure 5.12 upper part). The resulting array pT can be
used to compute the working threads needed for a primitive to do all
possible intersection tests. Therefore, we calculate pT [Ei] − pT [Si] − 1
for a primitive i, which generates the number of threads needed for
the corresponding primitive i. The total amount of threads is equal
to the number of the worst-case memory usage, required to store all
possible colliding primitive pairs.

#threads =

n−1∑
i=0

(pT [Ei] − pT [Si] − 1) (5.4)

where n is the number of primitives assigned to this cluster.
Going back to Algorithm 5.7 shows that we have to execute—

depending on the scene—a huge amount of threads to create the
possible colliding pair list. The accurate number of threads we need
can be determined with Eq. (5.4). Each thread takes a possible collid-
ing pair P(pi,pj) and load the BV values of the y-dimension. Now
an overlap test for the y-dimension is performed. If the BVs do not
overlap in the y-dimension the possible colliding pair P(pi,pj) is
removed from the list. This overlap test will remove false-positives
again. The last step of Algorithm 5.7 will check for all remaining
possible colliding pairs in the list if both primitives sharing an edge
or not and if that is not the case we perform an exact primitive-prim-
itive intersection test. The result of the Algorithm 5.7 is a list of all
intersecting primitives for this cluster.

5.3 fast triangle-triangle intersection test

For our last step in our collision detection approach, the real prim-
itive-primitive intersection test (in our case the primitives are trian-
gles), we use the interval overlap method suggested by Held [Hel97]
and Möller [Möl97]. In a first step this approach tests if the two face
(triangle) normals can be used as separating axes. Therefore, we test
if the vertices of triangle tA lie completely on one side of the plane
of the other triangle tB. If this is the case, no intersection occurs. If
this is not the case, then the planes containing the triangles are inter-
secting. They intersect in a line L, L(t) = P+ (nA × nB), where nA is
the normal of triangle tA and nB of triangle tB. In addition, this line
is intersecting both triangles. The next step is to determine the scalar
intersection intervals between L and both triangles. If both scalar in-
tervals overlap, then these triangles intersect. Algorithm 5.8 provides
a summery of the triangle-triangle intersection test.

82 our novell collision detection approach

Algorithm 5.8 Triangle-Triangle Intersection Test by Möller
Input: two triangles tA and tB
Output: intersection/no intersection

determine plane equation pA of triangle tA
if vertices of tB on same side of plane pA then

return no intersection
end if

determine plane equation pB of triangle tB
if vertices of tA on same side of plane pB then

return no intersection
end if

determine intersection line L of two planes pA and pB
determine scalar intersection intervals for each triangle with line L

if intersection intervals do not overlap then
return no intersection

end if

return intersection

5.4 collision detection based on fuzzy scene subdivi-
sion

Algorithm 5.9 provides a concise overview of our new collision detec-
tion approach. In the first step we have to determine the data points,
which we use in the subdivision process later. This step, how we de-
termine the data points, is described in detail in Section 5.1.1. For
the subdivision process many approaches exist (see Chapter 4). We
decide to use a clustering algorithm for the partitioning. This proce-
dure is described in Section 5.1.2. The last part of our approach is to
create a list of primitives, which are possible colliding, followed by an
exact intersection test. For more details of these procedures we refer
to Section 5.2 and 5.3.

Algorithm 5.9 Collision Detection Algorithm
Input: list L of primitives of all objects
Output: list of intersecting primitives

for all primitives in L do in parallel
compute data points

end for
for all data points do in parallel

subdivide scene into parts
end for
for all subparts of the scene do in parallel

create possible collision pair list
perform exact collision detection test

end for

Our approach is performed completely on the GPU and therefore,
no memory transfer between the host and GPU is needed. It is impor-
tant to avoid this memory transfer because of its high transmission
costs. Furthermore, more and more computer systems own more

5.5 accuracy and limitations 83

than one GPU. To make full use of this multi-GPU systems (e. g.,
GPUs are connected via Scalable Link Interface (SLI)2 or CrossFireX3

or since Intel introduced the Sandy Bridge micro-architecture, each
Intel CPU contains a GPU also) new approaches should be able to
use more than just one GPU. This has been taken into consideration
as we developed our new approach. We subdivide the scene into
overlapping parts. Now each part can be handled independently and
therefore, each part can be investigated by a different GPU. Conse-
quently, our approach is especially well-trailered for multi-GPU sys-
tems.

5.5 accuracy and limitations

Our collision detection algorithm will recognize all intersections be-
tween all primitives. Therefore, our approach performs BV inter-
section tests with all primitives of a cluster, to detect all colliding
primitive pairs. However, in the case of significant differences in the
size of the primitives, it could happen that a primitive is completely
assigned to one cluster, but collides with a primitive which is com-
pletely assigned to an adjoining cluster. The reason for this is that
our approach uses the centroid, which represents a primitive, for the
clustering process. To prevent this, we have to decrease the threshold
value (membership) in the clustering step. This results in a higher
degree of overlap between adjoining clusters (see Figure 5.13). The
size of the overlap has to be at least as large as the overall maximum
distance from primitive’s centroid to one of its vertices. Taking the
example of a triangle as primitive will result in:

max
i=1,2,...,n

(
max
k=0,1,2

(
‖Ci − vertexi,k‖2

))
(5.5)

From this follows one small restriction for our approach. The large
overlap between clusters can affect the performance in some scenar-
ios, because of a higher number of collision computations. This limi-
tation can be avoided by virtually subdividing huge primitives. The
virtual primitives are used for clustering and sorting instead of the
initial primitives.

If the size of all primitives is more or less equal, then our algorithm
chooses a membership value so that the overlap between adjoining
clusters consists of exactly two primitives.

2 SLI is a technology developed by NVIDIA. This technique allows to link two or more
video cards together.

3 The multi-GPU solution provided by Advanced Micro Devices (AMD). Previously
known as CrossFire.

84 our novell collision detection approach

mCl2

mCl1

m

f1
f2

f3

e1

e2

e
3

Cluster
Cl2

Cluster
Cl1

mCl2

mCl1

m

f1
f2

f3

e1

e2

e
3

Cluster
Cl2

Cluster
Cl1

Figure 5.13: This Figure shows two adjoining clusters with two triangles as
primitives, one colored in yellow and one in grey. The yellow
triangle is completely assigned to the yellow cluster Cl1 and the
grey triangle is completely assigned to the grey cluster Cl2. On
the left side of the Figure we choose the overlap d(m,mCl1) ==
d(m,mCl2) < ‖f3‖2 < ‖e3‖2. Accordingly, like you can see in
the Figure, it is possible that the yellow triangle intersect with
the grey one. In this case, this collision will not be recognized by
our collision detection. On the left side of the Figure we increase
the overlap such that d(m,mCl1) == d(m,mCl2) < ‖fi‖2, i =
1, 2, 3 and d(m,mCl1) == d(m,mCl2) < ‖ei‖2, i = 1, 2, 3. As
a result it is impossible that triangles, which are completely
assigned to different clusters, can intersect.

5.6 benchmark for deformable objects

To evaluate the performance of our collision detection algorithm in
different situations, we choose some often used collision detection
benchmarks to compare our results against other approaches. It
should be noted that these benchmarks only simulate a special case,
where a huge amount of collisions and self-collisions occur. The most
significant down side is that these benchmarks do not simulate all
possible configurations between the colliding objects. In Section 5.7
we present a better Benchmarking Suite, but this Benchmarking Suite
is so far not been able to handle deformable objects. However, an
extended version with support for deformable objects is planned.

Experiments have shown that subdividing the scene into 2 respec-
tively 4 clusters, when the objects are far apart from each other, for a
single GPU provides the best performance. Therefore, in the follow-
ing benchmarks we subdivided the scenes into 2 clusters.

5.6.1 Implementation and System Details

We have implemented our collision detection algorithm on a NVIDIA
GeForce GTX 480 using the CUDA toolkit 5.0 as development envi-
ronment. Because our collision detection algorithm is purely GPU-
based, components like CPU and RAM do not have an effect on the

5.6 benchmark for deformable objects 85

running time. However, for the sake of completeness, we will provide
the key data of our system. Our collision detection algorithm is imple-
mented in C++/CUDA. The platform for benchmarking consists of a
PC running Gentoo Linux with an Intel Core i5-2500K 3.30 GHz CPU
and 8 GB of memory. For sorting and prefix computation steps we
used Thrust, a parallel algorithms library (shipped with the NVIDIA
graphics card driver).

5.6.2 Cloth on Ball Benchmark

In this benchmark, a cloth, containing of 92 k triangles, drops down
on a rotating ball, containing of 760 triangles (see Figure 5.14).
Thereby the cloth has a huge number of self-collisions and many
collisions between the cloth and the ball. This benchmark is dis-
cretized and therefore, subdivided into 93 frames. Our collision
detection algorithm needs for this benchmark 20.24 ms in average
(see Table 5.1).

In Table 5.1 we show the average collision detection time needed
for this benchmarks compared with state-of-the-art collision detec-
tion algorithms. Our approach is slightly slower than the CStreams
[Tan+11] technique but this approach cannot be easily extended
to more than one GPU. Comparing our approach to the hybrid
CPU/GPU collision detection techniques [Kim+09; PKS10] and the
multi-core collision detection approach [TMT10] shows that our tech-
nique performs better.

bench . our cst. pab . hp mc

Cl. on Ball 20.24 18.6 36.6 23.2 32.5

Table 5.1: Collision detection computation times in milliseconds. The tim-
ings include both external and self-collision detection. CStreams
(CSt.) – GPU-based streaming algorithm for collision detection
[Tan+11], Pab. – a hybrid CPU-GPU collision detection tech-
nique based on spatial subdivision [PKS10], HP – a hybrid CPU-
GPU parallel continuous collision detection [Kim+09], MC – a
multi-core collision detection algorithm running on a 16 core PC
[TMT10].

Figure 5.15 shows that the collision detection time needed to com-
pute all collisions from frame 60 onwards increase because the num-
ber of self-collisions increase heavily like you can see on the Fig-
ures 5.14e–5.14f. Our collision detection algorithm needs more time
to collect all possible colliding triangles and has to do more inter-
section tests between them. The benchmark, provided by the UNC
Dynamic Scene Benchmarks collection, itself contains intersecting tri-
angles, which means that real collisions occur, like you can see at
frame 93. It should be noted, that intersecting primitives should not

86 our novell collision detection approach

occur in such a benchmark because in a real-world scenario these
objects would not interpenetrate.

(a) Frame 0 (b) Frame 10

(c) Frame 20 (d) Frame 40

(e) Frame 60 (f) Frame 93

Figure 5.14: Cloth on Ball simulation benchmark is a courtesy of the UNC
Dynamic Scene Benchmarks collection and was provided by
Naga Govindaraju, Ilknur Kabul, and Stephane Redon.

Figure 5.15 shows that the clustering and PCA computation step
needs nearly in all frames the same time. This is due to the fact that
we limit the maximum number of iterations for clustering process
and thus, this step never takes too much time. Time needed for the
AABB computation step can be regarded as negligible, like you can
see in the timing. This step needs nearly no computation time. The

5.6 benchmark for deformable objects 87

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90

ti
m

e/
m

ill
is

ec

frame number

Complete collision detection
Tri-Tri intersection

Collect overlapping intervals
Sort AABBs

Compute AABBs
Clustering and PCA

Figure 5.15: Collision detection time needed for Cloth on Ball Benchmark.

sorting step is nearly constant too, because we use a massively paral-
lel sorting algorithm from the Thrust library. For this sorting method
the order of the input data is equally, it needs the same time in any
case. The most time consuming part is the step to create the possible
colliding pair list. From frame 63 onwards the number of collisions
increase heavily and therefore, the number of overlapping BVs. These
BVs need to be further investigated which increase the overall compu-
tation time. Furthermore, more primitive-primitive intersection tests
have to be done, because the number of touching primitives or prim-
itives, which are very close together, increase.

5.6.3 Funnel Benchmark

In this benchmark a flexible cloth, containing of 14.4 k triangles, falls
into a funnel, containing of 2 k triangles, and passes through it, due
to the force applied by a ball, containing of 1.7 k triangles. The ball
slowly increased in volume over the time (see Figure 5.16). The whole
benchmark is subdivided into 500 frames to provide a dynamic scene,
where all objects can move and deform from one frame to another.
This benchmark simulates situations with a high number of self-colli-
sions and huge contact areas.

For this benchmark our collision detection algorithm needs 6.53 ms
in average. In Table 5.2 we show the average collision detection
time needed for this benchmarks compared with state-of-the-art col-
lision detection algorithms. In this benchmark again, our approach is
slightly slower than the CStreams [Tan+11] technique.

Figure 5.17 depicts that the collision detection time needed to com-
pute all collisions increase slightly between frame 150 and frame 345.
In these frames the cloth hits the funnel and slides a little bit into the
funnel. From frame 345 onwards the ball pushes the cloth trough the

88 our novell collision detection approach

(a) Frame 1 (b) Frame 125

(c) Frame 200 (d) Frame 375

(e) Frame 500

Figure 5.16: Funnel simulation benchmark is a courtesy of the UNC Dy-
namic Scene Benchmarks collection and was provided by Simon
Pabst.

bench . our cst. pab .

Funnel 6.53 4.4 6.7

Table 5.2: Collision detection computation times in milliseconds. The tim-
ings include both external and self-collision detection. CStreams
(CSt.) – GPU-based streaming algorithm for collision detection
[Tan+11], Pab. – a hybrid CPU-GPU collision detection technique
based on spatial subdivision [PKS10].

5.7 excursus : our new benchmarking suite for rigid objects 89

funnel, and produces a huge number of self-collisions, which results
in a higher computation time needed for collision detection.

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400 450

ti
m

e/
m

ill
is

ec

frame number

Complete collision detection
Tri-Tri intersection

Collect overlapping intervals
Sort AABBs

Compute AABBs
Clustering and PCA

Figure 5.17: Collision detection time needed for Funnel benchmark.

This benchmark also shows that our approach needs the most time
for the creation process of the possible colliding primitive pair list
and the primitive-primitive intersection tests. Clustering, AABB com-
putation and the sorting step are running in nearly constant time and
take less than a half of the overall computation time.

5.7 excursus : our new benchmarking suite for rigid ob-
jects

In this section we like to briefly address our Benchmarking Suite
[TWZ07; Wel+10] for rigid object collision detection and collision re-
sponse schemes. Our benchmark suite4 is published as open source
and therefore, it is a great asset to users who want to figure out the
best suited collision handling scheme to meet their specific require-
ments. Also researchers who want to compare their algorithms with
other approaches using a standardized benchmark that delivers veri-
fiable results can profit from our Benchmarking Suite.

5.7.1 Overview of the Benchmarking Suite

Our Benchmarking Suite is subdivided into two parts, like most other
approaches too, a Performance Benchmark and a Force and Torque Qual-
ity Benchmark. With these benchmarks we can compare the time
needed for a collision detection process and the quality of the com-
puted force and torque.

4 http://cgvr.cs.uni-bremen.de/research/colldet_benchmark/

http://cgvr.cs.uni-bremen.de/research/colldet_benchmark/

90 our novell collision detection approach

5.7.2 Performance Benchmark

Scenarios

Since this benchmark focuses on performance a Boolean collision re-
sponds (see Section 2.1.1) should be returned by the used collision
detection approaches. In this case the collision algorithm does not
need to collect all colliding points, it can stop on the first detected
intersection.

• Scenario I: This scenario simulates situations where objects are
in close proximity, but not touching. Most collision detection
approaches use BVH and the worst-case for these algorithm is
the case where primitives are very close but do not intersect and
therefore, the leaves of the BVH collide even in deep levels in
the hierarchy, but actually no polygon collision occurs. Conse-
quently, the focus in this scenario is to place objects in a close
proximity, but without an intersection.

• Scenario II: This scenario simulates situations where objects in-
tersect. In some situations objects penetrate each other slightly
and therefore, this scenario compares the time needed to deter-
mine the intersection.

A configuration describes the relative position and orientation be-
tween two objects. For rigid bodies such a configuration consists of
6 parameters shown in Figure 5.18: the transformation of object B in
the coordinate system of object A, defined by the distance d, the polar
coordinates ϕA and θA, and the rotation of object B, defined by the
angles ϕB, θB, ψB.

Figure 5.18: The relative position and orientation between two objects A and
B, defined by 6 parameters.

The Grid Method

The first method uses a simple axis-aligned grid to find the transla-
tions. The midpoint of the moving object is positioned on the center

5.7 excursus : our new benchmarking suite for rigid objects 91

of all grid cells. In the following steps, the object is moving towards
the fixed positioned object until a predefined distance is reached. If
the predefined distance is reached, the configuration is stored. A
downside of this approach is that the number of configurations found
by this method is unknown in advance [TWZ07].

The Sphere Method

Figure 5.19: The sphere-method uses a fixed rotation for every cycle. An
object is fixed and the moving object is rotated around. The
rotation of the moving object changes after every cycle.

This method tries to reduce the time for finding possible configura-
tions for a given distance. Therefore, the 3 D search space is reduced
to two dimensions by using polar coordinates. It has to be mentioned
that, this method can miss some interesting configurations. An object
is placed in the middle on a sphere, while the moving object is placed
on the sphere. The size of the sphere placed around the fixed object
has to be at least as big as the fixed object plus the required distance.
The next step we move the object on a straight line through the center
of the sphere until we reach the required distance (Scenario I) or pen-
etration depth (Scenario II), respectively (see Figure 5.19) [TWZ07].

After performing this procedure, we got a huge amount of con-
figurations for predefined number of distances or penetration depth
for an object-object pair. This computation process is a preprocess-
ing step and has to be done only once, even if we change or add a
new collision detection algorithm or change the underlying platform
[TWZ07].

92 our novell collision detection approach

Scenario I

Figure 5.20: The minimal distance between two objects.

In order to calculate the distance d between two objects we need
the two closest points from object A and object B (see Figure 5.20). So
as to be scale-invariant, the distance is given in percent of the whole
AABB of object A.

Object A has a fixed position and object B is placed on a sphere
around object A. This sphere must be bigger than the AABB of ob-
ject A plus the given distance d between both objects. In the next
step, we move object B on a straight line to the center of object A
until we reach the required distance or intersection volume. This con-
figuration is then stored.

Our search space has 6 dimensions. To get as many configurations
as possible consequently the configuration space must be sampled
densely. For Scenario I we chose a step size of 15◦ for the spherical
coordinates and a step size of 15◦ per axis for the rotations of object B.
With these values, we generated a set of 1 991 808 sample configura-
tions for each distance.

We computed sample configurations for distances from 0 up to 30%
of the object’s BV size in 1% steps, because in all example cases, there
was no significant time spent on collision detection for larger dis-
tances. To compute the configuration of two objects with the correct
distance we used Proximity Query Package (PQP) [GLM96; Lar+99].

Scenario II

In this scenario we use IST [WZ09] data structure to compute the con-
figurations. A tetrahedron-based approach could not be used because
of the probability relatively large computation times. Although ISTs
compute intersection volumes very quickly, we still had to reduce the
sampling of the configuration space. Therefore, we changed the step
size per axis to 30◦. We computed sample configurations for intersec-
tion volumes from 0 up to 10% of the total fixed object volume in 1%
steps. With these values, we generated a set of 268 128 sample config-
urations for every intersection volume. Because most applications of
collision detection try to avoid collision/intersection, an intersection
volume of 10% seems more than enough, as shown in Figure 5.21.

5.7 excursus : our new benchmarking suite for rigid objects 93

Figure 5.21: The intersection volume between two Happy Buddha statues.

5.7.3 Force and Torque Quality Benchmark

Our novel quality benchmark evaluates the deviation of the magni-
tude and direction of the virtual forces and torques ideal prediction
models. Ideal forces and torques will be denoted by Fi and Ti, re-
spectively, while the ones computed by one of the collision detection
algorithms—measured forces—will be denoted by Fm and Tm.

Consequently, the scenarios in this benchmark, including objects
and paths, should be meet two requirements:

a) They should be simple enough so that we can provide a model;

b) They should be a suitable abstraction of the most common con-
tact configurations in force feedback or physically-based simu-
lations;

In the following sections we introduce the implemented scenarios
and methodology in order to evaluate force and torque quality.

Benchmarking Scenarios

Figure 5.22 shows all scenarios with their parameters; they are ex-
plained in the following.

scenario i (a ,b): A cone is translated while colliding with a
block, maintaining a constant penetration. The penetration we chose
is δ = 1

3H = 2
3r and the length of the trajectory is L+ 2a. Two sit-

uations have been differentiated in this scenario: (a) h > δ and (b)
h→ 0, i. e., the block is a thin rectangle.

Ideally, only forces should appear and they should have only a
component in the positive y direction. Moreover, these forces should
be constant while the cone slides on the block. This scenario evaluates
the behavior of algorithms with objects that have flat surfaces or sharp

94 our novell collision detection approach

Fmx

y
r

H

h

L

aδ

I(a,b)

R
x

y

ρ
r Fm

II

b

x

r

φ

Tm
a

z

c

III

x
Fm

z
ρ

IV

Figure 5.22: Scenarios in the Force and Torque Quality Benchmark, ex-
plained in Section 5.7.3. Upper row shows 3 D snapshots,
whereas the lower displays parametrized schematics. Trajecto-
ries are represented with red dashed curves. Expected relevant
forces and/or torques are shown with blue vectors. Coordinate
systems are placed in points where forces and torques are mea-
sured – for the cone and the sphere this point is in their AABB
center, whereas the position in z axis for the pins object is in the
middle of the pin.

corners. In addition, Scenario Ib evaluates how algorithms handle the
so-called tunneling effect, which occurs when thin or non-watertight
objects yield too small forces and torques that allow interpenetration.

scenario ii : A sphere is revolved around a cylinder maintaining
a constant penetration. The radius of the orbit is ρ = 5

3R = 5
3r. Ide-

ally, only forces should appear (no torques) and they should have
uniquely sinusoid components in x and y directions. In addition
to that, the measured force magnitude should be constant while the
sphere revolves around the cylinder. This is a suitable benchmark for
environments with objects that have smooth, rounded surfaces.

scenario iii : A so-called pins object with a rectangular and a
circular pin and a matching holes object compose this scenario. The
rectangular pin is introduced in the rectangular hole and is turned
around its axis. The size of the objects is b = 2a, the side of the
rectangular pin is c = 2r and it has a length of a in z direction. The
maximum rotation angle is φmax = 30◦. Ideally, only torques should
appear and they should have only a component in positive z direc-
tion. Moreover, the measured torque magnitude should increase as
φ increases. This scenario evaluates the behavior of algorithms with
large contact areas.

scenario iv : This scenario uses the same objects as in Scenario
III. The start configuration is shown in Figure 5.22. Then, the pins
object is revolved around the central axis of the second one. The orbit
radius is ρ = 1

10c = 1
20r. The expected forces and torques are those

that bring the pins object towards the central axis, i. e., sinusoidal

5.7 excursus : our new benchmarking suite for rigid objects 95

forces on the xy plane and torques with only z component. This sce-
nario evaluates the behavior of algorithms with large and superfluous
contact areas that should not generate collision reactions, such as the
contact between objects in the xy plane. Besides that, this scenario
contains small displacements around a configuration in which two
objects are in surface contact. These small displacements should gen-
erate the corresponding small forces that push the pins object back to
the only-surface-contact configuration.

Evaluation Method

For each scenario, we measured and recorded the following values
for each time stamp k.

1. Forces Fm
k ,

2. Torques Tm
k ,

3. Penalty values qm
k and

4. Computation time tk.

In order to assess these measured values, we have developed ideal
models of the expected forces and torques (i). The directions of these
force and torque vector models are displayed in Figure 5.22, whereas
magnitudes are considered to be proportional to analytically deriv-
able collision properties, such as

1. ‖Fi‖ or ‖Ti‖ ∼ p, translational penetration depth,

2. ‖Fi‖ or ‖Ti‖ ∼ V , intersection volume.

