
UNIVERSITY OF BREMEN

DOCTORAL THESIS

Novel Algorithms and Methods for Immersive
Telepresence and Collaborative VR

RGB-D Streaming, 3D Scene (Re-)Construction,
and Avatar Visualization

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Engineering (Dr.-Ing.)

to the

Faculty of Computer Science

Author:
Roland FISCHER

Examiners:
Prof. Dr. Gabriel ZACHMANN

Prof. Dr. Stefan MÜLLER

August 16, 2023

Kolloquium:
October 05, 2023

i

Abstract
Virtual reality (VR) is stated to be a key technology of the next decade with huge
growth potential and is expected to transform many areas of business as well as
daily life [73]. Thanks to technological advances in hard- and software, over the re-
cent years, VR is getting used more frequently and moved from being solely a niche,
experimental and expensive gadget to being a more widespread and mature (enter-
tainment) device. Furthermore, it emerged as a serious and highly beneficial tool for
various professional applications, which significantly enlarges the target group and
user base. The application domains for VR are manifold and range from industry
to entertainment and the scientific community. One concrete example is the virtual
exploration of environments that are difficult or impossible to visit in person, e.g., in
the field of archaeology and cultural heritage [53, 182]. Other examples are virtual
3D data/object inspection, e.g., in the medical, digital marketing, or architectural
areas, and highly immersive and presence-inducing communication/telepresence,
e.g., in healthcare or office/work settings. Additionally, VR is a natural fit for teach-
ing and education tasks; either in industry settings, healthcare, or school. The main
benefit of VR is that, with the help of innovative input and output devices, such as
head-mounted displays, and stereoscopic vision, users can view, explore, and act
in arbitrary computer-generated 3D environments in a more immersive and natural
way than by looking at a simple 2D screen. Ideally, the users get a feeling of presence
– as if they were actually there [152]. To that effect, a general goal is to make the en-
vironments and interaction metaphors as realistic and intuitive as possible, though
this is not always a necessity.

The combination of VR and multi-user architectures promises to be especially
beneficial, as it enables multiple (remote) people to enjoy the advantages of VR, in-
teract with each other, and collaborate in the virtual 3D environment. For this reason,
these systems are high in demand and, consequently, are developed increasingly of-
ten. However, there are still many challenges to overcome before these systems can
truly gain traction and fully leave their still-lasting small-scale prototype character.
Many of them are related to 3D visualization, reconstruction, or rendering of some
kind. For instance, in collaborative VR, users are usually represented by 3D avatars.
High-quality systems employ avatars based on live reconstructed point clouds that
are captured using RGB-D cameras. Generating and rendering these high-quality
avatars in real-time is a difficult and computationally demanding task. Moreover,
streaming all the required data to all participants without generating high laten-
cies or occupying vast amounts of bandwidth requires sophisticated compression
algorithms. Other unsolved issues are, for example, how to combine immersive VR
applications with high-detailed interactive 3D data visualization, such as computed
tomography scans in medicine, or the suitable visualization of the popular telepor-
tation locomotion in multi-user settings, which can be very confusing otherwise.
However, to develop and employ immersive, effective multi-user VR applications, it
is not enough to consider how to visualize confined live scenes, avatars, and selected
3D data, but also the virtual environment itself. Most often, the environment consists
of manually created meshes but in some use cases, such as virtual testbeds, there is
a need for having (sometimes even multiple) vast, plausible-looking 3D landscapes.
Generating these is an often overlooked topic that is not trivial, though. These en-
vironments have to be created procedurally in order to keep the workload in check,
which in turn requires smart algorithms to quickly compute realistic, feature-rich
terrains.

ii

With this work, we address the abovementioned challenges (e.g., low-latency
data compression and streaming, real-time avatar reconstruction and rendering, etc.)
and focus on the question of how novel 3D rendering and visualization methods
can improve multi-user VR applications. A core contribution of the thesis is, there-
fore, the design, development, and evaluation of a low-latency, real-time point cloud
streaming and rendering pipeline for VR-based telepresence. With this, we are able
to depict high-quality live-captured 3D scenes and avatars in shared virtual envi-
ronments. Telepresence applications such as ours often rely on RGB-D cameras. As
the captured depth data is inherently incomplete and still takes up a huge amount of
space, we propose novel methods for RGB-D/depth image enhancement and com-
pression, which are crucial tasks for using and streaming data in multi-user applica-
tions that employ RGB-D cameras. Related to telepresence, we also tackle the afore-
mentioned issue of the potentially confusing teleport locomotion in multi-user envi-
ronments, where the avatar is simply placed at the target destination. We do this by
proposing and evaluating multiple 3D visualizations, intended to prevent confusion
and preserve the observer’s feeling of presence. Together, these contributions allow
for an immersive real-time 3D visualization of remote physical scenes and avatars in
collaborative VR environments. After this, we also considered the 3D environment
itself and tackled the issue of the labor-intensive generation of large and detailed vir-
tual environments, which are required for some application domains. We designed
and developed multiple methods to procedurally generate realistically-looking ter-
rains for VR applications. These are specifically capable of creating plausible biome
distributions as well as natural water bodies. Multi-user VR applications can include
other elements, too, though. For instance, in the medical area, volumetric data such
as computed tomography scans. Hence, another question was how to visualize this
data in immersive multi-user VR environments for collaborative inspection. Our so-
lution to this is a combination of a custom direct volume rendering solution with an
Unreal Engine 4-based collaborative VR application, which allows for interactive,
high-quality volumetric visualizations. Lastly, we found that teaching and educa-
tion are important areas for multi-user VR, however, it is not adequately explored
yet, if collaborative learning in VR, e.g., anatomy learning, is as beneficial as it is
classically. Thus, we conducted a study and investigated the effects of collaborative
anatomy learning in VR using a collaborative VR anatomy atlas that provides accu-
rate interactive 3D models of all the human organs and anatomical structures. With
this, we considered all visualization-related challenges of multi-user VR, from live-
captured scenes and avatars to selected 3D data, and to the virtual 3D environments
itself, and therefore help to elevate multi-user VR to another level.

iii

Acknowledgements
I am very grateful to my supervisor, Prof. Dr. Gabriel Zachmann, for giving me
the opportunity to pursue my thesis in a fantastic research environment and for his
continuous support and excellent guidance. Whenever needed, he always gave me
precious advice and helpful feedback.

I also would like to express my gratitude to Prof. Dr. Stefan Müller for accepting
the co-advisorship.

Moreover, I wish to thank all my co-authors as well as academic and industrial
collaborators for the fruitful cooperative work without which this thesis undoubt-
edly would not exist. Namely, Dr. René Weller, Philipp Dittmann, Andre Mühlen-
brock, Christoph Schröder-Dering, Janis Rosskamp, Thomas Hudcovic, Dr. Verena
Uslar, Prof. Dr. Dirk Weyhe, Marc Jochens, Farin Kulapichitr, Judith Boeckers, Kai-
Ching Chang, and Anton Schlegel.

Naturally, I would also like to thank all my colleagues from the CGVR research
group, especially, my office mate Hermann Meißenhelter. I always enjoyed the very
friendly and productive atmosphere and the insightful discussions. Almost all of
them contributed in some form to shape this thesis the way it is today.

Thanks go also to all my students and study participants for their work and
efforts.

Moreover, there is no doubt that I am greatly indebted to my mother who sup-
ported me all the time throughout this journey and made my life so much easier.
She was always very understanding and had an ear for me and my problems.

I also would like to express my sincere gratitude to Haya for her support. She
always gave me confidence, encouraged me to keep going and do my best, and
offered her help whenever possible.

Last but not least, I cannot thank my good friends Niklas, Mario, and Alex
enough. They were always there for me with helpful advice and lifted my spirits
when needed. Also, by helping with the proofreading, they made sure that at least
some parts are correct.

v

Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Motivation . 1
1.2 Overview and Contributions . 6

2 Overview and State of the Art of the Area of Multi-User VR 11
2.1 Terminology . 11

2.1.1 Virtual Reality . 11
2.1.2 Presence, Immersion, and Embodiment 13

2.2 Important Aspects of (Multi-User) VR 15
2.2.1 Interaction and Locomotion . 16
2.2.2 Avatars . 18
2.2.3 Sensing and Tracking Methods 18

RGB-D/Depth Enhancement . 20
2.2.4 Reconstruction and Rendering Methods 21
2.2.5 Streaming and Compression of Sensor Data 23
2.2.6 Virtual Environments . 23

2.3 Example Application Domains . 25

3 Algorithms and Architectures for Telepresence in Multi-User VR 31
3.1 Development and Evaluation of a Point Cloud Streaming and Ren-

dering Pipeline . 31
3.1.1 Introduction . 32
3.1.2 Related Work . 33
3.1.3 System Overview . 36

Multi-User VR Environment . 37
Point Cloud Streaming . 37
Point Cloud Registration and Rendering 39

3.1.4 Results . 42
Performance . 42
Network . 45

3.1.5 User Studies . 46
Study 1: Qualitative Feedback, Presence, and Preference 46
Study 2: Comparison of Point Cloud Rendering Solutions . . . 48

3.1.6 Limitations . 50
Face Reconstruction . 50

3.1.7 Conclusions and Future Work . 52
3.2 (Improved) Lossless Depth Image Compression Methods 53

3.2.1 Introduction . 54
3.2.2 Related Work . 55

vi

3.2.3 Proposed Approach . 56
Adaptive Span-Based Prediction 57
Inter-Frame Delta Computation 58
Further bit reduction . 59
Parallel Execution . 59

3.2.4 Results . 60
Additional Data . 66
Evaluation of Lossy Video Compression 66

3.2.5 Conclusions and Future Work . 72
3.3 Enhancement of Depth Images using Deep Neural Networks 74

3.3.1 Introduction . 75
3.3.2 Related Work . 76
3.3.3 Categorization of Depth Errors 77
3.3.4 Proposed Approach . 79

Datasets . 79
Preprocessing Pipeline . 79
Network Details . 83
Training Procedure . 85

3.3.5 Results . 86
3.3.6 Conclusions and Future Work . 96

4 Perception of Teleport Visualizations in Multi User VR 99
4.1 Introduction . 99
4.2 Related Work . 101
4.3 Proposed Teleport Visualizations . 103
4.4 Study . 104

4.4.1 Hypotheses . 104
4.4.2 Experimental Setup . 106
4.4.3 Procedure . 108

4.5 Results . 110
4.5.1 Participants . 110
4.5.2 Qualitative and Quantitative Data 110

4.6 Discussion . 118
4.6.1 Comparison of IFoV and OFoV Scenarios 123
4.6.2 Comparison of Slow and Fast Experiment 123

4.7 Limitations . 124
4.8 Conclusions and Future Work . 125

5 Large-scale Procedural Terrain Generation for VR Environments 127
5.1 AutoBiomes: Procedural Generation of Multi-Biome Landscapes . . . 127

5.1.1 Introduction . 128
5.1.2 Related Work . 129
5.1.3 Proposed Approach . 130

Base Terrain . 131
Climate Simulation . 133
Terrain Refinement . 137
Asset Placement . 138

5.1.4 Results . 140
5.1.5 Conclusions and Future Work . 146

5.2 Procedural Generation of Landscapes with Water Bodies Using Arti-
ficial Drainage Basins . 146

vii

5.2.1 Introduction . 147
5.2.2 Related Work . 147
5.2.3 Overview of our Approach . 149
5.2.4 Our Terrain Generation Pipeline in Detail 150

Ocean Borders . 150
Regions . 152
River Networks and Lakes . 154
Terrain . 158
Visualization . 159

5.2.5 Results . 160
Complexity Analysis . 160
Performance Evaluation . 161
Qualitative Evaluation . 162

5.2.6 Conclusions and Future Work . 163
5.3 Procedural Terrain Lookalikes - Generating Extraterrestrial Planetary

Surfaces for VR Testbeds . 166
5.3.1 Introduction . 167
5.3.2 Related Work and Promising Approaches 167

Heuristic- and Noise-based Lookalikes 168
Machine/Deep Learning-based Lookalikes 169

6 Applications for Multi-User VR in the Medical Field 173
6.1 Volumetric CT Data Visualization for Collaborative VR Environments 173

6.1.1 Introduction . 174
6.1.2 Related Work . 175
6.1.3 Proposed Approach . 176

Direct Volume Rendering . 177
Collaborative VR . 180

6.1.4 Results . 183
6.1.5 Conclusions and Future Work . 193

6.2 Anatomy Learning through a Collaborative VR Anatomy Atlas 193
6.2.1 Introduction . 194
6.2.2 Related Work . 194
6.2.3 Implementation . 195
6.2.4 Study . 195
6.2.5 Design and Setup . 196

Procedure . 196
6.2.6 Results . 197
6.2.7 Discussion . 198
6.2.8 Conclusions and Future Work . 198

7 Conclusions and Outlook 201
7.1 Summary . 201
7.2 Outlook . 204

A Publications 207

B Additional Plots for Section 3.2 209

Bibliography 215

ix

List of Abbreviations

3DMM 3 Dimensional Morphable Model
AR Augmented Reality
CAVE Cave Automatic Virtual Environment
CNN Convolutional Neural Network
CRF Constant Rate Factor
CT Computed Tomography
DEM Digital Elevation Model
DVR Direct Volume Rendering
FOV Field Of View
GAN Generative Adversarial Network
GOP Group Of Pictures
GUI Graphical User Interface
HMD Head-Mounted Display
HU Houndsfield Unit
ICU Intensive Care Unit
IMU Inertial Measurement Unit
IPQ Igroup Presence Questionnaire
IR Infrared
LAO Local Ambient Occlusion
LOD Level Of Detail
MR Mixed Reality
MRI Magnetic Resonance Imaging
OCN Optimal Channel Network
OR Operating Room
PSNR Peak Signal-To-Noise Ratio
ROI Region Of Interest
PTG Procedural Terrain Generation
SDK Software Development Kit
SLAM Simultaneous Localization And Mapping
SSAA Super Sampling Anti Aliasing
SUS System Usability Scale
TOF Time Of Flight
UE Unreal Engine
UI User Interface
VR Virtual Reality
VTK Visualization Toolkit

1

Chapter 1

Introduction

With this chapter, we would like to introduce the topic of this thesis and its wider
context. First, in Section 1.1, we motivate the thesis by talking about (multi-user)
virtual reality, why it is getting increasingly popular, its importance and application
domains, but also its current issues. Then, in Section 1.2, we will give an overview
of our contributions with which we tackle these issues.

1.1 Motivation

Virtual reality (VR) is a key technology of the next decade with huge growth poten-
tial and is expected to transform many areas of business as well as daily life [73].
For instance, a market research report from Fortune Business Insights [154] states
that “the healthcare industry is expected to witness significant disruption across the
industry with VR applications”. According to forecasts by Statista [271], the com-
bined augmented reality (AR), VR, and mixed reality (MR) market size is projected
to multiply 9-fold from 28 billion dollars in 2021 to 252 billion in 2028. Examining
the IDC worldwide augmented and virtual reality spending guide [150], worldwide
spending on AR and VR is projected to increase from 14 billion dollars in 2022 to 51
billion in 2026, of which VR will account for more than 70 percent. Thanks to tech-
nological advances in hard- and software, over the recent years, VR is getting used
more frequently and moved from being solely a niche and expensive gadget for gam-
ing to being a more widespread and mature entertainment device. Furthermore, it
emerged as a serious and highly beneficial tool for various professional applications,
which makes it popular with a broader audience [51].

The application domains for VR are manifold and range from industry to enter-
tainment and the scientific community. For instance, in the fields of cultural heritage,
tourism, and archaeology, VR, in conjunction with modern scanning techniques, can
be utilized to virtually reproduce and then explore environments that are difficult
or impossible to visit in person [182]. Figure 1.1 (top left) depicts how this process,
from data recording to visualization in VR, could look like. Similarly, VR also can be
employed for virtual 3D data/object inspection and exploration, e.g., in the medi-
cal [153, 296], digital marketing/retail/fashion [424, 418], or architectural areas. One
example of this is depicted in Fig. 1.1 (bottom left), in which VR and volume render-
ing technology are combined to 3D visualize and interactively inspect anatomical
data. Moreover, highly immersive and presence-inducing VR-based communica-
tion/telepresence systems have great potential and are eagerly tested in many do-
mains such as healthcare [210], or general professional work settings [88]. For in-
stance, Fig. 1.1 (bottom right) shows a point cloud-based VR telepresence system
designed to replace standard video conferencing. Additionally, VR is a natural fit
for teaching and education tasks; either in industry settings [262], healthcare [172],
or school. Figure 1.1 (bottom mid) shows an example of a VR dental simulator for

2 Chapter 1. Introduction

FIGURE 1.1: Application domains of (collaborative) VR. Top left: Dig-
ital twin generation workflow in cultural heritage [182]. Top right:
VR Simulation environment for industrial robot control [382]. Bottom
Left: 3D data visualization in medicine [153]. Bottom mid: Shared VR
environment for dental surgical training [172]. Bottom right: Telep-
resence application for VR conferencing [88]

teaching and training dental surgeons. Generally, VR environments lend themselves
to getting used as simulation environments, e.g., for autonomous driving [426], in
medicine [280], or in industrial settings [382]. See for example Fig. 1.1 (top right),
which depicts a VR simulation environment for industrial robot control. With this,
all actions and movements can be virtually simulated and validated before being
executed physically. The commercial use cases that are forecast to receive the largest
investments are training and collaboration [150].

The main benefit of VR is that users can view, explore, and act in arbitrary
computer-generated 3D environments in a more immersive and natural way than
by looking at a simple 2D screen. This is achieved with the help of innovative input
and output devices. For instance, head-mounted displays (HMD) provide stereo vi-
sion while pairs of tracked controllers provide haptic feedback. Ideally, the users get
a feeling of presence – as if they were actually there [319]. To that effect, a general
goal is to make the environments and interaction metaphors as realistic and intu-
itive as possible, though this is not always a necessity. Although VR got a lot of
attention lately, the concept itself is not particularly new. Sutherland [366] described
something akin to today’s concept of VR already in 1965 when he wrote about a
display that provides a computer-controlled environment in which everything is ex-
perienced as if it would be real. Following that, the first VR devices were developed
in the seventies and eighties, though these systems were rather crude back then. The
first commercial products for consumers were released in the nineties, however, the
lacking technology was still limiting its wider success [337]. The devices were too
heavy, cumbersome, and expensive. Also, the visual quality was lacking, both from a
hard- and software perspective (e.g., low screen resolution, simple rendering meth-
ods). Only in the last decade, with improved HMDs and VR systems such as the
Oculus Rift, HTC Vive, and PlayStation VR, we saw a more serious and widespread

1.1. Motivation 3

interest in VR leading to a significant expansion of the VR industry and a new wave
of VR application development [68].

The combination of VR and multi-user architectures promises to be especially
beneficial, as it enables multiple (remote) people to enjoy the advantages of VR, in-
teract with each other, and collaborate in the virtual 3D environment [63]. For this
reason, these systems are high in demand and, consequently, are developed increas-
ingly often. Closely collaborating with colleagues or other people, in general, is
highly important and beneficial for work [272], studying [195], or playing. Ideally,
people would be and work together in the same physical location, however, that
is not always feasible. For instance, in today’s highly connected and specialized
world, teams often consist of people and experts from different cities or even conti-
nents that cannot constantly travel or relocate. Also, considering the recent covid-19
pandemic, there is always the possibility of extraordinary circumstances that make
physical meetings impossible. Moreover, it highlighted the importance of working-
from-home modalities for employees. Most software systems and communication
tools that get used today to enable remote collaboration are just classic videoconfer-
encing tools or rather simple telepresence systems, though. They are highly limited
regarding immersive visualization and natural interaction, both with the system it-
self as well as the other people. An actual strong feeling of (tele)presence cannot be
achieved with these systems and productive teamwork is hampered [43].

In the following, we will consider some concrete example domains where novel
collaborative VR systems could be employed beneficially to improve the current
workflows and look at the advantages they could provide. The first example we
want to highlight is remote surgery assistance. Nowadays, surgeries can be incred-
ibly complex and require the involvement of multiple doctors from various disci-
plines, such as surgeons, anesthetists, and radiologists. This makes surgery inher-
ently a collaborative task. Naturally, nurses/assistants are present in the operating
room (OR), too. In many cases, junior doctors and medical students join in as well,
since observation of actual surgeries is a major avenue of education [23]. One issue
is the inhomogeneously distributed knowledge of the doctors, though [95]. In some
cases, the assistance of specialized experts or more experienced doctors is needed.
However, they are usually not on site and have to travel, which takes valuable time,
or they cannot visit at all. Today, the prevalent solution for these situations is to
receive remote assistance via phone or videoconferencing. This is not ideal as the
remote expert cannot get a comprehensive visual overview of the situation. A multi-
user VR telepresence system with an array of RGB-D cameras mounted in the oper-
ating room, such as the one by Roth et al. [311], could provide remote experts with
high-fidelity 3D live visuals of the scene. Especially having and observing the scene
in 3D would be very helpful as it provides crucial depth cues and helps to have a
better understanding of the spatial relations between objects and organs. Moreover,
remote and local doctors would have advanced and intuitive options to interact with
each other, especially when represented by real-time avatars. How such a system
could look like is depicted in Fig. 1.2. The left image shows the live-captured operat-
ing room with the local doctor and two avatars representing remote experts. The top
right picture shows the remote expert using a VR system for tracking and interac-
tion and the picture on the bottom right is his/her first-person view of the operating
room. An additional advantage of such systems would be that the medical students
could observe and learn from remote locations, which would be more convenient
and free up space in the OR [79]. Naturally, such VR telepresence systems could also
be employed to help doctors to teach virtually or visualize and discuss 3D patient
data; again, benefiting from the 3D representations and depth cues [23].

4 Chapter 1. Introduction

FIGURE 1.2: Mixed reality teleconsultation system for intensive care
units (ICU) by Roth et al. [311]. Left: the ICU with a local doctor
using MR glasses and two remote experts for consultation that are
represented by 3D avatars. Top right: a remote expert using VR to
consult from a distance. Bottom right: The remote expert’s view of
the local scene.

Another example use case for collaborative VR from a completely different area
that we would like to present is virtual testbeds. A virtual testbed is a software
system that is designed to allow the simulation and testing of hard and software
systems in a virtual environment. Usually, it is done before actual real-world tests
are conducted. Virtual testbeds are valuable tools for researchers and engineers, es-
pecially in earlier project phases, as they allow for quicker and more cost-effective
testing compared to conducting physical tests and, at the same time, can serve as a
communication platform. Another advantage is that they are not restricted physi-
cally, and therefore, can simulate arbitrary conditions which may not be available in
the real world. Also, parameters can be changed on the fly to alter the test conditions
quickly. Example areas in which virtual testbeds get employed are, among others,
the automotive industry, robotics, and space exploration [309]. There, they simu-
late, for instance, communication interfaces, sensor input, and the physical terrain
to which the car or robot then reacts. Doing this in a virtual environment allows for
the testing of software components and fixing initial flaws before costly real-world
field tests have to be conducted. This is especially important for space applications
and planetary exploration [407]. Properly and easily monitoring the virtual tests is
often problematic, though, because of limited usability and lack of visual feedback.
However, observing the produced data and the system’s behavior is highly impor-
tant. Embedding the virtual testbed in a multi-user VR application would help to
provide immersive high-fidelity visual feedback during the testing, i.e., 3D visual-
izations of sensor data, as well as natural interaction possibilities for one or multiple
engineers or researchers. This would allow them to dynamically interact with the
system, collaboratively discuss the progress and behavior, and eventually help with
complex decision-making and planning. An example is depicted in Fig. 1.3. The
left picture shows how two users use the VR system to interact in the shared virtual
testbed and the right picture depicts the autonomous vehicles that get simulated as
well as a color-coded visualization of sensor data.

However, there are still many challenges to overcome before multi-user VR sys-
tems can truly gain traction and fully leave the small-scale prototype character that

1.1. Motivation 5

FIGURE 1.3: Collaborative VR testbed for Mars exploration by Weller
et al. [407]. Left: two users explore and interact with the shared vir-
tual environment using VR headsets and controllers. Right: simu-
lated autonomous vehicles exploring the virtual terrain and visual-
ization of sensor data.

they often still pertain. Many of them are related to 3D visualization, reconstruc-
tion, and rendering of some kind, or related tasks such as compression and stream-
ing of the data. For instance, in collaborative VR, users are usually represented by
3D avatars. To produce a strong feeling of presence for the users, both spatially
and socially, and convey the sensation of embodying the depicted avatar in the vir-
tual world, the avatars have to be highly detailed, and most importantly personal-
ized [392]. Just capturing images of the users beforehand and then applying them
on a mesh-based model is not enough though. Mimics and dynamic changes in gen-
eral appearance should be depicted faithfully in real-time too, in order to get truly
immersive and accurate depictions of the users and their emotions in multi-user sce-
narios [416]. Moreover, it was shown that a high degree of freedom regarding the
avatar’s motion is important as well. As we see, having suitable avatars that accu-
rately represent the visuals and movements of the users in real time is not trivial.
High-quality systems often employ avatars based on live reconstructed point clouds
that are captured using RGB-D cameras. RGB-D cameras capture not only the color
for each pixel but also the depth to the objects, which helps to reconstruct 3D scenes,
and in this case, 3D avatars. Generating and rendering these high-quality avatars in
real-time is a difficult and computationally demanding task [90]. There are various
approaches to reconstructing and rendering 3D avatars from raw RGB-D data, e.g.,
point clouds, mesh reconstruction, and implicit surfaces combined with ray cast-
ing. All of these are demanding tasks to be done in real time when also aiming for
high-quality results.

Additionally, raw RGB-D data is prone to noise and artifacts which have to be
dealt with in preprocessing steps in order to get smooth results [381]. Denoising and
inpainting algorithms explicitly designed for depth data and real-time performance
are sparse though, and still leave much room for improvement. For instance, one of
the few works regarding depth completion (without color guidance) is the work by
Jin et al. [163], however, only small holes in the depth images are handled well. Hav-
ing multiple RGB-D cameras and combining the results at least helps in preventing
occlusions, on the other hand, however, the cameras then have to be registered to
each other precisely at all times.

An imperative aspect of collaborative VR is streaming all the required data to all

6 Chapter 1. Introduction

participants without generating high latencies or occupying vast amounts of band-
width. Especially RGB-D data has a large size when send raw, which makes sophis-
ticated compression algorithms necessary. The color data can easily be compressed
with current video compression algorithms, such as H.264, but for the depth data,
custom algorithms are needed, as the characteristics of the data are inherently dif-
ferent [412].

Having high-quality avatars in collaborative VR naturally raises also the ques-
tion of how to move throughout the virtual environment. Small-scale distances can
be covered using direct tracking but for larger distances, other locomotion metaphors
are needed. One of the most popular ones is the teleport metaphor as it is easy and
not prone to induce cybersickness. However, a currently unsolved issue is how to
suitably visualize this inherently non-continuous process to onlookers in multi-user
settings. Just disappearing and reappearing without any motion cues can be very
confusing and reduce the crucial feeling of presence [133].

Another rendering-related question is how other spatial/3D data, such as com-
puted tomography (CT) scans, which are a vital tool used in medicine, can be ren-
dered in immersive collaborative VR applications so that doctors can inspect and
interact with them together. Normally, if employed at all, such data gets visualized
with specialized programs that are viewed individually on 2D screens and interacted
with using classic user interfaces, while the game engines, which (collaborative) VR
applications are based on and that provide 3D visuals, don’t support the specialized
rendering algorithms for such data, e.g., volume rendering techniques.

As discussed, to develop and employ immersive, effective multi-user VR appli-
cations, it is important to visualize confined live scenes, avatars and selected 3D
data. However, we also need to consider the virtual environment itself. Most often,
the environment consists of manually created meshes but in some use cases, such
as the aforementioned virtual testbeds, there is a need for having (sometimes even
multiple) vast, plausible-looking 3D landscapes to test robots, cars, or other soft-
ware systems on [69]. Generating these landscapes is an often overlooked topic that
is not trivial though. These environments have to be created procedurally in order
to keep the workload in check, which in turn requires clever algorithms to quickly
compute realistic, feature-rich terrains that are also easily controllable and usable for
the designer [119].

As can be seen, there are various challenges with multi-user VR that require at-
tention. How we tackle these through our thesis and the individual contributions,
will be discussed in the following section.

1.2 Overview and Contributions

To summarize, this thesis aims at addressing the aforementioned challenges that
are currently present in multi-user VR, thereby elevating the state of the art to a
new level, and eventually improving the quality and feasibility of multi-user VR
applications in practice. To achieve this, we present a series of novel contributions
spread across various important subtopics. Figure 1.4 gives an overview of the chal-
lenges (depicted in blue) and our corresponding solutions/contributions (depicted
in green).

Before actually presenting the contributions of this thesis, Chapter 2 will intro-
duce the current state of the art in the field of multi-user VR and briefly touch up on
a couple of relevant topics and underlying background information that might be
helpful for the understanding of the contributions.

1.2. Overview and Contributions 7

Mul�-User VR

Teleport Locomo�on
Live-Captured

Scenes/Avatars

How to stream/render
in real-�me/high-

quality?

Detailed 3D
Environment

How to create efficiently
(large-scale)?

How to visualize to
observers?

Lossless Depth Image
Compression

Depth Image
Enhancement (Deep

Learning)

Evalua�on of Teleport
Visualiza�ons

Point Cloud Streaming
and Rendering

Pipeline

Procedural Genera�on
of Mul�-Biome

Landscapes

Procedural Genera�on
of Landscapes with

Water Bodies

Concept: Procedural
Terrain Lookalikes

Spa�al/3D Data (CT)

How to visualize
accurately/interac�vely?

Does collabora�on help
(learning)?

Evalua�on of Collab.
Anatomy Learning in

VR

Volumetric CT Data
Visualiza�on in Mul� -

User VR

FIGURE 1.4: Overview of the challenges of multi-user VR (blue) and
our corresponding solutions/contributions (green).