In each scenario, we have determined p and V , respectively, as fol-
lows:

• Scenario Ia: p ∼ δ and V ∼ δ3

• Scenario Ib: p ∼ δ

• Scenario II: p = ρ = const and V = const

• Scenario III: p ∼ sin
(
φ
2

)
− 1 and V ∼

(
1

tan(φ) +
1

tan(π2−φ)

)(√
2 ·

cos
(
π
4 −φ

)
− 1

)2
• Scenario IV: p = ρ = const and

V = c2 − (c− ρ| cosφ|) (c− ρ| sinφ|) + πr2 −
4
∫r
ρ
2

(
r2 − τ2

)
dτ

96 our novell collision detection approach

In order to evaluate the quality of the magnitude, the standard
deviation of measured (m) and ideal (i) curves is computed:

σF =
1

N

√√√√ N∑
k=1

(
‖F̂i
k‖− ‖F̂m

k ‖
)2

, (5.6)

where F̂ = F
‖F‖max

, and N being the total amount of time stamps.
Analogously, the indicator for direction deviation is the angle be-

tween ideal and measured values; the average value of this angle is:

γF =
1

N

N∑
k=1

arccos
Fi
k·Fm

k

‖Fi
k‖·‖Fm

k ‖
(5.7)

Deviation values for torques (σT ,γT) are computed using Tm
k and

Ti
k, instead of force values.
Additionally, we measure the amount of noise in the measured sig-

nals. A color coded time-frequency diagram using short time Fourier
transform can be used to visualize the noise in time domain. In order
to define a more manageable value for evaluations, we compute the
ratio

ν =

∫
Sm∫
Si , (5.8)

where Sm is the energy spectral density of the measured variable (e.g.
‖Fm‖) and Si is the spectrum of the corresponding ideal signal. ν
can be evaluated for forces and torques directions and magnitudes
separately.

Equivalent Optimized Resolutions for Comparing Different Algorithms

Usually, when the quality of resolution is improved, whereas com-
putation time increases. Therefore, an appropriate trade-off between
quality and time performance must be found.

When properly evaluating or comparing collision detection algo-
rithms, such a resolution must be found that makes possible to com-
pare algorithms’ quality for a given average performance, or to com-
pare their performance for a given desired quality. In this context,
we name “equivalent” optimized resolutions such resolutions with
which algorithms exhibit a same desired time performance, being
possible to fairly compare their qualities.

Considering two objects in a scenario (A is dynamic, B is static),
we define the resolution pair (eAopt, eBopt) to be the optimum equivalent
resolution pair:(

eAopt, e
B
opt

)
= min

{
η
(
eA, eB

)
| t̄
(
eA, eB

)
= τ
}

, (5.9)

5.7 excursus : our new benchmarking suite for rigid objects 97

where τ is the maximum admissible average computation time, t̄ and
η = ωσσ +ωγγ, the equally weighted sum of the standard devia-
tions.

In practice, since time and quality functions of Eq. (5.9) are un-
known, performed evaluations were carried out numerically after
running several tests. For each scenario and algorithm, we defined
three different resolutions within a reasonable5 domain for each ob-
ject A and B, building sets of 3 × 3 = 9 pairs (eA, eB). Then, the
sets of 9 corresponding tests were performed, recording all necessary
average computation times (t̄) and global deviations (η) in each one.
Next, we applied a linear regression to values of t̄, obtaining the plane
which predicts the average computation time for a resolution pair in
each scenario. Each of these planes was intersected with τ = 0.9ms6,
obtaining the lines formed by all (eA, eB) expected to have t̄ = 0.9ms
for each scenario.

Being aware of the fact that further refinements would yet be possi-
ble, it is considered that the reached compromise is accurate enough
in order to make a fair comparison. The average absolute difference
between predicted and measured η values with equivalent resolutions
was 1.2% for the Voxmap-Pointshell (VPS) algorithm and 2.1% for
the IST algorithm.

5.7.4 Results

Benchmarking is not as time consuming as configuration computa-
tion. To perform the benchmark, we load the set of configurations
for one object. For each object-object distance and intersection vol-
ume respectively, we start timing, set the transformation matrix of
the moving object to all the configurations associated with that dis-
tance, and perform a collision test for each of them. After that, we get
a maximum and an average collision detection time for the given dis-
tance or intersection volume, respectively. Overall, we did 65 million
different collision detection tests with each collision detection library.

Configuration computation

To compute all these configurations we used a PC cluster with 25 clus-
ter nodes, each with 4 Intel Xeon CPUs and 16 GB of RAM. The time
needed to calculate configurations for a complete set of distances or
intersection volumes varies from object to object between 10 h and
200 h. Overall, we computed configurations for 86 objects, which
lasted 5 600 CPU days.

5 Between coarse but acceptable and too fine resolutions.
6 Collision detection and force computation must lie under 1ms; hence, we chose a

resonable value under this barrier.

98 our novell collision detection approach

0

00

0

00

0

0

1

-1 -1 -1

Pi

v = 0

ni

Fi

ϵi

s
C

Figure 5.23: On the left: A layered voxmap (bottom) is colliding with red
pointshell points (top), yielding red bold collision forces. On
the right: The computation of a single collision force related to a
colliding point is graphically shown. Single collision forces are
computed scaling the normal vector (ni) of the colliding point
(Pi) with the sum of the local (niεi) and global (v·s) penetration
of the point in the object.

Algorithms

In order to test our Benchmarking Suite, we used two collision detec-
tion algorithms, VPS and IST. Both algorithms use a penalty-based
haptic rendering method, which allows colliding objects to penetrate
each other to some degree. Each algorithm uses different penalty val-
ues: the one from VPS is the penetration depth, while the one from IST
is the intersection volume.

First, we explain the algorithms and how they compute force and
torque values they return to our benchmark. After this, we discuss
the output of the Performance Benchmark and the Force and Torque
Quality Benchmark.

the voxmap-pointshell algorithm : The Voxmap-Pointshell
(VPS) algorithm was initially presented by McNeely, Puterbaugh, and
Troy [MPT99]. The algorithm computes collision forces and torques
of potentially big and complex geometries with 1kHz update rates.
To achieve this goal, two types of data structures are generated of-
fline for each colliding object-pair: a voxmap and a pointshell (see
Figure 5.23). In this work, we used the fast and accurate voxmap
generator presented by [Sag+08].

Voxmaps are 3D grids in which each voxel stores a discrete dis-
tance value v ∈ Z to the surface. Pointshells are sets of points uni-
formly distributed on the surface of the object; each point has addi-
tionally an inwards pointing normal vector.

During collision detection, the normal vectors ni of colliding
points Pi—those which are in voxels with v ≥ 0—are summed,
after being weighted by their penetration in the voxmap, yielding
the collision force F. Torques Ti generated by colliding points are
the cross product between forces Fi and point coordinates Pi, all
magnitudes expressed in the pointshell frame, with its origin in with

5.7 excursus : our new benchmarking suite for rigid objects 99

being the center of mass. At the end, these torques Ti are summed
to compute the total torque T.

the inner sphere tree algorithm : Inner Sphere Tree (IST)
[WZ09] is a novel geometric data structure, that provides hierarchical
BVs from the inside of an object. The main idea is to fill the interior
of the model with a set of non-overlapping spheres that approximate
the object’s volume closely. Therefore ISTs and, consequently, the
collision detection algorithm are independent of the geometry com-
plexity; they only depend on the approximation error.

The penetration volume corresponds to the water displacement of
the overlapping parts of the objects and, thus, leads to a physically
motivated and continuous repulsion force. The algorithm determines
all pairs of overlapping spheres and computes a force for each of
them. Summing all these pairwise forces gives the total penalty force
F. Similarly, the torque is computed separately for each pair of inter-
secting spheres and accumulated to obtain the total torque T.

Discussion of the Benchmark Results

In this section we present the results returned from our benchmarks.
The algorithms presented in Section 5.7.4 were used for this propose.

It is very hard to tell which algorithm is better because this is very
dependent on the requirements. Our benchmarking provides a wide
range of test cases to evaluate the given algorithm and return the
computation time and the computed values. In the next sections we
explain the results returned by the tested algorithm.

Figure 5.24: Some of the objects we used in our Performance Benchmark:
A model of a Happy Buddha (1 087 716 polygons), a Chinese
Dragon (1 311 956 polygons), a Circular Box (1 402 640 polygons)
and a Gargoyle (1 726 420 polygons).

results of the performance benchmark

Appart from the distance or the penetration depth between ob-
jects, the performance of the most collision detection libraries mainly
depends on the complexity and the shape of the objects. Figure 5.24

shows some of the objects we used. All objects that are in the public

100 our novell collision detection approach

domain can be accessed on our website7. Within our benchmarks, we
tested a model against a copy of itself. Of course, our benchmark
also supports the use of two different objects, but the first method is
sufficient to draw conclusions about the performance of the libraries.

We tested the libraries on an Intel Core2 CPU 6700 @ 2.66 GHz and
2 GB of RAM running Linux. All source codes were compiled with
gcc 4.3.

0

0.1

0.2

0.3

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3

ti
m

e
 /

 m
ill

is
e
c

distance / bbox

VPS(11M / 8k)
IST (1372k)

IST (827k)
IST (135k)

IST (29k)

0

4

8

12

16

0 2 4 6 8 10

ti
m

e
 /

 m
ill

is
e
c

penetration volume / %

VPS (11M / 8k)
IST (1372k)

IST (827k)
IST (135k)

IST (29k)

Figure 5.25: Performance Benchmark: Example result for Happy Buddha.
The top plot shows the measured average collision response
time for Scenario I (no collision) and the bottom one for Sce-
nario II (collision) (see Section 5.7.2). Distance 0.0 means that
the objects are touching. Volume 1 % means that the intersection
volume is equal to 1 % of the total object volume. The number
in parentheses after IST denotes the number of spheres (see Sec-
tion 5.7.4). The two numbers after VPS denote the number of
voxels and points, respectively (see Section 5.7.4).

An example of a result of the Performance Benchmark is shown in
Figure 5.25, using Happy Buddha as object. Our Performance Bench-
mark facilitates a comparison of different algorithms as well as an
assessment of the behavior of one algorithm, with respect to the ob-
jects complexity.

With the results from the Performance Benchmark it is now pos-
sible to compare collision libraries regarding their collision response
time. These tests can also be used to determine objects or a placement
of two objects which are not ideal for the tested algorithm. It is also
possible to determin the influence of the object complexity or a lower
approximation error on the collision response time.

7 http://cgvr.cs.uni-bremen.de/research/colldet_benchmark/index.shtml

http://cgvr.cs.uni-bremen.de/research/colldet_benchmark/index.shtml

5.7 excursus : our new benchmarking suite for rigid objects 101

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

||F
||

/ |
|F

|| m
ax

Sampling time (s)

VPS IST Linear model Volume model

0 45 90 135 180 225 270 315 360
0

2

4

6

Rotation angle: φ (deg.)

d
=

 ||
T

||
/ |

|F
||

VPS IST

Figure 5.26: Force and Torque Quality Benchmark: On the top, an example
for the normalized collision force vector computed by the tested
algorithms (Scenario I) and on the bottom the orientation of the
vectors (Scenario II).

However, the computation time is not enough to fully assess a colli-
sion detection algorithm. Often, the quality of the collision responses
is another important factor. This is discussed in the next section.

results of the force and torque quality benchmark

As in the case of the Performance Benchmark, all objects and paths
used in the Force and Torque Quality Benchmark (see Figure 5.22)
are available on our website8. We tested them on an Intel Core2Quad
CPU Q9450 @ 2.66 GHz and 3.4 GB of RAM running Linux SLED 11.
The libraries were compiled with gcc 4.3.

For the voxel size s we have chosen a fixed lenght unit u in the
voxelized objects such that H = 60u,h = 30u (Scenario I), R = 30u (a
penetration of 20u is maintained) (Scenario II), c = 20u (Scenario III),
and ρ = 20u (Scenario IV). The number of voxels was chosen to be
728× 24× 303 voxels for the block in Senario I while the cone has
15 669 pointshell points. In Scenario II, we used 491× 816× 491 vox-
els for the cylinder and 12 640 pointshell points for the sphere. In
Scenario III, the number of voxels was chosen to be 1 204× 604× 603
for the holes and 12 474 pointshell points for the pins object. For the
last Scenario, the number of voxels was chosen to be 243× 123× 123
for the holes and 13 295 pointshell points for the pins object.

Figures 5.26 and 5.27 show example plots of the magnitude analy-
sis. The top of Figure 5.26 contains the expected model curves for
ideal force magnitudes in Scenario I. Measured curves are super-
posed to expected curves to give an idea of how reliable they are
derived with respect to these proposed collision response models.
The standard deviation between measured and ideal curves yields
the magnitude deviation σF = 0.043 for VPS and σF = 0.176 for ISTs.

8 http://cgvr.cs.uni-bremen.de/research/colldet_benchmark/index.shtml

http://cgvr.cs.uni-bremen.de/research/colldet_benchmark/index.shtml

102 our novell collision detection approach

In Scenario III, the standard deviation between measured and ideal
curves yields the magnitude deviation σT = 0.169 and σT = 0.112
for the torques, respectively. The bottom of Figure 5.26 shows the
curve ‖T‖‖F‖ , which should be 0 for Scenario II, since ideally no torques
should appear. This quotient gives information about the magnitude
of forces or torques that actually should not occur.

0 45 90 135 180 225 270 315 360
0

10

20
γ

(d
eg

.)

Rotation angle: φ (deg.)

VPS
IST

0 5 10 15 20 25 30
0

0.5

1

||T
||

/ |
|T

|| m
ax

Rotation angle: φ (deg.)

VPS
IST
Linear model
Volume model

Figure 5.27: Force and Torque Quality Benchmark: On the top, an exam-
ple for an average angle between model and measured forces
(Scenario II) and on the bottom the normalized collision torque
vector computed by the tested algorithms (Scenario III).

In Figures 5.28 and 5.29, force and torque components are dis-
played, giving a visual idea of force and torque direction deviations.
The top plot of Figure 5.27 shows this direction deviation for Sce-
nario II, the associated γ values are γF = 2.40 for VPS and γF = 7.64
for ISTs.

Finally, Figure 5.30 shows the results of our noise measurement
of the force in the x-direction in Scenario III. The color coded
time-frequency diagrams visualize the amount, the time, and the
frequency of the signal’s noise. The corresponding ν values are
νF = 0.620 for VPS and νF = 1.12 for ISTs, where values closer to one
denote a minor amount of noise.

All these results show that VPS and IST are very close to their
underlying models and that different haptic rendering algorithms can
be evaluated. From these results we can say that our models for
penetration are suitable. Furthermore, they prove empirically that
our benchmark is vaild. In particular, the benchmark also reveals
significant differences between the algorithms: Whereas ISTs seem to
have a higher standard deviation from the ideal model, VPS tends
to deliver noisier signal quality. The decision between accuracy and
noise could be essential for some applications.

5.7 excursus : our new benchmarking suite for rigid objects 103

0 5 10 15 20 25
−1

0

1
T

x /
||T

|| m
ax

VPS
IST
Ideal

0 5 10 15 20 25
−1

0

1

T
y /

||T
|| m

ax

VPS
IST
Ideal

0 5 10 15 20 25
−1

0

1

T
z /

||T
|| m

ax

Rotation angle: φ (deg.)

VPS
IST
Ideal

Figure 5.28: Force and Torque Quality Benchmark: An example for the col-
lision torque (Scenario III) computed by the tested algorithms.

0 45 90 135 180 225 270 315 360
−1

0

1

F
x /

||F
|| m

ax

VPS
IST
Ideal

0 45 90 135 180 225 270 315 360
−1

0

1

F
y /

||F
|| m

ax

0 45 90 135 180 225 270 315 360
−1

0

1

F
z /

||F
|| m

ax

Rotation angle: φ (deg.)

VPS
IST
Ideal

VPS
IST
Ideal

Figure 5.29: Force and Torque Quality Benchmark: An example for the col-
lision force computed by the tested algorithms (Scenario IV).

104 our novell collision detection approach

Figure 5.30: Force and Torque Quality Benchmark: On the top, the noise in
the force signal of the VPS algorithm and on the bottom noise
in force signal of IST algorithm. The colored picture shows the
time frequency domain: The colors decode the intensity of the
frequency, where dark blue represents an intensity of zero.

5.7 excursus : our new benchmarking suite for rigid objects 105

5.7.5 Conclusions and Future Work

The results maintain the validity of our analytically derived force and
torque models. In addition, they show that quite different collision
detection algorithms can be easily benchmarked with our proposed
methods.

This Benchmarking Suite is published as open source, so it is a
great asset to users who want to figure out the best suited colli-
sion handling scheme to meet their specific requirements, as well
as to researchers who want to compare their algorithms with other
approaches using a standardized benchmark that delivers verifiable
results. Moreover, it helps to identify geometric cases in which the
collision response scheme diverges from the correct results.

In the future, it would be nice to generate a ranking of the differ-
ent measurements, like continuity of forces and torques in magnitude
and direction or the noise of the signals, with respect to psychophysi-
cal cognition. To achieve that, elaborate user studies need to be done,
including testbeds with different haptic devices and investigations
about the perception of the different parameters. Another promising
future project would be to extend our Benchmarking Suite for multi-
body-simulations.

Finally, a standardized Benchmarking Suite for deformable objects
is still missing and would be very helpful for users and researchers.
So far there does not exist a Benchmarking Suite for deformable mod-
els to compare the computed force and torques. Therefore, it is not
possible to compare different approaches with respect to their quality.
Currently all dynamic scenes are stored frame per frame in a separate
file e. g., ply, obj, wrl, and so on. Thus, a user can load a scene file per
file and perform a collision check. However, most commonly used
benchmarks for deformable collision detections contain inaccuracies
like real intersections, although there are unwanted in that scenario
(see Figure 5.14). Therefore it will be essential to develop a robust and
correct collision detection benchmark for deformable collision detec-
tion algorithm, that covers all cases that can occur in a deformation
process. An interesting possibility is the usage of a skeleton repre-
sentation for the object, like in skeleton animation [KJP02; RLN06].
Now the skeleton can be used to deform the object and to determine
collision configurations. In this way self-collisions can be determined
if an object is greatly modified by the skeleton. This approach is only
possible if a skeleton representation can be determined. Furthermore,
some objects can not be deformed in a natural way by a skeleton, e. g.,
a sphere. Another possibility is to move the vertices of mesh individ-
ually. This approach is the most flexible but this will lead to a huge
amount of configurations.

106 our novell collision detection approach

5.8 future work

Nevertheless, our novel collision detection approach for soft bodies
provides still room for improvements as regards the clustering pro-
cess. Right now we are using fuzzy c-means for the subdivision pro-
cess, but like we mentioned in Section 4.5 it is possible that this ap-
proach gets stuck in local optima. Therefore, we should use a robust
clustering approach for the first partitioning step, like BNG. In the
running time critical simulation process we use the very fast fuzzy c-
means algorithm to update the clustering result. This step will make
our approach more robust, so it will perform very fast in all situa-
tions.

Another improvement is to use a principle curve (see Section 5.2.2)
instead of the direction of the first component of the PCA. A principle
curve fits the shape of an object better than a straight line, which will
reduce the number of false-positives. There should be much room for
improvement because this step takes the most time in our collision
detection approach.

Right now we use the Thrust sorting algorithm which does not
make use of the temporal coherence that is inherent in most real
scenes. Every frame the algorithm sorts the whole array from the
beginning. This is, for example, the case if in the virtual scene from
one frame to the next one some objects are moving, but the total order
of the BVs along the sweep axis does not change that much. There-
fore, an adaptive sorting approach will improve the sorting step and
thus, reduce the collision detection time.

Distributing the computation process to more GPUs provides sev-
eral additional problems. If we subdivide the scene into 2 clusters
and we have two GPUs, each GPU can process one cluster. But in
the case of subdividing the scene into 3 clusters, we have to decide
which GPU has to process 2 clusters and which GPU has to process
only one cluster. Assume a computer system has two different GPUs
with widely varying computation performance, therefore, it could be
best to subdivide the scene into 3 clusters and the GPU with highest
computation power should process 2 clusters and the other GPU one
cluster. Consequently, our collision detection approach needs a good
distribution system to distribute the computation processes.

6
T E C H N I C A L D E TA I L S A N D A P P L I C AT I O N S

This chapter gives a more technical view of our novel collision detec-
tion algorithm. We provide the data throughput through each part of
our collision detection approach. Additionally, we show a sequence
diagram, which illustrates the most important object interactions ar-
ranged in time sequence. Furthermore, to proof the functionality of
our collision detection implementation we have implemented them
into a commonly used real-time physics simulation called Bullet.

6.1 data flow

Let us assume that our collision detection is integrated into a physics
simulation. In the first step the physics simulation calculates the new
position for each primitive used in the simulation by applying all
determined forces e. g., acceleration, velocity, gravity, and so on. The
new physics entity—in our case a triangle mesh representation of the
whole scene—is forwarded to our collision detection (see Figure 6.1).
If the simulation is not running or the data are not already on the
GPU, all mesh data points have to be transferred into GPU memory.

Collision Detection Input Primitive Representing Points Fuzzy clustering

Cluster A

PCA

Cluster Z

PCA

For each Cluster
BBox Overlap Test

For each Cluster
Primitive Intersection TestCollision Detection Output

Intersecting primitives
→ Primitives ID

Further collision information
→ Intersection point
→ Intersection line
→ Inter- or intra-object collision

Si
m

ul
at

io
n

Ph
ys

ic
s

en
ti

ty
C

ol
lis

io
n

so
lv

er

Figure 6.1: Data flow through our novel collision detection algorithm. Note
that we show only the most important parts.

Our collision detection agreed upon additional information about
the virtual scene such as primitive representation points, clustering
information, BVs and more. Therefore, our approach performs sev-
eral steps, e. g., clustering process, Sweep-and-Prune, and exact inter-
section tests. All additional data values are stored temporarily on the
GPU. The result of a single collision detection step—all intersecting
primitives—is sent back to the simulation. In the following the simu-

107

108 technical details and applications

lation has to resolve the collisions between all reported primitives in
a physical correct or plausible way.

6.2 sequence diagram

The sequence diagram (see Figure 6.2) shows main parts of our colli-
sion detection approach and the way they interact. Furthermore, the
time flow of the entire process is specified by the sequence diagram.
The activation boxes (light blue vertical rectangles) denote that the
corresponding part of our collision detection is currently processing
a request.

par

Fr
am

e
0

Simulation
Collision

Detection

update Mesh

start collision check

par

intersecting primitives

Mesh

Representation

representation points

Clustering

init clustering

return clustering matrix

PCA

create PCA

transformation matrix

SaP

apply transformation matrix

create bounding volumes

start sweep and prune

overlapping bounding volumes

Intersection

Test

primitive intersection test for all overlapping bounding volumes

intersecting primitives

Fr
am

e
1

update Mesh

start collision check

intersecting primitives

representation points

update clustering

return clustering matrix

create PCA

transformation matrix

apply transformation matrix

create bounding volumes

start sweep and prune

overlapping bounding volumes

primitive intersection test for all overlapping bounding volumes

intersecting primitives

Figure 6.2: Sequence diagram illustrating the most important object interac-
tions arranged in time sequence.

The overall process starts by an update call of the object represen-
tation—in our case a 3 D triangle mesh. After the 3 D triangle mesh
is sent from the Simulation to the Collision Detection, the Simulation can
trigger the process to determine all intersecting primitives. Now our
collision detection will perform all steps to make all intersecting prim-
itives available to the Simulation. At the beginning our collision detec-
tion calls Mesh Representation to calculate the data points to represent
the 3 D triangle mesh. These data points are used within the Clustering

process. Every cluster, from the Clustering process, can be performed
in parallel (see Figure 6.2 the rectangular box labeled with par). For
each cluster we call the PCA and SaP process to determine all overlap-

6.3 implementation 109

ping BVs. All primitives, which BVs overlap, have to be investigated
in more detail. Therefore, we send these primitives to the Intersection

Test process. Every cluster send all intersecting primitives back to
the Collision Detection, which collects all primitives from all parallel
processes and feed these information back into the Simulation. All
frames from 2 onwards are using an update function in the Clustering

process (see Figure 6.2 update clustering function colored in red and
Section 5.1 for more details) to speedup the collision detection pro-
cess.