Then, Chapter 3 deals with the first challenges of multi-user VR, concretely, chal-
lenges regarding telepresence in VR, such as real-time streaming and 3D reconstruc-
tion. The first contribution in this chapter (presented in Section 3.1) is the design,
development, and evaluation of a point cloud rendering and streaming system that
addresses a central aspect of VR telepresence applications: the high-quality real-time
3D visualization of physical scenes and remote people in a shared virtual environ-
ment, as well as, the transmission of the data to and between all the distributed par-
ticipants. As described above, having detailed, personalized avatars reconstructed
and rendered in real-time is highly challenging and the arising data loads pose an
issue, too. Our proposed telepresence system combines an immersive multi-user VR
system with a real-time RGB-D streaming pipeline and two fast, custom point cloud
rendering solutions integrated into a state-of-the-art 3D game engine. As an example
application domain, and to show the practical viability of our system, we chose the
medical field, more precisely, remote surgery assistance. Here, our solution enables
remote experts to meet in a multi-user virtual operating room, view live-streamed
and 3D-visualized operations, interact with each other, and collaboratively explore
medical data. Our telepresence system can be easily applied in other fields and sce-
narios though. Our streaming pipeline is designed to be all-encompassing and prior-
itize low latencies. It is capable of handling multiple (Azure Kinect) RGB-D cameras
per location, as it includes efficient real-time compression and filtering algorithms.
Moreover, our system is easy to set up and includes the registration between all the
sensors and the VR system. As for the rendering of the point clouds, we chose to
develop a splatting method as well as a competing fast mesh-based solution. The
participants are, too, visualized using live-captured and rendered point clouds. To
handle the reconstruction of the users’ faces, which are obstructed by the HMDs,
we also developed a prototype based on eye- and face tracking, 3D Morphable Face
Models (3DMM), as well as machine-learning-based mimics classification and inter-
polation method. To evaluate our proposed system, we conducted two user studies

8 Chapter 1. Introduction

with doctors and medical students in which we explored possible use cases, com-
pared the different rendering solutions, and investigated the system regarding as-
pects such as spatial and social presence, realism as well as preference.

After this, we shift our attention to the specific task of real-time processing of
RGB-D data. As remote scenes and personalized avatars usually are visualized us-
ing RGB-D sensors, and it is not feasible to transmit and use the data as-is – we did
talk about the issue of noise and artifacts earlier –, processing tasks such as com-
pression, denoising, and inpainting of missing areas are crucial and virtually nec-
essary aspects of telepresence and multi-user VR applications (such as ours). Thus,
our second contribution (in Section 3.2) is designed to further reduce the huge data
loads that have to be streamed when using RGB-D cameras for avatar/ scene cap-
ture. As explained earlier, especially the depth images take up a lot of space and
are hard to compress. Hence, we present a real-time, lossless depth image compres-
sion algorithm that is based on the RVL algorithm but achieves a significantly higher
compression ratio. We achieve this by an improved span-wise adaptive intra-image
prediction, the addition of a final entropy-coder stage, and an additional inter-frame
delta computation. To speed up the computations, our algorithm is implemented
using multi-threading. Finally, we did extensive experiments comparing the effec-
tiveness of our proposed algorithm with various other lossless depth compression
algorithms for different RGB-D cameras and a brief evaluation of lossy video com-
pression algorithms applied to depth data.

Section 3.3 then presents another contribution directed at RGB-D processing,
namely, an approach to quickly in-paint and enhance depth images, which usu-
ally contain various holes and areas with missing data that degrade the 3D recon-
struction quality. Our proposed method is to utilize existing deep-learning mod-
els that were originally designed for color image inpainting. Concretely, we chose
two promising U-Net-based network models: the first one uses partial convolutions,
while the second one is based on a generative adversarial network (GAN) architec-
ture. Both of our models, in contrast to many others, don’t need any color images
for guidance. For comparison, we also adopted a basic U-Net and the more sophis-
ticated LaMa network. To evaluate our models, we did conduct a detailed quantita-
tive and qualitative evaluation using two public and a custom self-recorded dataset.

Chapter 4 is concerned with another important aspect affecting telepresence in
VR: the issue of suitably visualizing the popular teleport locomotion metaphor to
other users in shared environments. We discussed that the lack of any motion cues
can be confusing for observers. Our contribution is, therefore, the design, implemen-
tation, and evaluation of multiple 3D visualizations intended to prevent confusion
and preserve the onlooker’s feeling of presence. From the vast design space of pos-
sible visualizations, we chose to include continuous ones as well as discontinuous
ones, including particle and portal effects, a quick dash, and a full walking anima-
tion. In a subsequent study, we investigated the visualizations’ effects on the user
experience and the spatial as well as social presence as perceived by the observers.
Additionally, we compared how different paces affect the perception of the visual-
ization.

Next, Chapter 5 deals with the effective generation of large-scale 3D environ-
ments, which are required in some (multi-user) VR applications. For instance, en-
vironmental simulation environments or virtual testbeds that simulate the naviga-
tion and interaction of unmanned vehicles and robots with different terrains. We
discussed that generating these large detailed terrains manually is not a feasible op-
tion. Thus, in Section 5.1, we present a procedural terrain generation (PTG) system
that is capable of efficiently creating vast terrains with plausible biome distributions

1.2. Overview and Contributions 9

and therefore different spatial characteristics. This is done by combining several
synthetic procedural terrain generation techniques with digital elevation models
(DEMs) and a simplified climate simulation. A major focus was to generate real-
istic terrains while keeping simultaneously computation times low and still consid-
ering usability and flexibility. As part of our system, we also propose an effective
and easy-to-use biome- and rule-based local-to-global model to populate the terrain
with assets that follow complex multi-object distributions.

An often overlooked aspect of procedural terrain generation is the generation
of landscapes that feature plausible water bodies. Therefore, in Section 5.2, we
present a method and pipeline for the quick and easy procedural generation of large,
plausible-looking landscapes which include and integrate believable water bodies,
i.e., river networks and lakes. We achieve this by an approach inverse to the usual
way: we first generate rivers and lakes based on artificial drainage basins and then
create the actual terrain by “growing” it, starting at the water bodies. In order to
demonstrate our proposed approach, we have developed a prototype application in
Unity. In this prototype, we have applied a pipeline approach that makes it easy to
evaluate intermediate results, emphasizes a workflow with quick iterations, and bal-
ances user control and automation. That means the first stages provide great control
over the layout of the landscape while the later stages take care of the details with a
high degree of automation.

Section 5.3 is then concerned with the procedural generation of terrain lookalikes
to be used in virtual testbeds and simulation environments. Specifically, using space
mission simulation as an example application domain, we consider the generation
of extraterrestrial planetary surfaces (such as the one on Mars) based on input DEMs
in order to quickly produce many slightly varying terrain lookalikes. This contribu-
tion is designed as more of an outlook into where and how PTG systems could be
beneficially employed and to show the vast range of application domains and is thus
strictly theoretical.

After this, in Chapter 6, we show two example applications from the medical
area where multi-user VR can be beneficially employed. The first one is the suit-
able, accurate visualization of and dynamic interaction with spatial/3D data, i.e.,
medical data such as CT scans, in collaborative environments. Our contribution to
this, presented in Section 6.1, is an easy-to-use and expandable system for volumet-
ric CT data visualization with support for multi-user VR interactions. For this, we
combined an immersive multi-user application based on the Unreal Engine (UE) 4
with a custom direct volume renderer. Real-time performance and good visualiza-
tion quality are achieved by the implementation of several optimization and lighting
techniques. Additionally, our system is capable of visualizing multiple windows in
parallel in an easy and effective manner, thanks to a custom pipeline for processing
the CT images.

This is followed up by a multi-user anatomy learning application and an accom-
panying user study, that we present in Section 6.2. The application allows multiple
users to freely explore the virtual environment and an anatomical model of a hu-
man that consists of individual, interactive organs and structures. The focus of this
work lay in investigating the effectiveness of collaborative anatomy learning in VR
(in contrast to individual learning). Therefore, we conducted a user study to investi-
gate the learning progress as well as the usability for both individual and multi-user
learning. Moreover, this contribution serves as an example of how the interactive
3D visualization of visual data in multi-user VR can be successfully applied and
beneficially employed.

10 Chapter 1. Introduction

Finally, Chapter 7 draws an overall conclusion of all the covered topics and the
thesis in general. Also, a brief outlook is given on which areas might be in need of
further research and what could be viable approaches.

At this point, we want to highlight the fact that a number of the contributions
were published in a similar form in the publications listed in Appendix A.

After this brief overview of all the chapters and contributions that are to come,
we will follow up with an introduction of the state of the art of multi-user VR and
its wider context.

11

Chapter 2

Overview and State of the Art of
the Area of Multi-User VR

This chapter gives a brief overview of the wide and complex area of multi-user VR
and closely related subjects such as avatars, presence, and simulation environments.
Moreover, it provides the necessary background knowledge about multi-user VR,
commonly used (rendering) techniques of the area, and the current state of the art.
It is intended to lay the theoretical foundations for the thesis contributions in the
later chapters, help to frame them in a wider context, and supplement the more spe-
cific information given in the respective related work sections. To do so, we will first
discuss the relevant terminology in Section 2.1, then talk about important and neces-
sary aspects of (multi-user) VR systems in Section 2.2, and lastly present the diverse
application domains, including a range of concrete applications, in Section 2.3.

2.1 Terminology

In order to get a common understanding of the concept of VR (Sec. 2.1.1) and re-
lated terms such as presence, and embodiment (Sec. 2.1.2), we will first discuss the
terminology of these concepts in this Section.

2.1.1 Virtual Reality

The concept of virtual reality was first formulated decades ago and since then has
evolved quite a bit, both regarding its definition as well as its practical application.
Even today, the term virtual reality, including its exact definition and implications, is
often used and understood differently between researchers, developers, and users.
For instance, Bishop and Fuchs [27] defined VR as “real-time interactive graphics
with 3D models, combined with a display technology that gives the user the immer-
sion in the model world and direct manipulation”. Blach [28] describes that “VR-
environments differ from conventional desktop in the sense that they embed the
user in a computer-generated data environment” with the key properties of “3D-
representation and perception”, “Spatial interaction in real-time”, and a “Sense of
Presence and immersion”. Tsamitros et al. [383] names similar key elements of VR
(condensation and reformulation of Sherman and Craig [336] original description):

1. Virtual world – “an imaginary space and a description of objects in a space and
the rules and relationships governing these objects”

2. Immersion – “a state of being deeply engaged into an alternative reality/envi-
ronment or point of view and/or the computer system’s technological capacity
to deliver a vivid experience that removes the user from physical reality”

12 Chapter 2. Overview and State of the Art of the Area of Multi-User VR

FIGURE 2.1: Key elements of VR according to Tsamitros et al. and
Sherman and Craig [383, 336].

FIGURE 2.2: Key elements of VR according to Tachi [368].

3. Sensory feedback – “an essential ingredient of VR based on the physical posi-
tions of the participants (position tracking)”

4. Interactivity – “the ability of the participant to affect a computer-based world”

These elements are depicted in Fig. 2.1.
Similarly, Tachi [368]1 identified the three key elements of VR that need to be

fulfilled to be “three-dimensional spatiality”, “real-time interactivity”, and “self-
projection”. Fig. 2.2 depicts the so-called “three-dimensional spatiality” that consists
of these three elements.

VR can also be viewed as the latest manifestation of virtualization. In the real
world, people can directly, and naturally perceive and interact with the environ-
ment. This environment can be modeled and simulated virtually. VR devices and
special interaction metaphors then help to get multi-sensory perception of and multi-
modal interaction within the virtual environment. Figure 2.3 depicts this concept.

1https://tachilab.org/en/about/virtualreality.html

https://tachilab.org/en/about/virtualreality.html

2.1. Terminology 13

FIGURE 2.3: VR as the latest manifestation of virtualization. In the
real world, humans directly perceive and interact with it. In VR, a vir-
tual model of the real world can be simulated. Multi-modal/sensory
interaction and perception are possible but require VR devices and
special interaction metaphors.

As we see from the definitions, a VR system necessarily encompasses input and
output devices to perceive the virtual environment and interact with it. Input de-
vices could be simple ones such as joysticks, game controllers, and mouse and key-
board, or advanced ones such as motion trackers or bend-sensing gloves. Out-
put devices, on the other hand, include speakers, haptic elements providing force
feedback, and a wide range of visual devices, i.e., monitors, projector-based stereo-
scopic multi-wall environments (cave automatic virtual environment (CAVE)), and
HMDs. [68] A HMD is a head-worn display device providing stereoscopic vision
using two screens; each in front of one eye. Typically, they also include speakers and
a positional tracking system. The most popular and prevalent VR setup consists of
a combination of an HMD with two motion-tracked input controllers.

Distinction between VR and AR/MR Terms that get often mentioned in connec-
tion with virtual reality are augmented reality/mixed reality. VR aims at fully im-
mersing the user in a completely virtual environment and tries to shut down the
perception of the real world. In contrast, AR overlays computer-generated 3D con-
tent on the real world, enabling the user to perceive and interact with both the real
world and the virtual content at the same time. [45] AR is usually experienced using
AR glasses – think of a heads-up display –, but simpler and lower-cost devices such
as smartphones and tablets can be used too.

2.1.2 Presence, Immersion, and Embodiment

Closely related to VR systems are concepts such as immersion, presence, and em-
bodiment. However, these concepts are often confused with each other as there are
many conflicting and ambiguous definitions for these terms and concepts.

Immersion Previously, we observed that immersion is often named a key element
of VR systems. There is no consensus on its definition, though, as there are two major
schools of thought. This makes immersion, in practice, a highly vaguely used term.
One view is that immersion is defined by the technical quality of the system and

14 Chapter 2. Overview and State of the Art of the Area of Multi-User VR

dependent on the VR system’s properties, i.e., Field of View (FoV), screen resolution,
or degree of motion tracking. If we follow this view, a VR system would be more
immersive if it stimulates more senses, provides more interaction possibilities, and
the provided stimuli are closer to the ones from reality. Thus, immersion would be
an objective property of a VR system. [341, 344, 342] A proponent of this view is
Slater, who formulated it this way [341]: “Let’s reserve the term immersion to stand
simply for what the technology delivers from an objective point of view. The more
the system delivers displays (in all sensory modalities) and tracking that preserves
fidelity in relation to their equivalent real-world sensory modalities, the more that is
immersive.”

In contrast, the other major perspective on immersion is that it is based on the
user’s psychological state, and therefore, a subjective property. Proponents of this
view argue that the immersion is higher if the users are more involved, engaged,
or absorbed by the virtual world. [3] For instance, Sanders and Cairns [316] defined
immersion as “the sense of being “in a game” where a person’s thoughts, attention,
and goals are all focused in and around the game”. Similarly, Thon [379] describes
immersion as “a shift of attention from the real environment to certain parts of the
game and the construction of a mental representation of the latter”. Agrewal et
al. [3] write that three major reasons for immersion (following the subjective school
of thought) can be found in the literature: “the subjective sense of being surrounded
or experiencing multisensory stimulation, absorption in the narrative or the depic-
tion of the narrative, and absorption when facing strategic or tactical challenges”.
However, this view of immersion as a subjective property overlaps with many defi-
nitions of the term presence.

Presence Generally, the term presence describes the feeling of “being there” – be-
ing in another (virtual) place even though the actual physical location is differ-
ent [152]. The term originated decades ago from the term telepresence, which, in
turn, was used to describe teleoperation systems – machines that were operated or
controlled by a human remotely from a distance [319]. Today, the term telepresence
is mostly used, similarly to presence, to describe the perception of being and acting
in a remote, mediated environment as opposed to the physical one [227]. Accord-
ingly, technologies and systems that allow remote users to experience this, are called
telepresence systems [293]. Presence is another key factor for VR systems. Simi-
larly to immersion, for the term presence too, exist many definitions. For instance,
Slater [341] considered it to be a subjective reaction to (the objective) immersion and
defined it as the psychological perception of being in a virtual environment. Further,
he argued that “presence consists of two orthogonal illusions that we refer to as Place
Illusion (PI, the illusion of being in the place depicted by the VR) and Plausibility
(Psi, the illusion that the virtual situations and events are really happening)” [346].
Patrick et al. [273] defined presence as “the extent to which a person’s cognitive and
perceptual systems are tricked into believing they are somewhere other than their
physical location” and Schubert et al. [327] determined presence to be a product of
the three components of “spatial presence”, “Involvement”, and “Realness”. For a
better distinction to related concepts and other types of presence such as social or co-
presence, some authors use the narrowed-down term of spatial presence to describe
the sense of being in a place [328].

The term social presence was originally introduced to describe a communica-
tion medium’s ability to enable intimacy, immediacy, and interpersonal relationships

2.2. Important Aspects of (Multi-User) VR 15

during a mediated conversation [339]. Intimacy refers to the feeling of connected-
ness between participants during an interaction, while immediacy is the psycho-
logical distance between them. Key factors for these properties would be nonverbal
cues such as facial expressions and gestures. [263] In contrast to this medium-centric,
technologically-determined concept, the term co-presence is often brought forward.
It focuses more on the psychological interaction of the individuals [260] and refers
to the “sense of being with another” [26]. To achieve a strong sense of co-presence,
it is crucial to have a mutual awareness of the individuals, meaning, both, having a
sense of feeling of other individuals as well as the other way round. [41]

Embodiment/Virtual Body Ownership Having an avatar, experiencing it as the
own body, and, thus, feeling a sense of embodiment (or virtual body ownership) is
an important aspect of VR and a significant contributor to the perception of feeling
present in the virtual environment [345]. Gall et al. [120] define embodiment as the
sensation that one’s self is located inside a virtual body, one controls this body, and
that this body belongs to oneself. Previous research about the relationship between
virtual avatars and the sense of embodiment found that not only the visual repre-
sentation by and appearance of avatars are important for VR but also the degree
to which the avatar is animated and follows the physical motions of the user has a
significant impact [356]. According to Kilteni et al. [185], the sense of embodiment
can be described as the sensation of “being inside, having, and controlling a body,
especially in relation to virtual reality applications”. Accordingly, they state that the
concept of embodiment can be separated into three components: the sense of self-
location, the sense of agency, and the sense of body ownership. Self-location refers
to the experience of being located at a body’s position/inside a body and at one spe-
cific location in space. Body ownership describes the feeling that a body is one’s own
body and the body is the source of the experienced sensations. Agency, on the other
hand, describes the feeling of controlling the body, its actions, and movements [185,
310].

2.2 Important Aspects of (Multi-User) VR

After we have defined in the previous section what exactly VR systems are and
briefly talked about what key elements they consist of, in this section, we will go
into more detail about the important aspects of (multi-user) VR. Specifically, we will
look at the aspects from a technical side and present and discuss typical approaches
and methods that are used to practically realize these aspects. Moreover, we will
present concrete examples and talk about the current challenges of all these aspects.
In the following, we will start by briefly talking about the crucial aspects of inter-
action and locomotion in VR systems (Sec. 2.2.1). Then we will discuss the topic
of avatars, which we learned are important for representation and embodiment in
(multi-user) VR (Sec. 2.2.2). We will also present sensing and tracking approaches
(including extrinsic camera calibration) (Sec. 2.2.3), which are necessary components
for a real-time scene or avatar representation in collaborative VR and telepresence
applications. After that, we will give an overview of 3D reconstruction and render-
ing techniques (Sec. 2.2.4), discuss streaming and compression aspects with a special
focus on image/video data and point clouds, as they are highly relevant for the vi-
sualization of remote scenes and avatars (Sec. 2.2.5), and lastly consider also the
generation and visualization of the virtual VR environments (Sec. 2.2.6).

16 Chapter 2. Overview and State of the Art of the Area of Multi-User VR

2.2.1 Interaction and Locomotion

Developing realistic and natural interaction techniques for VR applications is an im-
portant research topic, as natural interactions have been shown to be beneficial for
usability, user performance, and embodiment [35]. The main types of interaction
tasks are selection, manipulation, and locomotion/navigation [174]. The primary
task of selection involves choosing a user interface (UI) element or other object in
the virtual environment to further interact with and signaling this selection to the
system. The task of manipulation concerns the interaction with a selected object ac-
cording to its abilities and affordances (e.g., moving, rotating, resizing it, or pushing
a virtual button, etc). Locomotion/navigation is about moving through the virtual
environment.

Many selection techniques were developed but they can be divided into two
main categories: virtual hand-based ones that closely mimic the natural process of
directly/physically touching the object and pointing-based ones that enable the se-
lection of objects at a distance [429]. Pointing can be done using the controllers,
based on the head direction, or the gaze direction using eye tracking. The most pop-
ular pointing method is controller-based raycasting, however many variations and
other techniques were proposed, e.g., crossing-based selection [386], or dynamically
scaling potentially selectable objects [405]. The actual selection of an object is often
implemented using a dwell time on target, clicking a button, or using a gesture such
as pinching [422, 255].

Similarly, the task of object manipulation usually involves virtual hands mapped
to the controllers and button presses. However, free-hand gesture manipulation is
gaining attention lately; especially so in combination with gaze-based selection tech-
niques [281, 216].

Navigation and locomotion is possibly the most crucial task in VR and, thus,
got significant research attention. Recently, Di Luca et al. [85] identified over a hun-
dred different VR navigation techniques. Reasons for the huge amount of competing
locomotion techniques are that it is a challenging task to design a metaphor that pro-
vides a good user experience, and the need to make trade-offs between competing
requirements such as accessibility and cybersickness [174]. An overview of the dif-
ferent locomotion techniques, categorized according to Martinzes et al. [237], and
the degree to which they got scientifically explored can be seen in Fig. 2.4. Walking-
based and steering-based techniques got the most attention, selection-based to some
degree, too, while manipulation-based and automated techniques are only sparsely
researched yet. Highly researched individual locomotion metaphors include the
point-and-teleport technique [198] (a selection-based technique that is depicted in
Fig. 2.5 (top left)) and the joystick-based steering [317]. Commonly used are also the
walking-in-place [206] technique (see Fig. 2.5 (top right)), redirected walking [406]
(see Fig. 2.5 (bottom left)), and head-directed steering. An example of a manipula-
tion-based locomotion metaphor is the world-in-miniature technique [100] that is
depicted in Fig. 2.5 (bottom right).

In collaborative VR environments, additional factors have to be considered to
implement satisfactory navigation. For instance, when multiple people explore a
virtual environment together as a group, an interesting challenge is to design a loco-
motion metaphor that allows the group to stay together and still provide valid and
sensible locations for all the users. Various group navigation techniques were pro-
posed for this, as described by Weissker et al. [403]. Another factor in collaborative
VR which got not much attention yet is how to visualize discontinuous locomotion

2.2. Important Aspects of (Multi-User) VR 17

56

55

36

18

15

Categories of Locomo�on Techniques

Walking-based (H)

Steering-based (H)

Selec�on-based (M)

Manipula�on-based (L)

Automated (L)

FIGURE 2.4: Categories of locomotion methods and the degree of
their scientific exploration, vgl. [237]. Walking- and steering-based
locomotion are highly (H) researched, research on selection-based
metaphors is medium (M) and on the rest low (L).

FIGURE 2.5: Various locomotion techniques. Top left: simple point
and teleport [36]. Top right: walking in place; the tracked rhyth-
mic movements from the walking motion drive the virtual locomo-
tion [206]. Bottom left: redirected walking; virtual long distance lo-
comotion is achieved by redirecting curved real-world paths [240].
Bottom right: world in miniature, which is similar to a 3D mini-
map [100].

18 Chapter 2. Overview and State of the Art of the Area of Multi-User VR

techniques, such as the highly popular point and teleport metaphor, that provide no
motion cues to observers.

2.2.2 Avatars

The visual representation of the users in the virtual environment through avatars is
a highly important aspect of (collaborative) VR and accordingly a big research topic.
Studies showed that visual realism and appearance as well as behavioral realism
and extent/precision of motion tracking are important factors affecting the sense of
embodiment and presence. For instance, Thalmann and Thalmann state that to cre-
ate believable virtual humans, one needs not only realistic appearance modeling but
also realistic, smooth, and flexible motion modeling [375]. Young et al. [428] found
that avatars that do represent the full body, and not only parts of it, are beneficial
for collaboration in VR. Similarly, Wang et al. [398] found full-body avatars to be
advantageous for remote instruction scenarios, and Latoschik et al. [203] showed
that realistic looking avatars are crucial to increase the sense of embodiment in VR.
Moreover, Waltemate et al. [392] reported that personalized (full-body) avatars sig-
nificantly increase the sense of embodiment and presence compared to a generic one
that otherwise has the same level of realism. Recently, Wu et al. [416] showed also
that highly expressive avatars, which include tracking and visualization of full-body
movement, hand gestures, and mimics, increase the sense of social presence, attrac-
tion, and task performance.

Over time many different types of avatars, and, accordingly, various more or
less sophisticated tracking and reconstruction techniques were developed. This vast
design space of 3D avatars can be categorized by multiple important factors/criteria:

• Extent of representation: The degree to which the body is represented by the
avatar. On the one end is for example the popular so-called “floating hands”
model that consists only of a head and two floating hands, see the left image
of Fig. 2.6. On the other end of the spectrum are full-body avatars.

• Extent of visual realism and personalization: How realistic the avatar looks
visually and how closely it resembles the actual user.

• Extent of visual interactivity: This can range from (realistic but) appearance-
wise static pre-constructed models to real-time reconstructed/updated avatars
where the textures, mimics, or wrinkles in the clothes change dynamically, see
the middle and right images of Fig. 2.6, respectively.

• Extent of behavioral realism/tracking: How realistic and extensive the move-
ments of the user are tracked and realized in the virtual world, e.g., three-point
tracking of only head and hands or full-body motion tracking of all joints.

2.2.3 Sensing and Tracking Methods

In order to visualize remote scenes and especially people in real-time, they have to
be captured and tracked beforehand by appropriate sensors and methods. Over the
years, many approaches emerged with different advantages, limitations, and goals.
For instance, a popular approach is to employ marker-based systems such as Op-
tiTrack2. For example, Kasahara et al. [178] employed this approach to investigate
the effects of body deformation on the sense of embodiment. These systems rely on

2https://optitrack.com/

https://optitrack.com/

2.2. Important Aspects of (Multi-User) VR 19

FIGURE 2.6: Various avatar types. Left: A “floating hands” avatar.
Middle: An animated full-body avatar. Right: A live-captured and
reconstructed full-body avatar.

reflective or LED markers that get attached to objects, clothes, or a worn bodysuit,
see Fig. 2.7 (left). The markers then get tracked by an array of infrared (IR) cameras
and can be used to reconstruct a skeleton from the marker positions [49]. The advan-
tage of this approach is that it is very precise, however, marker-based tracking can
be uncomfortable for the users and is comparatively expensive [208]. Occlusion of
markers is an issue, too, but can be managed by careful placement and redundancy.
Another simpler approach is to use the HMD and accompanying motion controllers
to track and reconstruct the user’s motion. In this case, there are only 3 sources
for the tracking (therefore it gets often referred to as 3-point tracking) which makes
the comprehensive reconstruction of the user’s motion difficult. Usually, this is at-
tempted by using inverse kinematics and animation blending, as done by Jiang et
al. [162], or Parger et al. [269]. Additional trackers can be used to also track for ex-
ample the feet [48]. To avoid the limitation of having to attach markers, marker-less
tracking is also a big research topic. Marker-less approaches use cameras to cap-
ture the scene and directly 3D-reconstruct it or employ computer vision and body
pose estimation algorithms to track the users explicitly, see Fig. 2.7 (right). Some
works rely only on color cameras while most use stereo or RGB-D cameras such as
the (Azure) Kinect by Microsoft3 that also provide depth estimates [49]. In camera-
based tracking, inconsistent tracking [239], occlusion [114], and high latency [34] are
challenging issues. To avoid occlusion and enhance the robustness, again, multiple
cameras can be set up that capture the scene from multiple angles [352, 208]. To
better track hand gestures, camera-based tracking with devices such as the Kinect is
sometimes combined with additional optical tracking sensors such as the Leap Mo-
tion controller4, which technically is a pair of IR cameras. Attached to the VR head-
set, these are better suited to track fine details such as the hand and finger poses. For
instance, Lin et al. [221] combined a Kinect camera with an HMD and a Leap Motion
controller for detailed pose tracking in robot motion planning. Another issue when
employing camera-based tracking is when the tracked person wears an HMD (e.g.,
in telepresence applications), as it blocks the view of the face and prevents a live
capture of the mimics. To tackle this issue, many recent HMDs include additional
eye/face tracking sensors.

3https://azure.microsoft.com/de-de/products/kinect-dk
4https://www.ultraleap.com/product/leap-motion-controller/

https://azure.microsoft.com/de-de/products/kinect-dk
https://www.ultraleap.com/product/leap-motion-controller/

20 Chapter 2. Overview and State of the Art of the Area of Multi-User VR

FIGURE 2.7: Example of marker-based motion tracking [178] (left)
and pose estimation using a RGB-Sensor [126] (right).

When multiple sensors, i.e., RGB-D cameras, are employed to enhance the ro-
bustness and scene coverage, they have to be accurately registered to each other (ex-
trinsic calibration) to precisely merge the data. RGB-D camera calibration has been
widely researched. The usual approach is to use an easily-detectable registration tar-
get such as a checkerboard for calibration [94, 435]. However, many other methods
were proposed: e.g, using 3D targets that are also visible in the depth images [248,
80], using no explicit targets at all but using local and/or global algorithms to di-
rectly match point cloud reconstructions [349, 211], or to employ additional external
tracking systems [19].