6.3 implementation

The collision detection approach, including all approaches presented
in this work, all applications, and the Graphical User Interface (GUI)
are implemented in the programming language C++/CUDA. The
main reasons are the high efficiency with respect to computation time
and all libraries are available for C++, especially CUDA. We used
CUDA because, at the time when we started developing, its function-
ality outdid by far OpenCL.

Libraries for collision detection process (required)

Boost lexical cast and tuple data type support

Thrust parallel sorting, prefix sum and reduction algorithm

CUDA programming language for the implementation of our
massive parallel algorithms

Libraries for visualization only (not required)

Qt GUI and platform independent file system access

OpenGL visualization and rendering of the 3 D scene

Table 6.1: A full listing of all used libraries.

6.4 bullet physics 2 .78

Bullet is an open source real-time physics simulation (under zlib li-
cense) developed by Erwin Coumans. Bullet’s main features are the
support of discrete and continuous collision detection including ray
and convex sweep tests. Its supporting concave and convex meshes
and all basic primitives for the collision tests. Furthermore, it pro-
vides a fast and stable rigid body dynamics constraint solver, vehicle

110 technical details and applications

dynamica, character controller and slider, hinge, generic 6-Degree of
Freedom (DoF) and cone twist constraint for ragdolls.

The Bullet Library has been used in many games and movie pro-
ductions, e. g., the Toy Story 3 game developed for Sony PlayStation 3,
Microsoft XBox 360 and Nintendo Wii, use Bullet physics. The digital
visual effects company Weta Digital used Bullet’s rigid body simula-
tion in the A-Team movie.

6.4.1 Disadvantages

Bullet 2.78 supports soft body simulation, e. g., it provides dynam-
ics for cloth, rope and deformable volumes with two-way interaction
with rigid bodies. However, there is no support for collision detection
between two or more soft bodies. Collision detection between rigid
bodies and one soft body object is supported. But most real-world
simulations contains more than just one soft body object. Therefore,
collision detection between many soft bodies should be taken into
account.

In order to overcome this drawback, we integrated our collision de-
tection approach into the Bullet Software Development Kit (SDK). We
will describe this implementation in detail in the following section.

6.5 integration into bullet physics

To replace Bullet’s own collision detection we have to ensure that our
collision detection approach has to be called instead of their built-in.
Therefore, we have to replace all function calls of Bullet’s collision de-
tection inside btCollisionWorld::performDiscreteCollisionDetection() (see
Listing 6.1). Thus, Bullet passes all objects within the scene, stored in
the array m_collisionObj, to our collision detection approach.

/** Set our collision detection algorithm as default collision detection

* algorithm for all discrete collision checks

*/

void btCollisionWorld::performDiscreteCollisionDetection()

{

if(! m_tucIsInit)

m_tucIsInit = m_tucCollDetHandler.initCollDet(m_collisionObj);

/* perform collision detection test for all objects */

m_tucCollDetHandler.doCollisionCheck(m_collisionObj);

} �
Listing 6.1: Register our collision detection in Bullet (btCollisionWorld.cpp)

After each simulation step Bullet perform a collision detection
test. Therefore, Bullet calls the algorithm registered in the function
btCollisionWorld::performDiscreteCollisionDetection(). In the first call
our collision detection approach perform an initialization step. In this
step we initialize the CUDA device and allocate memory for triangles,

6.5 integration into bullet physics 111

BVs and prefix computation results. Therefore, we use the helper
function void tucBtReplaceColl::initNumberFaces(...), which determines
the number of triangles per object and verifies the type of each ob-
ject. At the moment, only two Bullet object types are supported by
our implementation, a triangle mesh (TRIANGLE_MESH_SHAPE_PROXYTYPE)
for rigid body representation and soft bodies (SOFTBODY_SHAPE_PROXYTYPE
). To perform a collision detection test we have to execute void

tucBtReplaceColl::doCollisionCheck(...). Within this function we copy
the new vertices—after a simulation step some objects may move
or deform—from Bullet to the GPU and perform a collision test for
all objects at the same time. Once all of the intersecting primitives
of all objects have been determined, we pass these contact points to
Bullet. Now Bullet can perform a simulation step and resolve all
intersections.

/** Replace bullets collision detection

* supported bullet object types

* - triangle mesh -- TRIANGLE_MESH_SHAPE_PROXYTYPE

* - soft bodies -- SOFTBODY_SHAPE_PROXYTYPE

*/

class tucBtReplaceColl

{

typedef boost::tuple<uint, uint> collPair;

public:

...

/* initialize our coll det (init cuda, memory allocation, ...) */

bool initCollDet(

btAlignedObjectArray<btCollisionObject*> collisionObjects);

/* perform collision test and pass contact points to Bullet */

bool doCollisionCheck(

btAlignedObjectArray<btCollisionObject*> collisionObjects);

private:

/* get vertices from Bullet and copy to GPU */

void updateVertices(

btAlignedObjectArray<btCollisionObject*> collisionObjects);

/* check objects type and count the number of faces */

void initNumberFaces(

btAlignedObjectArray<btCollisionObject*> collisionObjects);

... �
Listing 6.2: Provide all functions to perform a collision detection check and

pass points of contact to Bullet.

6.5.1 Disadvantages

Since Bullet 2.78 is executed entirely on the CPU and our collision
detection is executed completely on the GPU, additional communi-
cation is necessary. So we have to copy all vertices from the host to
the device after each simulation step. Even if we use pinned memory
on the host side, memory transfer from host to device is very time

112 technical details and applications

consuming and slow down the whole simulation process. Due to the
fact, that Bullet does not run on the GPU we have to perform this
memory transfer.

6.6 our collision detection in action

Since we replaced Bullet’s built-in collision detection, it is now pos-
sible to detect collisions between two soft bodies and between soft
and rigid bodies. Figure 6.3 shows some simulations with many soft
bodies falling down into a netting. Like you can see all objects within
the scene are soft bodies and they generally deform. Therefore, we

(a) 5 bunnies (b) 10 bunnies

(c) 20 bunnies (d) 50 gloves

Figure 6.3: Bullet physics using our collision detection approach for soft
body collision detection. Different soft bodies are falling into
a netting. Thus the models are strongly deforming which results
in a huge amount of inter- and intra-collisions.

get the objects vertices from Bullet and move them on the GPU (see
Listing 6.2). As we mentioned in the Section 2.3 we have to deter-
mine all contact points and intersecting primitives, to handle resting
contact and deformations in a physically correct way, and pass these
primitives to Bullet. Bullet solves all the collisions and move the prim-
itives depending on their material properties, like stiffness, bending
constraints, and more.

7
P E R O R AT I O N

In this chapter we will recap the main contributions presented in
this dissertation and furthermore, we will show up where the devel-
opment in the field of collision detection can go. Since all chapters
have a summary section (see Sections 4.7, 5.1.2, 5.7.5 and 5.8) we will
general outline the main contributions and results of our new ap-
proach to provide an overall picture. We would like to mention that
the best collision detection approach and therefore, the focus and the
aim behind, is very much dependent upon the underlying problem.
It would be true to say that there will be no universal collision de-
tection approach for all requirements. The focus of this work is on
collision detection in a highly dynamic virtual environment between
deformable objects. Furthermore, we want to look ahead and spot
and discuss future trends and developments in the field of collision
detection and related fields.

7.1 summary

Interactions with objects and between objects within a virtual envi-
ronment are not possible without a collision detection system and
therefore, collision detection is one of the fundamental technology in
interactive virtual simulations. This dissertation introduced a new
approach for collision detection of dynamically deforming objects
with support for inter-object and intra-object collision detection. Most
rigid body collision detection approaches use static acceleration data
structures, like a Bounding Volume Hierarchy (BVH) or Inner Sphere
Tree (IST). Since static acceleration data structures can become invalid
after a deformation process, our approach avoid such static data struc-
tures. To ensure that a simulation can compute physically correct
forces, self-collisions and resting contact have to be taken into account
in the case of soft body simulation (see Section 2.3). To recognize all
intersecting primitives our approach works on the primitives directly.
In order to avoid unnecessary primitive intersection tests, e. g., prim-
itives which are far apart from each other, we decide to use a topo-
logical method, or more precisely a modified Sweep-and-Prune (SaP)
approach, to exclude non-colliding primitives as early as possible (see
Section 2.7). As sweep direction we decide to use the direction of the
first component of the Principal Component Analysis (PCA), because
the direction of the first principal component maximizes the variance
of primitives, after projection. Furthermore, the direction of the first
component of the PCA will change automatically when the object

113

114 peroration

representation changes after a deformation or moving process. As a
consequence we will get a good sweep direction over the whole simu-
lation process. Using the first principal component as sweep direction
only, will nevertheless produce false-positives, because of the dimen-
sional reduction in the SaP step (see Section 5.2.1). To eliminate this
kind of false-positives we subdivide the scene into connected com-
ponents using fuzzy c-means algorithm. Our algorithm is especially
tailored to be executed massively parallel and therefore, we decide to
use the Graphics Processing Unit (GPU) as computing device. Fur-
thermore, the GPUs were still growing exponentially in performance
due to massive parallelism, while Central Processing Units (CPUs)
hit the serial performance ceiling. Thus, parallelism seems to be a
forward-looking technology of increasing performance and therfore,
parallelism was one of the most important requirements while devel-
oping our new collision detection approach.

In this dissertation, we make several contributions to the area of
collision detection, in particular with regard to deformable collision
detection, the most important are using PCA to determine a good
sweep direction for SaP process and fuzzy c-means for the subdivi-
sion process in the context of a highly interactive and deformable vir-
tual environment. These features make it possible to run simulations
with deformable objects containing a huge amount of primitives at
interactive rates. Furthermore, there are no restrictions relating to the
kind of deformation or movement, or conditions, such as for exam-
ple, the objects have to be watertight. Thanks to the clustering process,
each cluster can be distributed to a different device and therefore, the-
oretical all clusters can be investigated in parallel. The results show
that our algorithm is as fast as other state-of-the-art approaches but
even more flexible to use more than one GPU only.

7.2 where the journey can go?

As stated already in the introduction, virtual environments are
getting more and more complex and objects become more detailed
and accurate. As a result of this, the number of primitives—in the
case of a polygonal object representation (see Chapter 2)—has in-
crease significantly in the last years. Furthermore, new virtual tech-
nologies will become part of our daily life, like the Oculus Rift or
Google Glass. The Oculus Rift, a virtual reality head-mounted dis-
play, opens up a wide range of people the possibility to plunge into
a virtual environment. To simulate a fully immersive and interactive
virtual environment, where the user cannot differentiate between the
real-world and the virtual one, objects have to interact in the virtual
world in the same way like they interact in the real-world. Therefore,
a physically correct behavior of the objects is necessary to guarantee
a high degree of immersion. Currently a major problem is that in

7.2 where the journey can go? 115

the real-world nearly all objects can deform or will break up in its
individual components, if the forces applied to the objects are strong
enough. Thus, soft bodies containing a huge amount of primitives
are becoming increasingly important and new collision detection ap-
proaches should support this type of object.

7.2.1 Quality of Contact Information

Another important objective of the collision handling process is to
compute accurate contact information (penetration depth, penetra-
tion volume, or other) for a physically correct or plausible collision
response. To this day there is no approach for deformable objects
which can compute the penetration volume in real-time but accord-
ing to Fisher and Lin [FL01, Section 5.1], this penetration measure
is “the most complicated yet accurate method” to define the extent
of intersection. Thus, an approach which determines the penetration
volume for deformable objects in a very fast way will improve the
quality of the computed forces and therefore, the quality of the phys-
ical simulation.

7.2.2 Point Clouds

As aforementioned, point clouds become more and more impor-
tant because 3 D scanners are seen in everyday life, e. g., Microsoft’s
Kinect, Google’s Project Tango or a simple webcam [Iza+11; PRD09;
RHL02]. Therefore, collision detection approaches for point clouds
will come into the focus in the future. Since most 3 D scanners
provide point cloud data in real-time, static data structures are not
suitable in most cases because they need an update step in every
frame. This problem is closely related to soft body collision detection
and can profit from the insights gained. The first step is a surface
triangulation on point clouds with normals, to obtain a triangle mesh
based on projections of the local neighborhoods [MRB09]. This trian-
gle mesh can now be handle by a fast soft body collision detection or
a rigid body collision detection approach which provides an update
step for the underlaying acceleration data structure. But till today
the triangulation process cannot be performed in real-time for huge
point clouds.

7.2.3 Haptics

Besides rendering of visual and aural information of the virtual en-
vironment, force-feedback is another important technique to signifi-
cantly increase the degree of immersion and usability within a virtual
environment. Botden, Torab, Buzink, and Jakimowicz [Bot+08] and
Våpenstad, Hofstad, Langø, Mårvik, and Chmarra [Våp+13] showed

116 peroration

that haptic sensations influence psychomotor performance in vir-
tual tasks like laparoscopy. Furthermore, the kind of force-feedback
device is important for virtual interactions. Weller and Zachmann
[WZ12] showed that 6-DoF force-feedback devices outperform 3-DoF
devices significantly, both in user perception and in user performance.
However, nowadays haptic devices are still unhandy, very expensive
and very hard to installation and handling.

Since human being is very sensitive to the haptic feedback—the
temporal resolution of the human tactile sense is very high—a con-
stant update rate of 1000 Hz is needed for hard surfaces will feel
100 % realistic [Mar+96]. Thus, the collision detection process has to
be very fast to reach this update rate. Until now, no exact collision de-
tection approach for deformable objects consists of tens of thousands
of primitives is fast enough to provide a collision response containing
forces and torques at this high frequency.

7.2.4 Natural Interaction

Most current simulations use much simplified models, e. g., to rep-
resent the human body or especially the human hand. Microsoft’s
Kinect is able to track the whole body with fairly well accuracy. The
next consequent step is the precise tracking. Mohr [Moh12] presented
techniques to detect and track the full-DoF human hand motion using
conventional cameras. Furthermore, they presented an artificial hand
model and an approach for a very compact hand motion description.
We are entirely certain that future developments will allow a precise
tracking of the whole human body, including hand, fingers, legs, and
eyes.

There is currently no physical correct or plausible simulation model
available, that allows complex interactions between the human model
and objects, e. g., pick up things from the floor with the index finger
and the thumb. In most current applications objects are pinned to
the virtual hand, if the objects are located in the immediate vicinity
of the virtual hand. In order to realize such precise interactions two
factors are important: a detailed physically-based deformable hand
model, and an accurate simulation of the fingers’ frictional forces.
To determine these forces an exact collision detection approach for
deformable models, which takes all kind of contacts into account,
e. g., collision, self-collision, resting or persistent contacts, is needed.

A P P E N D I X

117

A
R E F E R E N C E S H E E T S

type cuda opencl

terminology terminology

Pr
og

ra
m

an
d

H
ar

dw
ar

e

GPU Device
Multiprocessor Compute Unit
Scalar Core Processing Element

Kernel Kernel
Host Program Host Program
Grid NDRange
Thread-Block Work-Group
Thread Work-Item

M
em

or
y

Global Memory Global Memory
Constant Memory Constant Memory
Texture Memory Texture Memory
Shared (per-block) Memory Local Memory
Local Memory Private Memory

Table A.1: Terminology overview used by NVIDIA CUDA and OpenCL de-
veloped by Khronos Group [KW10; KP12].

119

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following
publications:

[Kös+09] Michael Köster, Peter Novák, David Mainzer, and Bernd
Fuhrmann. “Two Case Studies for Jazzyk BSM”. In: Pro-
ceedings of Agents for Games and Simulations, AGS 2009,
AAMAS 2009 co-located workshop. Volume 5920. LNAI.
Springer Verlag, 2009, pages 31–45. url: http://link.
springer.com/book/10.1007/978-3-642-11198-3.

[MWZ11] David Mainzer, René Weller, and Gabriel Zachmann.
“Kollisionserkennung und natürliche Interaktion in vir"-
tu"-ellen Umgebungen”. In: Virtuelle Techniken im indus-
triellen Umfeld. Edited by Werner Schreiber und Peter
Zimmermann. Springer, 2011. Chapter 3.2, 3.4, pages 33–
38, 114–116. isbn: 978-3-642-20635-1. url: http://www.
springer.com/engineering/signals/book/978-3-642-

20635-1.

[MZ13] David Mainzer and Gabriel Zachmann. “CDFC: Collision
Detection Based on Fuzzy Clustering for Deformable Ob-
jects on GPUs”. In: WSCG 2013 - POSTER Proceedings.
Volume 21. 3. Poster. Plzeň, Czech Republic, July 2013,
pages 5–8.

[MZ14] David Mainzer and Gabriel Zachmann. “Collision De-
tection Based on Fuzzy Scene Subdivision”. In: Sympo-
sium on GPU Computing and Applications (Singapore, 2013).
Edited by Yiyu Cai and Simon See. Volume 3. Springer,
2014. url: https://www.springer.com/engineering/
signals/book/978-981-287-133-6.

[Wel+10] René Weller, David Mainzer, Mikel Sagardia, Thomas
Hulin, Gabriel Zachmann, and Carsten Preusche. “A
benchmarking suite for 6-DOF real time collision re-
sponse algorithms”. In: Proceedings of the 17th ACM Sym-
posium on Virtual Reality Software and Technology (VRST).
Hong Kong: ACM, Nov. 2010, pages 63–70. isbn: 978-
1-4503-0441-2. doi: http : / / doi . acm . org / 10 . 1145 /

1889863.1889874. url: http://cg.in.tu-clausthal.de/
publications.shtml%5C#vrst2010 (cited on page 89).

121

http://link.springer.com/book/10.1007/978-3-642-11198-3
http://link.springer.com/book/10.1007/978-3-642-11198-3
http://www.springer.com/engineering/signals/book/978-3-642-20635-1
http://www.springer.com/engineering/signals/book/978-3-642-20635-1
http://www.springer.com/engineering/signals/book/978-3-642-20635-1
https://www.springer.com/engineering/signals/book/978-981-287-133-6
https://www.springer.com/engineering/signals/book/978-981-287-133-6
http://dx.doi.org/http://doi.acm.org/10.1145/1889863.1889874
http://dx.doi.org/http://doi.acm.org/10.1145/1889863.1889874
http://cg.in.tu-clausthal.de/publications.shtml%5C#vrst2010
http://cg.in.tu-clausthal.de/publications.shtml%5C#vrst2010

122 reference sheets

[Wel+14] René Weller, David Mainzer, Abhishek Srinivas, Matthias
Teschner, and Gabriel Zachmann. “Massively Parallel
Batch Neural Gas for Bounding Volume Hierarchy Con-
struction”. In: Virtual Reality Interactions and Physical Sim-
ulations (VRIPhys). Bremen, Germany: Eurographics As-
sociation, Sept. 2014 (cited on pages 38, 58).

B I B L I O G R A P H Y

[AEG98] Pankaj K. Agarwal, Jeff Erickson, and Leonidas J. Guibas.
“Kinetic Binary Space Partitions for Intersecting Seg-
ments and Disjoint Triangles”. In: Proceedings of the Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms.
SODA ’98. San Francisco, California, USA: Society for In-
dustrial and Applied Mathematics, 1998, pages 107–116.
isbn: 0-89871-410-9. url: http://dl.acm.org/citation.
cfm?id=314613.314688 (cited on page 45).

[Aga+04] Pankaj Agarwal, Leonidas Guibas, An Nguyen, Daniel
Russel, and Li Zhang. “Collision Detection for Deform-
ing Necklaces”. In: Computational Geometry: Theory and
Applications 28 (2004), pages 137–163 (cited on page 57).

[Amd67] Gene M. Amdahl. “Validity of the Single Processor Ap-
proach to Achieving Large Scale Computing Capabili-
ties”. In: Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference. AFIPS ’67 (Spring). Atlantic City,
New Jersey: ACM, 1967, pages 483–485. doi: 10.1145/
1465482.1465560. url: http://doi.acm.org/10.1145/
1465482.1465560 (cited on pages 3, 40).

[And73] Michael R. Anderberg. Cluster Analysis for Applica-
tions. Technical report. DTIC Document, 1973 (cited on
page 48).

[AT11] Nathan Andrysco and Xavier Tricoche. “Implicit and Dy-
namic Trees for High Performance Rendering”. In: Pro-
ceedings of Graphics Interface 2011. GI ’11. St. John’s, New-
foundland, Canada: Canadian Human-Computer Com-
munications Society, 2011, pages 143–150. isbn: 978-1-
4503-0693-5. url: http://dl.acm.org/citation.cfm?
id=1992917.1992941 (cited on page 46).

[AM00] Ulf Assarsson and Tomas Möller. “Optimized View Frus-
tum Culling Algorithms for Bounding Boxes”. In: Journal
of Graphics Tools 5.1 (2000), pages 9–22 (cited on page 33).

[AGA10] Quentin Avril, Valérie Gouranton, and Bruno Arnaldi. “A
Broad Phase Collision Detection Algorithm Adapted to
Multi-cores Architectures”. In: VRIC 2010 Proceedings 12

(2010) (cited on page 20).

[A+09] Quentin Avril, Valérie Gouranton, Bruno Arnaldi, et al.
“New Trends in Collision Detection Performance”. In:
VRIC’09 Proceedings 11 (2009) (cited on page 14).

123

http://dl.acm.org/citation.cfm?id=314613.314688
http://dl.acm.org/citation.cfm?id=314613.314688
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560
http://dl.acm.org/citation.cfm?id=1992917.1992941
http://dl.acm.org/citation.cfm?id=1992917.1992941

124 Bibliography

[BWG03] Kavita Bala, Bruce Walter, and Donald P. Greenberg.
“Combining Edges and Points for Interactive High-
Quality Rendering”. In: ACM Transactions on Graphics
(TOG). Volume 22. 3. ACM. 2003, pages 631–640 (cited
on page 11).

[Bar92] David Baraff. “Dynamic Simulation of Non-Penetrating
Rigid Bodies”. PhD thesis. Cornell University, 1992 (cited
on pages 20, 28).

[BW92] David Baraff and Andrew Witkin. Dynamic Simulation of
Non-penetrating Flexible Bodies. Volume 26. 2. ACM, 1992

(cited on page 14).

[BWK03] David Baraff, Andrew Witkin, and Michael Kass. “Untan-
gling Cloth”. In: ACM Transactions on Graphics (TOG). Vol-
ume 22. 3. ACM. 2003, pages 862–870 (cited on page 4).

[Bar+96] Gill Barequet, Bernard Chazelle, Leonidas J. Guibas,
Joseph S. B. Mitchell, and Ayellet Tal. “BOXTREE: A Hier-
archical Representation for Surfaces in 3D”. In: Computer
Graphics Forum. Volume 15. 3. Wiley Online Library. 1996,
pages 387–396 (cited on page 24).

[Bar97] Anthony C. Barkans. “High Quality Rendering Using
the Talisman Architecture”. In: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hard-
ware. HWWS ’97. Los Angeles, California, USA: ACM,
1997, pages 79–88. isbn: 0-89791-961-0. doi: 10 . 1145 /

258694.258722. url: http://doi.acm.org/10.1145/
258694.258722 (cited on page 8).

[BHW96] Ronen Barzel, John F. Hughes, and Daniel N. Wood.
“Plausible Motion Simulation for Computer Graphics An-
imation”. In: Proceedings of the Eurographics Workshop on
Computer Animation and Simulation ’96. Poitiers, France:
Springer-Verlag New York, Inc., 1996, pages 183–197.
isbn: 3-211-82885-0. url: http://dl.acm.org/citation.
cfm?id=274976.274989 (cited on page 33).

[Bec+90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider,
and Bernhard Seeger. The R*-Tree: An Efficient and Ro-
bust Access Method for Points and Rectangles. Volume 19.
2. ACM, 1990 (cited on pages 24, 27).