RGB-D/Depth Enhancement

As we briefly discussed previously in Section 2.2.3, RGB-D cameras get popularly
employed for live scene capture, but the raw data suffers from various issues such
as noise and artifacts that are caused by inconsistent tracking and occlusions [381].
Thus, enhancing RGB-D data, and specifically the depth images, is another impor-
tant research area. One crucial requirement for any developed enhancement algo-
rithm is that it can be applied in real-time, meaning with at least the 30 Hz the RGB-D
sensors usually capture with. We can divide the area of RGB-D enhancement into
two categories, based on the concrete issue that is targeted. The first category is de-
noising of the depth data, and the second one is depth image completion. Image
and signal denoising is a classic problem. Thus, it has been studied for a long time.
Popular methods, for instance, are Kalman filters [396, 139] and bilateral filters [168,
268]. Moreover, as the input usually is a continuous stream of captured images, de-
noising methods have not only to consider the spatial domain but also the temporal
one to achieve the best results [40, 419]. Recently, deep learning-based image and
video denoising methods achieved impressive results [371, 338]. However, depth
images, and their noise characteristics, are inherently different from regular RGB
images and videos, making customized denoising algorithms [251, 61] and network
models necessary [358, 89]. The other main task in depth enhancement is depth
image completion/inpainting or hole-filling. Depth images inherently suffer from
holes – areas without valid data –, which are caused by various issues with the cap-
turing methods, such as multi-path inference, see Fig. 2.8. Similarly to the denoising
task, the field of image inpainting and restoration is extensively researched. Tra-
ditionally, image inpainting was often done using pixel- or patch-based methods,
see for instance the work by Ruzic et al. [314], however, also in this area are deep-
learning methods on the rise [291]. Especially U-Net-based convolutional neural
networks (CNN)s with non-standard convolution layers, see for example the work

2.2. Important Aspects of (Multi-User) VR 21

FIGURE 2.8: Depth image from the Azure Kinect RGB-D camera.
Note the blackish/bluish areas where no valid data has been cap-
tured [381].

by Liu et al. [223] and transformer networks such as the one by Deng et al. [81] seem
to be promising for image inpainting. However, works specifically targeting depth
images are rare. And the ones that do consider depth images, mostly have other
limitations, e.g., that they rely on color image guidance [115, 232], or handle only
smaller holes [163].

2.2.4 Reconstruction and Rendering Methods

3D reconstructing and rendering of (pre-processed and enhanced) sensor or track-
ing data is a crucial element to have real-time avatars and surrounding scenes in
telepresence applications. Especially challenging is the real-time reconstruction of
dynamic scenes and moving/deforming objects. As discussed in Section 2.2.3, there
are different approaches to sensing and tracking that practically dictate which tech-
niques for reconstruction and rendering make sense. We can distinguish between
two main approaches: usually if marker-based tracking or explicit pose- and skele-
ton tracking/reconstruction are employed, they are used to drive/animate pre-con-
structed (mesh) objects and avatars. These may be constructed using photogram-
metry, laser scans, and highly complex, sophisticated reconstruction algorithms, see
for example the right image in Fig. 2.9. Works that follow this approach are for ex-
ample the ones by Wenninger et al. [408] and Bartl et al. [18]. However, with these
methods, the objects and avatars tend to not reflect real-time changes in texture and
fine details that are not reflected in the tracking data. Also, the setup to initially
scan the person of which the avatar should be created is traditionally very complex
and expensive, although some more recent techniques try to mitigate this limita-
tion by limiting themselves to requiring fewer and cheaper cameras or just a short
video of the person [161]. Bartl et al. [18] did a descriptive comparison of high-cost
and low-cost offline 3D reconstruction. On the other hand, if no explicit tracking
is done but raw RGB-D data is used, then rendering simple point clouds, e.g., us-
ing splatting [33, 299], is a popular solution, see for example the middle image in
Fig. 2.9. Yu et al. [431] compared this approach with animated mesh-based avatars
and found this to be a feasible solution. Another option would be fast point cloud-
based real-time 3D mesh reconstruction, in the most simple case this could be done

22 Chapter 2. Overview and State of the Art of the Area of Multi-User VR

FIGURE 2.9: Various scene/avatar reconstruction methods. Left:
real-time volumetric RGB-D-based mesh reconstruction [91]. Middle:
real-time point cloud rendering [431]. Right: high-cost and low-cost
offline 3D mesh reconstruction [18].

by connecting/triangulation of neighboring points in an ordered/organized point
cloud [164, 147]. Naturally, then the objects and avatars reflect the exact appear-
ance at all times but are less detailed as they have to be generated in real-time [408].
When live reconstructing avatars using point clouds etc, we have the issue of the
face being obstructed by the HMD, as mentioned in Section 2.2.3. This can be solved,
however, by making use of the eye/face trackers often included in the HMDs and
approximating the eye movements and mimics using, for instance, animations and
deformable (pre-personalized) meshes of the face/head [290]. Another group of
3D reconstructing and rendering methods is volumetric reconstruction, sometimes
called volumetric performance capture, which creates a volumetric representation
(that often includes temporal fusion throughout consecutive frames) before eventu-
ally rendering the final mesh (left image in Fig. 2.9), as done by Dou et al. [91], Guo
et al. [137], Su et al. [362], and Cho et al. [65]. The latter explicitly compared this ap-
proach with pre-scanned mesh avatars. and rendering using implicit surfaces and
raycasting. Generally, the reconstruction and rendering results are highly dependent
on the employed technique, the available time and resources, as well as the sensor
accuracy.

Moreover, depending on the application’s domain, there may be additional data
that would profit from being visualized and inspected in 3D. In the medical field, for
instance, CT and magnetic resonance imaging (MRI) scans are commonly used for
diagnosis and surgery planning. These can be visualized using projection techniques
but volume rendering methods proved to be helpful, too, as demonstrated by, for
example, Wang et al. [395]. Volume rendering methods can be divided into indirect
volume rendering, also called surface shaded display, and direct volume rendering,
which became the more popular method in recent years [130]. The former provides
realistically looking 3D views by creating a polygonal surface representation of the
volume while the latter directly visualizes the whole volume of data by, for instance,
accumulating opacity and color using raycasting. The work by Jung et al. [170] is a
good example of how direct volume rendering can be employed to visualize PET-
CT scans. Recently, even more sophisticated methods were proposed that achieve
very high-quality visuals, however, are also very computationally demanding [22].
Integrating these volume rendering techniques in collaborative VR applications is
still a challenge, although a few works, such as the one by Maloca et al. [233], were
presented that provide volume rendering solutions in VR.

2.2. Important Aspects of (Multi-User) VR 23

2.2.5 Streaming and Compression of Sensor Data

An important aspect to consider when developing multi-user VR applications, espe-
cially when using RGB-D sensors for live capture, is the necessary amount of data
that has to be streamed in real-time to or between the users. Image or video streams
as well as point clouds require a huge amount of bandwidth if no compression is ap-
plied [364]. Therefore, fast and efficient compression of these data formats is another
important research branch [226]. Naturally, the goal is to achieve compression ratios
as high as possible to reduce the amount of data that has to be streamed. On the
other hand, stronger, more complex compression algorithms require more time and
computational power for compression and decompression, which raises the users’
hardware requirements, and more importantly, increases the latency. The latter is a
crucial factor in VR applications, though. Therefore, compression algorithms need
to be highly efficient, find a good balance between compression ratio and required
time, and ideally be flexible in this regard. Moreover, depending on the application
domain, the compression has to be lossless (or near lossless), e.g., when employed
in remote surgery assistance scenarios. One approach is to compress and stream
the computed meshes or point clouds. This is usually done by using hierarchical,
spatial data structures such as octrees [93, 187], plane fitting, or combinations of
both [92]. Some works do also consider the temporal domain by comparing the
changes between frames [108, 176]. Most of these geometric compression methods
are lossy. Pereira et al. [277] recently gave a good overview of these techniques.
Another approach is to directly compress the captured color and depth images. Im-
age and video compression is a long-standing and well-established research topic
with many proposed algorithms and methods, lossy and lossless ones. Thus, it is
natural to consider applying these tried and tested methods/codecs, as done by Tu
et al. [385]. Common ones are, for instance, JPEG, PNG, H.264, H.265, AV1, and
many more. However, one crucial issue with this idea is that the depth images are
inherently different from color images (e.g., the number of channels, the bit depth,
the sparsity of the data, or the abrupt changes at object edges), therefore, adapted
codecs as proposed by Pece et al. [275] or novel solutions such as the RVL algorithm
by Wilson are necessary for the best performance [412]. Other examples of dedicated
depth-image compression methods, that usually incorporate classic (image/video)
compression methods such as clustering/segmentation, arithmetic coding, or delta
coding, are the works by Sun et al. [364], or MPEG’s V-PCC [158].

2.2.6 Virtual Environments

When discussing important aspects of (multi-user) VR systems, the virtual environ-
ment itself cannot be overlooked. The virtual environment of a VR scene consists
usually of mesh-based 3D objects that get arranged as needed to build the scene or
level that is required for the specific application. As described earlier, in some use
cases, the virtual scene can be rendered partly or even completely using live capture
and 3D reconstruction. One example could be a VR teleconferencing application in
which not only the persons themselves but also the office, desk, etc. get live captured
using RGB-D cameras [361]. Figure 2.10 depicts an example of an environment that
gets live reconstructed using multiple RGB-D sensors and a point cloud represen-
tation. In other cases, a real environment gets (pre-)scanned, e.g., using cameras
and photogrammetry, or laser scanners, and virtually reproduced [425]. These scans
then can be rendered using point clouds or mesh reconstruction [186, 324]. However,

24 Chapter 2. Overview and State of the Art of the Area of Multi-User VR

FIGURE 2.10: Example of a small-scale environment, which gets
live-captured by multiple RGB-D sensors and rendered using point
clouds [361].

FIGURE 2.11: A small-scale, manually crated mesh-based VR envi-
ronment on the left side and a proceduarally generated large terrain
on the right side [351].

most often the virtual environments consist of static, manually modeled mesh ob-
jects, see for example the left image of Fig. 2.11 that shows a virtual operating room.
The latter gets problematic when the application requires a big, complex environ-
ment such as a huge, detailed terrain or landscape. This is sometimes, for instance,
the case with virtual testbeds and simulation environments [201, 378, 215]. Gener-
ating these large, detailed landscapes manually is a laborious task [6]. Therefore,
much effort is put into procedural generation methods that can automatically cre-
ate these landscapes, see for example the right image of Fig. 2.11 that shows a large
procedurally generated terrain. Although many methods were developed over the
years, it is still a challenging task to develop algorithms that produce realistically-
looking, high-quality terrains while still providing flexibility and intuitive control to
the designer.

The many proposed approaches of procedural terrain generation can be broadly
classified into synthetic methods, physically-based methods, and example-based
methods [144]. Synthetic methods such as noise are very popular as they are quick
and easy to use, however, it is hard to get realistic results [149]. On the other hand,
physically-based methods try to replicate the physical, geologic, and other natural
processes to get highly realistic results. Common are for instance various erosion
simulations [157, 13]. The drawback of these methods is that they are slow and not
as flexible. Example-based methods are also able to create realistic terrains using
real-world example images, i.e., DEMs, [442, 135]. Naturally, they are limited to
having specific examples for the desired terrain.

2.3. Example Application Domains 25

2.3 Example Application Domains

In this section, we will give an overview of the diverse application domains of VR
and present various example applications. This will help to get a better understand-
ing of the many crucial VR aspects that we presented in Section 2.2, how they come
together in fully-fledged applications, and how they are used in practice.

The ability to virtually depict arbitrary objects and environments that can be
viewed and explored from home makes VR a highly useful tool in the area of cul-
tural heritage. The utilized technologies to digitally preserve and faithfully repro-
duce historical buildings or environments in VR range from classical 3D modeling
and photos, to photogrammetry and laser scanning [53, 225]. With these technolo-
gies, the natural interaction provided by VR, and the ability for additional data aug-
mentation, the development of immersive VR experiences that allow one to explore
virtual environments gets increasingly popular. One example is the VR applica-
tion Nefertari: Journey to Eternity [104] which allows individual users to explore
a virtual reproduction of the tomb of Nefertari using VR. Users can freely explore
the tomb using the teleportation metaphor and interact with interactive elements
using virtual controllers, see Fig. 2.12. The virtual environment was re-created in
high detail using photogrammetry. Data post-processing included hole-filling and
denoising. Similarly, the Palace of Versailles was virtually reproduced, also using
photogrammetry, and is explorable in the VR application VersaillesVR the Palace is
yours [132]. Here, users can move using teleportation and the world-in-miniature
metaphors and select and interact with objects using virtual controllers and virtual
pointers. Again, only individual exploration is supported. Another similar histor-
ical VR recreation based on photogrammetry is IL DIVINO: Michelangelo’s Sistine
Ceiling in VR [103]. In contrast, the application IL Gigante: Michelangelo’s David in
VR [102] did rely on extensive laser scanning to digitally reproduce a high-fidelity
model of Michelangelo’s David and Marzouk et al. [238] did also use laser scans
to virtually and faithfully reproduce an Egyptian palace. Both of them did use the
point cloud representation resulting from the scans to do registration of the individ-
ual scans and other processing tasks such as noise removal but eventually created a
3D mesh out of the point cloud. Apart from the field of cultural heritage, VR-based
tools are also an upcoming solution for medical imaging visualization due to their
advanced and immersive 3D visualization and interaction abilities [283]. Two ex-
amples are the multi-user VR application by Prodromou et al. [288] that visualizes
MRI data as interactive 3D volume-rendered models in VR and the work by Scholl et
al. [321], who presented a VR system that provides 3D representations of CT or MRI
data using direct volume rendering. Interaction with the volume data is possible
using the VR controllers and direct touch, gesticulation, and a 3D UI.

Multi-user virtual reality systems are also getting increasingly popular to build
immersive telepresence tools that can be used for tasks such as telementoring and
teleconsulting [98]. In the medical area, for instance, remote surgery assistance and
consultation using collaborative VR/AR tools is an upcoming topic, as briefly dis-
cussed in Section 1.1. The natural interactions provided by such systems are a big
advantage but the main one is probably the ability to 3D reconstruct and visual-
ize live-captured remote scenes and people when combined with suitable capturing
and tracking systems. For instance, Gasques et al. [124] proposed a collaborative
mixed-reality system for immersive surgical telementoring. In it, remote experts use
VR to guide local novices, which in turn use AR glasses. Using RGB-D cameras

26 Chapter 2. Overview and State of the Art of the Area of Multi-User VR

FIGURE 2.12: VR application that accurately recreates Nefertari’s
tomb using photogrammety and enables users to freely and immer-
sively explore it [104].

and the OptiTrack marker-based tracking system, the patient and other relevant ob-
jects get registered with each other and real-time reconstructed in the virtual envi-
ronment using a point cloud representation. Also using OptiTrack and additional
inertial measurement unit (IMU)-equipped gloves, and a tracked pen, the expert,
his gestures, and annotations get tracked and transmitted to the novice. The novice
and expert get visualized to each other as tracked, un-personalized avatars. The
novice’s avatar consists just of a floating head and torso, while the expert’s avatar
additionally has floating hands. The expert can interact and annotate objects using
the tracked pen that can be used either using direct touch or as a laser pointer. An-
ton et al. [9] developed a similar system for real-time remote medical consultation
that is based on AR and VR. On the patient side, AR is used while the expert side
employs VR. With the help of an RGB-D camera, the patient’s body gets live cap-
tured, which then gets transmitted for reconstruction (3D mesh) and visualization
to the remote expert. The expert, in turn, can make annotations using a stylus and
a stereoscopic display that can be observed on the patient’s side. Data communica-
tion is implemented using the WebRTC protocol and 8-bit YUV-based compression
for the depth data. Another example of a mixed-reality-based telepresence system
is the one proposed by Maas et al. [228]. It also features an RGB camera for live cap-
ture and 3D point cloud reconstruction as well as an AR headset on the patient side
and a VR system on the remote expert side. The proposed MR telepresence system
by Strak et al. [359] follows the same principle. 3 RGB-D cameras are used to live-
capture and 3D reconstruct the patient and his environment for the expert in VR.
The left image of Figure 2.13 depicts the virtual scene including the reconstructed
environment and the remote expert’s avatar. The top right image shows the remote
expert’s view of the live-reconstructed patient, and the bottom right image shows
the remote expert’s avatar as seen by the local expert. Depth compression of the
data is done losslessly using H.264. On the expert side, the data gets reconstructed
into point clouds and eventually into a 3D mesh. The expert can make annotations
using the VR controllers, which are visualized on the patient side. The expert is rep-
resented by a 5-point tracked full-body avatar that also includes mimics captured
by eye- and face-trackers. More works that presented MR- or VR-based systems for
remote collaboration are the ones by Piumsomboon et al. [285] and Wu et al. [416].
Both works did focus on the avatar representation. The former combines AR and

2.3. Example Application Domains 27

FIGURE 2.13: A MR telepresence application. a: third-person view
of the real-time 3D-reconstructed environment including the remote
expert’s avatar (right). b: first-person view of the remote expert on
the virtual patient. c: remote expert’s avatar as seen by the local par-
ticipant. [359].

VR and visualizes participants as tracked full-body avatars (AR users get tracked by
the AR glasses and VR users by the HMD and the controllers). The latter only used
VR but features a sophisticated tracking system to create highly expressive avatars.
Specifically, multiple RGB-D cameras, the HMD, and multiple attached Leap Motion
tracking devices are employed for body and hand tracking and to drive and animate
a full-body avatar.

One of the biggest application domains of (multi-user) VR is education and train-
ing. Using VR, virtually anything can be trained in a safe and cost-efficient manner.
This can be done individually, collaboratively, or in a student-teacher scenario. In
the case of the latter options, the VR system would also bring in its telepresence ca-
pabilities. Some examples of the vast amount of VR training and education systems
that were developed and proposed are the Immersive Anatomy Atlas by Gloy et
al. [131], or the dental training simulator by Kaluschke et al. [172]. The former con-
sists of a hand-modeled, mesh-based virtual environment and a detailed anatomical
3D model of a human. The anatomy model consists of individual organs and struc-
tures, which are again, rendered as 3D meshes. Each organ or structure is interactive
and can be freely grabbed and moved around. The user is represented by a virtual
HMD and a pair of virtual hands, which are tracked by the HMD and the controllers.
Movement is implemented through room-scale and teleportation and selection and
manipulation by directly touching an object and pressing a button on the controller.
Additionally, the user has a range of virtual surgical instruments at his disposal,
that can be used to cut or annotate the model. A similar VR anatomy education ap-
plication was proposed by Schott et al. [322]. It specializes in liver education and,
in contrast, provides multi-user and AR support. Another example from the medi-
cal area is the collaborative VR laparoscopic liver surgery training environment by
Chheang et al. [63]. It enables multiple users to meet in a shared virtual environ-
ment and manipulate the same volumetric patient organ model (which is converted
and rendered as a mesh in real-time), see Fig. 2.14 (left). For object interaction and
manipulation, VR controllers are used as well as additional laparoscopic surgical
joysticks, which can be seen in Fig. 2.14 (middle). Users can explore the 3D organ
and virtually plan and perform surgical interventions in an exploration mode, or
train and virtually laparoscopic procedures using the surgical joysticks in a virtual
operating room in the surgery mode, see Fig. 2.14 (right). Other examples of VR

28 Chapter 2. Overview and State of the Art of the Area of Multi-User VR

FIGURE 2.14: Collaborative VR training environment for laparo-
scopic liver surgery. Left: training and planning surgical procedures
on a virtual volumetric model. Middle: users interacting with surgi-
cal joysticks and VR headsets. Right: virtual, collaborative training
environment. [63].

training environments from the medial area can be found in the works by Roy et
al. [312], Pfandler et al. [280], McGrath et al. [242], and Anbro et al. [7]. VR systems
for education and training are also used in other domains, for instance, for pilot
training [298, 262, 284], construction safety training [315], or multi-user industrial
training and education [8]. The latter provides various virtual environments, e.g., a
production line of engine assembly, in order to teach high-level processes in the au-
tomotive area. The environments also consist of hand-modeled meshes. The users
are represented by animated (un-personalized) full-body avatars.

Somewhat related to training in a virtual environment is the use of VR as a sim-
ulation environment or virtual testbed. However, here the focus does not lie in
educating and training the user on specific procedures but in testing systems and
algorithms. Again, the virtual environment provided by the VR system has huge
advantages regarding feasibility, costs, observability, and safety. For instance, Yao
et al. [426] proposed a VR-based virtual testbed for autonomous-driving vehicles in
which the autonomous vehicles and the corresponding algorithms can be trained
and tested safely on structured and unstructured roads and the results can be di-
rectly observed in VR. The virtual environment, including the road networks, is
generated automatically, as handcrafting kilometers of roads would be too labori-
ous. Moreover, Teuber et al./Weller et al. [407, 374] developed a virtual testbed
for planning and simulation of planetary swarm exploration missions. Using VR
(HMD or powerwall + OptiTrack motion tracking), multiple users can together in-
vestigate and observe simulated sensor output and interact with the world and
the autonomous agents. Interaction is done using direct touch, ray selection, a 3D
graphical user interface (GUI), and teleportation. The users get represented by an-
imated, un-personalized full-body avatars and the terrain is based on satellite data
that was augmented semi-automatically by additional surface details. In contrast,
Vitacion and Liu [388] developed a VR system that fully procedurally creates three-
dimensional geographical/spherical surfaces for space mission simulation. The ter-
rain is generated using noise and subdivision techniques and can be observed di-
rectly in a VR environment. Looking at the industrial and manufacturing area, VR
simulation environments also get successfully employed for tasks such as industrial
workstation robot design. As an example, Havard et al. [141] developed a multi-
user VR-based simulation environment for the design and assessment of industrial
workstations, and Togias et al. [382] presented a VR environment for industrial robot

2.3. Example Application Domains 29

FIGURE 2.15: Collaborative VR simulation environment with auto-
matically generated terrain and information overlays [332].

control and path design. There, users can freely move through the virtual shop floor
using joystick movement, interaction is provided by virtual buttons on a GUI and
natural interactions using the VR controllers. Each programmed action and the re-
sulting paths are visualized in the virtual environment. Xie et al. [421] developed
a virtual testbed for realistic human-robot interaction. It provides pipelines to cre-
ate or import 3D scenes or models from a variety of sources and in various formats,
e.g., meshes, RGB-D data, etc. Humans get visualized with full-body mesh-based
avatars that get tracked using an RGB-D camera and pose estimation, the HMD,
and a dance pad for navigation. Input and manipulation are realized using a VR
controller, hand-tracking devices such as Leap Motion, and tracking gloves. Virtual
environments are also popularly used as simulation environments for ecological and
environmental simulations. For example, Sermet et al. [332] proposed a VR frame-
work for collaborative environmental simulations, as can be seen in Fig. 2.15. It
provides dynamic visualizations such as water and fire simulation, as well as in-
formation layers for disaster damages, traffic, and weather. The 3D environment is
generated using geo-streaming services such as Mapbox and dynamically overlayed
with additional information and effects. Cirulis et al. [69] proposed a VR-based sim-
ulation environment for bog ecosystem simulations. The terrain is automatically
created using real-world heightmaps, while the trees are placed or destroyed dy-
namically according to the simulation or direct interaction by the user. Similarly,
Weller et al. [404] presented a VR-based simulation environment of a coral reef, in
which the 3D corals are placed and grown procedurally according to a simulation.

31

Chapter 3

Algorithms and Architectures for
Telepresence in Multi-User VR

As discussed in Chapter 1.1, telepresence plays a major role in collaborative and
multi-user VR applications. For instance, immersive and high-quality VR-based
telepresence systems could be of great benefit in the medical field, as they allow
distant experts to interact with each other and to assist local doctors as if they were
physically present. Naturally, participants in such systems have to be represented
using virtual avatars that faithfully depict the physical users. Streaming, recon-
structing, and rendering the live-captured scene and avatars in real-time and high
quality is a challenge, though. The data captured by RGB-D cameras, specifically the
depth images, consume a lot of space and quickly saturate the available bandwidth
of common connections. Moreover, the recorded depth data suffers from noise and
artifacts, leading to holes in the images, and in turn, the eventual 3D reconstruc-
tions. Hence, in this chapter, we focus on these important aspects by presenting a
series of new algorithms and architectures. First, in Section 3.1, we present an all-
encompassing pipeline for point cloud streaming and rendering for multi-user VR
that provides participants with real-time 3D reconstructions of the physical scenes
and avatars of the remote users. As an example use case for our streaming pipeline,
we chose to focus on remote surgery assistance, although the work can easily be ap-
plied in other areas too. Then, in Section 3.2, we present a lossless depth image com-
pression algorithm that is able to reduce the required bandwidth significantly over
the common RVL algorithm but still achieves real-time speed. Lastly, Section 3.3, is
dedicated to further enhancing the depth images, and thus the resulting avatars, by
applying adapted deep inpainting models from the color-image domain that quickly
reconstruct the missing areas.

3.1 Development and Evaluation of a Point Cloud Streaming
and Rendering Pipeline

Despite recent advances in VR technology, and more telepresence systems making
use of it – we presented a broad overview in Section 2.3 –, most of the current telep-
resence solutions in use (if any), are just video-based and don’t provide the feeling of
presence or spatial awareness, which are highly important for tasks such as remote
consultation, -supervision, and -teaching. Reasons still holding back VR telepres-
ence systems are high demands regarding bandwidth and computational power,
subpar visualization quality, and complicated setups. In fact, most of the issues dis-
cussed in Section 1.1 apply to VR telepresence systems.

Therefore, in this section, we chose the example application domain of remote
surgery assistance and propose an easy-to-set-up VR-based telepresence system that

32 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

enables remote experts to meet in a multi-user virtual operating room. There, they
are able to view live-streamed and 3D-visualized operations, interact with each other,
and collaboratively explore medical data. Our system is based on Azure Kinect RGB-
D cameras, a point cloud streaming pipeline, and fast point cloud rendering methods
integrated into a state-of-the-art 3D game engine. Remote experts are visualized via
personalized real-time 3D point cloud avatars. For this, we have developed a high-
speed/low-latency multi-camera point cloud streaming pipeline including efficient
filtering and compression. Furthermore, we have developed splatting-based and
mesh-based point cloud rendering solutions and integrated them into the Unreal
Engine 4. Finally, we conducted two user studies with doctors and medical students
to evaluate our proposed system, compare the rendering solutions, and highlight
our system’s capabilities.

The work presented in this section is based on our published paper PC2 in Ap-
pendix A.

3.1.1 Introduction

Telemedicine plays a major role in medicine and health care and, although it is
hardly a novel concept, it has received increased attention lately. As discussed in
Section 1.1, the ability to provide assistance from a distance, and collaborate without
the need for being physically present, exhibits a huge potential to provide patients
with better care, increase efficiency, and save costs [111, 193]. There is a wide range
of applications for telemedicine and the more advanced telepresence systems: from
telementoring and training, remote consultation and collaboration, to remote diag-
nosis, surgery, and rehabilitation [305, 9]. We previously presented the exemplary
application of remote surgery assistance in Section 1.1, but we want to give a brief
recap here: The scenario is emergency situations with traumatic injuries where fast
interventions are critical. Regularly, the dilemma is to either spend valuable time
transporting the patient to specialized health care facilities, or to go to the nearest
hospital although the local surgeons, especially in rural areas, might be less expe-
rienced [95]. These local surgeons could benefit from consultation or even men-
toring from remote experts via telepresence systems that could preemptively be in-
tegrated into the surgery rooms [202]. To give another example, VR telepresence
systems could also be employed in order to reduce health risks by limiting physical
contact with possibly contagious patients and medical staff to a minimum; novice
surgeons could consider attending surgeries via telepresence instead of being phys-
ically present in the operating room [79]. Other applications could be patient vis-
its/ward rounds in intensive care units, or tumor conferences where normally many
experts from different medical areas come together to discuss the situation and the
further procedure [311].

Telemedicine in the past, and to a significant degree today too, relied mostly
on classical video conferencing systems and other video-based solutions [11, 159].
These systems are inherently limited by the fixed point of view, lack of depth percep-
tion, and 2-dimensional screens, preventing a distinct feeling of (tele-)presence [331,
16]. As briefly mentioned in the beginning, continuous technological advances and
the emergence of improved, affordable VR/AR devices lead researchers to focus on
3D VR/AR-based telepresence solutions. These systems are intended to deliver a
more immersive experience compared to older video-based solutions, enable more
natural interactions, and provide a better spatial understanding of the objects and
their surroundings [294]. More details about a number of example applications can
be found in Section 2.3 and in the following related work section. Many studies

3.1. A novel Point Cloud Streaming and Rendering Pipeline 33

showed that in such systems the users’ representation through personalized high-
quality avatars is fundamental [122, 65, 431]. To create virtual 3D representations
of the scene, these systems usually employ RGB-D cameras or other depth sensors,
whose data then has to be streamed to the remote location to be viewed in VR. How-
ever, VR-based telepresence systems still face several challenges: high bandwidth
requirements for transmission of the data, inadequate real-time 3D reconstruction
and rendering quality, or hard-to-set-up systems. We discuss these aspects in more
detail in Section 2.2.

Our proposed telepresence system is designed to tackle all the aforementioned
challenges with a combination of an immersive multi-user VR system with a real-
time RGB-D streaming pipeline and two fast, custom point cloud rendering solu-
tions integrated into a state-of-the-art 3D game engine. Our solution enables remote
doctors to meet and interact in a virtual operating room with real-time point cloud
avatars as well as assist in operations that are live-streamed and visualized in the
virtual room in 3D. Our proposed system is capable of handling multiple cameras
per location, as our streaming pipeline includes efficient real-time compression and
filtering algorithms. Furthermore, we integrated an easy-to-use registration, i.e., ex-
trinsic calibration, method. To evaluate the benefits of VR-telepresence systems in
general and ours specifically, we conducted two user studies with doctors exploring
possible use cases, comparing the different rendering solutions, and investigating
aspects such as spatial and social presence, realism as well as preference. To sum-
marize, our contributions are:

• A multi-user VR-based telepresence system implemented in the state-of-the-
art game engine Unreal Engine 4 with a prototype for avatar face reconstruc-
tion.