[BS09] Norbert Beckmann and Bernhard Seeger. “A Revised R*-
tree in Comparison with Related Index Structures”. In:
Proceedings of the 2009 ACM SIGMOD International Con-
ference on Management of data. ACM. 2009, pages 799–812

(cited on page 27).

http://dx.doi.org/10.1145/258694.258722
http://dx.doi.org/10.1145/258694.258722
http://doi.acm.org/10.1145/258694.258722
http://doi.acm.org/10.1145/258694.258722
http://dl.acm.org/citation.cfm?id=274976.274989
http://dl.acm.org/citation.cfm?id=274976.274989

Bibliography 125

[BH11] Nathan Bell and Jared Hoberock. “Thrust: A
Productivity-Oriented Library for CUDA”. In: GPU
Computing Gems 7 (2011) (cited on pages 58, 59, 78).

[Ben75] Jon Louis Bentley. “Multidimensional Binary Search
Trees Used for Associative Searching”. In: Communica-
tions of the ACM 18.9 (1975), pages 509–517 (cited on
pages 19, 46).

[BF79] Jon Louis Bentley and Jerome H. Friedman. “Data Struc-
tures for Range Searching”. In: ACM Computing Surveys
(CSUR) 11.4 (1979), pages 397–409 (cited on page 19).

[Ber+08] Mark de Berg, Otfried Cheong, Marc van Kreveld, and
Mark Overmars. Computational Geometry: Algorithms and
Applications. 3rd ed. Santa Clara, CA, USA: Springer-
Verlag TELOS, 2008. isbn: 3540779736, 9783540779735

(cited on pages 28, 33, 47).

[Ber98] Gino van den Bergen. “Efficient Collision Detection of
Complex Deformable Models Using AABB Trees”. In: J.
Graph. Tools 2.4 (Jan. 1998), pages 1–13. issn: 1086-7651.
doi: 10.1080/10867651.1997.10487480. url: http://
dx.doi.org/10.1080/10867651.1997.10487480 (cited on
pages 23, 25).

[Ber04] Gino van den Bergen. “Ray Casting against General Con-
vex Objects with Application to Continuous Collision De-
tection”. In: Submitted to Journal of Graphics Tools (2004)
(cited on page 30).

[Bez81] James C. Bezdek. Pattern Recognition with Fuzzy Objec-
tive Function Algorithms. Norwell, MA, USA: Kluwer
Academic Publishers, 1981. isbn: 0306406713 (cited on
pages 48, 50, 75).

[Bot+08] Sanne MBI Botden, Fawaz Torab, Sonja N Buzink, and
Jack J Jakimowicz. “The importance of haptic feedback
in laparoscopic suturing training and the additive value
of virtual reality simulation”. In: Surgical endoscopy 22.5
(2008), pages 1214–1222 (cited on page 115).

[BK04] Mario Botsch and Leif Kobbelt. “An Intuitive Framework
for Real-Time Freeform Modeling”. In: ACM Transactions
on Graphics (TOG). Volume 23. 3. ACM. 2004, pages 630–
634 (cited on page 17).

[BK05] Mario Botsch and Leif Kobbelt. “Real-Time Shape Editing
using Radial Basis Functions”. In: Computer graphics fo-
rum. Volume 24. 3. Wiley Online Library. 2005, pages 611–
621 (cited on page 17).

http://dx.doi.org/10.1080/10867651.1997.10487480
http://dx.doi.org/10.1080/10867651.1997.10487480
http://dx.doi.org/10.1080/10867651.1997.10487480

126 Bibliography

[BB95] Leon Bottou and Yoshua Bengio. “Convergence Proper-
ties of the K-Means Algorithms”. In: Advances in Neural
Information Processing Systems 7. 1995 (cited on page 50).

[BO04] Gareth Bradshaw and Carol O’Sullivan. “Adaptive
Medial-axis Approximation for Sphere-tree Construc-
tion”. In: ACM Transactions on Graphics 23.1 (Jan. 2004),
pages 1–26. issn: 0730-0301. doi: 10.1145/966131.966132.
url: http://doi.acm.org/10.1145/966131.966132
(cited on page 55).

[Bra08] Peter Brass. Advanced Data Structures. 1st edition. New
York, NY, USA: Cambridge University Press, 2008. isbn:
0521880378, 9780521880374 (cited on page 47).

[BFA02] Robert Bridson, Ronald Fedkiw, and John Anderson.
“Robust Treatment of Collisions, Contact and Friction
for Cloth Animation”. In: Proceedings of the 29th An-
nual Conference on Computer Graphics and Interactive Tech-
niques. SIGGRAPH ’02. San Antonio, Texas: ACM, 2002,
pages 594–603. isbn: 1-58113-521-1. doi: 10.1145/566570.
566623. url: http://doi.acm.org/10.1145/566570.
566623 (cited on pages 4, 15, 16).

[Bro+10] Andre R. Brodtkorb, Christopher Dyken, Trond R. Ha-
gen, Jon M. Hjelmervik, and Olaf O. Storaasli. “State-of-
the-art in Heterogeneous Computing”. In: Sci. Program.
18.1 (Jan. 2010), pages 1–33. issn: 1058-9244. url: http:
//dl.acm.org/citation.cfm?id=1804799.1804800 (cited
on page 3).

[BHS13] André R. Brodtkorb, Trond R. Hagen, and Martin L.
SæTra. “Graphics Processing Unit (GPU) Programming
Strategies and Trends in GPU Computing”. In: J. Parallel
Distrib. Comput. 73.1 (Jan. 2013), pages 4–13. issn: 0743-
7315. doi: 10.1016/j.jpdc.2012.04.003. url: http:
//dx.doi.org/10.1016/j.jpdc.2012.04.003 (cited on
page 3).

[Buc+04] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman,
Kayvon Fatahalian, Mike Houston, and Pat Hanrahan.
“Brook for GPUs: Stream Computing on Graphics Hard-
ware”. In: ACM Transactions on Graphics (TOG). Vol-
ume 23. 3. ACM. 2004, pages 777–786 (cited on page 34).

[Can86] John Canny. “Collision Detection for Moving Polyhedra”.
In: Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on 2 (1986), pages 200–209 (cited on page 30).

[CHH02] Nathan A. Carr, Jesse D. Hall, and John C. Hart. “The Ray
Engine”. In: Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS Conference on Graphics Hardware. HWWS ’02.

http://dx.doi.org/10.1145/966131.966132
http://doi.acm.org/10.1145/966131.966132
http://dx.doi.org/10.1145/566570.566623
http://dx.doi.org/10.1145/566570.566623
http://doi.acm.org/10.1145/566570.566623
http://doi.acm.org/10.1145/566570.566623
http://dl.acm.org/citation.cfm?id=1804799.1804800
http://dl.acm.org/citation.cfm?id=1804799.1804800
http://dx.doi.org/10.1016/j.jpdc.2012.04.003
http://dx.doi.org/10.1016/j.jpdc.2012.04.003
http://dx.doi.org/10.1016/j.jpdc.2012.04.003

Bibliography 127

Saarbrucken, Germany: Eurographics Association, 2002,
pages 37–46. isbn: 1-58113-580-7. url: http://dl.acm.
org/citation.cfm?id=569046.569052 (cited on pages 34,
38).

[Cha84] Bernard Chazelle. “Convex Partitions of Polyhedra: A
Lower Bound and Worst-Case Optimal Algorithm”. In:
SIAM Journal on Computing 13.3 (1984), pages 488–507

(cited on page 12).

[CWK03] Yi-King Choi, Wenping Wang, and Myung-Soo Kim. “Ex-
act Collision Detection of Two Moving Ellipsoids under
Rational Motions”. In: Robotics and Automation, 2003. Pro-
ceedings. ICRA’03. IEEE International Conference on. Vol-
ume 1. IEEE. 2003, pages 349–354 (cited on page 23).

[CS92] Yiorgos Chrysanthou and Mel Slater. “Computing Dy-
namic Changes to BSP Trees”. In: Computer Graphics Fo-
rum. Volume 11. 3. Wiley Online Library. 1992, pages 321–
332 (cited on page 20).

[CW96] Kelvin Chung and Wenping Wang. “Quick Collision De-
tection of Polytopes in Virtual Environments”. In: Pro-
ceedings of the ACM Symposium on Virtual Reality Software
and Technology (VRST 96). 1996, pages 125–131 (cited on
page 26).

[Cla76] James H. Clark. “Hierarchical Geometric Models for Vis-
ible Surface Algorithms”. In: Communications of the ACM
19.10 (1976), pages 547–554 (cited on page 33).

[Cla94] Kenneth L. Clarkson. “More Output-Sensitive Geomet-
ric Algorithms”. In: Foundations of Computer Science,
1994 Proceedings., 35th Annual Symposium on. IEEE. 1994,
pages 695–702 (cited on page 8).

[Coh+95] Jonathan D. Cohen, Ming C. Lin, Dinesh Manocha, and
Madhav Ponamgi. “I-COLLIDE: An Interactive and Ex-
act Collision Detection System for Large-Scale Environ-
ments”. In: Proceedings of the 1995 symposium on Interactive
3D graphics. I3D ’95. Monterey, California, United States:
ACM, 1995, 189–ff. isbn: 0-89791-736-7. doi: 10 . 1145 /

199404.199437. url: http://doi.acm.org/10.1145/
199404.199437 (cited on page 20).

[Con43] Luigi Frederico Conte di Menabrea. “Sketch of the Ana-
lytical Engine Invented by Charles Babbage from the Bib-
liothèque Universelle de Genève, October, 1842, No. 82”.
In: Scientific Memoirs, (Translated with notes by Ada Augusta
Lovelace) (1843) (cited on page 2).

http://dl.acm.org/citation.cfm?id=569046.569052
http://dl.acm.org/citation.cfm?id=569046.569052
http://dx.doi.org/10.1145/199404.199437
http://dx.doi.org/10.1145/199404.199437
http://doi.acm.org/10.1145/199404.199437
http://doi.acm.org/10.1145/199404.199437

128 Bibliography

[Coo67] Steven A. Coons. Surfaces for Computer Aided Design of
Space Forms. Technical report. DTIC Document, 1967

(cited on page 11).

[Cot+06] Marie Cottrell, Barbara Hammer, Alexander Hasenfuß,
and Thomas Villmann. “Batch and Median Neural Gas”.
In: Neural Networks 19 (July 2006), pages 762–771. issn:
0893-6080 (cited on pages 53, 54).

[Cou05] Erwin Coumans. Continuous Collision Detection and
Physics. Technical report. Sony Computer Entertainment,
Aug. 2005 (cited on pages 29, 30).

[Cou12] Erwin Coumans. Bullet Physics Library. http : / /

bulletphysics.com. 2012 (cited on page 9).

[Cou01] Murilo G. Coutinho. Dynamic Simulations of Multibody
Systems. Springer, 2001 (cited on page 14).

[Cre10] Ryan Henson Creighton. Unity 3D Game Development
by Example: A Seat-of-Your-Pants Manual for Building Fun,
Groovy Little Games Quickly. Packt Publishing Ltd, 2010

(cited on page 9).

[CTM08] Sean Curtis, Rasmus Tamstorf, and Dinesh Manocha.
“Fast Collision Detection for Deformable Models Using
Representative-triangles”. In: Proceedings of the 2008 Sym-
posium on Interactive 3D Graphics and Games. I3D ’08. Red-
wood City, California: ACM, 2008, pages 61–69. isbn: 978-
1-59593-983-8. doi: 10.1145/1342250.1342260. url: http:
//doi.acm.org/10.1145/1342250.1342260 (cited on
page 10).

[Deb+01] Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani,
and Alan H. Barr. “Dynamic Real-Time Deformations us-
ing Space & Time Adaptive Sampling”. In: Proceedings
of the 28th annual conference on Computer graphics and in-
teractive techniques. ACM. 2001, pages 31–36 (cited on
page 18).

[DB13] Crispin Deul and Jan Bender. “Physically-Based Charac-
ter Skinning.” In: VRIPHYS 13 (2013), pages 25–34 (cited
on pages 18, 78).

[Dje+07] Peter Djeu, Warren Hunt, Rui Wang, Ikrima Elhassan,
Gordon Stoll, and William R. Mark. Razor: An Architec-
ture for Dynamic Multiresolution Ray Tracing. Computer
Science Department, University of Texas at Austin, 2007

(cited on page 34).

[Don+98] Jack J. Dongarra, Iain S. Duff, Danny C. Sorensen, and
Henk A. Van der Vorst. Numerical linear algebra on high-
performance computers. Volume 7. Siam, 1998 (cited on
page 42).

http://bulletphysics.com
http://bulletphysics.com
http://dx.doi.org/10.1145/1342250.1342260
http://doi.acm.org/10.1145/1342250.1342260
http://doi.acm.org/10.1145/1342250.1342260

Bibliography 129

[Dru+10] Evan Drumwright, John Hsu, Nathan Koenig, and Dylan
Shell. “Extending Open Dynamics Engine for Robotics
Simulation”. In: Simulation, Modeling, and Programming for
Autonomous Robots. Springer, 2010, pages 38–50 (cited on
page 9).

[Dub87] Richard C. Dubes. “How Many Clusters Are
Best?&Mdash;an Experiment”. In: Pattern Recogn.
20.6 (Nov. 1987), pages 645–663. issn: 0031-3203.
doi: 10 . 1016 / 0031 - 3203(87) 90034 - 3. url: http :

//dx.doi.org/10.1016/0031-3203(87)90034-3 (cited on
page 48).

[DHS12] Richard O. Duda, Peter E. Hart, and David G. Stork.
Pattern Classification. John Wiley & Sons, 2012 (cited on
pages 48, 50).

[Ebe00] David Eberly. “Intersection of Cylinders”. In: Geometric
Tools, Inc (2000) (cited on page 23).

[Ebe02] David Eberly. “Intersection of a Sphere and a Cone”. In:
Geometric Tools. Inc (2002) (cited on page 23).

[Ebe03] David H. Eberly. Game Physics. Elsevier, 2003 (cited on
page 14).

[ES99] Jens Eckstein and Elmar Schömer. “Dynamic Collision
Detection in Virtual Reality Applications”. In: Proc. The
7-th Int’l Conf. in Central Europe on Comp. Graphics, Vis.
and Interactive Digital Media’99 (WSCG’99). Citeseer. 1999,
pages 71–78 (cited on pages 7, 30).

[EM81] Herbert Edelsbrunner and Hermann A. Maurer. “On
the Intersection of Orthogonal Objects”. In: Information
Processing Letters 13.4 (1981), pages 177–181 (cited on
page 19).

[Eri05] Christer Ericson. Real-Time Collision Detection (The Mor-
gan Kaufmann Series In Interactive 3-D Technology). 1st edi-
tion. City: Morgan Kaufmann, Jan. 2005, page 632. isbn:
1558607323 (cited on pages 2, 5, 7, 8, 13, 14, 17, 19, 74).

[Far+08] Reza Farivar, Daniel Rebolledo, Ellick Chan, and Roy H.
Campbell. “A Parallel Implementation of K-Means Clus-
tering on GPUs.” In: PDPTA. 2008, pages 340–345 (cited
on page 52).

[Fau+12] François Faure, Christian Duriez, Hervé Delingette,
Jérémie Allard, Benjamin Gilles, Stéphanie Marchesseau,
Hugo Talbot, Hadrien Courtecuisse, Guillaume Bous-
quet, Igor Peterlik, et al. “SOFA: A Multi-Model Frame-
work for Interactive Physical Simulation”. In: Soft Tis-
sue Biomechanical Modeling for Computer Assisted Surgery.
Springer, 2012, pages 283–321 (cited on page 9).

http://dx.doi.org/10.1016/0031-3203(87)90034-3
http://dx.doi.org/10.1016/0031-3203(87)90034-3
http://dx.doi.org/10.1016/0031-3203(87)90034-3

130 Bibliography

[Fig+10] Mauro Figueiredo, João Oliveira, Bruno Araújo, and João
Pereira. “An Efficient Collision Detection Algorithm for
Point Cloud Models”. In: 20th International conference on
Computer Graphics and Vision. Volume 43. Citeseer. 2010,
page 44 (cited on page 12).

[FL01] Susan Fisher and Ming C. Lin. “Fast Penetration Depth
Estimation for Elastic Bodies Using Deformed Dis-
tance Fields”. In: Proc. International Conf. on Intelligent
Robots and Systems (IROS). 2001, pages 330–336 (cited on
pages 54, 115).

[LMT91] Benoit La-fleur, Nadia Magnenat-Thalmann, and Daniel
Thalmann. “Cloth Animation with Self-Collision Detec-
tion”. In: Modeling in Computer Graphics. Springer, 1991,
pages 179–187 (cited on page 15).

[Fly72] Michael J. Flynn. “Some Computer Organizations and
Their Effectiveness”. In: IEEE Trans. Comput. 21.9 (Sept.
1972), pages 948–960. issn: 0018-9340. doi: 10.1109/TC.
1972.5009071. url: http://dx.doi.org/10.1109/TC.
1972.5009071 (cited on page 3).

[Fol+94] James D. Foley, Andries Van Dam, Steven K. Feiner,
John F. Hughes, and Richard L. Phillips. Introduction to
Computer Graphics. Volume 55. Addison-Wesley Reading,
1994 (cited on pages 8, 14).

[FS05] Tim Foley and Jeremy Sugerman. “KD-tree Acceleration
Structures for a GPU Raytracer”. In: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS Conference on Graph-
ics Hardware. HWWS ’05. Los Angeles, California: ACM,
2005, pages 15–22. isbn: 1-59593-086-8. doi: 10 . 1145 /

1071866.1071869. url: http://doi.acm.org/10.1145/
1071866.1071869 (cited on page 34).

[FAW10] R. Fraedrich, S. Auer, and R. Westermann. “Efficient
High-Quality Volume Rendering of SPH Data”. In: Visu-
alization and Computer Graphics, IEEE Transactions on 16.6
(Nov. 2010), pages 1533–1540. issn: 1077-2626. doi: 10.
1109/TVCG.2010.148 (cited on page 36).

[FKN80] Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. “On
Visible Surface Generation by a Priori Tree Structures”.
In: Proceedings of the 7th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’80. Seat-
tle, Washington, USA: ACM, 1980, pages 124–133. isbn:
0-89791-021-4. doi: 10.1145/800250.807481. url: http:
/ / doi . acm . org / 10 . 1145 / 800250 . 807481 (cited on
page 19).

http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1145/1071866.1071869
http://dx.doi.org/10.1145/1071866.1071869
http://doi.acm.org/10.1145/1071866.1071869
http://doi.acm.org/10.1145/1071866.1071869
http://dx.doi.org/10.1109/TVCG.2010.148
http://dx.doi.org/10.1109/TVCG.2010.148
http://dx.doi.org/10.1145/800250.807481
http://doi.acm.org/10.1145/800250.807481
http://doi.acm.org/10.1145/800250.807481

Bibliography 131

[Fuk90] Keinosuke Fukunaga. Introduction to Statistical Pattern
Recognition. Academic press, 1990 (cited on page 48).

[GDO00] Fabio Ganovelli, John Dingliana, and Carol O’Sullivan.
“BucketTree: Improving Collision Detection Between De-
formable Objects”. In: Proc. of Spring Conference on Com-
puter Graphics SCCG’00. Volume 11. 2000 (cited on
page 19).

[Gär99] Bernd Gärtner. “Fast and Robust Smallest Enclosing
Balls”. In: ESA. Edited by Jaroslav Nesetril. Volume 1643.
Lecture Notes in Computer Science. Springer, 1999,
pages 325–338. isbn: 3-540-66251-0. url: http://link.
springer.de/link/service/series/0558/bibs/1643/

16430325.htm (cited on page 57).

[Gay+05] Russell Gayle, Paul Segars, Ming C. Lin, and Dinesh
Manocha. “Path Planning for Deformable Robots in
Complex Environments”. In: Robotics: science and systems.
Volume 2005. Citeseer. 2005, pages 225–232 (cited on
page 33).

[GF90] Elmer G. Gilbert and C.-P. Foo. “Computing the Distance
Between General Convex Objects in Three-Dimensional
Space”. In: Robotics and Automation, IEEE Transactions on
6.1 (1990), pages 53–61 (cited on page 26).

[GJK88] Elmer G. Gilbert, Daniel W. Johnson, and S. Sathiya
Keerthi. “A Fast Procedure for Computing the Distance
Between Complex Objects in Three-Dimensional Space”.
In: Robotics and Automation, IEEE Journal of 4.2 (1988),
pages 193–203 (cited on page 26).

[GS87] Jeffrey Goldsmith and John Salmon. “Automatic Cre-
ation of Object Hierarchies for Ray Tracing”. In: Com-
puter Graphics and Applications, IEEE 7.5 (1987), pages 14–
20 (cited on pages 24, 34).

[GV12] Gene H. Golub and Charles F. Van Loan. Matrix Compu-
tations. Volume 3. JHU Press, 2012 (cited on page 74).

[GH77] A. D. Gordon and J. T. Henderson. “An Algorithm for
Euclidean Sum of Squares Classification”. In: Biometrics
(1977), pages 355–362 (cited on page 50).

[GSF99] Craig Gotsman, Oded Sudarsky, and Jeffrey A. Fayman.
“Optimized Occlusion Culling using Five-Dimensional
Subdivision”. In: Computers & Graphics 23.5 (1999),
pages 645–654. issn: 0097-8493. doi: http : / / dx . doi .

org / 10 . 1016 / S0097 - 8493(99) 00088 - 6. url: http :

/ / www . sciencedirect . com / science / article / pii /

S0097849399000886 (cited on page 33).

http://link.springer.de/link/service/series/0558/bibs/1643/16430325.htm
http://link.springer.de/link/service/series/0558/bibs/1643/16430325.htm
http://link.springer.de/link/service/series/0558/bibs/1643/16430325.htm
http://dx.doi.org/http://dx.doi.org/10.1016/S0097-8493(99)00088-6
http://dx.doi.org/http://dx.doi.org/10.1016/S0097-8493(99)00088-6
http://www.sciencedirect.com/science/article/pii/S0097849399000886
http://www.sciencedirect.com/science/article/pii/S0097849399000886
http://www.sciencedirect.com/science/article/pii/S0097849399000886

132 Bibliography

[GLM96] Stefan Gottschalk, Ming C. Lin, and Dinesh Manocha.
“OBBTree: A Hierarchical Structure for Rapid Interfer-
ence Detection”. In: Proceedings of the 23rd Annual Confer-
ence on Computer Graphics and Interactive Techniques. SIG-
GRAPH ’96. New York, NY, USA: ACM, 1996, pages 171–
180. isbn: 0-89791-746-4. doi: 10.1145/237170.237244.
url: http://doi.acm.org/10.1145/237170.237244
(cited on pages 10, 23, 24, 92).

[GLM05] Naga K. Govindaraju, Ming C. Lin, and Dinesh
Manocha. “Quick-cullide: Fast inter-and intra-object colli-
sion culling using graphics hardware”. In: Virtual Reality,
2005. Proceedings. VR 2005. IEEE. IEEE. 2005, pages 59–66

(cited on page 32).

[GKM93] Ned Greene, Michael Kass, and Gavin Miller. “Hierarchi-
cal Z-buffer Visibility”. In: Proceedings of the 20th annual
conference on Computer graphics and interactive techniques.
ACM. 1993, pages 231–238 (cited on page 33).

[GGK06] Alexander Greß, Michael Guthe, and Reinhard Klein.
“GPU-based Collision Detection for Deformable Param-
eterized Surfaces”. In: Computer Graphics Forum. Vol-
ume 25. 3. Wiley Online Library. 2006, pages 497–506

(cited on pages 10, 11, 32).

[GZ06] Alexander Greß and Gabriel Zachmann. “GPU-ABiSort:
Optimal Parallel Sorting on Stream Architectures”. In:
Proceedings of the 20th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). Rhodes Island,
Greece, 25–29 April 2006 (cited on page 38).

[GNZ03] Leonidas J. Guibas, An Nguyen, and Li Zhang. “Zono-
topes As Bounding Volumes”. In: Proceedings of the Four-
teenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms. SODA ’03. Baltimore, Maryland: Society for In-
dustrial and Applied Mathematics, 2003, pages 803–812.
isbn: 0-89871-538-5. url: http://dl.acm.org/citation.
cfm?id=644108.644241 (cited on page 23).