• A modular low-latency multi-camera RGB-D streaming pipeline including fil-
tering, denoising, and compression of RGB-D data, which is easy to extend.

• Custom splat- and mesh-based point cloud rendering solutions and an accom-
panying user study to compare the two methods.

• An extensive qualitative evaluation of the proposed system as well as a user
study exploring clinical benefits and relevant aspects such as spatial and social
presence.

3.1.2 Related Work

Many VR/AR-based telepresence systems have been proposed in the past, some still
rely on video feeds that can be augmented [372, 175], others do make use of real-time
point clouds and 3D reconstruction [188]. For instance, Boehlen et al. [25] recently
presented a real-time telepresence system intended for usage in caregiving that uses
multiple RGB-D cameras as well as point cloud visualization and Anton et al. [9]
proposed an augmented telemedicine platform for real-time medical consultation
in which the patient is captured via an RGB-D camera, a remote expert can assist
using a 3D display, and annotated feedback is sent back to the patient-side. The
former system uses 4 Azure Kinect RGB-D cameras that are registered to each other
initially using a combination of 3D feature-based coarse registration and ICP-based
refinement. Each camera is connected to one compact computer that handles the
pre-processing. Eventually, the data gets sent via TCP/IP to the main PC that acts
as a client and visualizes the point cloud scene in VR. However, this system doesn’t

34 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

support multiple users or avatars and doesn’t consider compression to reduce the re-
quired bandwidth. The mentioned system by Anton et al., in contrast, does employ
WebRTC, including the VP8 compression algorithm, for data transmission between
the patient’s and the remote expert’s side. However, the depth data is compressed,
too, using the limited 8-bit YUV-based compression. Even though they came up
with an adapted approach to encode the depth data into the 8-bit YUV format, ac-
curacy and efficiency are lacking. Moreover, they use only a single RGB-D camera,
making the system prone to occlusions. The camera gets registered with the projec-
tor for correctly overlayed augmentations using the typical checkerboard approach,
while morphological operations are applied to remove noise. At the remote expert’s
side, the patient/scene gets real-time-reconstructed into a textured mesh. As with
the system by Boehlen et al., they do not provide an avatar for the expert. Thoravi
Kumaravel et al. [380] successfully demonstrated the benefits of immersive telepres-
ence for remote teaching of physical tasks via a bi-directional mixed reality system
that combines AR and VR. In this system, again, multiple RGB-D cameras are used
to capture the local user performing a task. The cameras are tracked and registered
to each other using Vive trackers, however, the employed method leads to notable
offsets. For data streaming, they employ the RoomAlive Toolkit that includes RVL
and JPEG compression for depth and color, respectively. Using AR, the local user
can see annotations and a simple floating head + hands avatar of the remote user.
The remote user, on the other hand, uses VR to observe the local user visualized
through a point cloud and make annotations. As the system is symmetric, both
users can switch dynamically between AR and VR modes. Point cloud hologlyphs
of the remote user can also be viewed in AR, although only with 10 Hz. Gasques
et al. [124] also developed a collaborative mixed reality system based on multiple
color and depth cameras for live 3D scene capture and reconstruction, and AR and
VR devices. We briefly presented the work in Section 2.3. In this work, the marker-
based tracking system OptiTrack is used for registration of the cameras, tracking the
movements of the people (heads + hands) and objects, as well as to allow for 3D
annotations. On the VR side, the remote expert gets the live-streamed 3D patient
reconstruction (point cloud), a simple floating-head avatar representing the local
doctor, and video live feeds. Using a tracked pen and IMU-equipped gloves, anno-
tations can be made. On the AR side, these annotations as well as a floating head +
hands avatar of the expert are visualized to the local doctor. The focus of this system,
however, lies more in tracking and interaction, as the depth images are transmitted
unprocessed to the remote location. Based on the work by Gasques et al., Roth et
al. [311] recently presented another MR teleconsultation system that is intended for
telepresence in ICUs. Similar to others, the local user uses AR, and remote ones VR.
In their system six Azure Kinect RGB-D cameras are mounted on the ceiling and,
as commonly done, connected to dedicated PCs (“capture nodes”). The data is then
compressed and transmitted to the remote location where the point cloud is com-
puted but eventually rendered as surface mesh via a custom shader. Remote users –
this system supports more than one – are visualized using 5-point tracked full-body
avatars and inverse kinematics. The avatars get personalized using a photo of the
face taken beforehand and make use of the VR headsets eye tracking for eye anima-
tion. The drawbacks they report are the quality of the point cloud, lacking avatar
realism, and high latency of 300-400 ms, though.

For telepresence applications, it is of high interest to constrain the required band-
width to a reasonable level which makes real-time streaming of RGB-D sensor data
and point clouds a difficult task. Therefore, one important but often still lacking as-
pect of such streaming systems is efficient data compression, particularly of depth

3.1. A novel Point Cloud Streaming and Rendering Pipeline 35

data. Not only must the amount of data be reduced as much as possible but also
as quickly as possible. Often this is only achieved by sacrificing the quality, which
is problematic in medical contexts though. We previously discussed this topic in
Section 2.2.5 and explicitly focus on it in Section 3.2. In short, there are two main ap-
proaches into which most of the previous dedicated research on RGB-D compression
can be split: 2D approaches using image- and video-compression techniques that
compress the individual color- and depth images [412] and 3D approaches which
directly compress the point cloud. The latter often rely on hierarchical subdivision
using octrees [246] and tend to be slower and less effective compared to 2D ap-
proaches if the reconstruction quality should remain high or even be lossless [226].
To achieve convincing results, the image- and video-compression techniques need to
be adapted to depth images and their specific characteristics though [275]. A com-
prehensive overview of the recent work in this department was recently provided
by Cao et al. [44]. Even with the ongoing work in this field, the problem is far from
solved.

Another important task is to produce high-quality 3D visualizations of the RGB-
D data. One persistent obstacle is the inherently noisy output of the depth sensors,
even the newest ones like the Azure Kinect suffer from temporal noise and effects
such as the flying pixel and multipath effects [381]. Since the emergence of low-cost
RGB-D cameras, much research was done to enhance the depth images by proposing
different denoising, inpainting, and filtering approaches [5, 220, 121]. Though, the
problem is still relevant today, as the proposed solutions often have difficulties with
dynamic content, e.g., in the form of ghosting artifacts, or take too much time for
real-time application. More about this topic can be read in Section 2.2.3 and our
contribution dedicated to depth image inpainting in Section 3.3.

To eventually visualize point clouds and, specifically, point cloud and 3D re-
constructed avatars, different techniques were proposed. A broad overview of re-
construction and rendering methods is given in Section 2.2.4. While, in principle,
very high-quality representations can be achieved via offline scanning and elabo-
rate reconstruction techniques, these methods are not suitable for real-time telep-
resence applications [235]. Dou et al. [90] presented an online, multi-camera per-
formance capture system with advanced volumetric 3D reconstruction achieving
real-time speed, however, multiple high-end PCs were necessary to achieve 30 Hz
which leaves no room for other necessary tasks in a telepresence system such as
compression, rendering of multiple users, and rendering the scene itself in VR. Sim-
ilarly, Orts et al. [264] were able to stream high-quality 3D reconstructed avatars in
real-time. The avatars are produced via temporal-volumetric fusion of the data of
multiple RGB-D cameras, however, the proposed system is computationally highly
demanding, requires a 10 Gigabit connection, and is complicated to set up. On the
other hand, Gamelin et al. [122] showed that even simpler and faster point cloud vi-
sualization techniques such as splatting are sufficient to outperform preconstructed
animated avatars in collaborative spatial tasks. Yu et al. [431], too, compared point
cloud avatars with pose-tracked (using an Azure Kinect), animated full-body mesh
avatars in their telepresence prototype and found the point cloud avatars to be su-
perior regarding perceived co-presence and social presence. Recently, Gunkel et
al. [136] presented another RGB-D-based approach for real-time 3D avatars. Using
either an Azure Kinect or ZED 2i depth camera, point cloud or mesh avatar represen-
tations are computed directly in the shader, based on the depth (and color) images.
The proposed pipeline includes various pre-processing and optimization techniques
such as background subtraction, hole-filling using morphological operations, edge
smoothing, and color encoding for streaming with standard video codecs. However,

36 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

Stream-Server

UE4 ApplicationUE4 Application

Local User in the OR Remote User

Stream-Client

Stream-Server

Network Session
HMD +

Controller

Preprocessing

Compression

Preprocessing

Stream-Client

Compression

HMD +
Controller

RGB-D
Camera

…

Player LogicPlayer Logic

Server Logic

Avatar Actor Avatar Actor

Point Cloud ActorPoint Cloud Actor

RGB-D
Camera

RGB-D
Camera

has

has

has

has

controlscontrols

feedsfeeds

feeds
passes onpasses on

Point Cloud Streaming für Telepräsenz im
Remote Doctor 1Remote Doctor 2

Server in the OR

Virtual ORROI Point Cloud

Avatar
Point Cloud

Stream-Server

UE4 ApplicationUE4 Application

Local User in the OR Remote User

Stream-Client

Stream-Server

Network Session
HMD +

Controller

Preprocessing

Compression

Preprocessing

Stream-Client

Compression

HMD +
Controller

RGB-D
Camera

…

Player LogicPlayer Logic

Server Logic

Avatar Actor Avatar Actor

Point Cloud ActorPoint Cloud Actor

RGB-D
Camera

RGB-D
Camera

has

has

has

has

controlscontrols

feedsfeeds

feeds passes onpasses on

FIGURE 3.1: Left: System architecture of our application. Right: Sys-
tem setup and communication channels between the server in the OR
and the remote users.

the resulting motion-to-photon latency is quite high at 300 - 400 ms.

3.1.3 System Overview

In this section, we present our telepresence system for remote consultation and col-
laboration in healthcare. In our system, the doctors and the patient in the physical
operating room as well as the remote experts in VR are visualized via accurately reg-
istered live-streamed point cloud-based 3D representations. To provide high-quality
graphics and robust network components, we decided to use the Unreal Engine 4 as
a basis. This also has the benefit that a lot of basic aspects such as collision han-
dling and different HMDs are supported out of the box. A core pillar in our system
architecture is the RGB-D streaming pipeline that we realized not with the Unreal
Engine, as the engine and its network components specifically are not suited for
low-latency transmission of huge data loads. Instead, the RGB-D data is streamed
via custom client-server connections that we implemented using C++ and CUDA;
we integrated these into our Unreal Engine application. This is illustrated by the
system diagram on the left side of Fig. 3.1 which shows our system’s components in
more detail.

The image on the right side of Fig. 3.1 illustrates the general setup and the com-
munication channels between the participants: The server, which acts as a client too,
is located in the operating room, has multiple RGB-D cameras connected to it, and
hosts the virtual OR scene. Remote doctors connect to the server and receive the
point cloud visualization of the physical scene – the region of interest (ROI) of the
OR – from the server. If the users have an RGB-D camera for a personalized point
cloud avatar themselves, they directly broadcast the corresponding data to all par-
ticipants. The application’s network traffic, apart from the RGB-D data, however, is
always routed via the server.

An example of our telepresence system in action can be seen in Fig 3.2. The left
image shows the doctor in the real OR as a live-streamed point cloud visualization
in the virtual OR, seen from the viewpoint of a remotely connected doctor. The
right image shows the same doctor rendered with the point clouds from two cam-
eras which helps to minimize occlusions. The middle images illustrate the physical

3.1. A novel Point Cloud Streaming and Rendering Pipeline 37

FIGURE 3.2: Example of our system. Left: Live-streamed point cloud
visualization of the local doctor in the real OR, seen from the perspec-
tive of a remote doctor. Middle: Physical environments of the local
(top) and remote (bottom) doctors with RGB-D cameras (see white
rectangles). Right: Point cloud visualization of the local doctor using
two cameras to minimize occlusions, and part of the remote doctor’s
self-avatar.

environments of the local and remote doctors with their respective RGB-D cameras.

Multi-User VR Environment

The central part of our system is a virtual operating room in which all the RGB-D
data gets streamed and rendered, and in which the remote doctors can meet using
HMDs, see Fig. 3.3 (left). The network architecture is based on Unreal’s session sys-
tem. After starting the application, the users arrive in a lobby where they can start a
session or join an existing one. The focus of our system lies in users making use of
HMDs to have an immersive VR experience and having real-time personalized point
cloud avatars. However, for the case that the required technology is not available,
we made sure the system is usable with a mouse and keyboard, too, and integrated
flying mesh avatars as a fallback. For VR locomotion the room-scale system is used
in which the users can physically walk to move. We also provide a teleport function-
ality for cases where the physical space runs out. Research showed that this locomo-
tion metaphor exhibits the least risk of inducing cybersickness. Also, to not confuse
other present users, a simple particle effect is shown to indicate the deliberate nature
of the teleport. Other features of our virtual operating room are a virtual monitor to
show medical image data and 3D organ meshes modeled based on real patient data,
in this case, livers. The fully synchronized organ models consist of separate parts
for arteries, tumors, and a half-transparent outer shell and can be grabbed and in-
spected by the users, as can be seen in Fig. 3.3 (right). Also, the organ data is quickly
replaceable to represent new cases.

Point Cloud Streaming

In this section, we describe the point cloud streaming pipeline of our telepresence
system, which is one of its core parts. Instead of implementing everything from
scratch, which would be tedious and time-consuming, we opted to use “DynCam:
A Reactive Multithreaded Pipeline Library for 3D Telepresence in VR” by Schröder

38 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

FIGURE 3.3: Our virtual operating room with a point cloud avatar of
a remote user on the left and an interactive virtual liver on the right.

et al. [325] as a base and extended it for our needs. Generally, the Dyncam library
provides a good foundation, as it has low latency streaming capabilities, which are
crucial for telepresence in VR, and is easily extendable. However, we found some
aspects such as compression and rendering to be lacking and decided to extend or
replace them. We also adapted the architecture so that a single server-client connec-
tion can handle multiple cameras to reduce overhead and integrated functionality
to record point cloud sequences and replay them later without the need for cam-
eras to be connected. In Fig. 3.4 you can see an illustration of our final streaming
pipeline. One or multiple RGB-D cameras are connected to the streaming server
and will be processed individually. We use the new Azure Kinect RGB-D camera
from Microsoft, as it has a high resolution and precision, hardware synchronization,
and uses the time-of-flight (TOF) principle which is very suited for indoor use. The
first step of our pipeline is the preprocessing of the color and depth images, which
consists of lens correction, cropping, and filtering algorithms including background
subtraction, and morphological filters for hole-filling and denoising. Then the im-
ages get compressed and transmitted to the client where they will be decompressed.
We decided to compress and transmit the color- and depth images instead of point
clouds, as this enables us to use more efficient image- and video-based compression
algorithms. This means that the point cloud will only be computed client-side. For
this, the camera’s intrinsic data will be transmitted once too. Lastly, the point clouds
of multiple cameras will be registered to each other and to the virtual scene and then
rendered.

We have implemented the filtering algorithms using CUDA to minimize latency.
For background subtraction, there are two options. The first one is to set a simple
depth threshold per camera to exclude points from rendering (depth set to zero). As
a second option, the user can do a one-time recording of the scene, e.g., the empty
operating room. In this case, the pixel-wise minimum valid value will be stored
and acts as the threshold to distinguish between foreground and background. Algo-
rithm 1 describes the whole procprocessing pipeline in more detail. For hole-filling
and depth denoising, we did extensive experiments with various filter algorithms,
such as optical flow, Navier-Stokes-based inpainting, local regression, etc, but found
them to be too slow, or the provided improvements were not significant enough to
warrant the additional performance cost. Thus, we settled for faster solutions that
achieve a good trade-off in this regard. Hole filling is done via multiple iterations of
median-based morphological filtering (see Alg. 2) and denoising using an adapted
Kalman filter. As the Azure Kinect camera masks off the corners of the depth im-
ages with non-usable data, we added the option to do a cropped transmission and

3.1. A novel Point Cloud Streaming and Rendering Pipeline 39

Mul�ple
RGB-D

Cameras

Color/Depth
Img. Pre-

processing
Compression

Trans-
mission

Decom-
pression

Point Cloud
Comp. +

Registra�on

Visualiza�on
in VR

Streaming-Server Streaming-Client (in UE4)

RVL + JPEG
Background Subtrac�on
Hole-Filling, Denoising

Intrinsics

Con�nously (30 Hz)

Ini�ally:

Compression Parameters

Azure Kinect

Azure Kinect

FIGURE 3.4: Our point cloud streaming pipeline. Color and depth
images of multiple cameras get individually preprocessed and com-
pressed server-side and then transmitted to the clients where the
point clouds get computed and registered before rendering.

save bandwidth. Regarding the compression of the depth images, we extend the
solution present in Dyncam (quantization plus LZ4) by integrating the H.264 video
codec, and multiple efficient lossless algorithms, i.e., an ANS coder, RVL, and Zs-
tandard. We found that even after compression the depth images are responsible
for most network traffic while the color images are sufficiently small by just using
JPEG compression. Therefore, we adapted the integrated lossless depth compression
algorithms to achieve higher compression ratios by adding temporal delta compres-
sion. As with all compression and streaming systems, at some point, a trade-off
has to be made between the required bandwidth and the computational speed. To
allow the users to adapt this to their local capabilities, i.e., hardware power and net-
work bandwidth, our design allows the client-side user to select the compression
algorithm and parameters that will be used for their individual connection. For ex-
ample, one user could choose to use RVL compression, which is fast and efficient,
while another user may have a slower internet connection and opt for a different
compression technique with a higher compression ratio at the cost of increased com-
putational costs and lower speeds. The modular design of our pipeline also makes
it easy to implement other and even more efficient compression algorithms in the
future.

Point Cloud Registration and Rendering

To be able to have individual point cloud avatars for remote users, a registration pro-
cedure between the RGB-D camera and the VR coordinate system has to be done.
When using multiple cameras, these have to be registered to each other too. For
these registration tasks, we use the novel method by Mühlenbrock et al. [248]. It
uses a grid-like registration target that is visible in the depth images to register mul-
tiple RGB-D cameras with each other and the VR coordinate system. This regis-
tration method proved to be very quick and easy to use. In the virtual scene, we
have a hierarchy of actors in which each one is responsible for rendering one point
cloud/camera. To account for the registration occasionally being slightly off, we
allow the user to manually tweak the transformation in-game via sliders.

40 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

Algorithm 1 Depth Preprocessing

Require: captured color and depth images, device calibration
if not Init then

Init← True
Trans f ← ComputeUndistortTrans f (DeviceCalib, Alpha)
if BackgroundRecording available then

BackgroundImg← ComputePixelwiseMin(BackgroundRecording)
DepthImg← ApplyRangeFilter(DepthImg, MinRange, MaxRange)
if BackgroundImg available then

DepthImg← ApplyBGSubst(DepthImg, BackgroundImg)
DepthImg← ApplySpatioTemporalFilter(DepthImg, FilterID, Sensitivity)
DepthImgT ← Undistort(DepthImg, Trans f)
DepthImgT ← Crop(DepthImgT, Radius)
RegColorImg← Trans f Color2Depth(DepthImg, ColorImg, DeviceCalib)
RegColorImgT ← Undistort(RegColorImg, Trans f)
RegColorImgT ← Crop(RegColorImgT, Radius)

Algorithm 2 Hole-Filling & Outlier Removal

Require: captured depth image
for Pixel P in DepthImg do . outlier removal

Neigbours[]← ComputeNeigbours(P)
Sum← ComputeSum(Neigbours)
if Sum < Threshold then . default: 10 mm

P← 0
for it in iterations do . hole-filling; e.g., 3 iterations

for Pixel P in DepthImg do
if P < Threshold then . default:10 mm

Kernel ← ComputeKernel(Radius)
for Value, i in Kernel do

KernelValues[i]← Value
KernelValues← Sort(KernelValues) . e.g., using bubble sort
if KernelValues[KernelSize− 1] >= Threshold then

Zeroes← CountZeroes(KernelValues, Threshold)
P← (KernelSize + Zeroes)/2 . median of valid values

3.1. A novel Point Cloud Streaming and Rendering Pipeline 41

Cam 1

Cam 2

Cam 1

Cam 2

Avatar Filtering
Splat Scaling

(Distance+Density)

Dynamic Textures Plane Mesh
Run�me Vertex
Transforma�on

Avatar+Triangle
Filtering

Dynamic Textures Niagara Par�cles

FIGURE 3.5: Pipelines of our two rendering solutions: one is
splatting-based (top) and the other one mesh-based (bottom).

Of paramount interest is the fast and visually pleasing rendering of the point
clouds. The Unreal Engine historically does not natively support point cloud ren-
dering, however, by now, there is a publicly available point cloud rendering plugin
“LiDAR Point Cloud”1. We experimented with the plugin but found it to be too slow
with dynamic point clouds and, therefore, not suitable for our application. Our in-
vestigations indicate that the reason for the poor performance is that the plugin was
designed to handle huge but static point clouds – it builds a spatial acceleration data
structure intended for level of detail (LOD). With dynamic point clouds, this costly
operation would have to be done in each frame. The rendering solution provided
in Dyncam was not convincing to us, both visually and from a performance point
of view. We also considered implementing more complex volumetric reconstruction
techniques similar to the ones in [264] and [90] but eventually decided against it, as
they are computationally highly demanding, and we prioritized keeping the latency,
which is critical in VR, to a minimum. Therefore, we have developed two different
and very quick rendering solutions that we both integrated and tested in the Unreal
Engine.

The first method is splatting-based but uses Unreal’s new Niagara particle sys-
tem, see the top part of Fig. 3.5. To get the point cloud positions and colors from the
CPU to the GPU, we adopted Dyncam’s approach of using two dynamic textures.
In our case, all cameras from one user share a single texture with the size of 20482

which is sufficient for at least 11 cameras. Via Niagara module scripts we then calcu-
late the UV coordinates based on the particle ID and forwarded parameters such as
the point count per camera, texture size, etc., exploiting the fact that the point clouds
are ordered. For point clouds meant to represent avatars of VR users, we addition-
ally filter out all points that exceed a set distance from the center of mass which we
compute dynamically via the HMD position. Also, points representing the HMD
are filtered out for the local avatar’s user in a similar fashion to prevent occluding
the vision. When using splatting methods, the size of the points is important. To
minimize holes and overlaps, we compute the diameter of each point based on the

1https://www.unrealengine.com/marketplace/en-US/product/lidar-point-cloud

42 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

distance recorded from the sensor, as, because of the parallel projection, the density
of points decreases with the distance. Another effect to consider is that surfaces per-
pendicular to the line of sight of the camera get sampled with a significantly lower
density which results in bigger holes. To account for this fact, we also dynamically
compute the local density of points, which is computationally cheaper than approx-
imating their normals, and adjust the diameter accordingly. As blend mode in the
material we use the masked mode instead of the translucent mode to circumvent the
costly depth sorting.

Our second rendering method is based on a very fast mesh reconstruction (see
bottom part of Fig. 3.5) and is intended to prevent visible holes between individual
points altogether and instead provide continuous surfaces. With our mesh recon-
struction method, we can again exploit the fact that the point cloud is ordered and
establish a one-to-one relation between point cloud points and the vertices of a plane
mesh. At start-up, we once automatically create a plane mesh with the exact vertex
dimensions and structure as the depth image on which the point cloud is based. For
example, a rectangular grid-like pattern of 640× 576 vertices. At runtime, we then
make the point cloud positions and colors available to the mesh’s material, again,
via dynamically updated textures. In the material, the vertices get transformed via
Unreal’s WorldPositionOffset-function according to the corresponding point cloud
positions in the RGB-D camera’s local space and the world-transform. We wrote
custom shader nodes to exclude triangles from being rendered (alpha set to zero) if,
based on the original position, the point was invalid, or one of the triangle’s edges
is too long. This prevents long, stretched triangles between foreground and back-
ground objects. Fig. 3.6 shows a comparison of the two renderers. As can be seen,
in some instances the individual points are still clearly visible with the splatting
method.

3.1.4 Results

Performance

To quantitatively evaluate our system’s performance, we measured the time needed
for filtering, compression, and rendering as well as the frame rate with which cam-
era updates can be processed. All performance measurements were done using a
PC with Windows 10, an Intel i7 7800x processor, 16 GB of main memory, and an
Nvidia GeForce 2070 graphics card. As HMD we used the HTC Vive Pro Eye with
a mounted Facial Tracker. Our application was developed using the Unreal Engine
4.26. All measurements were done without background subtraction to maintain the
full worst-case workload.

First, we evaluated the speed of the filtering step of our pipeline (see the top left
part of Table 3.1). As a whole, it took 1.34 ms to filter an un-cropped depth image
(640×576 pixel), of which 0.59 ms were spent on hole-filling. Next, we measured
the time for compression and decompression of the registered color image using
JPEG: each took 1.5 ms. Using the cropped transmission (540×476 pixel) to discard
the Azure Kinect camera’s unused border areas resulted in only 1.08/1.22 ms be-
ing needed. Using H.264 (preset: ultrafast, tune: zerolatency), the computation was
significantly slower: 7.72 ms for compression and 4.84 ms for decompression of the
full-sized color images, and 11.04 ms and 9.4 ms for the depth images, respectively.
Compression and decompression of the un-cropped depth images using the RVL
method, which we found to be the most efficient, took 1.76 ms and 1.19 ms, respec-
tively. Cropping reduced the time needed to 1.31 ms and 0.987 ms, respectively. An

3.1. A novel Point Cloud Streaming and Rendering Pipeline 43

FIGURE 3.6: Comparison of the two point cloud renderers, splatting
in the top, fast mesh reconstruction in the middle. Both look quite
good but the splatting method still has visible holes in some areas,
see the red rectangles. With the mesh, however, object borders can
look jagged (see highlighted region). The bottom image shows the
captured scene.

44 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

TABLE 3.1: Performance measurements of our application.

Task Duration Time (ms)
Full Cropped

Filtering 1.34 -
Color Comp. (JPEG) 1.50 1.08
Color Decomp. (JPEG) 1.50 1.22
Color Comp. (H.264) 7.72 -
Color Decomp. (H.264) 4.84 -
Depth Comp. (tRVL) 1.76 1.31
Depth Decomp. (tRVL) 1.19 0.99
Depth Comp. (H.264) 11.04 -
Depth Decomp. (H.264) 9.40 -

Latency
VR Round-Trip Time 22-29 -
PCloud MotionToPhoton 120-150 -

Compression Image Size (kB)

Color (JPEG) 21.9 18.0
Color (H.264) 15.9 -
Depth (RVL) 208.0 -
Depth (tRVL) 96.6 81.8
Depth (H.264) 59.7 -

Rendering Perf. (ms) PCloud Mesh
VR Frametime (1 Cam) 10.9 8.5
VR Frametime (2 Cam) 15.0 13.0

important detail to note is that the (de-)compression of color- and depth are done in
parallel, meaning that the time won’t stack on top of each other. The results show
that in our pipeline, preprocessing and compression are very fast and can be ac-
celerated even further by cropping the unused borders of the Azure Kinect’s depth
images, although the speed-up doesn’t reach its theoretical potential (19-28 % less
time for 30 % fewer pixels).

After these individual measurements, we evaluated the overall performance by
measuring the more comprehensive metrics of the point cloud update rate that was
maintainable as well as the eventual fps/frame times in VR. We measured the point
cloud update rate by calculating the delta time both in our streaming server appli-
cation as well as in the UE4 telepresence application that received and rendered the
data. Throughout all cases, even using two cameras sending in full resolution and
being in VR at the same time, our system was able to maintain a delta time of 33 ms
which corresponds to the 30 fps capturing capability of the Azure Kinect cameras.
The final performance in the packaged VR application was not only dependent on
the number of cameras and the rendering technique but also heavily dependent on
the general graphics settings the scene was rendered with (“scalability settings” in
Unreal). Using the mesh rendering technique, Unreal Engine’s “high” graphics pre-
set, and the full depth resolution, we achieved a frame time of 12.5 ms with one
camera and 15.5 ms with two. Setting the graphics preset to “low”, we were able
to reach 8.5 ms and 13 ms, see the bottom right part of Table 3.1. We found the
splatting technique to be slower than the mesh variant, achieving only 10.9 ms and
15 ms under the “low” graphics preset. Important to note here is that the rendering
resolution was held constant throughout the presets, and the graphics preset had no

3.1. A novel Point Cloud Streaming and Rendering Pipeline 45

effect on the visualization of the point cloud rendering but only on the surrounding
scene, most noticeably on reflective materials, anti-aliasing, and ambient occlusion.
As can be seen from the performance measurements, our pipeline is very efficient
throughout all stages and enables VR performance even with just a single PC per
location. Both of the rendering techniques are very quick to compute, but especially
the mesh version is highly efficient. As the performance scales with the number of
cameras, at some point (e.g., 4+ cameras), more powerful hardware or a second PC
would be needed to maintain the real-time VR performance, though.

Network

Regarding network performance metrics, we measured the round-trip time for in-
teractions in VR, and the motion to photon latency of the whole pipeline, see the
bottom left part of Table 3.1. The round-trip time – the time it takes for a client-side
action to be transmitted to the server and back to a client – was between 22 ms and
29 ms., depending on the tick rate the server and client could achieve. The tests were
conducted with 2 PCs in a local network. With greater distances, e.g., different cities,
the time will likely be higher. The time between the camera capturing the scene and
it being rendered on the display – the motion to photon latency – was measured by
pointing a camera in such a way that both the physical scene and the display were
recorded by an external camera. By analyzing the videos frame-by-frame, we found
a latency of 4 to 5 frames which corespondents to a 120-150 ms delay. However,
roughly half of this is caused by the camera itself, as it is reported that delivery of
the raw images by the Azure Kinect software development kit (SDK) needs∼ 75 ms,
depending on various parameters. We couldn’t find any significant differences in
delay for a varying number of cameras, between the rendering methods, or different
graphics presets, which may also be because the external camera that we used for
the measurement itself only captured with 30 Hz. Although the measurements were
not highly precise due to the limited temporal resolution of the external camera, the
results show a rather low delay for such a system.