[Gus88] John L. Gustafson. “Reevaluating Amdahl’s Law”. In:
Communications of the ACM 31 (1988), pages 532–533

(cited on page 3).

[Gut84] Antonin Guttman. R-Trees: A Dynamic Index Structure for
Spatial Searching. Volume 14. 2. ACM, 1984 (cited on
page 19).

[Hah88] James K. Hahn. “Realistic Animation of Rigid Bodies”. In:
ACM SIGGRAPH Computer Graphics. Volume 22. 4. ACM.
1988, pages 299–308 (cited on pages 2, 23).

http://dx.doi.org/10.1145/237170.237244
http://doi.acm.org/10.1145/237170.237244
http://dl.acm.org/citation.cfm?id=644108.644241
http://dl.acm.org/citation.cfm?id=644108.644241

Bibliography 133

[HHV06] Barbara Hammer, Alexander Hasenfuss, and Thomas
Villmann. “Magnification Control for Batch Neural Gas”.
In: ESANN. 2006, pages 7–12. url: http://www.dice.ucl.
ac.be/Proceedings/esann/esannpdf/es2006- 83.pdf

(cited on page 56).

[Har05] Mark Harris. “Fast Fluid Dynamics Simulation on the
GPU”. In: ACM SIGGRAPH 2005 Courses. SIGGRAPH
’05. Los Angeles, California: ACM, 2005. doi: 10.1145/
1198555.1198790. url: http://doi.acm.org/10.1145/
1198555.1198790 (cited on page 38).

[Har+03] Mark J. Harris, William V. Baxter, Thorsten Scheuermann,
and Anselmo Lastra. “Simulation of Cloud Dynamics
on Graphics Hardware”. In: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware.
Eurographics Association. 2003, pages 92–101 (cited on
page 38).

[HFB12] A. H. Hassan, Christopher J. Fluke, and David G. Barnes.
“A Distributed GPU-based Framework for real-time 3D
Volume Rendering of Large Astronomical Data Cubes”.
In: Publications of the Astronomical Society of Australia 29.03

(2012), pages 340–351 (cited on page 36).

[HS89] Trevor Hastie and Werner Stuetzle. “Principal Curves”.
In: Journal of the American Statistical Association 84.406

(1989), pages 502–516 (cited on page 75).

[Hat84] IItevor Hattie. “Principal Curves and Surfaces”. In: (1984)
(cited on page 75).

[He99] Taosong He. “Fast Collision Detection Using QuOSPO
Trees”. In: Proceedings of the 1999 Symposium on Interactive
3D Graphics. I3D ’99. Atlanta, Georgia, USA: ACM, 1999,
pages 55–62. isbn: 1-58113-082-1. doi: 10.1145/300523.
300529. url: http://doi.acm.org/10.1145/300523.
300529 (cited on page 23).

[Hel97] Martin Held. “Erit: A Collection of Efficient and Reliable
Intersection Tests”. In: Journal of Graphics Tools 2.4 (1997),
pages 25–44 (cited on pages 23, 81).

[HKM95] Martin Held, James T. Klosowski, and Joseph S. B.
Mitchell. “Evaluation of Collision Detection Methods for
Virtual Reality Fly-Throughs”. In: In Canadian Conference
on Computational Geometry. 1995, pages 205–210 (cited on
pages 7, 19).

[HKM96] Martin Held, James T. Klosowski, and Joseph S. B.
Mitchell. “Collision Detection for Fly-throughs in Virtual
Environments”. In: Proceedings of the Twelfth Annual Sym-
posium on Computational Geometry. SCG ’96. Philadelphia,

http://www.dice.ucl.ac.be/Proceedings/esann/esannpdf/es2006-83.pdf
http://www.dice.ucl.ac.be/Proceedings/esann/esannpdf/es2006-83.pdf
http://dx.doi.org/10.1145/1198555.1198790
http://dx.doi.org/10.1145/1198555.1198790
http://doi.acm.org/10.1145/1198555.1198790
http://doi.acm.org/10.1145/1198555.1198790
http://dx.doi.org/10.1145/300523.300529
http://dx.doi.org/10.1145/300523.300529
http://doi.acm.org/10.1145/300523.300529
http://doi.acm.org/10.1145/300523.300529

134 Bibliography

Pennsylvania, USA: ACM, 1996, pages 513–514. isbn: 0-
89791-804-5. doi: 10.1145/237218.237428. url: http://
doi.acm.org/10.1145/237218.237428 (cited on page 29).

[HP12] John L. Hennessy and David A. Patterson. Computer Ar-
chitecture: A Quantitative Approach. Elsevier, 2012 (cited on
page 2).

[H+09] Everton Hermann, Bruno Raffin, François Faure, et al.
“Interactive Physical Simulation on Multicore Architec-
tures”. In: Eurographics Workhop on Parallel Graphics and
Visualization. 2009 (cited on page 31).

[Hor+07] Daniel Reiter Horn, Jeremy Sugerman, Mike Houston,
and Pat Hanrahan. “Interactive k-D Tree GPU Raytrac-
ing”. In: Proceedings of the 2007 symposium on Interactive
3D graphics and games. ACM. 2007, pages 167–174 (cited
on page 34).

[HZQ01] Gao Shuming Wan Huagen, Fan Zhaowei, and Peng Qun-
sheng. “A Parallel Collision Detection Algorithm Based
on Hybrid Bounding Volume Hierarchy”. In: CAD/Graph-
ics2001, August (2001) (cited on page 31).

[Hub95] Philip M. Hubbard. “Collision Detection for Interactive
Graphics Applications”. In: IEEE Transactions on Visual-
ization and Computer Graphics 1.3 (Sept. 1995), pages 218–
230 (cited on page 55).

[Hub96] Philip M. Hubbard. “Approximating Polyhedra with
Spheres for Time-critical Collision Detection”. In: ACM
Trans. Graph. 15.3 (July 1996), pages 179–210. issn: 0730-
0301. doi: 10.1145/231731.231732. url: http://doi.
acm.org/10.1145/231731.231732 (cited on pages 23, 33).

[IMH05] Takeo Igarashi, Tomer Moscovich, and John F. Hughes.
“As-rigid-as-possible Shape Manipulation”. In: ACM SIG-
GRAPH 2005 Papers. SIGGRAPH ’05. Los Angeles, Cal-
ifornia: ACM, 2005, pages 1134–1141. doi: 10 . 1145 /

1186822.1073323. url: http://doi.acm.org/10.1145/
1186822.1073323 (cited on page 17).

[Int12] Epic Games International. Unreal Engine Documentation.
https://docs.unrealengine.com/latest/INT/. 2012

(cited on page 9).

[Iza+11] Shahram Izadi, David Kim, Otmar Hilliges, David
Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie
Shotton, Steve Hodges, Dustin Freeman, Andrew Davi-
son, and Andrew Fitzgibbon. “KinectFusion: Real-time
3D Reconstruction and Interaction Using a Moving
Depth Camera”. In: Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology.

http://dx.doi.org/10.1145/237218.237428
http://doi.acm.org/10.1145/237218.237428
http://doi.acm.org/10.1145/237218.237428
http://dx.doi.org/10.1145/231731.231732
http://doi.acm.org/10.1145/231731.231732
http://doi.acm.org/10.1145/231731.231732
http://dx.doi.org/10.1145/1186822.1073323
http://dx.doi.org/10.1145/1186822.1073323
http://doi.acm.org/10.1145/1186822.1073323
http://doi.acm.org/10.1145/1186822.1073323
https://docs.unrealengine.com/latest/INT/

Bibliography 135

UIST ’11. Santa Barbara, California, USA: ACM, 2011,
pages 559–568. isbn: 978-1-4503-0716-1. doi: 10 . 1145 /

2047196.2047270. url: http://doi.acm.org/10.1145/
2047196.2047270 (cited on pages 11, 115).

[JMF99] Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn.
“Data Clustering: A Review”. In: ACM computing surveys
(CSUR) 31.3 (1999), pages 264–323 (cited on page 48).

[JP99] Doug L. James and Dinesh K. Pai. “ArtDefo: Accurate
Real Time Deformable Objects”. In: Proceedings of the 26th
Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’99. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 1999, pages 65–
72. isbn: 0-201-48560-5. doi: 10 . 1145 / 311535 . 311542.
url: http://dx.doi.org/10.1145/311535.311542 (cited
on page 17).

[JT05] Doug L. James and Christopher D. Twigg. “Skinning
Mesh Animations”. In: ACM SIGGRAPH 2005 Papers.
SIGGRAPH ’05. Los Angeles, California: ACM, 2005,
pages 399–407. doi: 10 . 1145 / 1186822 . 1073206. url:
http://doi.acm.org/10.1145/1186822.1073206 (cited
on page 18).

[Jam10] Ondrej Jamriška. “Interactive Ray Tracing of Distance
Fields”. In: 14th Central European Seminar on Computer
Graphics. Citeseer. 2010, page 91 (cited on page 36).

[JTT01] Pablo Jiménez, Federico Thomas, and Carme Torras. “3D
Collision Detection: A Survey”. In: Computers & Graphics
25.2 (2001), pages 269–285 (cited on page 14).

[Jol05] I. Jolliffe. Principal Component Analysis. Wiley Online Li-
brary, 2005 (cited on page 74).

[Kan+13] Yoon-Sig Kang, Jae-Ho Nah, Woo-Chan Park, and Sung-
Bong Yang. “gkDtree: A Group-based Parallel Update
Kd-tree for Interactive Ray Tracing”. In: J. Syst. Archit.
59.3 (Mar. 2013), pages 166–175. issn: 1383-7621. doi: 10.
1016/j.sysarc.2011.06.003. url: http://dx.doi.org/
10.1016/j.sysarc.2011.06.003 (cited on page 34).

[KR09] Leonard Kaufman and Peter J. Rousseeuw. Finding
Groups in Data: An Introduction to Cluster Analysis. Vol-
ume 344. John Wiley & Sons, 2009 (cited on page 48).

[KK86] Timothy L. Kay and James T. Kajiya. “Ray Tracing Com-
plex Scenes”. In: volume 20. 4. New York, NY, USA:
ACM, Aug. 1986, pages 269–278. doi: 10.1145/15886.
15916. url: http://doi.acm.org/10.1145/15886.15916
(cited on page 34).

http://dx.doi.org/10.1145/2047196.2047270
http://dx.doi.org/10.1145/2047196.2047270
http://doi.acm.org/10.1145/2047196.2047270
http://doi.acm.org/10.1145/2047196.2047270
http://dx.doi.org/10.1145/311535.311542
http://dx.doi.org/10.1145/311535.311542
http://dx.doi.org/10.1145/1186822.1073206
http://doi.acm.org/10.1145/1186822.1073206
http://dx.doi.org/10.1016/j.sysarc.2011.06.003
http://dx.doi.org/10.1016/j.sysarc.2011.06.003
http://dx.doi.org/10.1016/j.sysarc.2011.06.003
http://dx.doi.org/10.1016/j.sysarc.2011.06.003
http://dx.doi.org/10.1145/15886.15916
http://dx.doi.org/10.1145/15886.15916
http://doi.acm.org/10.1145/15886.15916

136 Bibliography

[Kég99] Balázs Kégl. “Principal Curves: Learning, Design, and
Applications”. PhD thesis. Citeseer, 1999 (cited on
pages 76, 78).

[Kég+00] Balázs Kégl, Adam Krzyzak, Tamás Linder, and Kenneth
Zeger. “Learning and Design of Principal Curves”. In:
Pattern Analysis and Machine Intelligence, IEEE Transactions
on 22.3 (2000), pages 281–297 (cited on pages 75, 76).

[KKP05] James Keller, Raghu Krisnapuram, and Nikhil R. Pal.
Fuzzy Models and Algorithms for Pattern Recognition and
Image Processing. Volume 4. Springer, 2005 (cited on
page 48).

[KR03] Byungmoon Kim and Jarek Rossignac. “Collision Predic-
tion for Polyhedra Under Screw Motions”. In: Proceedings
of the Eighth ACM Symposium on Solid Modeling and Appli-
cations. SM ’03. Seattle, Washington, USA: ACM, 2003,
pages 4–10. isbn: 1-58113-706-0. doi: 10.1145/781606.
781612. url: http://doi.acm.org/10.1145/781606.
781612 (cited on page 30).

[Kim+09] Duksu Kim, Jae-Pil Heo, Jaehyuk Huh, John Kim, and
Sung-eui Yoon. “HPCCD: Hybrid Parallel Continuous
Collision Detection using CPUs and GPUs”. In: Computer
Graphics Forum. Volume 28. 7. Wiley Online Library. 2009,
pages 1791–1800 (cited on pages 32, 85).

[KHY09] DukSu Kim, Jae-Pil Heo, and Sung-eui Yoon. “PCCD:
Parallel Continuous Collision Detection”. In: SIG-
GRAPH’09: Posters. ACM. 2009, page 50 (cited on
page 31).

[Kim+11] Yong-Joon Kim, Young-Taek Oh, Seung-Hyun Yoon,
Myung-Soo Kim, and Gershon Elber. “Coons BVH for
Freeform Geometric Models”. In: Proceedings of the 2011
SIGGRAPH Asia Conference. SA ’11. Hong Kong, China:
ACM, 2011, 169:1–169:8. isbn: 978-1-4503-0807-6. doi: 10.
1145/2024156.2024203. url: http://doi.acm.org/10.
1145/2024156.2024203 (cited on page 11).

[KW10] David B. Kirk and W. Hwu Wen-mei. Programming Mas-
sively Parallel Processors: A Hands-on Approach. Elsevier,
2010 (cited on page 119).

[KZ03a] Jan Klein and Gabriel Zachmann. “ADB-Trees: Control-
ling the Error of Time-Critical Collision Detection.” In:
VMV. 2003, pages 37–45 (cited on page 33).

[KZ03b] Jan Klein and Gabriel Zachmann. “Time-critical Collision
Detection Using an Average-case Approach”. In: Proceed-
ings of the ACM Symposium on Virtual Reality Software and
Technology. VRST ’03. Osaka, Japan: ACM, 2003, pages 22–

http://dx.doi.org/10.1145/781606.781612
http://dx.doi.org/10.1145/781606.781612
http://doi.acm.org/10.1145/781606.781612
http://doi.acm.org/10.1145/781606.781612
http://dx.doi.org/10.1145/2024156.2024203
http://dx.doi.org/10.1145/2024156.2024203
http://doi.acm.org/10.1145/2024156.2024203
http://doi.acm.org/10.1145/2024156.2024203

Bibliography 137

31. isbn: 1-58113-569-6. doi: 10.1145/1008653.1008660.
url: http://doi.acm.org/10.1145/1008653.1008660
(cited on page 33).

[KZ04a] Jan Klein and Gabriel Zachmann. “Point Cloud Colli-
sion Detection”. In: Computer Graphics forum (Proc. EU-
ROGRAPHICS). Edited by M.-P. Cani and M. Slater. Vol-
ume 23. Grenoble, France, Aug. 2004, pages 567–576

(cited on page 11).

[KZ04b] Jan Klein and Gabriel Zachmann. “Point Cloud Surfaces
using Geometric Proximity Graphs”. In: Computers &
Graphics 28.6 (2004), pages 839–850 (cited on page 11).

[KZ04c] Jan Klein and Gabriel Zachmann. “Proximity graphs for
defining surfaces over point clouds”. In: Proceedings of
the First Eurographics conference on Point-Based Graphics.
Eurographics Association. 2004, pages 131–138 (cited on
page 11).

[KZ05] Jan Klein and Gabriel Zachmann. “Interpolation Search
for Point Cloud Intersection”. In: Proc. of WSCG 2005.
Edited by Vaclav Skala. University of West Bohemia,
Plzeň, Czech Republic, Jan. 2005, pages 163–170. isbn: 80-
903100-7-9 (cited on page 12).

[KT06] Jon Kleinberg and Éva Tardos. Algorithm Design. Pearson
Education India, 2006 (cited on page 25).

[Klo+98] James T. Klosowski, Martin Held, Joseph S. B. Mitchell,
Henry Sowizral, and Karel Zikan. “Efficient Collision De-
tection Using Bounding Volume Hierarchies of k-DOPs”.
In: Visualization and Computer Graphics, IEEE Transactions
on 4.1 (1998), pages 21–36 (cited on pages 23, 24).

[Klo98] James Thomas Klosowski. “Efficient Collision Detection
for Interactive 3D Graphics and Virtual Environments”.
PhD thesis. State University of New York, 1998 (cited on
page 23).

[Kno+11] A. Knoll, S. Thelen, I. Wald, C.D. Hansen, H. Hagen, and
M.E. Papka. “Full-resolution interactive CPU volume ren-
dering with coherent BVH traversal”. In: Pacific Visualiza-
tion Symposium (PacificVis), 2011 IEEE. Mar. 2011, pages 3–
10. doi: 10.1109/PACIFICVIS.2011.5742355 (cited on
page 36).

[Koc+07] Sinan Kockara, Tansel Halic, K. Iqbal, Coskun Bayrak,
and Richard Rowe. “Collision Detection: A Survey”. In:
Systems, Man and Cybernetics, 2007. ISIC. IEEE Interna-
tional Conference on. IEEE. 2007, pages 4046–4051 (cited
on page 14).

http://dx.doi.org/10.1145/1008653.1008660
http://doi.acm.org/10.1145/1008653.1008660
http://dx.doi.org/10.1109/PACIFICVIS.2011.5742355

138 Bibliography

[Koh90] Teuvo Kohonen. “The Self-Organizing Map”. In: Proceed-
ings of the IEEE 78.9 (1990), pages 1464–1480 (cited on
page 75).

[KZ97] Petr Konečný and Karel Zikan. “Lower Bound of Dis-
tance in 3D”. In: Proceedings of WSCG. Volume 3. 1997,
pages 640–649 (cited on page 23).

[Kop+12] Daniel Kopta, Thiago Ize, Josef Spjut, Erik Brunvand,
Al Davis, and Andrew Kensler. “Fast, Effective BVH
Updates for Animated Scenes”. In: Proceedings of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games. I3D ’12. Costa Mesa, California: ACM, 2012,
pages 197–204. isbn: 978-1-4503-1194-6. doi: 10 . 1145 /

2159616.2159649. url: http://doi.acm.org/10.1145/
2159616.2159649 (cited on page 25).

[Kös+09] Michael Köster, Peter Novák, David Mainzer, and Bernd
Fuhrmann. “Two Case Studies for Jazzyk BSM”. In: Pro-
ceedings of Agents for Games and Simulations, AGS 2009,
AAMAS 2009 co-located workshop. Volume 5920. LNAI.
Springer Verlag, 2009, pages 31–45. url: http://link.
springer.com/book/10.1007/978-3-642-11198-3.

[KP12] Janusz Kowalik and Tadeusz Puźniakowski. Using
OpenCL: Programming Massively Parallel Computers (Ad-
vances in Parallel Computing). Har/Cdr. Volume 21. IOS
Press, Mar. 2012. isbn: 9781614990291 (cited on pages 40–
42, 119).

[Kri+98] Shankar Krishnan, Amol Pattekar, Ming C. Lin, and Di-
nesh Manocha. “Spherical Shell: A Higher Order Bound-
ing Volume for Fast Proximity Queries”. In: WAFR ’98

(1998), pages 177–190. url: http : / / dl . acm . org /

citation.cfm?id=298960.299006 (cited on page 23).

[KPB12] Thomas Kroes, Frits H. Post, and Charl P. Botha. “Expo-
sure Render: An Interactive Photo-Realistic Volume Ren-
dering Framework”. In: PloS one 7.7 (2012), e38586 (cited
on page 36).

[KW03] Jens Krüger and Rüdiger Westermann. “Linear Algebra
Operators for GPU Implementation of Numerical Algo-
rithms”. In: ACM SIGGRAPH 2003 Papers. SIGGRAPH
’03. San Diego, California: ACM, 2003, pages 908–916.
isbn: 1-58113-709-5. doi: 10.1145/1201775.882363. url:
http://doi.acm.org/10.1145/1201775.882363 (cited on
page 38).

[KJP02] Paul G. Kry, Doug L. James, and Dinesh K. Pai. “Eigen-
skin: Real Time Large Deformation Character Skinning
in Hardware”. In: Proceedings of the 2002 ACM SIG-

http://dx.doi.org/10.1145/2159616.2159649
http://dx.doi.org/10.1145/2159616.2159649
http://doi.acm.org/10.1145/2159616.2159649
http://doi.acm.org/10.1145/2159616.2159649
http://link.springer.com/book/10.1007/978-3-642-11198-3
http://link.springer.com/book/10.1007/978-3-642-11198-3
http://dl.acm.org/citation.cfm?id=298960.299006
http://dl.acm.org/citation.cfm?id=298960.299006
http://dx.doi.org/10.1145/1201775.882363
http://doi.acm.org/10.1145/1201775.882363

Bibliography 139

GRAPH/Eurographics symposium on Computer animation.
ACM. 2002, pages 153–159 (cited on pages 18, 78, 105).

[Lar+01] R. Lario, C. Garcia, M. Prieto, and F. Tirado. “Rapid
Parallelization of a Multilevel Cloth Simulator Using
OpenMP”. In: 3rd European Workshop on OpenMP. In Con-
juction with IEEE/ACM PACT. Sept. 2001, page 40. url:
http://artecs.dacya.ucm.es/sites/default/files/

ewomp2001_0.pdf (cited on page 31).

[Lar+99] Eric Larsen, Stefan Gottschalk, Ming C. Lin, and Dinesh
Manocha. Fast Proximity Queries with Swept Sphere Vol-
umes. Technical report. 1999. url: http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.39.8240 (cited
on page 92).

[LA01] Thomas Larsson and Tomas Akenine-Möller. “Collision
Detection for Continuously Deforming Bodies”. In: Euro-
graphics 2001. 2001, pages 325–333 (cited on page 23).

[Las87] John Lasseter. “Principles of Traditional Animation ap-
plied to 3D Computer Animation”. In: ACM Siggraph
Computer Graphics. Volume 21. 4. ACM. 1987, pages 35–
44 (cited on page 17).

[Lau+02] Rynson W. H. Lau, Oliver Chan, Mo Luk, and Frederick
W. B. Li. “LARGE a Collision Detection Framework for
Deformable Objects”. In: Proceedings of the ACM Sympo-
sium on Virtual Reality Software and Technology. VRST ’02.
Hong Kong, China: ACM, 2002, pages 113–120. isbn: 1-
58113-530-0. doi: 10.1145/585740.585760. url: http://
doi.acm.org/10.1145/585740.585760 (cited on page 10).

[LH91] David Laur and Pat Hanrahan. “Hierarchical Splatting:
A Progressive Refinement Algorithm for Volume Render-
ing”. In: Proceedings of the 18th Annual Conference on Com-
puter Graphics and Interactive Techniques. SIGGRAPH ’91.
New York, NY, USA: ACM, 1991, pages 285–288. isbn: 0-
89791-436-8. doi: 10.1145/122718.122748. url: http://
doi.acm.org/10.1145/122718.122748 (cited on page 35).

[LMM10] Christian Lauterbach, Qi Mo, and Dinesh Manocha.
“gProximity: Hierarchical GPU-based Operations for Col-
lision and Distance Queries”. In: Computer Graphics Fo-
rum. Volume 29. 2. Wiley Online Library. 2010, pages 419–
428 (cited on page 32).

[Le 07] Scott Le Grand. “Broad-phase Collision Detection with
CUDA”. In: GPU gems 3 (2007), pages 697–721 (cited on
page 20).

http://artecs.dacya.ucm.es/sites/default/files/ewomp2001_0.pdf
http://artecs.dacya.ucm.es/sites/default/files/ewomp2001_0.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.8240
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.8240
http://dx.doi.org/10.1145/585740.585760
http://doi.acm.org/10.1145/585740.585760
http://doi.acm.org/10.1145/585740.585760
http://dx.doi.org/10.1145/122718.122748
http://doi.acm.org/10.1145/122718.122748
http://doi.acm.org/10.1145/122718.122748

140 Bibliography

[Lev+02] Joshua Leven, Jason Corso, Jonathan Cohen, and Sub-
odh Kumar. “Interactive Visualization of Unstructured
Grids using Hierarchical 3D Textures”. In: Proceedings of
the 2002 IEEE symposium on Volume visualization and graph-
ics. IEEE Press. 2002, pages 37–44 (cited on page 35).