Lastly, we measured the compression efficacy and bandwidth required to trans-
mit the RGB-D Data. The color images with an original size of 1440 kB were com-
pressed with JPEG to 21.9 kB (on average) with a compression ratio of 66. Cropping
further reduced the size to 18 kB, as can be seen in the top right part of Table 3.1.
With H.264, the color images were compressed to 15.85 kB, and the depth images to
59.69 kB. However, the size and image accuracy are heavily dependent on the pa-
rameters; we used constant rate factors (CRF) of 20 and 10 for the color and depth
images, respectively. For depth images, we found the RVL algorithm to be a good
trade-off between speed and compression ratio. Using it, depth images were loss-
lessly compressed from the original 720 kB down to 208 kB with a compression rate
of 3.46. With our temporally extended RVL, the average compressed size shrunk
to 96.6 kB with a compression rate of 7.45, though the achievable compression here
strongly depends on the amount of motion in the scene. With the cropped trans-
mission, the size was further reduced to 81.78 kB. With the 30 images per second
that the cameras provide, our system requires per camera 3,555 kB/s in full and
2,993 kB/s in cropped mode, which corresponds to 23.4 and 27.8 Mbps. This is a
very good result considering that the depth images are transmitted losslessly and
the high computational speed the compression runs on. Naturally, using lossy com-
pression algorithms such as H.264, the bandwidth could easily be reduced further
at cost of higher latency, if need be. However, we noticed visible artifacts on H.264-
encoded depth images.

46 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

FIGURE 3.7: Our telepresence system in action during the studies: on
the left the remote doctor and on the right the live-captured operating
room scene.

3.1.5 User Studies

To demonstrate the capabilities of our telepresence system and evaluate it regarding
crucial aspects such as visualization quality, realism, and spatial- and social pres-
ence, we conducted two user studies with doctors and medical students in a hospi-
tal.

Study 1: Qualitative Feedback, Presence, and Preference

The goal of the first user study was to get general feedback from the doctors, eval-
uate it regarding relevant aspects like presence, and see how beneficial the telepres-
ence system could be in clinical practice. The study was conducted with N1 = 12
doctors and medical students with varying amounts of experience in the operating
room and with AR/VR. The experimental setup for this study was as follows: In
a room similar to an operating room, we divided the space in half. In one half, a
PC was set up that acted as the server for the streaming pipeline and host for the
VR session. Connected to the PC was an RGB-D camera facing an operating table
and a staff member acting as a surgeon, see Fig. 3.7 (right). In the second half of the
room was a second PC with an HMD which the participants had to put on and join
the session in the virtual operating room where they could see the operating table
and staff member as a live-streamed point cloud, see Fig. 3.7 (left). The PCs were
connected via a local network.

The task for the participants was to observe the staff member and help him with
specific spatial tasks he had to perform with interlocking bricks (Lego). We did use
interlocking bricks for this study, as their shape, size, and inherent ability to be com-
bined into various more complex structures makes them suitable to recreate spatial
tasks done by surgeons. First of all, the staff member did work alone so the par-
ticipants could familiarize themselves with the VR experience and the scene. After
roughly one minute, the staff member started asking questions and presenting prob-
lems to facilitate interaction with the participant and steer his attention to individual
bricks. Questions were, for example, how many bricks of one color were used in a
construction, how many studs of one color were visible, or how a specific construc-
tion could be built with a set amount of available bricks. After the VR experience,
which lasted roughly 8 minutes, the participants had to fill out a questionnaire.
The questionnaire consisted of a demographical part (age group, sex, experience

3.1. A novel Point Cloud Streaming and Rendering Pipeline 47

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Fr
eq

u
en

cy

Never Always

Usage Frequency

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Fr
eq

u
en

cy

No Completely

Preference vs 2D System

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Fr
eq

u
en

cy

None Strong

Benefit vs 2D System

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Fr
eq

u
en

cy

Low High

Spa�al Presence

0

1

2

3

4

5

6

0 1 2 3 4 5 6
Fr

eq
u

en
cy

Low High

Involvement

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Fr
eq

u
en

cy

Low High

Realism

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Fr
eq

u
en

cy

Low High

Social Presence

FIGURE 3.8: Results of our first user study (in Likert scores, higher
scores are better). Especially the spatial- and social presence scored
very well, and involvement and realism were mediocre. The users
see moderate to high benefits of the system and most of them would
like to use it.

in the operating room, experience with AR/VR), the Igroup Presence Questionnaire
(IPQ) [327], which is split into the three subscales spatial presence, involvement, and
realism, and a social-presence part taken from Nowak et al. [261]. Additionally, we
added various specific questions: about cybersickness; if the participants see bene-
fits of our system compared to more traditional video-based systems; if they would
prefer it to those systems; how often they would want to use our system. For all
questions, we used a 7-point Likert scale (1-7, but shifted to 0-6 for the evaluation;
higher scores are better).

The results of this study can be seen in Fig. 3.8. Note that the scores can be frac-
tional in some cases, as the IPQ subscales are aggregations of multiple questions.
Our system scores especially high regarding both spatial- and social presence. 58 %
of the participants stated that they had a strong feeling of being present in the vir-
tual world (Likert scale >= 5), the most often given score even being the maximal
one. For the rest, the feeling was still moderately pronounced. Similarly, 62 % stated
that they had a strong feeling of actually being in the same room with the other per-
son/having a personal meeting with another real person. Only 5 % definitely had
not the feeling. We also found that our system fares very well with cybersickness, as
no participant had a significant occurrence of it, and 75 % had nearly none to none.

48 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

The results for the involvement and realism subscales of the IPQ are moderately
good, most participants gave scores relating to “somewhat captivated by the vir-
tual world” or “moderately real world”, although, especially on the question “The
virtual world seemed more realistic than the real world” of the IPQ, 75 % gave the
minimal score dragging down the subscale. One possibility for this particularly low
result could be that the participants took the question too literally, and the question
may be not that appropriate in our context. The other questions of the realism sub-
scale1 scored significantly better. In the end, 25 % of the participants would attest
moderate advantages and 58 % even strong advantages to our system compared to
more traditional videoconferencing systems. Also, 83 % would prefer this system at
least somewhat over teleconferencing systems, and 33 % would use it on all possible
occasions, while the other 77 % at least sometimes. The results for the realism sub-
scale as a whole are in line with the comments made by some participants during
and after the study – that the point cloud visualization is still somewhat grainy and
low precision.

Study 2: Comparison of Point Cloud Rendering Solutions

In a second study, we compared our two point cloud rendering methods and further
investigated the specific clinical use cases in which our system could provide ben-
efits. The experimental setup was similar to the one in the first study, but this time
there were two VR phases for the participants. First, they saw the live-streamed staff
member with the interlocking bricks using one rendering method, filled out a ques-
tionnaire, and then repeated the procedure with the second rendering method and
a second part of the questionnaire. Which rendering method was seen first, point
cloud or mesh, was randomized. The task in both phases was the same as in the
first study, helping the staff member with the interlocking bricks. For this study,
we discarded the social presence part from the first study and the spatial presence
and involvement subscales of the IPQ, retaining only the realism one. Instead, we
focused on getting more precise feedback regarding the potential benefits and use
cases of the system. We also directly asked which rendering method would be pre-
ferred. The study was conducted with N2 = 7 doctors and medical students in a
hospital.

The results can be seen in Fig. 3.9. The top diagram shows the answers to the
question of which rendering technique the doctors would prefer; the value of 3
means they found them similar, lower values mean the splatting technique was pre-
ferred, and higher values correspond to the mesh visualization. The bottom diagram
shows the scores of the realism subscale for the two rendering techniques. Again,
scores are fractional, as the IPQ subscale is an aggregation of multiple questions.
The results show that there was no absolute preference for one rendering method or
the other. According to the data, the participants found them to be rather similar,
some slightly preferring the splatting and others the mesh method. From the direct
question and its result in the left diagram, we can see a small tendency for the mesh
technique, which lines up with verbally given statements from two doctors after the
study that they found the mesh rendering a bit better. The results for the realism
subscale also indicate that there is no clear advantage for one or the other method.
With a sample size of seven, it is hard to make statements with any significance,
though. We did perform a Wilcoxon rank-sum test to test the null hypothesis of
both distributions being equal and had not enough evidence to reject this hypoth-
esis. Similar to the first study, the question about if the virtual world was more

1http://www.igroup.org/pq/ipq/download.php

3.1. A novel Point Cloud Streaming and Rendering Pipeline 49

0

1

2

3

4

5

0 1 2 3 4 5 6

Fr
eq

u
en

cy

Spla�ng Mesh

Preferred Rendering Method

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7

Li
ke

rt
 S

co
re

Par�cipants

Realism Subscale

Spla�ng

Mesh

FIGURE 3.9: Results of our second study in which we compare the
two rendering methods. The top diagram illustrates that the users
have no definitive preference, some slightly prefer the splatting (left
side of the x-axis), and others the mesh rendering (right side of the
x-axis). The bottom diagram shows that also the realism scores fairly
similar between the two rendering methods (higher scores are better).

50 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

realistic than the real world scored particularly badly. Asked about it, one doctor
argued that a positive answer to this would be impossible, as he obviously knew
that he was in a virtual world during the experiment. The rest of the questionnaire’s
answers confirmed the results of the first study: most doctors would like to use such
a telepresence system from time to time (57.1 %), and some would even be eager to
use it very often (28.5 %). The more in-depth questions about the benefits and use
cases showed that most doctors see moderate benefits over video-based solutions
for our proposed system in its current state and very strong benefits if, in the near
future, the point cloud visualization quality and precision could be improved. The
doctors stated that the system could be advantageous and helpful in emergency op-
erations, or if an inexperienced doctor is on duty. Additional use cases given by the
doctors were educational operations, learning of the anatomy, patient anamnesis,
and learning and teaching of practical skills in general.

3.1.6 Limitations

From the results of the first and particularly, the second study, we conclude that our
telepresence system is a very good basis and has very high potential, but the RGB-D
cameras’ sensor resolution is a main limiting factor at the moment, at least concern-
ing tasks involving high precision or small details. Naturally, sensors with higher
resolutions being released would bring the biggest relief, however, we also think
about combining 3D cameras with different sensing techniques to complement each
other. For example, stereo cameras, which typically produce higher-resolution color
and depth images, could be added and used to enhance the fidelity of our system.
Another limitation of our current system is the lack of a dedicated point cloud/mesh
fusion process. Individually rendering multiple point clouds or meshes that depict
the same object leads to visible seams or artifacts, even though they are registered
precisely. The flying pixel effect and internal interpolation routines in the cameras
may be one of the causes. Efficient and precise real-time fusion is a challenging topic
in itself though, for example, Dou. et al. [90] proposed a sophisticated but computa-
tionally demanding approach, and, thus, was not the focus of this work.

Face Reconstruction

A glaring problem with real-time reconstructed avatars in VR/AR telepresence ap-
plications is the HMD blocking the face. To be able to see the people’s faces is highly
important in collaborative virtual environments, though. To solve this issue, we de-
veloped a prototype combining the HMD’s eye- and mouth-trackers with 3D Mor-
phable Face Models, see Fig. 3.10 for on overview of the whole pipeline.

A straightforward solution would be to use the deformable face model deliv-
ered with the HTC eye-tracking SDK and let the trackers drive the deformation.
However, this generic model wouldn’t be too realistic, as it can’t be personalized.
Also, we found the resulting facial expressions often do not match the actual mimic
that well, sometimes even being weird-looking. Therefore, we acquired a more ad-
vanced morphable face model from “eos: A lightweight header-only 3D Morphable
Face Model fitting library in modern C++11/14” [148] which can be automatically
adapted to the person’s facial geometry via a photo taken beforehand. The library
actually includes two face models, the Surrey Face Model and the 4D Face Model,
the latter covers not only the face but the whole head. However, empiric tests that we
conducted showed that the Surrey Face Model lead to better results, which is why
we decided to employ it. To fit the photo to the facial geometry, facial landmarks

3.1. A novel Point Cloud Streaming and Rendering Pipeline 51

Generate Pers.,
Textured 3D Face

Models

Create Blend
Shapes/Morph

Targets

Create Animation
Sequences and
State Machine

Classify
Expression

Extract Facial
Landmarks

Interpolate Face
Model

Render
Mesh/Artificially
Created PCloud

Random
Forrest

Pre-Trained
Fully-Connected
Neural Network

Live Eye- and
Face Tracking

Data

EOS 3DMM Library
+

Surrey Face Model

6 Expression User
Photos

Point Cloud
Shader

FIGURE 3.10: Depiction of the face reconstruction pipeline. Steps in
green only have to be done once in pre-processing, steps in blue are
continuously repeated in real time.

have to be extracted from the image first, see Fig. 3.11 (top row) for an example of
the fitting process. For this, we used a slightly adapted version of the facial land-
mark detector implemented in the Dlib library that generates 68 point landmarks.

FIGURE 3.11: Top row: fitting a morphable face model (c) to a photo
(a) using extracted facial landmarks (b) and the eos library. Bottom
row/(d): Six facial expressions applied to the face model.

To further customize the face model, we do not simply directly apply the track-
ers’ output to the morphable face but pre-animate six facial expressions relating to
basic emotions that are dynamically selected, interpolated, and applied to the face.
For this, we initially take six photos of the user’s face, one for each of the facial ex-
pressions, and generate a fitted face model each. Following this, we create a unified
model with blend shapes/morph targets for all the expressions, and then generate
animation sequences and a small state machine to drive the animation and inter-
polation of the geometry and textures. Instead of a fully-connected state machine
that is able to directly interpolate between all facial expressions, we decided to use
a centralized one in which animations always transition over the neutral expression

52 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

FIGURE 3.12: Our mesh-rendered point cloud avatar with the recon-
structed face; on the left with a neutral look, and on the right showing
disgust.

to reduce the complexity. The selection of the facial expression is based on either
a custom (fully-connected) neural network that we pre-trained to map the trackers’
output to the emotions, or a random forest classifier. The six basic emotions we de-
cided on are sadness, disgust, happiness, surprise, anger, and neutrality. Fig. 3.11
(bottom row) shows the six expressions applied on the face model. To train the
neural network, we created a small data set of facial expressions by asking multiple
people to mimic the six emotions while we record the tracker output. The morphable
face model is eventually rendered at the HMDs’ 3D position while the original point
cloud points or mesh triangles corresponding to the face are hidden. An example
is illustrated in Fig. 3.12. To get a homogeneous avatar appearance for the point
cloud rendering method, we wrote a custom shader transforming the mesh of the
morphable face to look like a point cloud.

3.1.7 Conclusions and Future Work

With this work, we have presented an immersive VR telepresence system for tele-
mentoring and remote collaboration in the operating room. Multiple Azure Kinect
RGB-D cameras and point cloud avatars enable doctors to interact with each other
and to view and assist in operations from a distance as if they were there. Thanks
to our modular, low latency RGB-D streaming pipeline and efficient point cloud
rendering and reconstruction techniques implemented in the Unreal Engine 4, we
achieve very low latencies: our evaluation shows motion-to-photon latencies of only
120-150 ms, of which half of the latency is caused by the camera itself. At the same
time, our pipeline handles all relevant tasks from filtering, denoising, and compres-
sion of the RGB-D data, to registration and computation of the point clouds. Us-
ing lossless compression, a bandwidth of only 23.4 Mbit/s per camera is required,
although this can be further reduced by lossy compression when appropriate. In
contrast to many other telepresence systems, our proposed solution is easy to set up
and doesn’t require multiple high-end PCs to run. We also presented a prototype
to tackle the issue of occluded faces via personalized semi-real-time face reconstruc-
tion. A user study we conducted with doctors indicated that our system is capable of
inducing very strong feelings of spatial and social presence. 83 % of the participating
doctors attested moderate to high benefits to our system compared to video-based
solutions, and one-third would like to use it at every opportunity. Lastly, we com-
pared two point cloud rendering solutions, splatting and fast mesh reconstruction,
via another study. The results showed that they scored quite similarly regarding the

3.2. (Improved) Lossless Depth Image Compression Methods 53

IPQ’s realism subscale, and the doctors had no clear preference for one or the other
method. If directly asked for a comparison, there was a slight tendency in favor of
the mesh method. In general, though, the RGB-D sensors’ lacking resolution seems
to be a limiting factor. Accordingly, most doctors would attest medium-high benefits
to the system in its current state, reaching from educational scenarios to consultation
in emergency situations, and very strong benefits if the fidelity could be improved
upon in the near future.

Possible work for the future would be to enhance the rendering quality by im-
proving both the real-time preprocessing of the RGB-D data as well as the rendering
solutions themselves. For instance, neural networks became popular in many re-
lated fields lately and may lead to improvements in hole filling, denoising, or merg-
ing of RGB-D data and point clouds, too. In order to further increase the fidelity,
one could add dedicated color or stereo cameras. Deep-learning-based up-sampling
of the depth images could also be promising. Another aspect that could be further
improved upon is the compression of the depth data. State-of-the-art video com-
pression algorithms may be adapted to better suit the compression of depth images,
however, they are computationally expensive and not necessarily lossless which is
crucial to not lose information from medically important areas/the situs. Using dif-
ferent compression algorithms and a combination of lossy and lossless techniques
depending on the area of the scene and the visualized object may be a valid solution
to circumvent this problem. To tackle the issue of the obstructed faces, the prototype
of our proposed reconstruction pipeline should be finalized. Point cloud/mesh fu-
sion is also an important topic we would recommend to explore. Lastly, integrating
the option to also use AR HMDs would be a great addition, especially for the doctors
in the operating room.

3.2 (Improved) Lossless Depth Image Compression Methods

Since RGB-D sensors became massively popular and are used in a wide range of ap-
plications, including especially VR telepresence systems such as the one presented
by us in the previous Section 3.1, depth data compression became an important
research topic. Live-streaming of depth data requires quick compression and de-
compression. Moreover, accurate preservation of information is crucial in order to
prevent geometric distortions. As mentioned in Section 1.1, custom algorithms are
needed considering the unique characteristics of depth images.

Therefore, in this section, we propose a real-time, lossless algorithm which can
achieve significantly higher compression ratios than RVL. The core elements are an
adaptive span-wise intra-image prediction and parallelization. Additionally, we ex-
tend the algorithm by inter-frame difference computation and evaluate the perfor-
mance regarding different conditions. Lastly, the compression ratio can be further
increased by a second encoder, circumventing the lower limit of four-bit per valid
pixel of the original RVL algorithm.

The work presented in this section is based on our published paper PC5 in Ap-
pendix A.

54 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

3.2.1 Introduction

Over the past years, RGB-D sensors became an important topic in many research ar-
eas, including computer graphics, virtual reality, and computer vision. Their popu-
larity increased enormously when Microsoft released its first Microsoft Kinect, an in-
expensive, small, and easy-to-use RGB-D camera, which captures rectangular color
images and corresponding depth images. Since then, even smaller RGB-D sensors
were developed, which are now integrated into many devices. Prominent examples
are the Intel RealSense RGB-D cameras, the subsequently released Kinect V2, and
Azure Kinect cameras from Microsoft, whose sensors can also be found in the aug-
mented reality headsets HoloLens 1 and 2, and Lidar scanners. Depth images can
also be calculated by using two RGB cameras and semi-global matching.

Common applications are, for example, telepresence [20, 55, 326], see also our
contribution in Section 3.1, VR/AR applications with remote sensors capturing real
word scenes [166], gesture and object recognition and tracking [58], 3D reconstruc-
tion [256, 400] and simultaneous localization and mapping (SLAM) [253, 409].

In many cases, the data needs to be streamed over a network beforehand, which
runs into the problem of limited network bandwidth, i.e., 100 Mbit/s or 1 Gbit/s
for Ethernet, or 300-450 Mbit/s for 802.11n WiFi. The sensors accumulate a large
amount of data, and the bandwidth becomes a limiting factor quickly, especially
if multiple sensors are combined for better coverage. For instance, a sensor with
Full HD color resolution and the depth with a resolution of 512×424 (Kinect V2)
produces more than 6.6 MB of raw data per frame. At a typical frame rate of 30 Hz,
the network would have to support at least 1.60 Gbit/s. More recent depth sensors
often support even higher resolutions. For example, the new Azure Kinect is able
to capture color, depending on the mode, up to a resolution of 4K, and has a one-
megapixel depth sensor.

Data compression is essential in order to reduce the required bandwidth. This
enables lower-bandwidth scenarios, makes room for other payloads, and increases
the number of possible cameras. For more information about the topic in general,
we refer to Section 2.2.5. However, to recap, individual compression of color and
depth images is, in general, computationally less expensive than compressing re-
constructed 3D data like point clouds or surfaces. Therefore, this approach is often
preferred for real-time applications [226]. The color component of RGB-D sensors
can easily be compressed with standard image and video compression algorithms
like JPEG [391] or H.264 [411] as they are optimized precisely for this task.

However, applying the same encoders to the depth data would often result in
sub-optimal compression performance or, more crucially, severe artifacts, and ge-
ometric distortions [412]. The reason for this is that depth data usually is repre-
sented in a different format, 13 or 16-bit single channel, and has inherently different
characteristics than natural color images. In general, depth images consist of more
homogeneous regions with abrupt discontinuities at object borders. In addition, in-
dividual not-captured pixels and regions of invalid pixels are scattered throughout
the image, if not filtered beforehand.

In recent years, the research and development of compression algorithms spe-
cially designed for depth images became an important topic. Creating efficient and,
at the same time, geometry-preserving (lossless) ones is still a very active area of
research.

Our work focuses on analyzing and improving the RVL algorithm [412]. In more
detail, our main contributions are:

3.2. (Improved) Lossless Depth Image Compression Methods 55

• An improved adaptive intra-image prediction step for the RVL algorithm, en-
hancing its compression ratio.

• The addition of a final entropy-coder stage, further enhancing the compression
ratio.

• A multi-threaded implementation of the RVL algorithm and variants speeding
it up further.

• An additional inter-frame delta step as well as an examination of its effective-
ness regarding the compression ratio over different application scenarios.

• Extensive experiments comparing the effectiveness of various lossless depth
compression algorithms for different range cameras.

3.2.2 Related Work

The output of RGB-D sensors is often visualized in 3D as mesh or point cloud. A lot
of focus was put on compressing these geometric representations. In 2007 MPEG
issued a call for proposals on point cloud compression to develop an ISO stan-
dard [329]. Point cloud compression algorithms are mostly based on spatial data
structures like an octree. For example, Mekuria et al. [245] proposed a method that is
based on octrees that supports progressive decompression and is also able to exploit
temporal redundancies. For the latter, they introduced a predictive coding approach
based on macroblocks and rigid transforms between the point clouds of consecu-
tive frames. Thanou et al. [376] introduced a time-varying approach that can predict
graph-encoded octree structures between consecutive frames. The idea is to estimate
the motion between frames using feature matching based on spectral graph wavelet
descriptors and graph-based regularization. Real-time capable mesh-based com-
pression and streaming techniques, like the ones proposed by Mekuria et al. [247]
and Banno et al. [15], are in most cases lossy algorithms. As both of these represen-
tations, point clouds, and meshes, are three-dimensional, it is more challenging to
find and encode redundancy in the data efficiently. Specialized data structures are
needed and raise the complexity and computation time for high compression ratios.

A different approach is to encode the raw depth images. Many standard lossless
image and video codecs like PNG [303], JPEG-LS [401, 402] or H.264 [411] can be
applied, but the results are rather poor, founded in the inherent differences between
natural images and depth images [333, 412, 143].
Similarly, general-purpose compression algorithms can be applied to depth images,
but intrinsically are not optimized for this kind of data. Therefore they are not ideal
solutions.

In recent years some effort was made to adapt common video codes like H.264
and its successor HEVC [363] to suit depth data better. Pece et al. [275] proposed
an encoding scheme to convert the single-channel depth data to the RGB format
used by H.264 and VP8, reducing the occurring artifacts. It is based on three func-
tions: a linear one for low-resolution information and two triangle-wave functions
for the fast-changing fine details. This technique still produces noise at the borders,
though. Liu et al. [226] developed a hybrid lossless-lossy algorithm, where the first
2 bits are encoded lossless using run length coding, and the remaining ten bits are
compressed using H.264. The HEVC standard [363] features an extension called 3D-
HEVC designed for 3D video coding, which uses the multiview texture videos plus
depth maps (MVD) format. This extension addresses the compression of depth im-
ages through multiple techniques. The complexity is rather high, though. Aimed

56 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

depth
image

frame
delta

span-based
adaptive

prediction

run-length
and

variable-
length
code

Zstandard
compressed

image

FIGURE 3.13: The pipeline of our approach. Stages in dashed lines
are optional. They allow a better balance between compression ratio
and compression speed. First stage: frame delta, second: our span-
based adaptive intra-image prediction, third: RVL’s run-length and
variable-length coding, fourth: an additional Zstandard [74] pass.

at lowering it and enhancing the compression speed, Zhang et al. [438] proposed
multiple modifications exploiting depth map and texture video correlation. Further
speedups can be gained by limiting costly intra-image compression steps to regions,
where they are effective according to a decision model based on tensor feature ex-
traction, as proposed by Hamout and Elyousfi [140].

Recently, Kumar and Ramakrishnan [143] proposed another technique in which
even noisy depth images and videos are encoded through planar segmentation.
Each frame gets segmented into a number of planes by using the Graph Cut al-
gorithm over the image defined as a Markov Random Field. While the proposed
method achieves a high Rate-Distortion performance, it is rather time-consuming
and only effectively applicable to scenes that can be approximated by planes.

Most work of depth image compression is about lossy compression. Lossless so-
lutions are quite rare. Mehrotra et al.[243] combined simple intra-image prediction
(delta between consecutive pixels in a 1D array), run-length encoding, and variable
bit-length coding (Golomb-Rice) for lossless encoding of depth images. Wilson [412]
took a similar but even simpler approach and achieves with the proposed RVL algo-
rithm higher speeds at comparable compression ratios. In order to further increase
RVL’s compression ratio, Jun and Bailenson [169] adapted the RVL algorithm by ap-
plying it to the deltas between consecutive frames, thus, considering the temporal
domain, and adding tolerances. With the latter, small changes between consecutive
pixel values get ignored, and invalid pixels filled-in with the previous frame’s data.
Naturally, this makes the algorithms lossy. Yu et al. [432] instead used simple run-
length coding for depth compression, which they found for their specific application
to be optimal. Moreover, they employ only 8 bits per pixel while retaining sufficient
accuracy, as they limit themselves to a narrow depth range.

3.2.3 Proposed Approach

We created a pipeline of four steps (see Fig. 3.13) to compress depth images losslessly
from real sensors with a high compression ratio. First, if we have a sequence of im-
ages, we optionally calculate deltas between the frames. Afterward, we define spans
and calculate individual predictors for each of them, before it will be compressed by
RVL’s [412] alternating run-length and variable-length coding. To decrease the lower
bound of RVL, we decided to use Zstandard as a final, optional step. The focus lies
on captured 16-bit depth values, which can be handled as a single-channel grayscale
image. The corresponding color images are not considered in this work.

RVL consists of alternating run-length coding of zero-values, which represents
invalid pixels, and variable-length coding for the rest. Like many compression al-
gorithms, RVL compresses not the raw pixel values but the residuals, which remain

3.2. (Improved) Lossless Depth Image Compression Methods 57

FIGURE 3.14: The pixel grid is segmented in spans of four valid pixels
(red boxes). Invalid pixels (grey) are skipped.

after calculating the delta to a prediction of the current value. This leads to a decor-
relation of the data, which in turn improves the effectiveness of subsequent com-
pression steps. Smaller residuals have a low entropy, and fewer bits are needed to
encode them. In the case of RVL, the prediction of the current pixel value is simply
the last valid pixel, which is, in most cases, the pixel to the left.

Adaptive Span-Based Prediction

One crucial aspect was to improve the simple inter-image delta calculation of RVL
to generate smaller residuals. As the employed decorrelation heuristic is not ideal,
we propose to replace it with an adaptive selector of different predictor functions.
In lossless compression, the transformations and functions applied in the compres-
sion stage must be reversible in the corresponding decompression stage; hence, the
used prediction method must be encoded in the form of bitflags, too, because all
the transformations must be reversible. Pixel-wise switching of the predictors leads
to too many bitflags. Therefore the image is dynamically partitioned into spans of
valid pixels in our approach. A span can be described as a one-dimensional block
of a fixed number of consecutive pixel values. Invalid zero-pixels are skipped. Fig-
ure 3.14 shows an example partitioning of pixels into spans of length four.

Our adaptive prediction then works as follows: For each valid pixel p in the span
S, all predictor functions Predi(p) are evaluated and the one, which in total leads to
the smallest absolute residuals, gets chosen for all pixels in the span to calculate the
final residuals rp:

rp = Predk(p) (3.1)
where

k = argmin
i∈[0,3]

 ∑
p∈valid(S)

|Predi(p)|

 (3.2)

We decided to use four different predictor functions, which then can be repre-
sented by exactly two bits per span. In principle, the actual predictors, as well as
their quantity, are easily exchangeable, focusing either on computationally simpler
and, therefore, faster ones or more complex and effective ones. To predict a pixel p,
we opted to use RVL’s standard predictor, given in Equation 3.3, as the default case,
as it is similar to the common “left pixel” approach, but handles the occurrences
of intermixed zero-pixels very well by skipping them. In Fig. 3.15, this process is
illustrated.

58 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

FIGURE 3.15: The prediction for pixel p depends on the pixel itself
(X) and its neighbors last (A), above (B), and above left (C). Contrary
to B and C, A is the last valid pixel and, therefore, not fixed, as the
right image depicts.

Additionally, we use predictors based on the delta to the upper pixel (Eq. 3.4), the
average of the left and upper pixel (Eq. 3.5), and lastly, the result of a combination of
the left, upper and upper left pixels (Eq. 3.6).

Pred0(p) = pX − pA (3.3)

Pred1(p) = pX − pB (3.4)

Pred2(p) = pX −
pA + pB

2
(3.5)

Pred3(p) = pX − (pA + pB − pC) (3.6)

Equation 3.6 is the default case in the Paeth [303, pp. 159–162] as well as the MED
predictors [401]. We use only this part of them as our fourth predictor because it
is computationally less expensive than using the complete Paeth or MED predictor.
Tests we conducted showed that using the full MED predictor is much more time-
consuming, but does not improve the compression ratio significantly. In this way,
the number of additional bits needed for the predictor representation can be signifi-
cantly reduced, while retaining the ability to adapt to the local image characteristics
dynamically. The exact number of predictor bits for the image can be computed as

x =

⌈
(n− z)

s

⌉
· dlog2 (f)e (3.7)

where n denotes the number of pixels in the image, z the number of zero-pixels, s
the span size and f the number of predictor functions.

Inter-Frame Delta Computation

Another aspect we concentrated on is adding a frame delta component as a first step
in the algorithm’s pipeline. This is a commonly used technique in video compres-
sion, where differentials between subsequent images are encoded instead of individ-
ual images one by one. Figure 3.16 illustrates the process. The effectiveness depends
on the application scenario, the content, and how dynamic it is. At least in cases
where the change between the images is small, or only some dynamic elements oc-
cur, this technique should be beneficial for the compression ratio and speed. In the
original RVL paper [412], it is mentioned that such a frame delta calculation was
experimented with but the compression was even worse. According to the paper,
the test scene was a dynamic scene in which the camera constantly moved, which

3.2. (Improved) Lossless Depth Image Compression Methods 59

FIGURE 3.16: Frame delta computation: Sequence of images Ii and
the corresponding differential images Di between every two consec-
utive ones.

would be the worst-case scenario for this kind of technique. It is not clear if other
scenarios were tested. For our pipeline, we designed the frame delta computation
as an optional first stage so that it can be skipped in scenarios where it is not ef-
fective. Another aspect to consider is the inherent noise of the sensor. Some pixels
switch between being valid and invalid, and in addition, the depth readings contin-
uously vary, even for physically static objects. This results in a decreased effective-
ness of frame delta computation but can be compensated for by temporal filtering as
a pre-processing step (at least to some degree). Depending on how intelligent and
vigorous the employed filter is, other artifacts may be introduced, which could be
tolerated depending on the application.

Further bit reduction

The coding of the residuals in RVL is done by variable bit length, where each valid
pixel is at least one nibble (four bits) long. For each nibble, the first bit functions
as a continuation bit, and the other three bits are used to represent (a part of) the
actual value of the residual. Therefore, in a single nibble, a residual r ∈ [0, 7] can be
represented.

In cases where image regions are very homogeneous, and the computed resid-
uals are frequently below this maximum value of seven, the algorithm can lead to
comparatively poor compression results. We propose to couple RVL with a second
encoder without such a limitation to mitigate this drawback. In our approach, the
compressed output of RVL is, therefore, further processed by Zstandard [74]. As a
combination of a dynamic dictionary-based component with a sliding search win-
dow and an ANS-based entropy component, Zstandard can potentially compress
symbols smaller than four bits. According to empirical tests, Zstandard performed
best as a backend.

Parallel Execution

To mitigate the inevitably increasing computation time by the more complex pre-
diction, we implemented multi-threaded versions. The principle is the same for all
variants: first, for each thread, all necessary data and an output buffer are initialized,

60 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

Variables r1 r2 r3 r4+ + + +

Image
Compressed data

t1

t2

t3

t4

FIGURE 3.17: Multi-threaded compression of the depth images. Each
image is partitioned into equally-sized blocks which then get pro-
cessed simultaneously by ti threads. The resulting compressed parts
ri eventually get concatenated together with a header-block.

then the image, represented as a one-dimensional buffer, is segmented into blocks
by the number of threads. Lastly, the compressed parts are stitched together into
one continuous block, see Fig. 3.17. Especially our improved prediction step in the
compression stage should benefit from parallel execution as it is computationally the
most expensive part and there are only locally very confined dependencies between
the pixel computations.

3.2.4 Results

All of our tests were conducted on an Intel Core i7-7800X, 16 GB of system memory,
and under Windows 10 x64 Enterprise using the Visual Studio 2017 compiler. Each
test was performed multiple times, and the average was taken.

We recorded sequences of depth images of six different test scenes with the Azure
Kinect RGB-D camera in both of the two available modes, narrow and wide field of
view (NFOV, WFOV). In NFOV, the depth was recorded in 640×576 at 30 Hz and
in WFOV at 1024×1024 at 15 Hz. Each depth value is represented as a 16-bit in-
teger (short). Four of those scenes were static, and two were dynamic. In the first
dynamic scene, the camera was fixed, and a person moved in front of the camera.
In the second scene, the camera was handheld and moved around. For the static
scenes, 30 frames were recorded, while for the dynamic ones, 120 frames were used.
Additionally, we tested three single depth images from the Middlebury dataset [320]
with very homogeneous depth values, and a dynamic scene of 600 frames from
TUM [360], in which the camera (Kinect 1) was handheld, slightly shaken, and peo-
ple moved, while seated.

In each test case, we omitted the first recorded frame from the evaluation as
we did a lot of initialization work for the algorithms here (e.g., reserving memory)
which holds for the rest of the test. The measurements of all the other subsequent
frames in a test were then averaged.

The Azure Kinect camera has the unique attribute that the output depth-image
is rectangular, but depending on the mode, the content is only hexagonal or spheri-
cal. The corners are zero-pixels. While this is the standard output of the camera and
could be representative of other cases, where significant static areas fail to get cap-
tured by an RGB-D sensor, it is a rather uncommon situation. In order to not only
test the standard configuration but also more broadly comparable scenarios, we also
evaluated depth maps cropped by 25 %. As a result, most of the static invalid regions
were dropped.

Figure 3.18 shows a selection of our test scenes. For an overview of all scenes
and corresponding metrics, we refer to the Figures 3.24 and 3.25 as well as Table 3.3

3.2. (Improved) Lossless Depth Image Compression Methods 61

FIGURE 3.18: Example depth images of four different scenes.
We recorded the first three with the Azure Kinect in different
modes (NFOV, WFOV, NFOV with cropping). The last scene from
TUM [360].

at the end of this section.

We compare our novel compression algorithm against the original RVL algo-
rithm [412], PNG [303] as a classical lossless image compression algorithm that is
widely used, and LZ4 as a fast representative for the LZ77 family of dictionary-based
encoders. Additionally, as an example of a modern and efficient entropy coder, we
decided to use an ANS implementation by F. Giesen [128]. In empiric tests, this
implementation performed best. Lastly, Zstandard as a dictionary coder is also com-
pared.
For our algorithm Pred, we chose a span size of 16 pixels, and for the PredZ variant
eight, as well as a value of two for the Zstandard, pass. These configurations yielded
the highest compression ratios, while still achieving interactive speeds. For algo-
rithms featuring a selectable acceleration (or compression) factor, we tested them in
multiple configurations and chose the one, which minimized the difference of the
compression ratio in comparison to our algorithm. In the case of PNG, a quality
level of five was chosen, for LZ4, an acceleration factor of one, and for Zstandard a
value of six.

The first test we conducted is a general comparison of all the algorithms in terms

62 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

●

●
●

●

●

●

●

RVL

ANS Pred*

LZ4

Zstd

PredZ*

PNG

0

100

200

300

400

500

1 2 3 4 5 6 7 8

Compression Ratio

C
om

pr
es

si
on

 +
 D

ec
om

pr
es

si
on

 S
pe

ed
 (

M
B

/s
)

FIGURE 3.19: Average combined compression and decompression
speed over compression ratio for all algorithms. Algorithms with as-
terisk mark our algorithms. Our PredZ algorithm achieves the high-
est absolute compression ratio, while still delivering real-time perfor-
mance.

of their respective compression ratio cr and combined compression and decompres-
sion speed sp. Equations 3.8 and 3.9 describe the calculation of the metrics.

sp =
2× ob
ct + dt

(3.8)

cr =
ob
cb

(3.9)

ob stands for the original image size in megabytes, ct and dt for the compression and
decompression times in seconds, and cb for the compressed size in megabytes.

Figure 3.19 presents the results of this initial comparison, where for each algo-
rithm, the thread configuration was selected, which yielded the best compression
rate; therefore, the number of threads was not equal for all algorithms. For this test,
the mean over all scenes and modes were taken. The asterisks identify our algorithm
variants. It can be seen that, on average, ANS is not competitive in our test, neither
in speed nor compression ratio. LZ4 is the fastest but compresses rather poorly.
PNG has a high compression ratio of 5.9:1 but at the cost of a very slow combined
speed. RVL achieves good performance and a compression ratio of nearly 4.5:1. Our
span-based adaptive prediction Pred can boost the compression ratio on average by
6.5 %, but the performance decreases considerably. A possible explanation for this
drop in performance, despite the rather low complexity predictors, might be the lack
of optimization compared to RVL. Interestingly, the general-purpose Zstandard al-
gorithm can achieve an even higher compression ratio of roughly 5.8:1. However,
it is also slower. Lastly, with our most sophisticated variant PredZ, we achieve the
best compression ratio of more than 7.5:1, which is significantly higher than the ones

3.2. (Improved) Lossless Depth Image Compression Methods 63

TABLE 3.2: Distribution of adaptively selected predictors, averaged
over all scenes and modes.

Predictor ID 0 1 2 3
Usage % 24.4 26.6 21.2 27.7

0

200

400

600

Zstd RVL Pred* PredZ*

Algorithm

C
om

bi
ne

d
S

pe
ed

 (
M

B
/s

)

Threads

1

2

4

8

FIGURE 3.20: The image illustrates the impact of parallelization on
the combined compression and decompression speed for different
algorithms. All algorithms including RVL and our RVL-based ones
benefit from parallel execution.

of RVL or Zstandard. At the same time, the combined compression and decompres-
sion speed of 121.8 MB/s is more than sufficient to maintain interactive frame rates.
For more comprehensive data of this test, we refer to Figure 3.26 at the end of this
section.

To further analyze the effectiveness of our span-based adaptive prediction com-
ponent, we counted the frequency of how often each predictor is chosen as the best
one per image. Table 3.2 shows the percentages averaged over all scenes and frames.

Each predictor gets equally used, which indicates that the adaptive prediction
works as intended, and all of the chosen predictors complement each other to effec-
tively reduce the average residual in contrast to a static prediction like it is used, for
example, in the original RVL algorithm.

For all subsequent tests, we only consider the most promising algorithms and
omit the ones without competitive results, namely ANS, LZ4, and PNG.

In order to review our multi-threading implementation and analyze the behavior
of the algorithms with increasing parallel execution, we performed all tests as well
with two, four, and eight threads. Measuring initial thread creation overhead is
prevented by early thread allocation. The multi-threading performance is shown in
Fig. 3.20, in general, the combined speed rises.

As expected, the performance gains shrink with more threads as a result of di-
minishing returns. However, we were able to achieve considerable speedups for

64 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

RVL, although it has low arithmetic complexity and, thus, becomes quickly memory-
bound. With four threads, the performance increased by a factor of 1.42. Our more
complex RVL-based algorithm benefits highly from the parallel execution, as in-
creasing the threads from one to four leads to a speedup of 2.16. While all algorithms
gain performance by multi-threading, at least for up to four threads, the speedup is
generally much lower than the theoretical optimum. This may be partly because
not all parts of the algorithms are multi-threaded, e.g., merging the results, and be-
cause some sections of the algorithms are rather bandwidth- than compute-bound.
An evaluation of the timings of the individual parts of our Pred algorithm indicates
that the more computationally complex prediction stage benefits significantly more
from the parallelization than the run- and variable-length coding stage. Further-
more, the decompression component does not profit as much as the compression
component. The compression ratio did slightly, but not considerably, decrease with
more threads, as was expected due to the separated image blocks. In the case of
Zstandard, the compression ratio decreased the most with 2.68 %. RVL, on the other
hand, had a decrease of less than 0.1 %. The compression ratio of our adaptive pre-
diction dropped by 0.25 %.

To analyze the effectiveness of frame delta coding in RVL, each test is executed
with and without our implementation of the addition as well as with and without a
preceding temporal filter (see the last paragraph of Section 3.2.3), which makes four
variants. The filter we implemented and used is rather simple and only meant as
an example. Nonetheless, we aimed at preserving the legit information (in contrast
to the sensor noise) and avoiding motion artifacts. It works as follows: Pixels of an
incoming image will get ignored, whose delta to the corresponding pixels of each of
the last two images is below 2 %.

The combination of frame delta coding and temporal filtering increases the com-
pression ratio for all algorithms the most, as is shown in Figure 3.21. While the
combination of frame delta coding and temporal filtering, in general, leads to sub-
stantial improvements, our algorithm PredZ still achieves the highest compression
ratio of up to 13.8:1. It should be noted though, that with temporal filtering, the
compression pipeline is not strictly lossless anymore.

With only the frame delta extension, the compression ratio still increases for Pred
and RVL, which contradicts the statement of [412]. It should be considered that for
our tests we took the average of static and also highly dynamic scenes. Nonetheless,
RVL’s compression rate increased by 18.54 % and with our improved prediction by
11.1 %. Zstandard does not benefit from frame delta, but only from the temporal
filter instead, although the confidence interval is very wide. Surprisingly, the data
indicates that our PredZ performs best with the raw data compared to the others.

A detailed breakdown w.r.t. different classes of scenes and their influence on the
compression ratio, while computing frame delta, can be seen in Fig. 3.22.

The results indicate that the type of the scene, static or dynamic, or more specifi-
cally, the amount and the intensity of movement of the content and the camera itself,
do have a significant impact on the compression rate. Without temporal filtering, the
average compression rate of all algorithms is about equal. According to Fig. 3.21, not
all algorithms benefit directly from frame deltas. If, however, such a filter is used,
the influence of the scene type raises strongly, specifically rather static scenes can
be compressed extremely well. Interestingly, sometimes the scene which involves
camera movement is better compressible using both, the temporal filter and frame
delta, instead of the scene, where the camera is static and only parts of the captured
environment move.

3.2. (Improved) Lossless Depth Image Compression Methods 65

0

10

20

30

Pred* PredZ* RVL Zstd

Algorithm

C
om

pr
es

si
on

 R
at

io Configuration

None

Frame Delta

Temporal Filter

Both

FIGURE 3.21: Comparison of the impact of our inter-frame delta com-
putation on the compression ratio, both with and without a preced-
ing temporal filter. The compression ratio increases hugely with the
combination of temporal filter and frame delta, but using frame delta
computation without the preceding filter also, most often, accom-
plishes notable gains.

No Frame Delta Frame Delta

No Temporal
Filter

Temporal
Filter

No Temporal
Filter

Temporal
Filter

0

10

20

30

Configutaion

C
om

pr
es

si
on

 R
at

io

Frame Type

Static

Dynamic Content

Dynamic Camera

FIGURE 3.22: The image illustrates the impact of the scene type
(static, dynamic content, dynamic camera) on the performance of the
frame delta computation with and without filtering. Static scenes
benefit the most from the combination of temporal filtering and frame
delta computation.

66 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

0

500

1000

1500

Zstd RVL Pred* PredZ*

Algorithm

S
pe

ed
 (

M
B

/s
)

Compression

Decompression

FIGURE 3.23: The image displays the individual compression- and
decompression speed for different algorithms. The decompression is
significantly faster for everyone.

TABLE 3.3: The table contains the number of pixels and the percent-
age of invalid zero-pixels for each test scene and mode.

Narrow Mode Wide Mode Narrow Cropped Mode Wide Cropped Mode
Scene # Pixels % Zeros Scene # Pixels % Zeros Scene # Pixels % Zeros Scene # Pixels % Zeros
0N 368,640 33.9 0W 1,048,576 41.6 0NC 207,360 25.6 0WC 589,824 25.7
1N 368,640 22.5 1W 1,048,576 59.0 1NC 207,360 8.6 1WC 589,824 44.5
2N 368,640 26.4 2W 1,048,576 50.0 2NC 207,360 12.6 2WC 589,824 25.7
3N 368,640 42.0 3W 1,048,576 66.6 3NC 207,360 28.3 3WC 589,824 58.9
4N 368,640 28.4 4W 1,048,576 62.5 4NC 207,360 15.6 4WC 589,824 46.7
5N 368,640 30.0 5W 1,048,576 38.6 5NC 207,360 18.1 5WC 589,824 21.7
6 1,542,900 1.0
7 1,542,900 0.4
8 1,542,900 1.0
9 307,200 32.0

How the combined speed of the tested algorithms is distributed over compres-
sion and decompression can be seen in Fig. 3.23. The decompression speed generally
outperforms the compression speed, especially in the case of Zstandard.

Additional Data

Here, we want to show additional data and test results. First, Fig. 3.24 and Fig. 3.25
depict an overview of all the scenes and modes that the test data set consisted of.
Then, Table 3.3 lists statistics regarding the number and ratio of invalid pixels for
each test scene. Lastly, Fig. 3.26 shows a comparison of the compression algorithms
regarding speed and compression ratio in which all data samples (all scenes, modes,
frames) are included.

Evaluation of Lossy Video Compression

In conjunction with the evaluation of our proposed algorithm and other lossless
compression algorithms, we did also our own tests regarding the performance of
typical lossy video compression algorithms. We did this in order to get a more com-
prehensive overview of the field and all possible options, get a better understanding

3.2. (Improved) Lossless Depth Image Compression Methods 67

Color Depth N Depth W Depth NC Depth WC

FIGURE 3.24: A table of the test scenes 0 to 5 (which are the self-
recorded ones; one scene per row), including the color image, the
narrow and wide field of view depth images (Depth N and Depth
W), as well as the corresponding cropped versions (Depth NC and
Depth WC).

68 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

Color Depth

FIGURE 3.25: A table showing the rest of the test scenes (scenes 6 to
9; one per row), consisting of the color and depth images.

●

●●●
●●●●●
●●●●●●●●●
●
●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●

●●●●●●●●●●●
●

●●●●●●●●●●●●●●●
●

●

●
●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●
●●●●●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●

●

●●●●
●●●●

●

●●●
●●●●●●●
●●●●●●●●●●●
●●●●●
●
●
●

●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●
●●

●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●●●●●●
●
●●●●
●
●●●●
●
●●●●●●●●●●●●

●●

●●●●●●●●
●●●●●●●●●●
●
●●●●●●●●●

●

●●●

●
●●●●●●●
●
●●●
●●●
●●
●●●●●●

●

●
●

●
●●●●●●●●●●●
●
●
●
●●●●●●
●
●
●●●
●●●●

●

●
●●●●●
●●●
●●●●●
●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●
●●●
●
●
●
●
●
●
●
●●
●
●
●
●●●
●
●
●●●●●●

●
●●

●●●
●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●

●

●●●

●
●●●●●●●●●●●●
●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●

●

●●●●●
●
●●●●●●

●

●●●●●●
●

●●
●

●●●●
●●●●●●●●●●●●●

●●●
●

●●●
●
●●●

●

●●●
●
●●●

●
●●●
●●●●

●

●
●
●●●●●

●●●

●●●
●
●●

●

●●●

●
●●
●

●
●
●●

●
●●

●
●●●

●●
●
●●●

●

●

●●●●●
●●●●

●●●●●●●●
●●
●
●

●

●●
●
●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●
●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●

●●
●

●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●

●

●
●

●
●
●
●

●
●
●●●

●●●●●●●●

●

●
●●●●●●●
●
●●●

●
●
●
●
●
●●●●●
●●●●●●

●●●●
●
●

●●
●

●
●●●●●●

●●●●●●
●●●●●
●●

●●●
●●●●●●●●

●

●●●●●●●●
●●●

●
●
●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●
●
●●●●●●●●●
●●●●
●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●
●●●

●

●●●●●●●●
●●●
●●●●●●●●●●●●●●

●●
●●●●

●
●●●●●●●●

●
●●
●●●●
●
●●●●●●●●●●●●●

●●●●●
●

●
●
●
●
●●
●●●●●●●

●●●●
●

●●●●
●●●●
●
●●●●●●●●

●●●●●●●
●●

●●

●
●●●●●

●

●●●●
●

●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●

●●●●●●●
●●●●●●
●●●●●●●●●●●●

●●●
●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●●●●●●●●

●

●
●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●

●

●

●
●

●●
●

●

●●●
●
●●●●●●

●

●●

●

●●●

●

●●●●●●●
●
●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●
●

●●●●

●

●●
●●●●●

●

●●●●●●
●

●●●●
●
●

●●●

●

●●●
●

●
●
●
●

●

●●●●●●●●●
●●●●●●
●●●●

●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●●●●●●●●●●●●

●
●●●●

●

●●
●●
●●●
●●●●●●●
●●●●●
●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●
●●●●●●●

●●●

●

●●
●

●●
●●●●●●●●●●●●●●●
●●●●●●●●

●
●●
●
●●
●
●●

●●●

●

●

●

●

●

●●●●●●●
●●

●

●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●

●
●

●
●

●●●●●●
●●●●●●●●●●●●●●

●●●●●
●●●●●●●
●
●●●
●●●
●●
●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●

●●●●●●

●

●●●●●●●
●●●●●

●
●
●

●
●●●●●
●●●●●●●●●●●●●

●●●●
●
●
●●
●●

●●
●
●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●

●●●●●
●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●

●
●●●●●●●●●●●●●●●

●●●●●
●●
●●●●●●●●●●●

●
●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●
●●
●
● ●●●●●●

●●●●●●●
●●●●●●●●

●
●●●●●●●●●●●●●
●●●●●●
●●●●●●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●

●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●
●

●

●●●●●●●●
●
●●●●●●

●●●●●●●

●

●●●●●●●●
●●●

●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●

●

●
●●

●●
●●●●●●
●
●

●
●●●●●●●

●●●●●●●

●

●

●
●●

●

●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●
●●●●●●●●●

●●●

●

●

●

●

●

●●●
●●●●●●●●●●●●

●

●

●●

●●●●●●●●●●●●●●
●●

●●

●●●●
●
●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●

●●●●●●●●●
●●

●●
●
●

●●●

●●●●●●●●
●
●●●●●●●●●
●●●
●●

●●●

●●●

●

●●●
●

●

●

●●●●●●●●●●
●

●

●●●

●●●●

●

●

●

●●●●
●

●●●●

●

●●●●●●●●●●●●
●
●

●
●
●●●●●●●●●

●

●●●●●●●●●●●●

●

●

●●●●●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●
●●

●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●

●●●●
●
●●●●●●●

●●●
●
●●●●

●
●●●●●
●●●●●●●●●●●●●●●●●
●●●
●●
●●●●●●●●●●●

●●●●●
●●

●
●●●●●●●●●●●●●●●●
●●●●

●

●

●●
●●●●●●●●●●●●●
●●

●

●●●
●

●●

●●●●●●●●●●●●●●●●●●●
●●●●
●●●●
●
●●
●●●
●●●

●●●

●

●

●●●
●
●●●●●●●●●●

●
●●●●●●

●

●●
●●
● ●●●
●●●●

●●●●●●●●

●

●

●●
●
●●
●●●●●

●

●

●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●
●
●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●

●●●●●●●●●●

●
●●●●●
●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●
●●●●●●●
●●●●●●●●●●●●

●

●●
●●
●●●●●
●●●●●●●●●●●●
●●●●
●●●●

●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●
●

●

●●●●●
●●
●●●●●●●●●●●●●●●●●●
●●●●

●

●●●●●●●●●
●
●●●●●●●●●●●●●
●
●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●● ●

●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●
●
●●
●●●●●●●●●●●●●●

●

●●●●
●●●●●●●●
●●●●●●●●●●●●

●●●●
●●●●●●
●●●●●●●●

●

●●●●
●●

●

●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●
●●●
●
●●●●●●●●●●●

●

●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●●
●●●
●
●●
●●●●●●●●●●●●●
●●●●●●●●●

●●
●●●●●●●●●●
●
●
●●
●●●●●●●●●●●

●

●●●●●●●●●
●●●●●●●●●●●

●
●
●
●●●●●

●●●
●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●

●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●
●●●

●

●
●
●●●
●●●●●●●●●

●●●●
●●●●●
●●
●
●
●●●●●●●●●●●

●

●●
●●●
●
●
●
●●●●
●●●
●●
●●●●
●
●●●
●
●●●●●
●●●●●●●
●
●
●●●●●
●●
●●
●●●
●
●●●●●●●●
●●
●●●●●●

●●●●●●●●
●
●● ●

●●●●●●●●●●●
●●●●●●●●●●●

●
●●●●●

●
●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●
●

●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●
●●

●

●●●●●●
●●●

●

●●●●●
●

●●●
●●●
●●●●●
●●●●●
●
●●●
●●●
●●
●●●

●●●●●●●●●●●
●
●●●

●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●
●●●
●●●●

●

●●●●●
●

●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●●●●

●
●●●●●●●●●●●●●●

●●●●●

●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●

●

●

●

●●●●
●
●
●●
●
●●●●

●●
●●●

●

●●●●

●

●●●●

●
●
●●●●●
●
●
●

●

●●●●●●●●
●●●
●
●●

●

●●●●
●
●●
●
●●●●●●
●●
●
●

●●
●●
●●●●●●●●

●

●●●●
●
●●●
●

●

●●

●

●●●●
●
●●●●

●●●

●

●

●

●
●

●
●
●
●

●

●●●●●●●●
●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●

●

●

●●
●

●
●●

●

●●●●
●

●●●●
●
●
●●●●

●
●
●●●●●

●
●●●●●●●●

●●●●●●
●●●●●●●●
●
●

●
●

●
●
●●●●

●
●●●

●
●●
●

●
●
●

●
●
●●
●●

●●●●●●
●●●●●

●
●●●●●
●●●●●●●●●●●

●
●●●●
●●
●●●●

●

●
●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●●●●●●●●●●●

●●●●

●●

●●
●●●●●●
●●●●●●
●●

●●●
●●●
●●●●●●●
●●

●●●
●●●●●●

●●●

●

●●●

●

●●●●
●●●●
●
●●●●●●●●●

●●●

●●●●●
●●
●●●●●●

●
●
●●

●
●●
●●
●●
●
●●●

●
●
●●

●

●●●●●●●●
●●●

●
●

●

●

●

●●●●
●●●●●●
●●●

●

●
●●●●

●
●●●
●●●●
●
●●●●●●●●
●●

●

●●●
●●
●●●
●●●
●
●
●●●
●●●●●
●
●●●●

●
●

●

●
●

●

●●●
●●●●●●●●

●

●●●
●●

●

●●●
●●●
●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●
●●●●●●
●●
●
●●
●●