[LCF00] J. P. Lewis, Matt Cordner, and Nickson Fong. “Pose
Space Deformation: A Unified Approach to Shape Inter-
polation and Skeleton-driven Deformation”. In: Proceed-
ings of the 27th Annual Conference on Computer Graphics
and Interactive Techniques. SIGGRAPH ’00. New York, NY,
USA: ACM Press/Addison-Wesley Publishing Co., 2000,
pages 165–172. isbn: 1-58113-208-5. doi: 10.1145/344779.
344862. url: http : / / dx . doi . org / 10 . 1145 / 344779 .

344862 (cited on page 78).

[LC96] Chyi-Cheng Lin and Yu-Tai Ching. “An Efficient Volume-
Rendering Algorithm with an Analytic Approach”. In:
The Visual Computer 12.10 (1996), pages 515–526 (cited on
page 35).

[Lin93] Ming C. Lin. Efficient Collision Detection for Animation and
Robotics. Technical report. 1993 (cited on pages 20, 29).

[LC91] Ming C. Lin and John F. Canny. “A Fast Algorithm for In-
cremental Distance Calculation”. In: Robotics and Automa-
tion, 1991. Proceedings., 1991 IEEE International Conference
on. IEEE. 1991, pages 1008–1014 (cited on page 25).

[LG98] Ming Lin and Stefan Gottschalk. “Collision Detection Be-
tween Geometric Models: A Survey”. In: Proc. of IMA
conference on mathematics of surfaces. Volume 1. 1998,
pages 602–608 (cited on pages 10, 14).

[Liu+10] Fuchang Liu, Takahiro Harada, Youngeun Lee, and
Young J. Kim. “Real-time Collision Culling of a Million
Bodies on Graphics Processing Units”. In: ACM Transac-
tions on Graphics (TOG) 29.6 (2010), page 154 (cited on
pages 20, 74).

[Lla+03] Ignacio Llamas, Byungmoon Kim, Joshua Gargus, Jarek
Rossignac, and Chris D. Shaw. “Twister: A Space-Warp
Operator for the Two-Handed Editing of 3D Shapes”. In:
ACM Transactions on Graphics (TOG). Volume 22. 3. ACM.
2003, pages 663–668 (cited on page 17).

[LCN99] J.-C. Lombardo, M.-P. Cani, and Fabrice Neyret. “Real-
time Collision Detection for Virtual Surgery”. In: Com-
puter Animation, 1999. Proceedings. IEEE. 1999, pages 82–
90 (cited on page 7).

http://dx.doi.org/10.1145/344779.344862
http://dx.doi.org/10.1145/344779.344862
http://dx.doi.org/10.1145/344779.344862
http://dx.doi.org/10.1145/344779.344862

Bibliography 141

[LC87] William E. Lorensen and Harvey E. Cline. “Marching
Cubes: A High Resolution 3D Surface Construction Al-
gorithm”. In: Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques. SIGGRAPH
’87. New York, NY, USA: ACM, 1987, pages 163–169. isbn:
0-89791-227-6. doi: 10 . 1145 / 37401 . 37422. url: http :

//doi.acm.org/10.1145/37401.37422 (cited on page 35).

[LCF05] Rodrigo G. Luque, João L. D. Comba, and Carla M. D. S.
Freitas. “Broad-phase Collision Detection Using Semi-
adjusting BSP-trees”. In: Proceedings of the 2005 Sympo-
sium on Interactive 3D Graphics and Games. I3D ’05. Wash-
ington, District of Columbia: ACM, 2005, pages 179–186.
isbn: 1-59593-013-2. doi: 10.1145/1053427.1053457. url:
http://doi.acm.org/10.1145/1053427.1053457 (cited
on page 20).

[Mac+67] James MacQueen et al. “Some Methods for Classification
and Analysis of MultiVariate Observations”. In: Proceed-
ings of the fifth Berkeley symposium on mathematical statistics
and probability. 281-297. California, USA. 1967, page 14

(cited on page 50).

[MWZ11] David Mainzer, René Weller, and Gabriel Zachmann.
“Kollisionserkennung und natürliche Interaktion in vir"-
tu"-ellen Umgebungen”. In: Virtuelle Techniken im indus-
triellen Umfeld. Edited by Werner Schreiber und Peter
Zimmermann. Springer, 2011. Chapter 3.2, 3.4, pages 33–
38, 114–116. isbn: 978-3-642-20635-1. url: http://www.
springer.com/engineering/signals/book/978-3-642-

20635-1.

[MZ13] David Mainzer and Gabriel Zachmann. “CDFC: Collision
Detection Based on Fuzzy Clustering for Deformable Ob-
jects on GPUs”. In: WSCG 2013 - POSTER Proceedings.
Volume 21. 3. Poster. Plzeň, Czech Republic, July 2013,
pages 5–8.

[MZ14] David Mainzer and Gabriel Zachmann. “Collision De-
tection Based on Fuzzy Scene Subdivision”. In: Sympo-
sium on GPU Computing and Applications (Singapore, 2013).
Edited by Yiyu Cai and Simon See. Volume 3. Springer,
2014. url: https://www.springer.com/engineering/
signals/book/978-981-287-133-6.

[Mar+96] William R. Mark, Scott C. Randolph, Mark Finch, James
M. Van Verth, and Russell M. Taylor II. “Adding Force
Feedback to Graphics Systems: Issues and Solutions”. In:
Proceedings of the 23rd annual conference on Computer graph-
ics and interactive techniques. ACM. 1996, pages 447–452

(cited on page 116).

http://dx.doi.org/10.1145/37401.37422
http://doi.acm.org/10.1145/37401.37422
http://doi.acm.org/10.1145/37401.37422
http://dx.doi.org/10.1145/1053427.1053457
http://doi.acm.org/10.1145/1053427.1053457
http://www.springer.com/engineering/signals/book/978-3-642-20635-1
http://www.springer.com/engineering/signals/book/978-3-642-20635-1
http://www.springer.com/engineering/signals/book/978-3-642-20635-1
https://www.springer.com/engineering/signals/book/978-981-287-133-6
https://www.springer.com/engineering/signals/book/978-981-287-133-6

142 Bibliography

[MBS93] Thomas M. Martinetz, Stanislav G. Berkovich, and Klaus
J. Schulten. “’Neural-Gas’ Network for Vector Quanti-
zation and its Application to Time-Series Prediction”.
In: Neural Networks, IEEE Transactions on 4.4 (1993),
pages 558–569 (cited on pages 53, 54).

[MRB09] Zoltan Csaba Marton, Radu Bogdan Rusu, and Michael
Beetz. “On Fast Surface Reconstruction Methods for
Large and Noisy Datasets”. In: Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA).
Kobe, Japan, May 2009 (cited on page 115).

[McA+11] Aleka McAdams, Yongning Zhu, Andrew Selle, Mark
Empey, Rasmus Tamstorf, Joseph Teran, and Eftychios
Sifakis. “Efficient Elasticity for Character Skinning with
Contact and Collisions”. In: ACM SIGGRAPH 2011 Papers.
SIGGRAPH ’11. Vancouver, British Columbia, Canada:
ACM, 2011, 37:1–37:12. isbn: 978-1-4503-0943-1. doi: 10.
1145/1964921.1964932. url: http://doi.acm.org/10.
1145/1964921.1964932 (cited on page 18).

[MPT99] William A. McNeely, Kevin D. Puterbaugh, and James
J. Troy. “Six Degree-of-freedom Haptic Rendering Using
Voxel Sampling”. In: Proceedings of the 26th Annual Confer-
ence on Computer Graphics and Interactive Techniques. SIG-
GRAPH ’99. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 1999, pages 401–408. isbn: 0-201-
48560-5 (cited on pages 15, 98).

[Met92] Dimitri N. Metaxas. “Physics-Based Modeling of Non-
rigid Objects for Vision and Graphics”. PhD thesis. Uni-
versity of Toronto, 1992 (cited on page 78).

[Met96] Dimitris N. Metaxas. Physics-Based Deformable Models: Ap-
plications to Computer Vision, Graphics, and Medical Imag-
ing. 1st. Norwell, MA, USA: Kluwer Academic Publish-
ers, 1996. isbn: 0792398408 (cited on page 78).

[Mil+02] Tim Milliron, Robert J. Jensen, Ronen Barzel, and Adam
Finkelstein. “A Framework for Geometric Warps and De-
formations”. In: ACM Transactions on Graphics (TOG) 21.1
(2002), pages 20–51 (cited on page 17).

[Mir97] Brian Mirtich. “Efficient Algorithms for Two-Phase Col-
lision Detection”. In: Practical motion planning in robotics:
current approaches and future directions (1997), pages 203–
223 (cited on page 19).

[Mir98] Brian Mirtich. “V-Clip: Fast and Robust Polyhedral Colli-
sion Detection”. In: ACM Transactions on Graphics (TOG)
17.3 (1998), pages 177–208 (cited on page 25).

http://dx.doi.org/10.1145/1964921.1964932
http://dx.doi.org/10.1145/1964921.1964932
http://doi.acm.org/10.1145/1964921.1964932
http://doi.acm.org/10.1145/1964921.1964932

Bibliography 143

[Mir00] Brian Mirtich. “Timewarp Rigid Body Simulation”. In:
Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’00. New
York, NY, USA: ACM Press/Addison-Wesley Publishing
Co., 2000, pages 193–200. isbn: 1-58113-208-5. doi: 10 .

1145/344779.344866. url: http://dx.doi.org/10.1145/
344779.344866 (cited on page 30).

[Mir96] Brian Vincent Mirtich. “Impulse-based Dynamic Simula-
tion of Rigid Body Systems”. PhD thesis. University of
California, 1996 (cited on page 29).

[MC95] Brian Mirtich and John Canny. “Impulse-based Simula-
tion of Rigid bodies”. In: Proceedings of the 1995 sympo-
sium on Interactive 3D graphics. ACM. 1995, 181–ff (cited
on page 29).

[Moh12] Daniel Mohr. “Model-Based High-Dimensional Pose Es-
timation with Application to Hand Tracking”. PhD thesis.
Bremen, 2012. url: http://elib.suub.uni-bremen.de/
cgi-bin/diss/user/zsearch?search=sqn&FORMAT=XML&

XML_STYLE=/diss/long-DE.xml&userid=nobody&sqn=

00102865 (cited on page 116).

[MZ10] Daniel Mohr and Gabriel Zachmann. “Silhouette Area
Based Similarity Measure for Template Matching in Con-
stant Time”. In: 6th International Conference of Articulated
Motion and Deformable Objects (AMDO). Port d’Andratx,
Mallorca, Spain: Springer Verlag, July 2010, pages 43–
54. url: http://cgvr.cs.uni- bremen.de/research/
handtracking/index.shtml (cited on page 33).

[Möl97] Tomas Möller. “A Fast Triangle-Triangle Intersection
Test”. In: Journal of graphics tools 2.2 (1997), pages 25–30

(cited on page 81).

[MEP92] Steven Molnar, John Eyles, and John Poulton. “PixelFlow:
High-Speed Rendering Using Image Composition”. In:
ACM SIGGRAPH Computer Graphics. Volume 26. 2. ACM.
1992, pages 231–240 (cited on page 8).

[Moo12] Thomas Mooney. Unreal Development Kit Game De-
sign Cookbook. Packt Publishing, Feb. 2012. isbn:
9781849691802 (cited on page 9).

[MA03] Kenneth Moreland and Edward Angel. “The FFT on
a GPU”. In: Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS Conference on Graphics Hardware. HWWS ’03.
San Diego, California: Eurographics Association, 2003,
pages 112–119. isbn: 1-58113-739-7. url: http://dl.acm.
org/citation.cfm?id=844174.844191 (cited on page 38).

http://dx.doi.org/10.1145/344779.344866
http://dx.doi.org/10.1145/344779.344866
http://dx.doi.org/10.1145/344779.344866
http://dx.doi.org/10.1145/344779.344866
http://elib.suub.uni-bremen.de/cgi-bin/diss/user/zsearch?search=sqn&FORMAT=XML&XML_STYLE=/diss/long-DE.xml&userid=nobody&sqn=00102865
http://elib.suub.uni-bremen.de/cgi-bin/diss/user/zsearch?search=sqn&FORMAT=XML&XML_STYLE=/diss/long-DE.xml&userid=nobody&sqn=00102865
http://elib.suub.uni-bremen.de/cgi-bin/diss/user/zsearch?search=sqn&FORMAT=XML&XML_STYLE=/diss/long-DE.xml&userid=nobody&sqn=00102865
http://elib.suub.uni-bremen.de/cgi-bin/diss/user/zsearch?search=sqn&FORMAT=XML&XML_STYLE=/diss/long-DE.xml&userid=nobody&sqn=00102865
http://cgvr.cs.uni-bremen.de/research/handtracking/index.shtml
http://cgvr.cs.uni-bremen.de/research/handtracking/index.shtml
http://dl.acm.org/citation.cfm?id=844174.844191
http://dl.acm.org/citation.cfm?id=844174.844191

144 Bibliography

[MP78] David E. Muller and Franco P. Preparata. “Finding the In-
tersection of Two Convex Polyhedra”. In: Theoretical Com-
puter Science 7.2 (1978), pages 217–236 (cited on pages 5,
8).

[Mül+02] Matthias Müller, Julie Dorsey, Leonard McMillan, Robert
Jagnow, and Barbara Cutler. “Stable Real-Time Deforma-
tions”. In: Proceedings of the 2002 ACM SIGGRAPH/Eu-
rographics symposium on Computer animation. ACM. 2002,
pages 49–54 (cited on page 18).

[Nay93] Bruce Naylor. “Constructing Good Partitioning Trees”.
In: Graphics Interface. CANADIAN INFORMATION PRO-
CESSING SOCIETY. 1993, pages 181–181 (cited on
page 45).

[NAT90] Bruce Naylor, John Amanatides, and William Thibault.
“Merging BSP Trees Yields Polyhedral Set Operations”.
In: Proceedings of the 17th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’90. Dallas,
TX, USA: ACM, 1990, pages 115–124. isbn: 0-89791-344-2.
doi: 10.1145/97879.97892. url: http://doi.acm.org/
10.1145/97879.97892 (cited on page 45).

[Nea+06] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy
Boxerman, and Mark Carlson. “Physically Based De-
formable Models in Computer Graphics”. In: Computer
Graphics Forum. Volume 25. 4. Wiley Online Library. 2006,
pages 809–836 (cited on pages 15, 18).

[Nea+07] Andrew Nealen, Olga Sorkine, Marc Alexa, and
Daniel Cohen-Or. “A Sketch-Based Interface for Detail-
Preserving Mesh Editing”. In: ACM SIGGRAPH 2007
courses. ACM. 2007, page 42 (cited on page 17).

[Neu+02] André Neubauer, Lukas Mroz, Helwig Hauser, and
Rainer Wegenkittl. “Cell-Based First-Hit Ray Casting”.
In: Proceedings of the symposium on Data Visualisation 2002.
2002, pages 77–86 (cited on page 35).

[Neu45] John von Neumann. “First Draft of a Report on the ED-
VAC”. In: (1945) (cited on page 3).

[Ngu07] Hubert Nguyen. GPU Gems 3. Addison-Wesley Profes-
sional, 2007. isbn: 9780321545428 (cited on page 3).

[Nvi14] CUDA Nvidia. CUDA C Programming Guide Version 6.5.
Aug. 2014 (cited on pages 4, 39).

[OH99] James F. O’Brien and Jessica K. Hodgins. “Graphical
Modeling and Animation of Brittle Fracture”. In: Proceed-
ings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques. SIGGRAPH ’99. New York, NY,
USA: ACM Press/Addison-Wesley Publishing Co., 1999,

http://dx.doi.org/10.1145/97879.97892
http://doi.acm.org/10.1145/97879.97892
http://doi.acm.org/10.1145/97879.97892

Bibliography 145

pages 137–146. isbn: 0-201-48560-5. doi: 10.1145/311535.
311550. url: http : / / dx . doi . org / 10 . 1145 / 311535 .

311550 (cited on page 18).

[ORo85] Joseph O’Rourke. “Finding Minimal Enclosing Boxes”.
English. In: International Journal of Computer & Information
Sciences 14.3 (1985), pages 183–199. issn: 0091-7036. doi:
10.1007/BF00991005. url: http://dx.doi.org/10.1007/
BF00991005 (cited on page 10).

[OD99] Carol O’Sullivan and John Dingliana. Real-Time Collision
Detection and Response Using Sphere-Trees. 1999 (cited on
page 2).

[Ove88] Mark H. Overmars. Geometric Data Structures for Computer
Graphics: An Overview. Springer, 1988 (cited on pages 14,
27, 28).

[Owe+08] John D. Owens, Mike Houston, David Luebke, Simon
Green, John E. Stone, and James C. Phillips. “GPU Com-
puting”. In: Proceedings of the IEEE 96.5 (2008), pages 879–
899 (cited on page 3).

[PKS10] Simon Pabst, Artur Koch, and Wolfgang Straßer. “Fast
and Scalable CPU/GPU Collision Detection for Rigid
and Deformable Surfaces”. In: Computer Graphics Forum.
Volume 29. 5. Wiley Online Library. 2010, pages 1605–
1612 (cited on pages 19, 20, 32, 85, 88).

[PG03] Francis Page and Frangois Guibault. “Collision Detection
Algorithm for NURBS Surfaces in Interactive Applica-
tions”. In: Electrical and Computer Engineering, 2003. IEEE
CCECE 2003. Canadian Conference on. Volume 2. IEEE.
2003, pages 1417–1420 (cited on page 10).

[PG95] Ian J. Palmer and Richard L. Grimsdale. “Collision De-
tection for Animation using Sphere-Trees”. In: Computer
Graphics Forum. Volume 14. 2. Wiley Online Library. 1995,
pages 105–116 (cited on page 23).

[PCM11] Jia Pan, Sachin Chitta, and Dinesh Manocha. “Probabilis-
tic Collision Detection between Noisy Point Clouds us-
ing Robust Classification”. In: International symposium on
robotics research. 2011 (cited on page 12).

[PM12] Jia Pan and Dinesh Manocha. “GPU-based Parallel Colli-
sion Detection for Fast Motion Planning”. In: Int. J. Rob.
Res. 31.2 (Feb. 2012), pages 187–200. issn: 0278-3649. doi:
10.1177/0278364911429335. url: http://dx.doi.org/
10.1177/0278364911429335 (cited on page 32).

http://dx.doi.org/10.1145/311535.311550
http://dx.doi.org/10.1145/311535.311550
http://dx.doi.org/10.1145/311535.311550
http://dx.doi.org/10.1145/311535.311550
http://dx.doi.org/10.1007/BF00991005
http://dx.doi.org/10.1007/BF00991005
http://dx.doi.org/10.1007/BF00991005
http://dx.doi.org/10.1177/0278364911429335
http://dx.doi.org/10.1177/0278364911429335
http://dx.doi.org/10.1177/0278364911429335

146 Bibliography

[Pan+13] Jia Pan, Ioan A. Sucan, Sachin Chitta, and Dinesh
Manocha. “Real-time Collision Detection and Distance
Computation on Point Cloud Sensor Data”. In: Robotics
and Automation (ICRA), 2013 IEEE International Conference
on. IEEE. 2013, pages 3593–3599 (cited on page 12).

[PRD09] Qi Pan, Gerhard Reitmayr, and Tom Drummond. “Pro-
FORMA: Probabilistic Feature-based On-line Rapid
Model Acquisition”. In: Proceedings of the British Machine
Vision Conference. doi:10.5244/C.23.112. BMVA Press,
2009, pages 112.1–112.11. isbn: 1-901725-39-1 (cited on
pages 11, 115).

[Par+10] Steven G. Parker, James Bigler, Andreas Dietrich, Heiko
Friedrich, Jared Hoberock, David Luebke, David McAllis-
ter, Morgan McGuire, Keith Morley, Austin Robison, and
Martin Stich. “OptiX: A General Purpose Ray Tracing En-
gine”. In: ACM SIGGRAPH 2010 Papers. SIGGRAPH ’10.
Los Angeles, California: ACM, 2010, 66:1–66:13. isbn: 978-
1-4503-0210-4. doi: 10.1145/1833349.1778803. url: http:
//doi.acm.org/10.1145/1833349.1778803 (cited on
pages 34, 38).

[Par+98] Steven Parker, Peter Shirley, Yarden Livnat, Charles
Hansen, and Peter-Pike Sloan. “Interactive Ray Tracing
for Isosurface Rendering”. In: Proceedings of the Confer-
ence on Visualization ’98. VIS ’98. Research Triangle Park,
North Carolina, USA: IEEE Computer Society Press, 1998,
pages 233–238. isbn: 1-58113-106-2. url: http://dl.acm.
org/citation.cfm?id=288216.288266 (cited on page 35).

[Ped05] Witold Pedrycz. Knowledge-based Clustering: From Data to
Information Granules. John Wiley & Sons, 2005 (cited on
pages 49, 50, 75).

[PM99] Dan Pelleg and Andrew Moore. “Accelerating Exact K-
means Algorithms with Geometric Reasoning”. In: Pro-
ceedings of the Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD ’99. San
Diego, California, USA: ACM, 1999, pages 277–281. isbn:
1-58113-143-7. doi: 10.1145/312129.312248. url: http:
/ / doi . acm . org / 10 . 1145 / 312129 . 312248 (cited on
page 51).

[Pfi+00] Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar,
and Markus Gross. “Surfels: Surface Elements as Render-
ing Primitives”. In: Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques. ACM
Press/Addison-Wesley Publishing Co. 2000, pages 335–
342 (cited on page 11).

http://dx.doi.org/10.1145/1833349.1778803
http://doi.acm.org/10.1145/1833349.1778803
http://doi.acm.org/10.1145/1833349.1778803
http://dl.acm.org/citation.cfm?id=288216.288266
http://dl.acm.org/citation.cfm?id=288216.288266
http://dx.doi.org/10.1145/312129.312248
http://doi.acm.org/10.1145/312129.312248
http://doi.acm.org/10.1145/312129.312248

Bibliography 147

[PR69] E. Polak and G. Ribiere. “Note sur la convergence de
méthodes de directions conjuguées”. In: ESAIM: Math-
ematical Modelling and Numerical Analysis - Modélisation
Mathématique et Analyse Numérique 3 (1969), pages 35–43.
url: http://eudml.org/doc/193115 (cited on page 31).

[PML97] Madhav K. Ponamgi, Dinesh Manocha, and Ming C. Lin.
“Incremental Algorithms for Collision Detection Between
Polygonal Models”. In: IEEE Transactions on Visualization
and Computer Graphics 3.1 (Jan. 1997), pages 51–64. issn:
1077-2626. doi: 10.1109/2945.582346. url: http://dx.
doi.org/10.1109/2945.582346 (cited on page 19).

[PS85] Franco P. Preparata and Michael Ian Shamos. Computa-
tional Geometry. Texts and Monographs in Computer Science.
1985 (cited on page 27).

[Pre+07] William H. Press, Saul A. Teukolsky, William T. Vetter-
ling, and Brian P. Flannery. Numerical Recipes 3rd Edition:
The Art of Scientific Computing. 3rd edition. Cambridge
University Press, Sept. 2007. isbn: 9780521880688 (cited
on pages 74, 79).

[Pro97] Xavier Provot. “Collision and Self-Collision Handling in
Cloth Model Dedicated to Design Garments”. In: Com-
puter Animation and Simulation ’97. Edited by Daniel Thal-
mann and Michiel van de Panne. Eurographics. Springer
Vienna, 1997, pages 177–189. isbn: 978-3-211-83048-2. doi:
10.1007/978-3-7091-6874-5_13. url: http://dx.doi.
org/10.1007/978-3-7091-6874-5_13 (cited on page 15).