●●
●●●
●●●

●
●●
●
●●●●●●●

●

●

●
●●●●
●●●●

●

●
●

●

●
●
●●●●

●

●●●●●●

●

●●●●●●
●●
●

●

●●●●●●
●
●●●●
●●●●●●

●
●●●
●

●●●

●

●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●
●
●●●●●●
●●●●
●●
●
●●●

●

●
●●

●

●● ●
●

●●
●
●●●●●●●
●

●
●●●
●●●●

●●●
●●●●●
●●

●

●●●

●

●●●
●●●
●
●●●

●

●●
●●
●

●●

●●
●●

●

●●●
●
●●●
●●

●●●●●●●●

●

●●
●
●●●●
●
●
●●●●

●
●
●●●●●●
●
●
●
●
●●

●
●●●
●
●●●

●
●
●●●●●●
●
●●

●
●

●●●●●●
●
●

●●●

●

●
●
●●●●
●

●●
●●

●●●
●●

●●
●
●
●
●●●●●●●

●
●●
●
●
●●●●●●
●
●

●●

●
●

●
●

●
●
●

●

●●
●
●

●●

●

●●●
●●●●●

●

●●●●●●
●●

●

●●●●●●
●

●●●
●●

●

●●

●

●●●●●●
●
●●

●

●●●●●●

●

●

●

●
●●●●
●

●

●●
●●●

●

●
●
●●●●●●●●●●

●●
●●

●

●●●●●●●●

●
●●●

●
●●●●●●●

●
●●●●●

●●

●

●●●●●●●
●●
●

●
●

●

●●
●
●
●●●

●●●●
●●

●

●●●
●

●

●
●
●

●

●

●
●

●
●

●●●●
●
●●
●

●
●●
●●●

●

●●●

●

●●●●●●
●●●●●●●●
●●●●
●●

●
●●
●

●●●
●
●●

●

●●●

●

●●●●●

●

●●
●

●●

●

●●●
●●

●

●
●

●

●●

●

●
●

●

●

●
●●●●●●●●●
●

●●●●●

●

●
●
●
●

●

●
●●●

●

●●●●
●●●

●●
●

●

●

●

●●●

●

●●●

●

●

●

●
●

●

●●

●

●●●

●

●●●

●

●●
●

●

●●

●

●●
●

●●

●

●●

●

●●●●●●●●
●●
●●●●

●
●●●●●●

●
●
●

●

●●●

●

●●●

●

●●
●●●●●
●●

●

●●
●●
●●
●●●

●
●●●

●

●●●
●
●●●

●
●
●
●

●

●●●

●

●●●

●

●●●
●

●
●
●

●●●

●

●●●
●●●

●

●
●

●

●●
●

●

●
●
●

●

●
●●
●●

●

●

●●
●
●●●
●
●●●

●

●

●
●

●●●●●●

●

●
●
●●●
●

●●●
●●●●●●

●

●●

●
●
●

●

●●
●
●●●●
●
●●●●
●
●●●

●

●●
●
●●
●
●●

●●
●
●●
●
●

●●●
●
●●●

●

●●●●●
●●
●
●●

●

●●
●●●●●

●●
●
●●●

●

●●●

●

●●●

●

●
●
●●●
●
●
●
●●
●●●

●

●●
●●●●●

●

●●●

●

●●
●
●●●

●
●●●

●
●●●●●●

●
●

●
●

●

●●●
●●●●

●

●●●

●

●
●●●●●

●

●●●●

●

●●

●

●●●●●
●
●●

●
●

●

●●●

●

●●
●

●

●●●●
●
●
●
●●
●

●

●●●

●●
●●●●
●

●

●
●●
●●●●●●
●●●

●

●●●●

●

●●
●
●

●
●●●●●●●
●
●●●●●●●●●
●
●

●
●

●●●●●●●●

●
●●●●●●
●

●●

●●●●
●●●●●●●●●●●●●

●

●
●

●
●

●

●●●●

●

●
●
●●

●

●●●●

●

●
●
●●

●

●
●
●●●●
●

●

●

●●●●●●●

●
●
●

●●●
●●
●●●●●●●●●●●
●●

●
●●●
●

●●●

●

●

●●
●
●●●
●
●●
●●
●●●

●

●●●●●

●
●
●

●
●●

●
●●

●
●
●●

●●

●

●
●

●

●●
●

●●
●

●

●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●●●●

●
●
●●●●

●

●●●
●
●

●
●●
●●●●●
●●●

●
●

●●

●

●●●●●
●
●
●
●

●●●
●

●

●●
●
●
●●

●

●

●

●●

●

●●

●
●
●

●

●

●
●
●●
●
●●●●●

●●
●●●
●●●
●
●●●

●

●●

●

●●●●●
●●●
●
●

●●●●
●●
●●●

●

●●●
●●
●

●●
●

●

●

●

●
●
●
●

●●
●

●

●

●
●

●

●●●
●

●

●

●●●●●●

●

●●●●●●●●●●
●
●●●●
●
●
●
●●●●●●●●●
●
●

●

●●●●●●●●●●●●●●●●●●●●●●

●●

●
●

●

●
●

●●

●●●●●●●●●●
●

●●●
●
●●●●●●●●
●
●●●
●

●

●

●●

●

●●●●●●

●

●

●

●●●●●●●
●●●●●●

●

●
●

●
●

●●●●

●

●

●

●
●●●
●
●
●
●
●

●●●

●

●

●

●●●●

●

●

●●●
●●
●
●
●●
●

●
●●
●
●●
●●●●●●

●

●●●●●
●

●

●

●●

●
●
●●●●●

●
●●●●●●
●
●●●

●●●●

●

●
●
●●

●
●●●
●
●
●
●●
●

●●●

●

●●

●
●
●

●
●●●●●●●●●
●

●
●

●

●

●●●
●●
●
●●●●
●●

●

●●
●
●●

●

●●●●●●
●

●●

●

●●●●●
●●●●●●●●

●
●
●

●
●
●

●

●●●●●●
●

●

●●●●●●●
●
●
●●
●●●●●
●
●●●
●●
●●●
●●●
●

●
●

●

●
●
●●
●
●●●

●●●●●●
●

●

●●●
●●

●●
●
●●●●●
●

●
●●
●●●●●●●

●

●●●
●●●
●●●●●●●
●
●
●

●

●
●

●

●

●
●
●
●●
●●●●●●

●●●●●●
●

●

●●●
●●●●●●●●●

●

●

●

●

●

●

●

●

●●●
●
●●
●

●

●

●●

●
●●
●●

●

●
●●
●
●●●●
●
●

●

●●
●●
●
●
●●●●●●●●●

●●●●●

●

●●●
●
●●●●

●●●●
●●●
●●●

●

●●
●●●
●
●
●●

●
●●●●
●

● ●●●●
●

●

●●●●●●●
●

●

●
●
●

●
●
●
●
●●
●●●●●

●●
●
●
●
●●●●●●●

●
●●●●●●

●

●

●●

●

●●●●●●●●

●
●

●●
●

●●
●●●●●●●

●

●●●●

●

●

●●
●●●●

●●

●

●●●
●
●
●●

●

●●
●●●●●●
●

●

●

●

●
●●●●

●

●
●

●●●●●
●●●

●
●

●

●●●●
●●●●●●
●
●●

●

●●●●●●●●

●●
●
●●●
●●●●

●●●●●●●

●

●

●

●
●
●
●●●●
●
●

●

●

●

●●

●

●

●

●●●●
●
●
●
●
●●

●
●

●

●●●
●

●●●
●
●
●●

●

●
●
●
●

●

●●●●

●

●
●●

●

●
●
●●●●

●
●
●●●
●
●●

●

●
●●

●

●●●●●
●

●

●

●

●●
●●●

●
●

●
●

●●

●

●●
●

●●●

●

●
●●
●

●●

●

●●●
●

●●●●●
●

●

●

●●

●

●●●

●

●
●

●

●

●●●

●

●●●

●

●●●●

●

●●●●

●

●
●●●

●●
●
●●●●●

●

●●●

●

●

●
●●●
●
●●●●
●
●●
●●●

●

●●●

●

●●●●
●●●
●

●
●●
●
●●
●●

●

●●●
●
●●●●●●●●●

●

●●●

●

●●●
●●

●
●
●●●

●●

●●●●

●

●

●

●●●
●
●●

●

●●●
●
●

●●●●

●

●●●
●
●●●

●

●●

●

●●●
●
●●
●
●●●

●

●

●
●●●

●

●●●

●

●
●●

●

●●●●●●●

●

●●●●
●

●
●●●
●

●

●●

●
●
●
●●●

●

●●●

●
●●
●●

●

●●●●
●
●
●

●●●
●
●
●●●

●●
●●●●

●
●●●

●

●

●●●●●

●
●
●●●●

●

●●●
●
●

●

●●●●●
●
●●●●

●

●
●●●
●
●

●●●●
●

●

●

●
●
●●
●
●

●
●
●●
●
●
●

●
●
●

●

●
●
●
●
●●
●●●

●

●

●

●

●

●
●●●
●

●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●
●

●●

●

●●

●

●●

●

●●
●
●
●●●

●

●●
●
●●
●
●
●●●
●●●●●●●

●●

●
●●

●

●●

●

●●

●

●●

●

●●

●

●
●●

●
●●

●

●●●

●

●●●
●
●
●●
●

●●●●●●

●

●●●
●●●

●

●
●
●
●
●

●●
●

●●
●

●

●●●●●
●●●

●

●

●

●●
●
●
●

●
●
●
●●

●

●

●

●●●●
●●●●●●

●

●●

●

●

●
●
●●
●

●

●●
●
●

●

●
●
●

●
●●●●●
●
●●

●

●

●

●●

●

●●●●
●
●

●●
●

●
●●●●

●

●
●
●●

●

●
●
●●
●

●

●

●

●●●●

●

●●●●

●

●●
●●
●●●

●

●●●

●

●
●●

●●
●
●

●
●

●

●

●●●

●
●●●

●
●●
●●●
●

●
●

●●●

●

●●●●●●
●●●

●

●●
●
●
●
●●

●

●
●●

●
●

●●●●
●
●●●●
●●

●
●●●●
●●

●●
●●●
●

●●●●

●

●●●●
●

●●●

●

●
●
●●

●

●●
●

●

●

●
●

●

●●
●●●
●●●

●●
●●●●●●

●
●●●

●

●●●●

●

●●●●
●●
●

●●
●

●

●●●●
●
●●
●●●

●

●

●●
●
●

●

●

●●
●●●

●

●●●

●
●

●
●
●
●●
●●●●●●

●

●●●●

●

●

●●●
●

●

●●
●●

●

●●
●●

●

●●
●●
●

●

●
●●●●

●
●
●
●●

●
●

●●●

●●
●●
●●

●

●
●

●●

●

●●●

●

●●
●●●●

●

●

●
●●
●

●

●

●
●●

●
●

●

●●

●

●
●●●

●

●●●●

●
●

●

●●●●●
●
●
●
●●

●

●●●●
●●

●

●

●

●●
●
●
●●●●●
●●

●

●
●●
●●

●

●●
●
●●●
●

●●●●

●

●

●

●●

●

●●
●

●

●

●

●
●

●
●

●●●
●
●

●

●

●●

●

●●
●
●

●●

●●

●

●
●●

●

●

●

●●●●
●

●

●
●
●

●

●●

●
●

●

●

●●●●●●●
●●
●
●●●●

●
●●●●●

●

●●●●
●
●

●●●●

●

●●●
●
●●

●●●●
●

●
●●●

●
●●●

●

●●
●●
●●●●●●●●●
●●●
●

●
●

●
●●●●●●

●

●●●

●

●●●●●●●

●

●●●

●
●●
●
●
●●●●●
●
●

●

●●●

●

●●●●●
●●
●●●●●
●

●
●●
●
●●

●

●●●
●●

●
●●

●

●●●
●●●●●●●●●●●●●●●

●●●●●●
●●●●●

●
●●
●
●
●

●

●●
●
●●●●●

●
●●●●●

●

●●●●●

●

●●●
●●●●●●●

●

●

●●●

●

●●

●
●●●●●
●●●●

●●
●●●●

●
●●
●●●●●
●●
●

●
●●●

●

●●●●●●

●

●●
●
●●●●●●
●
●●●●●●●

●●●

●

●●
●
●●●

●

●●
●
●

●●
●

●

●●●●●
●
●
●●●●●

●●
●●●

●

●●
●●●

●●●●
●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●

●
●

●●
●
● ●
●
●
●●●
●

●●
●

●

●●●

●

●●●

●

●●
●

●

●●●●●●

●

●●
●
●●●●●●●●
●●●●●
●

●●●●●●●●●●●●●●●●
●●
●●

●
●●●●●

●
●●●●
●●●

●

●●
●

●

●●●●●●
●

●

●●●●●
●●●

●

●●●

●
●●
●

●

●●●●
●●
●●●●●
●
●●●●●●●●●

●●
●●●

●●●●

●

●●●●●●●
●●●
●
●●●

●

●●

●

●●
●

●

●●●●
●●

●

●●●

●
●
●●●●
●●

●●●

●

●●
●

●

●●
●
●●●●
●
●●●●●●
●●●●●

●
●

●

●●

●

●●

●

●
●
●

●
●
●

●●
●●
●●●●●
●
●●

●

●●●●●●
●
●●●

●

●
●●

●●●●●●●●●●●●
●

●●●●●●●●●●●
●●●●
●

●

●●●
●
●

●
●●

●

●●

●

●●

●

●●

●

●●

●

●●●●●●●●●

●

●●●●●
●●
●

●●●●

●

●●●
●●●

●

●●●●

●

●●●
●●
●●●●

●
● ●●●

●

●●●●●
●
●●

●

●●●

●

●●
●
●●●●●
●
●●●

●

●●

●

●●

●

●
●

●
●●
●●
●●
●

●●

●

●●●●●

●

●●

●

●
●●
●●

●

●●●●
●●●●●●●

●
●●
●

●
●●●

●

●●

●

●●

●

●●

●

● ●●

●

●●

●

●●●●●

●

●●●
●

●
●
●
●

●

●

●●

●

●●●●

●

●●
●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●

●●
●
●●●●
●
●●
●●●
●
●●
●

●●●

●

●●●●
●●

●

●●●
●

●

●

●●●●●
●●

●

●●●

●

●●●

●

●
●●
●
●●●

●

●●●●●●●
●●●●●●●●●●

●

●●●●●●●●
●●

●

●
●

●

●●●

●

●●
●●●

●

●

●●●

●

●●●●●●

●

●●

●

●●●

●

●●●●
●●

●

●
●
●

●

●●●
●
●

●

●●●●

●

●●●●

●

●●●●●●
●

●

●●●●

●
●●

●

●
●

●

●●●●●●
●

●

●●

●

●●●●●

●

●
●

●
●●

●

●●●●●
●
●
●●●●●●

●

●●●

●

●●●●
●●●

●

●●

●

●●●

●
●●●

●●●

●

●●●

●

●
●
●

●

●●●

●

●●●●●●●
●●●●●●●

●

●●

●

●●●●●
●●

●

●●●●●●●

●

●
●●
●●●●●

●

●●

●

●●●●

●

●●

●

●●

●

●●

●

●
●
●

●

●●●●●●●●●●

●

●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●

●

●●●●●●●●●●●●●
●
●●
●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●
●●

●●●●●●●
●●●●●●

●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●
●●●●●

●●●●●
●●●●●●●●●●●●

●●●●●●●
●●●●●●●
●●

●●●●●●●●●●●
●

●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●

●●●●●●●●
●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●
●●●●

●
●●●●●●

●●●●●●●●●●●●●●
●●

●●●●●
●●●●●●●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●

●
●●●●●
●●●

●●
●
●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●

●
●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●

●●●●●
●
●

●●●●●●●●

●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●
●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●
●●

●

●●●

●
●●●●●●●●●●●

●●●●●
●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●
●
●
●
●
●●●●
●●
●●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●
●●●●

●●●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●
●● ●

●●
●●●●

●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●
●
●
●●●●●●●●

●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●

●●●

●
●

●

●●●●●●● ●●●●●●●●●●●●●●●●

●

●●●●
●●

●●●●●●●●●

●

●

●

●●●●●
●

●●●●●
●●●●●●●●●

●
●●●●●●
●●●●

●
●●●●
●
●●●
●
●●●

●
●●●●●●●●●●
●
●●●●●●●●●●
●
●
●●●●

●
●●●
●●●●●●●●●●●●●●●

●

●●●●●●●●
●●●
●

●●
●
●●●
●
●●●
●
●●●●
●●●●●
●●●

●

●●●●●●
●●●●●●●●●

●
●●●

●●
●
●●

●●●
●●
●●
●●●●●●●●●

●
●

●

●●●●●
●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●

●
●
●●

●
●
●●●●●●●●●●●

●●

●
●●●
●●

●
●●

●
●●●●●●●●●●●●●

●●●
●
●●●●●●●●●
●

●●●●●●
●
●●●●●●●●●●●●●●●
●●

●●●●●
●●●
●
●●●●●
●●
●●●●●●●

●●●

●
●●●●
●
●●●●●
●
●●
●●●●●●

●
●●●●●
●●●●●●●
●●●
●
●●●
●
● ●●

●
●●●●●●●●●●●
●●●●●●● ●●●●●●●●●●●●●●●
●
●●●●
●●
●●
●●
●
●●●
●
●●●
●

●●●
●
●●●●●●●●●●●●●●
●●●●●●●
●●●●●●

●

●
●
●●●●●●●
●
●●●

●
●●●
●
●●●●

●
●●●●
●●●●●●●●●●

●
●●●●●●●●●

●●●
●●●●●●
●●●
●

●

●●●●●●
●
●●●●●●●●●●

●
●●●●●●●

●
●
●
●●
●●●
●●●●●●●●●
●●●●

●

●●●●●●
●●●●●
●
●
●●●●●●●●●●●
●

●●
●
●●●●●

●

●●
●
●●

●●●●
●

●●●●●●
●

●●
●

●●●●●
●●●●●

●●
●●

●●●●●
●●●●●●
●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●●●●●
●

●●

●
●●●●●●●
●●●●●●●●●
●●●●
●●

●●●●
●

●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●

●
●●●●●●●●
●
●●●●●●●●
●
●●●●●●

● ●●●●●●●●●●●●
●

●
●●●●●●●

●
●
●●●●

●●
●●●

●

●
●●●

●
●●
●●●●●●●●●●●●

●
●●●●●●●●●
●

●●●
●
●●●

●
●●●●●

●
●●●
●●
●
●●
●
●●●●●
●
●●●●●●

●
●●●●●
●
●●●
●●●●
●●●
●
●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●

●

●●●●●●●●
●●●
●
●●●●●●●●●●

●
●●●●●●●
●●●●●●●
●●●●●●●●

●●

●

●●●●●●

●

●●●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●
●●
●●●
●●●●●●
●
●●●
●

●

●●●●●●

●

●

●

●●
●

●

●
●

●●
●
●●●●●●●●●●●●●●●

●
●●●●●●●●

●●●●●●●●●●●●●●●
●

●

●●●
●
●●●●●●●●●●●

●●
●
●●●●●●●

●
●●●●●●●●●●●●
●●
●
●●

●

●●
●
●
●●●
●

●●●●●●●●
●●●
●
●●●

●

●●
●
●●●●●
●●
●
●●●●●●●●●●●
●●●
●
●●●●●●●●●

●
●●●●

●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●

●●●
●
●●●●●

●

●●●●
●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●●●●●●
●●●●●●●●●
●
●●●●●●●●
●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●
●
●●●●

●

●●●●●●●●●●●●

●

●●
●
●●●●●●●●●●●●●

●

●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●

●

●●●

●

●●●●
●●
●●●●
●●●
●●●
●●●
●●
●●●●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●

●
●●
●

●●●●●
●
●●●●●●
●
●●●●●●
●
●●●●
●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●●●●●●●●●●
●●

●●
●●●●●●●

●

●
●●●
●

●

●●●●●●●●●●●●●●●●
●●

●●●●●●
●●●●
●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●●
●●
●●●●●

●

●
●
●
●●●

●

●
●●●

●

●●
●●●●●

●
●
●●●

●
●●
●
●●●●●●●●●●●●
●●●●
●●●●

●●●●
●●
●
●
●●
●
●●●●●●●

●●

●●
●●●
●

●●●●●●
●
●●●
●●●●
●
●●●

●
●
●
●●●

●
●
●
●●
●
●●●●●●
●
●
●●

●
●
●
●●

●●
●●●●

●

●

●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●
●●●●

●●●●●●●●
●●●●●

●●●●●
●●●●●●●●●●
●●●●

●
●●●●
●●●●●●●●

●

●

●
●

●

●●●●●●●●
●

●●●●

●

●●●●●●●●
●●

●●●●
●
●

●●●●
●●

●●

●

●●●●

●

●●●●●●
●
●
●
●

●

●

●

●●●●●●●●●●●

●

●●
●
●

●

●●●●
●●

●
●●●●●●

●
●●●

●●●●

●

●●
●
●●●●●

●●

●

●
●
●●●●●

●

●

●

●●●●●●
●●●●

●●●●●●●
●●
●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●●●●●
●●●●●

●

●
●●
●

●

●●

●
●●
●

●

●●●
●●

●

●
●●●●●

●
●
●●

●

●●

●

●●●
●
●●●●●

●●●

●
●
●●●

●
●●●

●●
●●●
●

●●●

●
●●
●

●●
●
●●●●
●●●

●

●●
●●

●
●●●●●●●●

●

●●●●●

●
●●
●
●
●●
●
●
●●

●
●●●●

●

●●●
●
●●

●

●
●●●●●●
●
●●●

●

●●
●●●●●●

●
●●●●●●●●●●●
●●●●●●●●●●●●●

●
●●●●●●●●●●●
●●●
●●
●●●●●

●

●●●●●●●●●●●

●

●●●●
●●
●
●

●
●
●

●

●●●●●●
●

●●

●
●●
●
●●●
●
●
●●●
●
●●
●
●●●●●
●
●●
●●
●●●●●
●
●●
●
●

●●
●
●
●●●●●

●
●●
●

●

●●●●●●●
●
●●●

●●●●●
●●●
●●
●
●●●●●●●

●
●●●
●●
●●

●

●

●●
●●

●
●
●●●

●

●●●●
●●●●●●

●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●
●●●●●●
●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●
●●●●●
●
●
●●●●●
●●●

●

●

●●
●
●●●●●●●
●●●●●
●●●

●●●
●
●●●
●

●

●●●●●
●●
●
●
●●●●
●●●●●●
●

●●
●●
●●●●
●

●●
●
●

●●●

●

●●●●

●

●●●●●●●●●●●●●●●
●●●

●●●●●
●●●●●
●

●●●●
●
●●●

●●

●●●

●

●●●

●

●●

●

●
●

●●●
●●●●
●
●●
●

●
●
●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●
●●
●●●●●●●●
●
●●●●●●●●●●

●●●●●
●
●●●●●●
●●

●●●●●●●

●
●●●●
●●●●●
●●●●●
●●
●●●●●●●●●●
●●●

●

●

●

●

●●●
●●

●●●●
●●●

●

●
●●

●

●●

●
●●
●
●●

●

●●●●
●●

●

●●●●●●
●●●
●
●
●●●
●●●●●●●●●
●●
●
●●●●
●●●

●

●
●

●

●●●●
●●

●

●
●

●
●●●●●●
●●●●●
●
●●●●

●

●●●●●
●●
●
●
●
●

●

●●●
●

●

●

●●●
●

●●

●

●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●
●

●

●●●●●●
●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●

●
●●●
●●●●●●●
● ●●●●

●●●●●
●

●●●
●
●●●●●
●

●●●●●●
●●●●●●●●●●●●●●●●

●
●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●

●
●●●●●●●●●●

●
●●●●●●●●●

●

●●●●●●●
●
●●
●
●●●
●
●●●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●
●
●
●

●
●

●●●●●●●●●●
●●●●●●●●●

●

●
●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●●
●

●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●

●●●●●
●
●●●●●●●●●●●●●●●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●

●●
●●●●●●●●●●●●●●●●

●
●●
●●●●
●
●●●
●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●

●

●●
●
●●
●●
●●●

●●
●●●●●●●●●●●

●●●●●
●●●●●●
●●●
●

●●●●
●

●
●●●●●●

●

●●
●
●●●●●●●●●●●
●●●●

●
●

●

●●●●●
●●●●●●●●●●●●●●●●●
●●●●●

●
●
●●●

●●
●●●
●●●●●
●●●
●●●●●●●●●●
●●●
●●●●●●●●●

●●●●
●●●
●●●

●●●●●
●●●
●●●●●●●

●●●●●●●●●●
●
●●●●●

●●
●
●●●
●●
●
●●●

●

●●●●●●●●●●
●●
●●●

●
●
●●●●●●●●●●●●●

●

●●●●●
●●●●●●●

●

●●●●●
●

●●●●●
●●●
●●●
●
●●●●●●●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●
●●●●●●●●●●

●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●

●

●●●●●●●●●●●●●●
●●●●
●●●●●●

●

●
●

●●●
●
●●●
●
●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●
●

●●
●●●

●
●
●●

●●●
●●●●●●●●●●●●●●●●●●●
●
●
●
●

●
●

●

●●
●
●
●
●●●●●
●
●●●●
●●
●●●●●●●●●●●●●●●●

●
●●●

●
●

●●●●●

●
●●●●●
●●●●●●●●●●●

●

●

●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●
●●●●●●●
●
●●●

●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●●●●●

●

●●●●●●

●

●●
●●

●

●

●●●●
●●●●
●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●

●
●
●
●●
●●
●●●●●●●●●●
●
●●●●●●●●●●●●●

●
●

●
●●●●●●●●●●●●●●●●
●●●●●●●●●

●
●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●●●●●●

●
●●
●
●●●●●●●●●●●●●

●●●●●●

●

●●●●●●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●
●●●
●●●
●
●●●●●●●●●

●

●●●●●●●●●●●●
●●●●
●●
●●●
●
●●●

●
●●●●●●
●●●●●●●●●●●●●●●●●●●

●●
●
●●●●
●
●●

●●
●●●●●

●
●●●●
●●●

●
●●●●●●●●
●

●●●●
●
●●●●
●
●●●●●●●●●●
●●●●●

●●
●●●

●
●●

●

●●
●●●

●

●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●
●●●●
●

●●●●

●

●●●●
●●●●

●

●●●●●●●
●
●●●●●●
●
●●●●●●●●
●●●●●
●●●●●
●●●●●●●●●

●

●●●●
●
●●

●

●●●

●

●●
●
●●
●
●

●●●●●
●

●●●●●●●

●

●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●
●●●●●●●●
●
●●
●●●●●
●●●●●●
●●
●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●
●

●

●

●

●●●●●●●●●●●
●●●●●●●●●
●●
●●
●●●●●●
●●●●

●●●●●

●

●●
●

●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●

●●●●
●●●●●●●●●●●●●

●
●●●●●●●●●●●
●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●
●●●●●●●●

●

●
●
●●

●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●
●●●●
●
●●●●●●●●
●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●● ●●●●●●●●●●●●●●●

●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●
●
●●●●
●
●

●

●
●●●●●●

●●●●●●
●●●●●●●

●
●●●●●●●
●●●●●●●●●●●●●●

●
●●●
●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●
●●●●●●●●●●
●
●
●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●
●●
●
●●●●●●
●●●●●●●●●●●●●
●●●●

●
●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Pred* PNG

LZ4 Zstd RVL ANS

1 2 4 8 16 1 2 4 8 16

1 2 4 8 16 1 2 4 8 16

32

128

512

32

128

512

Compression Ratio

C
om

pr
es

si
on

 +
 D

ec
om

pr
es

si
on

 S
pe

ed
 (

M
B

/s
)

FIGURE 3.26: Overview of compression ratio and combined speed
for each algorithm. Each dot represents one measured frame of any
scene or mode.

3.2. (Improved) Lossless Depth Image Compression Methods 69

FIGURE 3.27: Evaluation of the video compression algorithm H.265
on depth images regarding time and size over different CRF values.
The test scene was static.

of our algorithm’s performance in relation to them, and investigate their potential for
depth image compression. We chose to test H.264, H.265, AV1, and VP9, as these are
common and state-of-the-art video compression algorithms. After initial tests, we
already discarded AV1 from further testing, as it was too computationally expensive
and, thus, took too much time to be real-time capable. For the other algorithms, we
extensively investigated the provided compression parameters (e.g., CRF) in order
to get a feeling for the algorithms’ behavior and to find a good trade-off between
compression ratio and speed. Figure 3.27 compares the compression ratio with the
time needed for compression and decompression, in dependence on the CRF value,
using H.265 as an example. In this case, a static scene was used. Looking at the plot,
the algorithm is very flexible with compression rations ranging roughly between
5 and 650, and the corresponding time between roughly 30 ms and 7 ms. As ex-
pected, the compression ratio decreases while the needed time rises, when lowering
the CRF value. Naturally, the lower the CRF value, the higher the resulting image’s
quality and the more accurate it is regarding the original image. How accurately the
images are after compression can be seen in Figure 3.28, which compares the peak
signal-to-noise ratio (PSNR) value with the compression ratio, in dependence of the
CRF value, again using H.265 and a static scene. The PSNR values range roughly
between 44.2 and 41.1. Interestingly, we can see a second curve of clusters. The
likely reason for this is that not all frames are processed equally: On most frames,
inter-frame compression is applied, meaning, the difference between frames is com-
pressed instead of the original frame itself. However, depending on the parameters
(e.g., group of pictures (GOP) size), each nth frame is again compressed individu-
ally, which is less efficient. Especially in this case with a static scene, the difference
between using inter-frame compression or not is more pronounced.

We did the same evaluations using a dynamic scene, the results regarding time

70 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

FIGURE 3.28: Evaluation of the video compression algorithm H.265
on depth images regarding PSNR and size over different CRF values.
The test scene was static.

and PSNR relative to the compression ratio and CRF value are depicted in Fig-
ures 3.29 and 3.30, respectively. As we can see, in comparison to the static scene,
the individual clusters are less homogeneous and more spread out, which is to be
expected with the more varied frames from the dynamic scenes. Also, the effective-
ness of inter-frame compression is reduced, thus, we do not see as clear the second
curve of clusters as in the static example and, generally, lower compression ratios.

Eventually, we did a direct comparison of the three video compression algo-
rithms regarding PSNR, size, and time. We chose parameters that yielded a good
trade-off between speed and compression ratio. For instance, we chose a CRF value
of 20, the “ultrafast” preset, and the “zero-latency” setting. Table 3.4 shows the re-
sults (in terms of medians) of the comparison. H.264 is the fastest and VP9 is by
far the slowest. H.265 is in between and still very quick. Moreover, H.264 is also
the most effective in compressing the images (at this CRF value) but at the cost of
the worst PSNR values. H.265 has just slightly better compression ratios than VP9.
However, VP9 achieves the highest PSNR values. Figure 3.31 depicts the algorithms’
performance in the form of a time series over one test scene regarding the compres-
sion ratio, Figure 3.32 regarding the needed time, and Figure 3.33 regarding the re-
sulting PSNR. Note the logarithmic scale on the y-axis of Fig. 3.32. We can observe,
that H.264 performs best regarding time and compression ratio and H.265 follows
suit at a moderate distance. VP9 is just slightly worse than H.265 in terms of com-
pression ratio but also has many outlier frames that compress way worse. VP9’s
compression time is way worse than the others, though. However, looking at the
PSNR values, the behavior flips and VP9 gets the best results and H.264 the worst.
We can also see that VP9 and H.265 have periodically occurring spikes, which likely
result from these frames being the start of the GOP for the inter-frame compression.
Considering all three factors, speed, PSNR, and compression ratio, H.265 achieves

3.2. (Improved) Lossless Depth Image Compression Methods 71

FIGURE 3.29: Evaluation of the video compression algorithm H.265
on depth images regarding time and size over different CRF values.
The test scene was dynamic.

FIGURE 3.30: Evaluation of the video compression algorithm H.265
on depth images regarding PSNR and size over different CRF values.
The test scene was dynamic.

72 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

TABLE 3.4: Comparison (median) of the video compression algo-
rithms H.264, H.265, and VP9 regarding time (compression + de-
compression), compressed size, and PSNR. The best values are high-
lighted in bold.

Metric (Mdn.) H.264 H.265 VP9
Time (ms) 1.88 2.47 223.00
Size (KB) 0.71 1.23 1.24
PSNR 40.56 41.30 41.56

FIGURE 3.31: Comparison of the video compression algorithms
H.264, H.265 and VP9 regarding the compressed size of a test scene.
H.264 performs the best and VP9 the worst, although just slightly.

the best and most balanced results. Naturally, each algorithm and its performance
can be tweaked to some degree to the specific requirements.

Generally, even though the measured compression speeds, compression ratios,
and PSNR results look promising, all these video compression algorithms produce
visible, severe artifacts, as previous work already showed. See for example Fig-
ure 3.34. We can therefore reinforce the notion that simply applying these algo-
rithms to depth data is not a viable option. However, we also see the great potential
for lossy and near-lossless compression, which possibly can be exploited if the algo-
rithms could be adapted to better suit depth data, even though this is not trivial, as
previous work also discovered.