[Pur+02] Timothy J. Purcell, Ian Buck, William R. Mark, and
Pat Hanrahan. “Ray Tracing on Programmable Graphics
Hardware”. In: ACM Transactions on Graphics (TOG). Vol-
ume 21. 3. ACM. 2002, pages 703–712 (cited on page 38).

[ROW14] Mohamed Radwan, Stefan Ohrhallinger, and Michael
Wimmer. “Efficient Collision Detection While Rendering
Dynamic Point Clouds”. In: Proceedings of the 2014 Graph-
ics Interface Conference. Montreal, Quebec, Canada, May
2014, pages 25–33. url: http://www.cg.tuwien.ac.at/
research/publications/2014/Radwan-2014-CDR/ (cited
on page 12).

[RKC00] Stephane Redon, Abderrahmane Kheddar, and Sabine
Coquillart. “An Algebraic Solution to the Problem of Col-
lision Detection for Rigid Polyhedral Objects”. In: Proc. of
IEEE Conference on Robotics and Automation. Citeseer. 2000

(cited on page 30).

http://eudml.org/doc/193115
http://dx.doi.org/10.1109/2945.582346
http://dx.doi.org/10.1109/2945.582346
http://dx.doi.org/10.1109/2945.582346
http://dx.doi.org/10.1007/978-3-7091-6874-5_13
http://dx.doi.org/10.1007/978-3-7091-6874-5_13
http://dx.doi.org/10.1007/978-3-7091-6874-5_13
http://www.cg.tuwien.ac.at/research/publications/2014/Radwan-2014-CDR/
http://www.cg.tuwien.ac.at/research/publications/2014/Radwan-2014-CDR/

148 Bibliography

[RKC02] Stephane Redon, Abderrahmane Kheddar, and Sabine
Coquillart. “Fast Continuous Collision Detection be-
tween Rigid Bodies.” In: Computer Graphics Forum (Proc.
of EUROGRAPHICS 2002) 21.3 (2002) (cited on pages 10,
30).

[RSH00] Erik Reinhard, Brian Smits, and Charles Hansen. Dy-
namic Acceleration Structures for Interactive Ray Tracing.
Springer, 2000 (cited on page 34).

[Ren+10] Qian Ren, Dongmei Wu, Shuguo Wang, Yili Fu, and
Hegao Cai. “Collision Detection Algorithm in Virtual En-
vironment of Robot Workcell”. English. In: Artificial In-
telligence and Computational Intelligence. Edited by FuLee
Wang, Hepu Deng, Yang Gao, and Jingsheng Lei. Vol-
ume 6319. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2010, pages 292–300. isbn: 978-3-642-
16529-0. doi: 10.1007/978- 3- 642- 16530- 6_35. url:
http://dx.doi.org/10.1007/978-3-642-16530-6_35

(cited on page 7).

[RLN06] Taehyun Rhee, John P. Lewis, and Ulrich Neumann.
“Real-Time Weighted Pose-Space Deformation on the
GPU”. In: Computer Graphics Forum. Volume 25. 3. Wiley
Online Library. 2006, pages 439–448 (cited on pages 78,
105).

[RB92] Elon Rimon and Stephen P. Boyd. “Efficient Distance
Computation Using Best Ellipsoid Fit”. In: In Proceedings
of the 1992 IEEE Symposium on Intelligence Control. Citeseer.
1992 (cited on page 23).

[Rit90] Jack Ritter. “An Efficient Bounding Sphere”. In: Graphics
gems. Academic Press Professional, Inc. 1990, pages 301–
303 (cited on page 23).

[RHL02] Szymon Rusinkiewicz, Olaf Hall-Holt, and Marc Levoy.
“Real-time 3D Model Acquisition”. In: Proceedings of the
29th Annual Conference on Computer Graphics and Inter-
active Techniques. SIGGRAPH ’02. San Antonio, Texas:
ACM, 2002, pages 438–446. isbn: 1-58113-521-1. doi: 10.
1145/566570.566600. url: http://doi.acm.org/10.
1145/566570.566600 (cited on pages 11, 115).

[RL00] Szymon Rusinkiewicz and Marc Levoy. “QSplat: A Mul-
tiresolution Point Rendering System for Large Meshes”.
In: Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’00. New
York, NY, USA: ACM Press/Addison-Wesley Publishing
Co., 2000, pages 343–352. isbn: 1-58113-208-5. doi: 10 .

1145/344779.344940. url: http://dx.doi.org/10.1145/
344779.344940 (cited on page 11).

http://dx.doi.org/10.1007/978-3-642-16530-6_35
http://dx.doi.org/10.1007/978-3-642-16530-6_35
http://dx.doi.org/10.1145/566570.566600
http://dx.doi.org/10.1145/566570.566600
http://doi.acm.org/10.1145/566570.566600
http://doi.acm.org/10.1145/566570.566600
http://dx.doi.org/10.1145/344779.344940
http://dx.doi.org/10.1145/344779.344940
http://dx.doi.org/10.1145/344779.344940
http://dx.doi.org/10.1145/344779.344940

Bibliography 149

[Sag+08] M. Sagardia, T. Hulin, C. Preusche, and G. Hirzinger.
“Improvements of the Voxmap-PointShell Algorithm-Fast
Generation of Haptic Data-Structures”. In: 53rd IWK-
Internationales Wissenschaftliches Kolloquium, Ilmenau, Ger-
many. 2008 (cited on page 98).

[Sam84] Hanan Samet. “The Quadtree and Related Hierarchical
Data Structures”. In: ACM Computing Surveys (CSUR)
16.2 (1984), pages 187–260 (cited on page 24).

[SHG09] Nadathur Satish, Mark Harris, and Michael Garland.
“Designing Efficient Sorting Algorithms for Manycore
GPUs”. In: Proceedings of the 23rd IEEE International Paral-
lel and Distributed Processing Symposium. May 2009 (cited
on pages 58, 59).

[Sch+00] Elmar Schömer, Jürgen Sellen, Marek Teichmann, and
Chee Yap. “Smallest Enclosing Cylinders”. In: Algorith-
mica 27.2 (2000), pages 170–186 (cited on page 23).

[Sed+04] Thomas W. Sederberg, David L. Cardon, G. Thomas
Finnigan, Nicholas S. North, Jianmin Zheng, and Tom Ly-
che. “T-spline Simplification and Local Refinement”. In:
ACM SIGGRAPH 2004 Papers. SIGGRAPH ’04. Los Ange-
les, California: ACM, 2004, pages 276–283. doi: 10.1145/
1186562.1015715. url: http://doi.acm.org/10.1145/
1186562.1015715 (cited on page 17).

[Sed+03] Thomas W. Sederberg, Jianmin Zheng, Almaz Bakenov,
and Ahmad Nasri. “T-splines and T-NURCCs”. In: ACM
transactions on graphics (TOG). Volume 22. 3. ACM. 2003,
pages 477–484 (cited on page 17).

[SW11] Robert Sedgewick and Kevin Wayne. Algorithms (4th Edi-
tion). 4th. Addison-Wesley Professional, Mar. 2011. isbn:
9780321573513 (cited on page 28).

[Sel+09] Andrew Selle, Jonathan Su, Geoffrey Irving, and Ronald
Fedkiw. “Robust High-Resolution Cloth Using Paral-
lelism, History-Based Collisions, and Accurate Friction”.
In: IEEE Transactions on Visualization and Computer Graph-
ics 15.2 (Mar. 2009), pages 339–350. issn: 1077-2626. doi:
10.1109/TVCG.2008.79. url: http://dx.doi.org/10.
1109/TVCG.2008.79 (cited on page 31).

[SHG08] Shubhabrata Sengupta, Mark Harris, and Michael Gar-
land. Efficient Parallel Scan Algorithms for GPUs. Technical
report NVR-2008-003. NVIDIA Corporation, Dec. 2008.
url: http://mgarland.org/papers.html%5C#segscan-tr
(cited on pages 58, 59).

http://dx.doi.org/10.1145/1186562.1015715
http://dx.doi.org/10.1145/1186562.1015715
http://doi.acm.org/10.1145/1186562.1015715
http://doi.acm.org/10.1145/1186562.1015715
http://dx.doi.org/10.1109/TVCG.2008.79
http://dx.doi.org/10.1109/TVCG.2008.79
http://dx.doi.org/10.1109/TVCG.2008.79
http://mgarland.org/papers.html%5C#segscan-tr

150 Bibliography

[She14] Evan Shellshear. “1D Sweep-and-Prune Self-Collision De-
tection for Deforming Cables”. In: The Visual Computer
30.5 (2014), pages 553–564. doi: 10.1007/s00371- 013-
0880-7. url: http://dx.doi.org/10.1007/s00371-013-
0880-7 (cited on page 20).

[SSK07] Maxim Shevtsov, Alexei Soupikov, and Alexander Ka-
pustin. “Highly Parallel Fast KD-tree Construction for In-
teractive Ray Tracing of Dynamic Scenes”. In: Computer
Graphics Forum. Volume 26. 3. Wiley Online Library. 2007,
pages 395–404 (cited on page 47).

[SAM09] Peter Shirley, Michael Ashikhmin, and Steve Marschner.
Fundamentals of Computer Graphics. 3rd edition. A K Pe-
ters/CRC Press, July 2009. isbn: 9781568814698 (cited on
page 2).

[SW82] Hans-Werner Six and Derick Wood. “Counting and Re-
porting Intersections of d-Ranges”. In: Computers, IEEE
Transactions on 100.3 (1982), pages 181–187 (cited on
page 27).

[Smi+95] Andrew Smith, Yoshifumi Kitamura, Haruo Takemura,
and Fumio Kishino. “A Simple and Efficient Method for
Accurate Collision Detection Among Deformable Polyhe-
dral Objects in Arbitrary Motion”. In: Proceedings of the
Virtual Reality Annual International Symposium (VRAIS’95).
VRAIS ’95. Washington, DC, USA: IEEE Computer So-
ciety, 1995, pages 136–. isbn: 0-8186-7084-3. url: http:
//dl.acm.org/citation.cfm?id=527216.836015 (cited
on page 25).

[Sny95] John M. Snyder. “An Interactive Tool for Placing Curved
Surfaces Without Interpenetration”. In: Proceedings of the
22Nd Annual Conference on Computer Graphics and Inter-
active Techniques. SIGGRAPH ’95. New York, NY, USA:
ACM, 1995, pages 209–218. isbn: 0-89791-701-4. doi: 10.
1145/218380.218444. url: http://doi.acm.org/10.
1145/218380.218444 (cited on page 30).

[Sny+93] John M. Snyder, Adam R. Woodbury, Kurt Fleischer,
Bena Currin, and Alan H. Barr. “Interval Methods for
Multi-Point Collisions between Time-Dependent Curved
Surfaces”. In: Proceedings of the 20th annual conference on
Computer graphics and interactive techniques. ACM. 1993,
pages 321–334 (cited on page 30).

[SL98] John Snyder and Jed Lengyel. “Visibility Sorting and
Compositing Without Splitting for Image Layer Decom-
positions”. In: Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques. SIGGRAPH
’98. New York, NY, USA: ACM, 1998, pages 219–230. isbn:

http://dx.doi.org/10.1007/s00371-013-0880-7
http://dx.doi.org/10.1007/s00371-013-0880-7
http://dx.doi.org/10.1007/s00371-013-0880-7
http://dx.doi.org/10.1007/s00371-013-0880-7
http://dl.acm.org/citation.cfm?id=527216.836015
http://dl.acm.org/citation.cfm?id=527216.836015
http://dx.doi.org/10.1145/218380.218444
http://dx.doi.org/10.1145/218380.218444
http://doi.acm.org/10.1145/218380.218444
http://doi.acm.org/10.1145/218380.218444

Bibliography 151

0-89791-999-8. doi: 10.1145/280814.280878. url: http:
/ / doi . acm . org / 10 . 1145 / 280814 . 280878 (cited on
page 20).

[Sor+04] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl,
and H.-P. Seidel. “Laplacian Surface Editing”. In: Pro-
ceedings of the 2004 Eurographics/ACM SIGGRAPH Sympo-
sium on Geometry Processing. SGP ’04. Nice, France: ACM,
2004, pages 175–184. isbn: 3-905673-13-4. doi: 10.1145/
1057432.1057456. url: http://doi.acm.org/10.1145/
1057432.1057456 (cited on page 17).

[STH13] Jonas Spillmann, Stefan Tuchschmid, and Matthias Hard-
ers. “Adaptive Space Warping to Enhance Passive Hap-
tics in an Arthroscopy Surgical Simulator”. In: Visual-
ization and Computer Graphics, IEEE Transactions on 19.4
(2013), pages 626–633. issn: 1077-2626. doi: 10 . 1109 /

TVCG.2013.23 (cited on page 17).

[SLY96] C. J. Su, F. H. Lin, and B. P. Yen. “An Adaptive Bounding
Object Based Algorithm For Efficient And Precise Colli-
sion Detection Of CSG-Represented Virtual Objects”. In:
Proc. of Symposium on virtual reality in manufacturing re-
search and education. 1996 (cited on page 11).

[SLY99] Chuan-Jun Su, Fuhua Lin, and Lan Ye. “A New Col-
lision Detection Method for CSG-represented Objects
in Virtual Manufacturing”. In: Comput. Ind. 40.1 (Sept.
1999), pages 1–13. issn: 0166-3615. doi: 10.1016/S0166-
3615(99)00010-X. url: http://dx.doi.org/10.1016/
S0166-3615(99)00010-X (cited on page 11).

[SL05] Herb Sutter and James Larus. “Software and the Concur-
rency Revolution”. In: Queue 3.7 (Sept. 2005), pages 54–
62. issn: 1542-7730. doi: 10.1145/1095408.1095421. url:
http://doi.acm.org/10.1145/1095408.1095421 (cited
on page 37).

[ST92] Richard Szeliski and David Tonnesen. Surface Modeling
with Oriented Particle Systems. Volume 26. 2. ACM, 1992

(cited on page 17).

[TK06] Hiroyuki Takizawa and Hiroaki Kobayashi. “Hierarchi-
cal Parallel Processing of Large Scale Data Clustering on
a PC Cluster with GPU Co-processing”. In: The Journal
of Supercomputing 36.3 (June 2006), pages 219–234. issn:
0920-8542. doi: 10.1007/s11227-006-8294-1. url: http:
//dx.doi.org/10.1007/s11227-006-8294-1 (cited on
page 51).

http://dx.doi.org/10.1145/280814.280878
http://doi.acm.org/10.1145/280814.280878
http://doi.acm.org/10.1145/280814.280878
http://dx.doi.org/10.1145/1057432.1057456
http://dx.doi.org/10.1145/1057432.1057456
http://doi.acm.org/10.1145/1057432.1057456
http://doi.acm.org/10.1145/1057432.1057456
http://dx.doi.org/10.1109/TVCG.2013.23
http://dx.doi.org/10.1109/TVCG.2013.23
http://dx.doi.org/10.1016/S0166-3615(99)00010-X
http://dx.doi.org/10.1016/S0166-3615(99)00010-X
http://dx.doi.org/10.1016/S0166-3615(99)00010-X
http://dx.doi.org/10.1016/S0166-3615(99)00010-X
http://dx.doi.org/10.1145/1095408.1095421
http://doi.acm.org/10.1145/1095408.1095421
http://dx.doi.org/10.1007/s11227-006-8294-1
http://dx.doi.org/10.1007/s11227-006-8294-1
http://dx.doi.org/10.1007/s11227-006-8294-1

152 Bibliography

[Tan+09] Min Tang, Sean Curtis, S.-E. Yoon, and Dinesh Manocha.
“ICCD: Interactive Continuous Collision Detection be-
tween Deformable Models using Connectivity-Based
Culling”. In: Visualization and Computer Graphics, IEEE
Transactions on 15.4 (2009), pages 544–557 (cited on
page 10).

[Tan+11] Min Tang, Dinesh Manocha, Jiang Lin, and Ruofeng Tong.
“Collision-streams: Fast GPU-based Collision Detection
for Deformable Models”. In: Symposium on Interactive 3D
Graphics and Games. I3D ’11. San Francisco, California:
ACM, 2011, pages 63–70. isbn: 978-1-4503-0565-5. doi: 10.
1145/1944745.1944756. url: http://doi.acm.org/10.
1145/1944745.1944756 (cited on pages 32, 85, 87, 88).

[TMT09] Min Tang, Dinesh Manocha, and Ruofeng Tong. “Multi-
Core Collision Detection between Deformable Models”.
In: 2009 SIAM/ACM Joint Conference on Geometric and
Physical Modeling. ACM. 2009, pages 355–360 (cited on
page 31).

[TMT10] Min Tang, Dinesh Manocha, and Ruofeng Tong. “MCCD:
Multi-Core Collision Detection between Deformable
Models using Front-Based Decomposition”. In: Graphical
Models 72.2 (2010), pages 7–23 (cited on pages 31, 85).

[TF88] Demetri Terzopoulos and Kurt Fleischer. “Modeling In-
elastic Deformation: Viscoelasticity, Plasticity, Fracture”.
In: ACM Siggraph Computer Graphics. Volume 22. 4. ACM.
1988, pages 269–278 (cited on page 17).

[Ter+87] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt
Fleischer. “Elastically Deformable Models”. In: ACM
Siggraph Computer Graphics. Volume 21. 4. ACM. 1987,
pages 205–214 (cited on pages 15, 17).

[Tes+04] Matthias Teschner, Bruno Heidelberger, Matthias Müller,
and Markus Gross. “A Versatile and Robust Model
for Geometrically Complex Deformable Solids”. In: Pro-
ceedings of the Computer Graphics International. CGI ’04.
Washington, DC, USA: IEEE Computer Society, 2004,
pages 312–319. isbn: 0-7695-2171-1. doi: 10.1109/CGI.
2004.6. url: http://dx.doi.org/10.1109/CGI.2004.6
(cited on page 10).

[Tes+03] Matthias Teschner, Bruno Heidelberger, Matthias Müller,
Danat Pomerantes, and Markus H. Gross. “Optimized
Spatial Hashing for Collision Detection of Deformable
Objects.” In: Proc. 8th International Fall Workshop Vision,
Modeling, and Visualization (VMV 2003). 2003, pages 47–
54 (cited on page 10).

http://dx.doi.org/10.1145/1944745.1944756
http://dx.doi.org/10.1145/1944745.1944756
http://doi.acm.org/10.1145/1944745.1944756
http://doi.acm.org/10.1145/1944745.1944756
http://dx.doi.org/10.1109/CGI.2004.6
http://dx.doi.org/10.1109/CGI.2004.6
http://dx.doi.org/10.1109/CGI.2004.6

Bibliography 153

[Tes+05] Matthias Teschner, Stefan Kimmerle, Bruno Heidel-
berger, Gabriel Zachmann, Laks Raghupathi, Arnulph
Fuhrmann, M.-P. Cani, François Faure, Nadia Magnenat-
Thalmann, Wolfgang Strasser, and Pascal Volino. “Col-
lision Detection for Deformable Objects”. In: Computer
Graphics Forum. Volume 24. 1. Wiley Online Library. 2005,
pages 61–81 (cited on page 14).

[TR98] David G. Thaler and Chinya V. Ravishankar. “Distributed
Top-Down Hierarchy Construction”. In: In Proc. of the
IEEE INFOCOM. 1998, pages 693–701 (cited on page 24).

[TN87] William C. Thibault and Bruce F. Naylor. “Set Operations
on Polyhedra using Binary Space Partitioning Trees”. In:
ACM SIGGRAPH computer graphics. Volume 21. 4. ACM.
1987, pages 153–162 (cited on page 20).

[TB07] Bernhard Thomaszewski and Wolfgang Blochinger.
“Physically Based Simulation of Cloth on Distributed
Memory Architectures”. In: Parallel Comput. 33.6 (June
2007), pages 377–390. issn: 0167-8191. doi: 10.1016/j.
parco.2007.02.008. url: http://dx.doi.org/10.1016/
j.parco.2007.02.008 (cited on page 31).

[TPB08] Bernhard Thomaszewski, Simon Pabst, and Wolfgang
Blochinger. “Special Section: Parallel Graphics and Visu-
alization: Parallel Techniques for Physically Based Sim-
ulation on Multi-core Processor Architectures”. In: Com-
puters & Graphics 32.1 (Feb. 2008), pages 25–40. issn: 0097-
8493 (cited on page 31).

[Til84] Robert B. Tilove. “A Null-Object Detection Algorithm for
Constructive Solid Geometry”. In: Communications of the
ACM 27.7 (1984), pages 684–694 (cited on page 11).

[Tor90] Enric Torres. “Optimization of the Binary Space Parti-
tion Algorithm (BSP) for the Visualization of Dynamic
Scenes”. In: Eurographics. Volume 90. 1990, pages 507–518

(cited on page 20).

[TWZ07] Sven Trenkel, René Weller, and Gabriel Zachmann. “A
Benchmarking Suite for Static Collision Detection Al-
gorithms”. In: International Conference in Central Europe
on Computer Graphics, Visualization and Computer Vision
(WSCG). Edited by Václav Skala. Plzeň, Czech Republic:
Union Agency, 29 January–1 February 2007. url: http://
cg.in.tu-clausthal.de/research/colldet_benchmark

(cited on pages 89, 91).

[Tsi+07] Nicolas Tsingos, Carsten Dachsbacher, Sylvain Lefebvre,
and Matteo Dellepiane. “Instant Sound Scattering”. In:
Proceedings of the 18th Eurographics Conference on Render-

http://dx.doi.org/10.1016/j.parco.2007.02.008
http://dx.doi.org/10.1016/j.parco.2007.02.008
http://dx.doi.org/10.1016/j.parco.2007.02.008
http://dx.doi.org/10.1016/j.parco.2007.02.008
http://cg.in.tu-clausthal.de/research/colldet_benchmark
http://cg.in.tu-clausthal.de/research/colldet_benchmark

154 Bibliography

ing Techniques. EGSR’07. Grenoble, France: Eurographics
Association, 2007, pages 111–120. isbn: 978-3-905673-52-
4. doi: 10.2312/EGWR/EGSR07/111- 120. url: http://
dx.doi.org/10.2312/EGWR/EGSR07/111-120 (cited on
page 33).

[VB04] Gino Van Den Bergen and Gino Johannes Apolonia van
den Bergen. Collision Detection in Interactive 3D Environ-
ments. Morgan Kaufmann, 2004 (cited on pages 2, 14, 17).

[Van94] George Vaněkčkek. “Back-face Culling applied to Colli-
sion Detection of Polyhedra”. In: The Journal of Visualiza-
tion and Computer Animation 5.1 (1994), pages 55–63 (cited
on page 33).

[Våp+13] Cecilie Våpenstad, Erlend Fagertun Hofstad, Thomas
Langø, Ronald Mårvik, and Magdalena Karolina
Chmarra. “Perceiving Haptic feedback in Virtual Re-
ality Simulators”. In: Surgical endoscopy 27.7 (2013),
pages 2391–2397 (cited on page 115).

[VT94] Pascal Volino and Nadia Magnenat Thalmann. “Efficient
Self-Collision Detection on Smoothly Discretized Sur-
face Animations using Geometrical Shape Regularity”.
In: Computer Graphics Forum. Volume 13. 3. Wiley Online
Library. 1994, pages 155–166 (cited on page 4).

[VBZ90] Brian Von Herzen, Alan H. Barr, and Harold R. Zatz.
“Geometric Collisions for Time-Dependent Parametric
Surfaces”. In: ACM SIGGRAPH Computer Graphics 24.4
(1990), pages 39–48 (cited on page 30).

[WBS07] Ingo Wald, Solomon Boulos, and Peter Shirley. “Ray
Tracing Deformable Scenes Using Dynamic Bounding
Volume Hierarchies”. In: ACM Transactions on Graphics
(TOG) 26.1 (2007), page 6 (cited on page 34).

[Wal+01] Ingo Wald, Philipp Slusallek, Carsten Benthin, and
Markus Wagner. “Interactive Rendering with Coherent
Ray Tracing”. In: Computer graphics forum. Volume 20.
3. Wiley Online Library. 2001, pages 153–165 (cited on
page 34).

[WS04] Michael Wand and Wolfgang Straßer. “Multi-resolution
Sound Rendering”. In: ACM SIGGRAPH 2004 Sketches.
SIGGRAPH ’04. Los Angeles, California: ACM, 2004,
pages 47–. isbn: 1-58113-896-2. doi: 10.1145/1186223.
1186282. url: http://doi.acm.org/10.1145/1186223.
1186282 (cited on page 33).

http://dx.doi.org/10.2312/EGWR/EGSR07/111-120
http://dx.doi.org/10.2312/EGWR/EGSR07/111-120
http://dx.doi.org/10.2312/EGWR/EGSR07/111-120
http://dx.doi.org/10.1145/1186223.1186282
http://dx.doi.org/10.1145/1186223.1186282
http://doi.acm.org/10.1145/1186223.1186282
http://doi.acm.org/10.1145/1186223.1186282

Bibliography 155

[Wan+04] Wenping Wang, Yi-King Choi, Bin Chan, Myung-Soo
Kim, and Jiaye Wang. “Efficient Collision Detection for
Moving Ellipsoids Using Separating Planes”. In: Comput-
ing 72.1-2 (Apr. 2004), pages 235–246. issn: 0010-485X.
doi: 10.1007/s00607-003-0060-0. url: http://dx.doi.
org/10.1007/s00607-003-0060-0 (cited on page 23).

[WWK01] Wenping Wang, Jiaye Wang, and Myung-Soo Kim. “An
Algebraic Condition for the Separation of Two Ellip-
soids”. In: Comput. Aided Geom. Des. 18.6 (July 2001),
pages 531–539. issn: 0167-8396. doi: 10 . 1016 / S0167 -

8396(01)00049-8. url: http://dx.doi.org/10.1016/
S0167-8396(01)00049-8 (cited on page 23).

[WP02] Xiaohuan Corina Wang and Cary Phillips. “Multi-weight
Enveloping: Least-squares Approximation Techniques
for Skin Animation”. In: Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation.
SCA ’02. San Antonio, Texas: ACM, 2002, pages 129–138.
isbn: 1-58113-573-4. doi: 10.1145/545261.545283. url:
http://doi.acm.org/10.1145/545261.545283 (cited on
page 18).

[Web03] Andrew R. Webb. Statistical Pattern Recognition. John Wi-
ley & Sons, 2003 (cited on pages 49, 50).

[WZ97] R. Weber and P. Zezula. “The Theory and Practice of
Searches in High Dimensional Dataspaces”. In: Proceed-
ings of the Fourth DELOS Workshop on ImageIndexing and
Retrieval. 1997 (cited on page 51).

[WHG84] Hank Weghorst, Gary Hooper, and Donald P. Greenberg.
“Improved Computational Methods for Ray Tracing”. In:
ACM Transactions on Graphics (TOG) 3.1 (1984), pages 52–
69 (cited on page 24).

[Wei86] Jerry Weil. “The Synthesis of Cloth Objects”. In: ACM
Siggraph Computer Graphics 20.4 (1986), pages 49–54 (cited
on page 15).

[Wel12] René Weller. “New Geometric Data Structures for Colli-
sion Detection”. PhD Dissertation. Faculty of Computer
Science: University of Bremen, Germany, Aug. 2012 (cited
on page 9).

[WFZ13] René Weller, Udo Frese, and Gabriel Zachmann. “Paral-
lel Collision Detection in Constant Time”. In: Virtual Re-
ality Interactions and Physical Simulations (VRIPhys). Lille,
France: Eurographics Association, Nov. 2013 (cited on
page 11).

http://dx.doi.org/10.1007/s00607-003-0060-0
http://dx.doi.org/10.1007/s00607-003-0060-0
http://dx.doi.org/10.1007/s00607-003-0060-0
http://dx.doi.org/10.1016/S0167-8396(01)00049-8
http://dx.doi.org/10.1016/S0167-8396(01)00049-8
http://dx.doi.org/10.1016/S0167-8396(01)00049-8
http://dx.doi.org/10.1016/S0167-8396(01)00049-8
http://dx.doi.org/10.1145/545261.545283
http://doi.acm.org/10.1145/545261.545283

156 Bibliography

[WKZ06] René Weller, Jan Klein, and Gabriel Zachmann. “A Model
for the Expected Running Time of Collision Detection
using AABB Trees”. In: Eurographics Symposium on Vir-
tual Environments (EGVE). Edited by Roger Hubbold and
Ming Lin. Lisbon, Portugal, Aug. 2006 (cited on page 11).

[Wel+10] René Weller, David Mainzer, Mikel Sagardia, Thomas
Hulin, Gabriel Zachmann, and Carsten Preusche. “A
benchmarking suite for 6-DOF real time collision re-
sponse algorithms”. In: Proceedings of the 17th ACM Sym-
posium on Virtual Reality Software and Technology (VRST).
Hong Kong: ACM, Nov. 2010, pages 63–70. isbn: 978-
1-4503-0441-2. doi: http : / / doi . acm . org / 10 . 1145 /

1889863.1889874. url: http://cg.in.tu- clausthal.
de/publications.shtml%5C#vrst2010 (cited on page 89).

[Wel+14] René Weller, David Mainzer, Abhishek Srinivas, Matthias
Teschner, and Gabriel Zachmann. “Massively Parallel
Batch Neural Gas for Bounding Volume Hierarchy Con-
struction”. In: Virtual Reality Interactions and Physical Sim-
ulations (VRIPhys). Bremen, Germany: Eurographics As-
sociation, Sept. 2014 (cited on pages 38, 58).

[WZ12] Rene Weller and Gabriel Zachmann. “User Performance
in Complex Bi-manual Haptic Manipulation with 3 DOFs
vs. 6 DOFs”. In: Haptics Symposium. Vancouver, Canada,
Mar. 2012. url: http : / / cg . in . tu - clausthal . de /

research/haptesha/index.shtml (cited on page 116).

[WZ06] René Weller and Gabriel Zachmann. “Kinetic Separa-
tion Lists for Continuous Collision Detection of De-
formable Objects.” In: VRIPHYS. 2006, pages 33–42 (cited
on page 30).

[WZ09] René Weller and Gabriel Zachmann. “Inner Sphere Trees
for Proximity and Penetration Queries”. In: 2009 Robotics:
Science and Systems Conference (RSS). Seattle, WA, USA,
June 2009. url: http : / / cgvr . cs . uni - bremen . de /

research/ist/index.shtml (cited on pages 10, 54, 92,
99).

[WZ10] René Weller and Gabriel Zachmann. “ProtoSphere: A
GPU-Assisted Prototype-Guided Sphere Packing Algo-
rithm for Arbitrary Objects”. In: ACM SIGGRAPH ASIA
2010 Sketches. Seoul, Republic of Korea: ACM, Dec. 2010,
8:1–8:2. isbn: 978-1-4503-0523-5. doi: http://doi.acm.
org/10.1145/1899950.1899958. url: http://cg.in.tu-
clausthal.de/research/protosphere (cited on page 38).

http://dx.doi.org/http://doi.acm.org/10.1145/1889863.1889874
http://dx.doi.org/http://doi.acm.org/10.1145/1889863.1889874
http://cg.in.tu-clausthal.de/publications.shtml%5C#vrst2010
http://cg.in.tu-clausthal.de/publications.shtml%5C#vrst2010
http://cg.in.tu-clausthal.de/research/haptesha/index.shtml
http://cg.in.tu-clausthal.de/research/haptesha/index.shtml
http://cgvr.cs.uni-bremen.de/research/ist/index.shtml
http://cgvr.cs.uni-bremen.de/research/ist/index.shtml
http://dx.doi.org/http://doi.acm.org/10.1145/1899950.1899958
http://dx.doi.org/http://doi.acm.org/10.1145/1899950.1899958
http://cg.in.tu-clausthal.de/research/protosphere
http://cg.in.tu-clausthal.de/research/protosphere

Bibliography 157

[Whi80] Turner Whitted. “An Improved Illumination Model for
Shaded Display”. In: Commun. ACM 23.6 (June 1980),
pages 343–349. issn: 0001-0782. doi: 10 . 1145 / 358876 .

358882. url: http://doi.acm.org/10.1145/358876.
358882 (cited on page 33).

[Wil13] Nicholas Wilt. The CUDA Handbook: A Comprehensive
Guide to GPU Programming. Pearson Education, 2013

(cited on page 3).

[WB05] Wingo Sai-Keung Wong and George Baciu. “GPU-based
Intrinsic Collision Detection for Deformable Surfaces:
Collision Detection and Deformable Objects”. In: Comput.
Animat. Virtual Worlds 16.3-4 (July 2005), pages 153–161.
issn: 1546-4261. doi: 10.1002/cav.v16:3/4. url: http:
//dx.doi.org/10.1002/cav.v16:3/4 (cited on page 32).

[WDM07] Muiris Woulfe, John Dingliana, and Michael Manzke.
“Hardware Accelerated Broad Phase Collision Detection
for Realtime Simulations”. In: Workshop in Virtual Reality
Interactions and Physical Simulation. The Eurographics As-
sociation. 2007, pages 79–88 (cited on page 19).

[Wu12] Junjie Wu. Advances in K-means Clustering: A Data Mining
Thinking. Springer, 2012 (cited on page 51).

[WZH09] Ren Wu, Bin Zhang, and Meichun Hsu. “Clustering Bil-
lions of Data Points Using GPUs”. In: Proceedings of
the Combined Workshops on UnConventional High Perfor-
mance Computing Workshop Plus Memory Access Workshop.
UCHPC-MAW ’09. Ischia, Italy: ACM, 2009, pages 1–6.
isbn: 978-1-60558-557-4. doi: 10.1145/1531666.1531668.
url: http://doi.acm.org/10.1145/1531666.1531668
(cited on page 52).

[Wu92] Xiaolin Wu. “Graphics Gems III”. In: edited by David
Kirk. San Diego, CA, USA: Academic Press Professional,
Inc., 1992. Chapter A Linear-time Simple Bounding Vol-
ume Algorithm, pages 301–306. isbn: 0-12-409671-9. url:
http://dl.acm.org/citation.cfm?id=130745.130796

(cited on page 74).

[YG07] Türker Yılmaz and Uğur Güdükbay. “Conservative Oc-
clusion Culling for Urban Visualization using a Slice-
wise Data Structure”. In: Graphical Models 69.3 (2007),
pages 191–210 (cited on page 33).

[YW93] J.-H. Youn and K. Wohn. “Realtime collision detection
for virtual reality applications”. In: Virtual Reality An-
nual International Symposium, 1993., 1993 IEEE. Sept. 1993,
pages 415–421. doi: 10.1109/VRAIS.1993.380750 (cited
on page 7).

http://dx.doi.org/10.1145/358876.358882
http://dx.doi.org/10.1145/358876.358882
http://doi.acm.org/10.1145/358876.358882
http://doi.acm.org/10.1145/358876.358882
http://dx.doi.org/10.1002/cav.v16:3/4
http://dx.doi.org/10.1002/cav.v16:3/4
http://dx.doi.org/10.1002/cav.v16:3/4
http://dx.doi.org/10.1145/1531666.1531668
http://doi.acm.org/10.1145/1531666.1531668
http://dl.acm.org/citation.cfm?id=130745.130796
http://dx.doi.org/10.1109/VRAIS.1993.380750

158 Bibliography

[Yu+04] Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun
Bao, Baining Guo, and Heung-Yeung Shum. “Mesh Edit-
ing with Poisson-based Gradient Field Manipulation”. In:
ACM SIGGRAPH 2004 Papers. SIGGRAPH ’04. Los Ange-
les, California: ACM, 2004, pages 644–651. doi: 10.1145/
1186562.1015774. url: http://doi.acm.org/10.1145/
1186562.1015774 (cited on page 17).

[Zac95] Gabriel Zachmann. “The BoxTree: Exact and Fast Col-
lision Detection of Arbitrary Polyhedra”. In: Informal
Proc. First Workshop on Simulation and Interaction in Vir-
tual Environments, SIVE 95 (1995), pages 104–112 (cited
on page 24).

[Zac98a] Gabriel Zachmann. “Rapid Collision Detection by Dy-
namically Aligned DOP-Trees”. In: Proceedings of the Vir-
tual Reality Annual International Symposium. VRAIS ’98.
Washington, DC, USA: IEEE Computer Society, 1998,
pages 90–. isbn: 0-8186-8362-7. url: http://dl.acm.org/
citation.cfm?id=522258.836122 (cited on page 23).

[Zac98b] Gabriel Zachmann. “Rapid Collision Detection by Dy-
namically Aligned DOP-Trees”. In: Proc. of IEEE Virtual
Reality Annual International Symposium; VRAIS ’98. At-
lanta, Georgia, Mar. 1998, pages 90–97 (cited on page 24).

[Zac00] Gabriel Zachmann. “Virtual Reality in Assembly Simula-
tion – Collision Detection, Simulation Algorithms, and In-
teraction Techniques”. PhD thesis. Darmstadt University
of Technology, Germany, May 2000. isbn: 3-8167-5628-X
(cited on pages 8, 28).

[Zac01] Gabriel Zachmann. “Optimizing the Collision Detection
Pipeline”. In: Proc. of the First International Game Technol-
ogy Conference (GTEC). Jan. 2001 (cited on pages 9, 21, 30).

[ZL03] Gabriel Zachmann and Elmar Langetepe. Geometric Data
Structures for Computer Graphics. Eurographics Assoc.,
2003 (cited on page 14).

[ZH97] Hansong Zhang and Kenneth E. Hoff III. “Fast Backface
Culling Using Normal Masks”. In: Proceedings of the 1997
symposium on Interactive 3D graphics. ACM. 1997, 103–ff
(cited on page 33).

[Zha+97] Hansong Zhang, Dinesh Manocha, Tom Hudson, and
Kenneth E. Hoff III. “Visibility Culling Using Hierar-
chical Occlusion Maps”. In: Proceedings of the 24th An-
nual Conference on Computer Graphics and Interactive Tech-
niques. SIGGRAPH ’97. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 1997, pages 77–
88. isbn: 0-89791-896-7. doi: 10 . 1145 / 258734 . 258781.

http://dx.doi.org/10.1145/1186562.1015774
http://dx.doi.org/10.1145/1186562.1015774
http://doi.acm.org/10.1145/1186562.1015774
http://doi.acm.org/10.1145/1186562.1015774
http://dl.acm.org/citation.cfm?id=522258.836122
http://dl.acm.org/citation.cfm?id=522258.836122
http://dx.doi.org/10.1145/258734.258781

Bibliography 159

url: http://dx.doi.org/10.1145/258734.258781 (cited
on page 33).

[Zho+11] Kun Zhou, Minmin Gong, Xin Huang, and Baining Guo.
“Data-Parallel Octrees for Surface Reconstruction”. In:
IEEE Transactions on Visualization and Computer Graphics
17.5 (May 2011), pages 669–681. issn: 1077-2626. doi: 10.
1109/TVCG.2010.75. url: http://dx.doi.org/10.1109/
TVCG.2010.75 (cited on page 19).

[Zho+08] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo.
“Real-time KD-tree Construction on Graphics Hardware”.
In: ACM SIGGRAPH Asia 2008 Papers. SIGGRAPH Asia
’08. Singapore: ACM, 2008, 126:1–126:11. isbn: 978-1-4503-
1831-0. doi: 10.1145/1457515.1409079. url: http://doi.
acm.org/10.1145/1457515.1409079 (cited on pages 19,
47).

[Zwi+02] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar,
and Markus Gross. “EWA Splatting”. In: Visualization
and Computer Graphics, IEEE Transactions on 8.3 (2002),
pages 223–238 (cited on page 11).

http://dx.doi.org/10.1145/258734.258781
http://dx.doi.org/10.1109/TVCG.2010.75
http://dx.doi.org/10.1109/TVCG.2010.75
http://dx.doi.org/10.1109/TVCG.2010.75
http://dx.doi.org/10.1109/TVCG.2010.75
http://dx.doi.org/10.1145/1457515.1409079
http://doi.acm.org/10.1145/1457515.1409079
http://doi.acm.org/10.1145/1457515.1409079

G L O S S A RY

AABB Axis Aligned Bounding Box. 10–12, 19, 22, 23, 25–
28, 30, 74, 79, 86, 89, 92, 94

AMD Advanced Micro Devices. 83

AoS Array of Structures. 79

AVX Advanced Vector Extensions. 63

BNG Batch Neural Gas. 38, 45, 53–61, 64, 72, 106

BSP Binary Space Partitioning. 19–21, 45, 46

BV Bounding Volume. 11, 15, 18–28, 30–34, 55, 57, 64,
73–75, 79–81, 83, 87, 92, 99, 106, 107, 109, 111

BVH Bounding Volume Hierarch. ix, 7, 10–12, 22–25, 31,
32, 34, 36, 54–58, 62, 63, 90, 113

CAD Computer-Aided Design. 45

CPU Central Processing Unit. 2–5, 12, 20, 31, 32, 35–37,
42, 55, 60, 62, 63, 83–85, 88, 97, 100, 101, 111, 114

CSG Constructive Solid Geometry. 2, 11, 14, 20

CT Computed Tomography. 35

CUDA Compute Unified Device Architecture. 20, 37–39,
42, 55, 58, 60, 76, 78–80, 84, 85, 109, 110, 119

DAC Divide-and-Conquer. 11, 52

DAG Directed Acyclic Graph. 16

DoF Degree of Freedom. 110, 116

FDH Fixed-Direction Hull. 23

FEM Finite Element Method. 18

FFT Fast Fourier Transform. 38

FPGA Field-Programmable Gate Array. 19

GJK Gilbert-Johnson-Keerthi. 26

GPGPU General Purpose Computation on GPUs. 37, 38

GPU Graphics Processing Unit. ix, 2–6, 11, 12, 17, 20, 31,
32, 34–39, 42, 52, 55, 58, 60, 62, 64, 65, 78, 82–85, 88,
106, 107, 111, 112, 114, 119, 161

161

162 glossary

GUI Graphical User Interface. 109

IA Interval Arithmetic. 10, 30

IST Inner Sphere Tree. 10, 11, 54–57, 92, 97–102, 104,
113

k-DOP k-Discrete Oriented Polytopes. 23, 25

MIMD Multiple-Instruction, Multiple-Data. 2, 3, 31

MISD Multiple-Instruction, Single-Data. 2, 3

MMX Multi Media Extension. 2

MPR Multilevel Polak-Ribiere. 31

MRI Magnetic Resonance Imaging. 35

NG Neural Gas. 53

NP Non-Deterministic Polynomial Time. 45

NURBS Non-Uniform Rational B-Spline. 2, 10, 11, 54

OBB Oriented Bounding Box. 10, 19, 23, 26, 30, 32, 74

OpenCL Open Computing Language. 37, 38, 42, 109, 119

OpenMP Open Multi-Processing. 31

PCA Principal Component Analysis. 5, 20, 68, 71, 73–76,
78, 79, 86, 106, 113, 114

PCS Potentially Collision Set. 9, 21

PDE Partial Differential Equation. 18

PQP Proximity Query Package. 92

QuOSPO Quantized Orientation Slabs with Primary Orien-
tations. 23

SAH Surface Area Heuristic. 34

SaP Sweep-and-Prune. 5, 7, 20, 21, 26, 27, 65, 73–75,
77–79, 107, 113, 114

SDK Software Development Kit. 110

SIMD Single-Instruction, Multiple-Data. 2, 3, 34, 61, 163

SISD Single-Instruction, Single-Data. 3

SLI Scalable Link Interface. 83

SMX Next Generation Streaming Multiprocessor. 38, 39

glossary 163

SoA Structure of Arrays. 79

SOFA Simulation Open Framework Architecture. 9

SOM Self-Organizing Map. 75

SP Streaming Processor. 39

SPH Smoothed Particle Hydrodynamics. 18, 36

SPMD Single-Program, Multiple-Data. 31

SSE Streaming SIMD Extensions. 2, 63

SSL Sphere-Swept Line. 23

SSP Sphere-Swept Point. 23

SSR Sphere-Swept Rectangle. 23, 32

ToI Time of Impact. 13

VPS Voxmap-Pointshell. 97, 98, 100–102, 104

	Dedication
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction
	1.1 Contributions

	2 A Brief Overview of The Complex Area of Collision Detection
	2.1 Collision Detection and Response
	2.1.1 Collision Detection Queries
	2.1.2 Further Information on Collision Detection

	2.2 Deformable Objects
	2.3 Deformable versus Rigid Body Collision Detection
	2.4 Animation
	2.5 Broad-Phase Collision Detection
	2.6 Narrow-Phase Collision Detection
	2.7 Sophisticated Narrow-Phase Collision Detection: SaP
	2.8 Continuous Collision Detection
	2.9 Parallel Collision Detection
	2.9.1 CPU
	2.9.2 Hybrid CPU — GPU
	2.9.3 GPU

	2.10 Time-Critical Collision Detection
	2.11 Related Fields
	2.11.1 Excursus: Ray Tracing
	2.11.2 Excursus: Volumen Rendering

	3 A Biref Introduction into Massively Parallel Computing
	3.1 The Graphics Hardware
	3.2 Performance of Parallel Computing
	3.2.1 Amdahl's Law
	3.2.2 Gustafson's Law
	3.2.3 Conclusion

	4 Scene Subdivision for Collision Detection
	4.1 BSP-Tree
	4.1.1 Advantages and Disadvantages

	4.2 [2]D Kd-Tree
	4.2.1 Advantages and Disadvantages

	4.3 Uniform Grids
	4.3.1 Advantages and Disadvantages

	4.4 Clustering — C-Means
	4.4.1 Clustering and Classification
	4.4.2 Advantages and Disadvantages

	4.5 Fuzzy Clustering — Fuzzy C-Means
	4.5.1 Stopping Criterion
	4.5.2 Advantages and Disadvantages

	4.6 Our New BNG Approach for Hierarchy Construction
	4.6.1 Batch Neural Gas for BVH Construction
	4.6.2 Batch Neural Gas Hierarchy Construction
	4.6.3 Results
	4.6.4 Improvements of Batch Neural Gas for Hierarchy Construction

	4.7 Future Work

	5 Our Novell Collision Detection Approach
	5.1 Scene Subdivision
	5.1.1 Data Points for the Scene Subdivision Process
	5.1.2 Clustering Process

	5.2 Sweep-Plane Technique using PCA
	5.2.1 PCA to Determine a Good Sweep Direction
	5.2.2 Principal Curves to Determine a Better Sweep Direction
	5.2.3 Implementation
	5.2.4 Thread Management

	5.3 Fast Triangle-Triangle Intersection Test
	5.4 Collision Detection Based on Fuzzy Scene Subdivision
	5.5 Accuracy and Limitations
	5.6 Benchmark for Deformable Objects
	5.6.1 Implementation and System Details
	5.6.2 Cloth on Ball Benchmark
	5.6.3 Funnel Benchmark

	5.7 Excursus: Our New Benchmarking Suite for Rigid Objects
	5.7.1 Overview of the Benchmarking Suite
	5.7.2 Performance Benchmark
	5.7.3 Force and Torque Quality Benchmark
	5.7.4 Results
	5.7.5 Conclusions and Future Work

	5.8 Future Work

	6 Technical Details and Applications
	6.1 Data Flow
	6.2 Sequence Diagram
	6.3 Implementation
	6.4 Bullet Physics 2.78
	6.4.1 Disadvantages

	6.5 Integration into Bullet Physics
	6.5.1 Disadvantages

	6.6 Our Collision Detection in Action

	7 Peroration
	7.1 Summary
	7.2 Where the journey can go?
	7.2.1 Quality of Contact Information
	7.2.2 Point Clouds
	7.2.3 Haptics
	7.2.4 Natural Interaction
	Appendix
	A Reference Sheets
	Publications
	Bibliography
	Glossary