3.2.5 Conclusions and Future Work

We proposed a lossless RVL-based algorithm for real-time depth image compres-
sion aimed at high compression ratios. Our experiments show that our algorithm
achieves the highest compression ratios compared to competing real-time capable
algorithms. With our method, depth images can be compressed up to 73 % smaller
than with the original RVL algorithm and 30 % smaller than with the slower Zs-
tandard. Using temporal filtering beforehand, we accomplish even higher compres-
sion ratios of 13.8:1, which is still the highest compared to the other evaluated al-
gorithms but the compression pipeline becomes lossy. Thanks to parallel execution,

3.2. (Improved) Lossless Depth Image Compression Methods 73

FIGURE 3.32: Comparison of the video compression algorithms
H.264, H.265 and VP9 regarding the time (compression + decompres-
sion) of a test scene. Note the logarithmic scale on the y-axis. H.264
performs the best and VP9 by far the worst.

FIGURE 3.33: Comparison of the video compression algorithms
H.264, H.265 and VP9 regarding the PSNR value. VP9 performs the
best and H.264 the worst.

74 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

FIGURE 3.34: Artifacts (white areas, grey block/stripe patterns) pro-
duced by standard video compression algorithms (e.g., H.265) when
on depth images. Note, the image’s brightness was increased non-
linearly for visualization purposes.

our performance is still sufficient for typical RGB-D-sensor frame rates and real-
time streaming in bandwidth-limited applications. Finally, we were able to show
that the original RVL can also be sped up with multi-threading, and it can, for some
use cases, benefit significantly from frame delta computation. As future work, fur-
ther improvements could be made by optimizing the span-based prediction stage to
lower the computation times, and maybe even SIMD can be applied. Also, it may
be worth investigating zigzag scanning and using a block-based adaptive prediction
instead. Moreover, an accompanying evaluation of lossy video algorithm algorithm
showed that they hold potential (e.g. for near-lossless compression) but require fur-
ther research and modifications to prevent artifacts.

3.3 Enhancement of Depth Images using Deep Neural Net-
works

As briefly described at the start of the chapter, not only reducing the size of the depth
images using compression is important to achieve distributed high-quality live 3D
reconstructions of the captured RGB-D data, but also enhancing the imperfect depth
images themselves. Specifically, reconstructing missing areas in the depth images
using inpainting techniques. In recent years, the advantages of deep-learning-based
color image inpainting became prominent. However, research on the inpainting of
depth images as captured by RGB-D cameras is scarce.

In this section, we, therefore, describe our approach of utilizing existing deep
learning models to investigate the reconstruction quality of missing areas in depth
images. Concretely, we chose a U-Net architecture with partial convolution layers

3.3. Enhancement of Depth Images using Deep Neural Networks 75

and a generative adversarial network architecture that takes advantage of a patch-
based discriminator. For comparison, we took a basic U-Net and the state-of-the-art
model called LaMa. The training was done on datasets augmented with synthet-
ically generated noise/holes and using an elaborate preprocessing pipeline. Our
results show (at least) reasonable good and coherent results for all models using
three different datasets. Moreover, all models except for LaMa achieved real-time
inference speed.

The work presented in this section is based on our submitted paper PP2 in Ap-
pendix A.

3.3.1 Introduction

We already discussed, that with the growing availability of low-cost depth sensors
and RGB-D cameras, such as the Azure Kinect, their popularity and employment
increased throughout various research areas and industries. To recap, typical use
cases are, for instance, SLAM and object detection in computer vision and robotic
applications, or real-time capturing of point cloud avatars for telepresence systems.
A long-lasting challenge is, however, handling the inherent sensor noise, as well as
artifacts and holes that lead to an incomplete depth image. As explained in Sec-
tion 2.2.3, these issues are inevitable consequences of the TOF principle many depth
sensors use. Concretely, multipath inference, caused by repeated reflection of the
infrared rays between objects, and signals that are too powerful or too weak lead to
ambiguous or invalid depth values. Having accurate and dense depth maps is im-
portant for many downstream tasks such as safe motion planning, reliable vision in
autonomous vehicles, remote surgery assistance, or industrial inspection. One solu-
tion would be to adapt those downstream, domain-specific algorithms and models
to work with incomplete input. However, experience shows that specialized algo-
rithms and models that only focus on the specific task of denoising/inpainting the
input data are more effective and lead to better overall results.

Therefore, preprocessing and enhancing the depth images is an important task.
Reconstructing the missing areas in real-time is not trivial, though, as there are
strong spatial dependencies between the data points, both locally and globally. Ad-
ditionally, previous work in the area of hole filling and image inpainting was mostly
focused on regular color images and is not necessarily well-suited for direct appli-
cation on depth images. Although we already considered the issue of depth image
enhancement while developing the telepresence system that we proposed in Sec-
tion 3.1, it was not the main focus then and leaves much room for improvement.

With this work, we propose an approach of real-time depth image inpainting us-
ing neural networks. Our main contribution is the investigation of the depth image
reconstruction quality of two fast U-Net-based network models that were originally
designed for color image inpainting, including a comparison with a basic U-Net and
a more sophisticated state-of-the-art model. In contrast to many others, the mod-
els we use do not need any color images for guidance, which makes them more
generally applicable as they can be also employed in use cases where no color in-
formation is available. The first model we chose uses partial convolutions, while
the second one is based on a GAN architecture. Furthermore, we present a detailed
quantitative and qualitative evaluation using two public datasets and a custom one
we recorded ourselves.

76 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

3.3.2 Related Work

Traditionally, missing areas in pictures are reconstructed, or painted-in, using pixel-
or patch-based exemplar methods [314], diffusion methods [384], or hybrids of the
two [354]. In recent years, however, the advantages of deep-learning-based meth-
ods have become prominent. They outclass traditional methods, especially when
restoring larger areas, as they are able to learn and consider the semantics of the im-
age. The most common CNN variants for image inpainting are fully convolutional
networks and U-Net. However, to avoid filling missing areas with noise and then
convoluting this information further, some authors proposed non-standard convolu-
tions. For instance, Liu et al. [223] proposed partial convolution layers that dynam-
ically mask out invalid pixels and cope better with irregular holes. Yu et al. [430]
introduced gated convolutions that generalize partial convolutions and provide a
learnable dynamic feature selection mechanism across all channels and layers. Simi-
larly, Xie et al. [420] suggested using learnable bidirectional attention maps. In order
to better and effectively capture long-distance information, Ning et al. [258] pro-
posed adding a multi-scale attention module. Yan et al. [423] introduced shift con-
nection layers that shift features of known areas to serve as guidance for missing
areas and Suvorov et al. [367] presented a combination of Fourier convolutions, a
high receptive field perceptual loss, and large training masks for inpainting of large
areas. Moreover, many approaches for deep-learning-based inpainting employ one
of the various GAN architectures, such as the one proposed by Isola et al. [156], as
they feature strong data generation capabilities. Other examples include the works
by Shen et al. [335], Yeh et al. [427], and Shao et al. [334]. Similarly, diffusion-based
networks such as the one by Rombach et al. [306] achieved impressive results in
various image synthesis tasks. These models consist of a hierarchy of denoising au-
toencoders and can model complex, multi-modal distributions, however, inference
tends to be very expensive.

Very recently, transformer networks, originally coming from the natural lan-
guage processing domain, were discovered to be very effective for computer vi-
sion and image processing tasks, such as denoising, too [60]. The main advan-
tage is their ability to model long-range dependencies. Interestingly, Makarov and
Borisenko [230] used vision transformers for color-guided depth completion and Li
et al. [213] proposed a combination of convolutions and transformers for large hole
inpainting. Similarly, Yu et al. [433] presented a bidirectional autoregressive trans-
former model for diverse inpainting, and Deng et al. [81] designed a transformer
model for inpainting with a focus on efficiency. However, transformers are usually
still rather slow.

Most research is focused on inpainting color images, and only very few works
consider reconstructing depth images. Works that do consider depth images usually
are situated in the field of RGB-D reconstruction or lidar-based depth completion
and use the color image for guidance. For instance, Ma and Karaman [232] em-
ployed a deep regression network to predict depth images based on corresponding
color images and sparse depth samples. Fujii et al. [115] used a late fusion GAN to
simultaneously reconstruct color and depth images by exploiting the complemen-
tary relationship between RGB and depth information. Lee et al. [207] proposed
multi-scaled and densely connected locally convolutional layers for depth comple-
tion, Tao et al. [370] use a neural network for the prediction of dense depth maps
as well as uncertainty estimates, and Jeon et al. [160] performs depth completion
based on line features by bridging the conventional and deep learning-based ap-
proaches. All these works require color input as well, though. Similarly, Zhang and

3.3. Enhancement of Depth Images using Deep Neural Networks 77

Funkhouser [440], as well as Satapathy and Sahay [318], rely on color guidance. In
contrast, Jin et al. [163] and Li and Wu [218] presented solutions for depth inpainting
without color guidance, however, they are only designed to handle smaller holes.
Other works that solely work on depth images can be found in the medical domain,
i.e., to reconstruct and in-paint CT or MRI scans. Both, Li et al. [217] and Armanious
et al. [10]. for instance, presented promising solutions using patch-based GANs.

For a more comprehensive overview, we refer to the excellent literature review
by Zhang et al. [439].

3.3.3 Categorization of Depth Errors

Before describing our proposed approach for depth enhancement by depth image
completion, we briefly discuss the different types of sensor noise that are typical for
TOF sensors and present examples of the main causes that lead to missing depth
data. We will explain the noise types using an Azure Kinect as an example TOF
sensor, however, they are applicable to other TOF sensors, too. If interested, a more
detailed explanation can be found in the Azure Kinect documentation [250].

Systematic Error The first error type, called systematic error, comprises the in-
herent, temporally constant difference between the measured depth and the correct
(ground truth) depth. It is defined as:

Esystematic =
∑N

t=1 dt

N
− dgt (3.10)

, where N is for the number of frames used, dt is the measured depth at time step t
and dgt is the ground truth depth. The systematic error can be measured by averag-
ing over several frames to remove other time-varying noise.

Random error This error type is caused by shot noise, which is created due to
a varying number of photons hitting the sensor each frame, even if the scene and
camera are static. Thus, the measured depth will be slightly different for each frame,
too. The random error is defined as:

Erandom =

√
∑N

t=1(dt − d)
N

, (3.11)

where N is again the number of frames used, dt is the depth measured at time t and
d is the average of all depth measurements dt.

Invalidation In some cases, it is not possible to get valid depth values for some
pixels. In that case, pixels are usually invalidated, for instance, by setting them to a
depth value of zero. These pixels or areas then appear as holes in the depth images.
Invalidation can happen due to different reasons.

Invalid Signal Strength One of the reasons for invalidation is too strong in-
frared signals. Due to the saturation of the pixels, phase information is lost and a
depth value can not be calculated. This event can be observed in Fig. 3.35.

In contrast to that, invalidation can also happen when the infrared signal is not
strong enough, making it impossible for the depth engine to calculate valid depth
values. Figure 3.36 shows such an event.

78 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

FIGURE 3.35: Invalidated depth values in the depth map (left)
due to saturated (too strong) infrared signals in the infrared image
(right) [250].

FIGURE 3.36: Invalidated depth values in the depth map (left) due
to too weak infrared signals in the infrared image (right) [250].

Ambiguous Depth Another reason for depth invalidation is when a pixel re-
ceives signals from several objects in the scene, which then leads to an ambiguous
depth value. This may occur when the IR light is reflected between objects (multi-
path inference). For instance, corners are prone for this to happen, as the IR light
may be bouncing off of one wall and hitting the other wall before arriving back at
the sensor. That described scenario can be observed in Fig. 3.37.

Ambiguous depth values also commonly happen at object edges, as a pixel may
contain a signal from the background and the foreground object. A case like that can
be observed in Fig. 3.38.

Generally, the ability to detect valid depth values is highly dependent on the
scene geometry (angle between surface and sensor), the object’s materials (i.e., re-
flection, absorption of IR light), and the distance between object and sensor. In the
following, we want to specifically consider the challenge of reconstructing these ar-
eas with missing depth values.

3.3. Enhancement of Depth Images using Deep Neural Networks 79

FIGURE 3.37: Invalidated depth values in the depth map (left) caused
by multipath inference occurring in a corner (right) [250].

3.3.4 Proposed Approach

In order to tackle the issue of (real-time) depth image inpainting, and after thor-
oughly experimenting with the current state of the art in deep color image inpaint-
ing, we decided to adopt two promising works that we considered suitable as a
foundation. The first model we chose is the one by Liu et al. that introduced par-
tial convolutions [223], and the second one is the GAN model proposed by Isola et
al. [156]. As a baseline for comparison, we also took a standard U-Net model and
the more sophisticated state-of-the-art model by Suvorov et al. [367], LaMa, which
we expected to be significantly slower, though.

Datasets

For the training and evaluation of our models, we resorted to using two publicly
available depth datasets, namely, the SceneNet RGB-D dataset by McCormac et al.
and the NYU Depth V2 dataset by Silberman et al. The SceneNet dataset provides 5
million photo-realistic RGB-D images of synthesized indoor scenes. We only use the
depth images. The images are 16-bit encoded which is similar to real-world input,
however, the image resolution is significantly lower than the ones of common depth
sensors such as the Azure Kinect. To prevent upsampling artifacts from influenc-
ing the training, we use this dataset only for evaluation. The NYUV2 dataset was
collected by capturing a wide range of indoor locations within a large city using a
Kinect V1 RGB-D camera. Additionally, we created our own custom dataset con-
sisting of mostly static and a few dynamic scenes using the Microsoft Azure Kinect
RGB-D camera. As this data lacks a ground truth, we use it only for evaluation, too.
In the end, we trained our models with a split of 44984 depth images for the training
set, 654 for the validation set, and 5704 for the test set (NYUV2). For the evaluation,
we used additional 23 scenes with 6900 images (SceneNet) and 23 scenes with 6739
images (custom dataset).

Preprocessing Pipeline

For the training procedure, the images go through a preprocessing pipeline, see
Fig. 3.39. First, the images get resized to 5122 and scaled to the range of 0-1 for

80 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

FIGURE 3.38: Depth values that are invalidated because of an am-
biguous depth at object edges (foreground and background object) in
the depth map [250].

Resize
512x512

Scale
0-1

Flip
Apply

Illumina�on
Mask

Generate
Noise Mask

Augment
Outlier

Intensity Shi�

FIGURE 3.39: The preprocessing pipeline. Each image passes
through this pipeline during the training process.

compatibility purposes with the models. Next, the images get flipped randomly (90-
degree angles). Then, an illumination mask similar to the one of the Azure Kinect is
generated and applied to adapt the dataset’s images to real-world input conditions.
As the dataset used for training doesn’t contain any holes, we generate synthetic
ones using sci-kit-image’s binary_blob method. This function outputs a synthetic
binary image with random blob-like objects based on certain parameters. Those
parameters determine the size of the blobs (blob_size_fraction) and the fraction of
image pixels that are covered by the blobs (volume_fraction). The output of the
function is a matrix of boolean values, where the generated blobs have the value
“true” and everything outside of the blobs is set to “false”. Applied to our dataset
images by element-wise multiplication, all areas not covered by the binary blobs get
invalidated. In order to generate more realistic noise, we combine multiple random
masks with different scales and frequencies, see Fig. 3.40. The idea behind that is to
create a first blob image, that creates blobs of bigger sizes so that the image still has
big valid areas after invalidation that can serve as a reference for the inpainting pro-
cess. A second blob image is generated to create additional small-sized areas within
the areas that would have been invalidated using only the first blob image. As a
way to imitate the grain-like noise that is present in Azure Kinect images, very small
blobs are created in the third blob image. To guarantee a diverse input, the final
noise masks are evenly drawn from multiple categories with varying percentages of
invalid pixels and sizes of holes, see Fig. 3.41. An additional advantage of having

3.3. Enhancement of Depth Images using Deep Neural Networks 81

these multiple noise categories is that they allow us to compare the performance of
the networks on different noise categories in the evaluation. Specifically, we decided
to create six different categories with the hole-to-image area ratios of: (0.01, 0.1], (0.1,
0.2], (0.2, 0.3], (0.3, 0.4], (0.4, 0.5], and (0.5, 0.6]. The noise categories are created by
changing the volume_fraction parameters for the three to-be-fused binary blob im-
ages according to the needed hole-to-image ratio. The exact values can be read in
Table. 3.5. The blob_size_fraction parameter stays the same for the three blob images
over all categories: 0.1 for big blobs, 0.05 for small blobs, and 0.01 for grainy blobs.
These parameters were estimated empirically.

FIGURE 3.40: Noise mask generation process. Three masks are cre-
ated using sci-kit-image’s binary_blob method and fused together
into a composite mask. That composite mask is then applied to a
depth image to invalidate values according to the mask. The size of
the mask is slightly smaller than the depth image size and is indicated
by the red square.

Category Mask1 Mask2 Mask3
(0.01, 0.10] 0.40 0.70 0.70
(0.10, 0.20] 0.40 0.50 0.50
(0.20, 0.30] 0.40 0.35 0.35
(0.30, 0.40] 0.40 0.25 0.25
(0.40, 0.50] 0.40 0.15 0.10
(0.50, 0.60] 0.40 0.03 0.03

TABLE 3.5: Values for the volume_fraction parameters of the three
binary blob masks for each mask category.

Finally, we adopt other classical data augmentation techniques, in addition to
the previous flipping of the images, by applying homogeneous intensity shifts and
artificially generated outliers. We do generate the latter, as we observed pixels that

82 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

FIGURE 3.41: Noise masks from six categories with varying percent-
ages of invalid pixels and sizes of holes that can be generated in the
mask generation process.

are of higher intensity than the neighboring pixels (referred to as outliers) in our cus-
tom dataset. We synthetically generate these outlier pixels for the training dataset,
as those are not present in the NYUV2 dataset. The creation of those outlier pixels is
done according to Algorithm 3.

Algorithm 3 Process of outlier pixel generation

while outlier count not reached do
get random pixel position inside of the illumination mask
if not already an outlier pixel then

mean = mean pixel value of neighborhood
range = range from mean plus margin to maximal pixel value
sample random value from range
add random value to mean as new pixel value
increase outlier count

First, a random x and y coordinate is sampled from the coordinates of the oc-
tagonal illumination mask. Then the mean pixel value of the neighboring pixels is
calculated. The neighborhood is picked to be the pixels that are direct neighbors, also
counting diagonal neighbors. A range is then calculated between the mean value of
the neighborhood, including a margin, and the maximal possible pixel value of the
encoding. The margin is a fixed value based on the observed outliers in the custom
dataset. The range is then used to sample a random value that will be added to the
pixel’s original value at the selected position. This creates outlier pixels that have
greater values than the neighbors, as seen in Fig. 3.42.

3.3. Enhancement of Depth Images using Deep Neural Networks 83

FIGURE 3.42: Generated outliers in the augmentation step. The im-
age on the right shows three generated outliers in a close-up. The
three outliers are recognizable by their strong intensity, compared to
the neighbor pixels.

Network Details

In the following, the network details of our models get briefly described. For more
details, we refer to the corresponding original papers.

Partial Convolution Our first network model is based on the one presented by Liu
et al. [223] and, like the original, follows a U-Net architecture with partial convolu-
tion layers. As a small recap, this method uses a custom convolutional layer that is
conditioned to only use valid pixels for the prediction of missing pixels. The infor-
mation of valid and invalid pixels is passed to the layer for the separation process in
the form of a binary mask. That binary mask is updated in the layer after each partial
convolution. The partial convolutional layer thus consists of a partial convolution
and an internal mask update operation. Additionally, a new loss function made up
of different weighted parts, was introduced by the authors. The advantage of this
method is, that it is an end-to-end method, where an image is given to the network
and the output is an inpainted image, that does not need any further postprocessing.
In contrast to other methods, where the noise is either set to a predefined region or
has a certain shape, this method can be used to inpaint holes/noise of irregular and
arbitrary shapes, which is a perfect precondition for the incomplete depth images
produced by the Azure Kinect. We decided to use the partial convolutional layer,
like Liu et al., in a U-Net architecture, as the simplicity of the architecture makes
it possible to apply the network to bigger images in a reasonable amount of time.
This could potentially also enable the inference of images in real-time, which will
be further investigated in the result section. Furthermore, training the U-Net does
not require a huge amount of data. This was proven in the initial publication of the
architecture by Ronneberger et al. [307], which is a benefit due to our training set

84 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

FIGURE 3.43: Network architecture of our partial convolution U-Net
model, which closely follows the one by Liu et al. [223].

size. In contrast to Liu et al., our model features only one input and output channel,
respectively, though. The complete network structure is depicted in Fig. 3.43.

We chose an input resolution of 5122, as it is the closest square number to the
resolution of the Azure Kinect images. The kernel sizes for the partial convolutions
in the encoder part are 7,5,5,3,3,3,3 and 3, following the presented layer order. The
decoder uses filter sizes of 3 for all convolutions. For all convolutions in the network,
stride values of 2 are used. The implementation of this network was done using
PyTorch 1.10.1 and the existing third-party implementation of Ryan Wongsa for the
U-Net architecture [415] and loss functions. However, adjustments were made due
to the fact that the crucial weight initializations as well as the input normalizations
of the VGG-16 network were missing. Moreover, the implementation of the partial
convolutional layer from the original authors was used [222], too.

GAN Our second network model is based on the GAN architecture presented by
Isola et al. [156] that uses a U-Net for the generator and a convolutional PatchGAN
classifier for the discriminator. The latter penalizes structure at the scale of image
patches. The idea behind this architecture is that low-frequency correctness regard-
ing ground truth input can be accurately forced using a classical L1 loss term in the
generator. Then, the discriminator has to only model the high-frequency structures,
which are usually confined to small local regions, instead of analyzing the image as
a whole. The advantage of this approach is that the network requires fewer param-
eters that have to be optimized, runs faster, and can be applied to arbitrarily large
images. The generator part of the GAN is very close to the architecture presented
in Fig. 3.43: The encoder consists of 8 identical blocks instead of 7, which are Conv-
BN-LeakyRelu blocks that use the same filter sizes of 64, 128, 256, 512, 512, 512, 512,
512. The decoder consists of seven Upsampling-Concat-BN-Relu blocks. Additional
dropouts of 50% are applied to the first three blocks after the normalization process.
A final convolution maps the number of output channels. The input dimensions are
5122 × 3, as three depth images are stacked. All convolutions of the network use
filters of size 4 with a stride of 2. The discriminator consists of one Conv-LeakyReLu

3.3. Enhancement of Depth Images using Deep Neural Networks 85

layer followed by 3 Conv-BN-LeakyReLU blocks and a single Conv-ZeroPadding-
Sigmoid block. This outputs a 302 image patch that can classify a 702 portion of the
input image. The implementation was done using TensorFlow 2.6.0.

Convolutional U-Net As a baseline for comparison of the previous models, we
also utilize a convolutional neural network with a standard U-Net architecture, al-
though models with normal convolutional layers that treat all image pixels the same
and even share filter weights are not ideal for image inpainting. The network archi-
tecture follows the exact architecture presented in Fig. 3.43 with the only difference
that all partial convolutional layers were swapped with regular convolutions.

LaMa: To get a more complete picture and to compare the models with more so-
phisticated networks, we also adopted the LaMa network by Suvorov et al. [367]. It
is specifically designed for the inpainting of large areas by using fast Fourier con-
volutions that provide a large receptive field, as well as an adapted perceptual loss
and large training masks. However, as it is more complex, we expect it to be signifi-
cantly slower and possibly not real-time capable. The premise of the work is, that in
order to effectively fill in large holes, especially early on in the network, layers with
a wide receptive field are crucial. Thus, they employ (nine) Fast Fourier convolution
blocks that consist of two parallel branches, a local one with regular convolutions
and one using Fast Fourier transformations for global context. For details about the
architecture, we refer to the original paper, from which we directly adopted it.

Training Procedure

Liu et al. compared their U-Net architecture with partial convolutional layers against
two GAN architectures in their pre-trained versions, without retraining them on the
same dataset and loss terms as the U-net. Therefore, the comparison was not com-
pletely fair. However, GANs generate results that are coherent in texture and struc-
ture. For that reason, in contrast to Liu et al., we explicitly (re)trained our employed
GAN architecture for the depth image inpainting task, which gives a fair and strong
comparison to the other methods.

The partial convolution, U-Net and GAN model were trained for 7 epochs using
a batch size of 2, due to the huge memory load. As loss function for all three models,
we used, similarly to the partial convolution paper by Liu et al., a weighted combi-
nation consisting of two per-pixel accuracy losses, a perceptual loss, two style losses,
and a total variation loss. For the individual equations and a detailed description,
we refer to the original paper. In short, per-pixel accuracy between the inpainted
image and the target image is forced by the L1 loss. Here, the L1 loss is split in
two: The first one focuses on only the valid pixels and the second one compares
the inpainted hole pixels with the target pixel values. The perceptual loss measures
how similar the high-level features/content of the inpainted image are compared to
the ground truth. On the other hand, the style losses measure how similar in style
the images are. This is done by calculating the difference in correlation between the
feature maps of a given layer. The style loss is calculated on the direct output im-
age as well as on the composite image of the to-be-inpainted image together with
the predictions for the hole pixels. Lastly, the total variation loss is used to ensure
spatial continuity and encourage smoothness in an image. The resulting total loss is
therefore

Ltotal = Lvalid + 6Lhole + 0.05Lperceptual + 120(Lstyleout + Lstylecomp) + 0.1Ltv (3.12)

86 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

We experimented with different weights but found the ones used in the paper to
be the best-performing ones. In the case of the GAN model, the generator loss is a
combination of the previous total loss and the original generator loss as described in
the paper by Isola et al. The resulting loss function for the GAN method is defined
as

LGAN = Lgen + λLtotal , (3.13)

where Lgen is the loss given by the generator, Ltotal is the total loss described in
Equation 3.12 and λ is a weighting factor. We set its value to 100, as done by Isola et
al., due to the fact that the method creates artifacts without or with a lower weighting
value.

For LaMa, we employed a different approach and directly adopted its original
loss function as well as the pre-training it went through. We did this as this model
is a popular state-of-the-art model and we aimed at keeping the comparability with
other works as high as possible and the proposed loss function is a crucial part of
the model. In fact, it consists of multiple terms, namely, the high-receptive field
perceptual loss (that is based on a pre-trained base network with a fast-growing re-
ceptive field), an additional gradient penalty term, as well as an adversarial and a
discriminator-based perceptual loss, which, together, should provide plausible lo-
cal details. Eventually, we additionally trained it with a batch size of 5. The best-
performing epoch, which we selected for evaluation, was the 5th.

3.3.5 Results

The evaluation of all models was done using an Intel Core i5-10400F CPU, 16 GB of
RAM, and an NVIDIA GeForce RTX 2070.

Training Results To evaluate the models’ progress during training, we measured
and plotted the individual loss term values for each batch, see Fig. 3.44 (left). For
convenience, we abbreviate the models’ names with Conv, PConv, and GAN. As
the loss values vary drastically between batches because of the inhomogeneous hole
characteristics, we smoothed the loss curves using an exponential weighted mov-
ing average. The PConv method already converges after the first epoch and then
mostly stagnates. This may be due to the fact that U-Nets are good at propagating
the global image context via skip links, leading to the valid pixels being estimated
with a good performance from the start. The style loss term seems to be compara-
bly high though. In comparison, the Conv method has worse style loss values but
similar results for the remaining loss terms. The GAN method shows the same per-
formance as the Conv method, resulting in almost identical loss values for all loss
terms. Additionally, the generator loss gives an insight into the minimax game of the
generator and discriminator. The high values indicate that the discriminator must
have been good at distinguishing real and generated images throughout the train-
ing, which in turn means that the generated images may still incorporate elements
that make them look fake.

We also tracked the models’ training performance by measuring the mean loss
values of the validation phases that occurred after each epoch, see Fig. 3.44 (right).
The performance of the PConv method on the validation set shows similar results
to the training set performance. However, the style loss values seem to be slightly
lower on the validation set, which brings down the total loss values. Generally, this
could indicate that the model is under-fitted. The same behavior can be observed
in the loss curves of the Conv method, although, here, the L1-hole loss is higher

3.3. Enhancement of Depth Images using Deep Neural Networks 87

FIGURE 3.44: Left: Progress of loss terms during training. Right:
Mean loss term values over validation set.

88 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

than the respective loss of the PConv method, which may suggest that it is better at
filling in holes. The same loss term is also lower for the GAN method. Following
the potential underfitting phenomenon of the other two methods, the GAN method
shows the same behavior.

Inference Timings First, we measured the duration of inference needed for in-
painting a 5122 depth image. A fast inference is crucial for practical real-time appli-
cations, i.e., as a preprocessing step in a longer pipeline. As depth sensors usually
capture with 30 Hz, the inference time must stay below 33 ms for real-time use. To
replicate a data stream of images, the images were inpainted one after another, in-
stead of as a batch. For the GAN method, we measured a pure inference time of
24.3 ms, for the Conv method 24.93 ms, and for the PConv method 9.37 ms. Includ-
ing preprocessing, we get 27.69 ms, 26.29 ms, and 34.34 ms, respectively. The PConv
model takes the longest for the preprocessing as it needs more steps than the other
models, i.e., an extra input mask. However, the time for pure inference is the quick-
est. Generally, even though there is still potential for optimization, these models
are quick enough for real-time application. In contrast, LaMa takes 60.02 ms and,
thus, is significantly slower and not quite real-time capable. Out of interest, we also
tested a diffusion-based model [306] but, as expected, the inference was extremely
slow with 3-4 seconds for an image with 50 sampling steps (which was, as we found,
a “sweet spot” for image legibility and speed). Unfortunately, the inpainting results
were still comparatively poor. And although better output quality can be achieved
with more sampling steps during inference, doing so only impacts inference time
even more, which is why we did not consider latent diffusion-based models further.

Quantitative Results To quantitatively evaluate the performance of our models,
we calculated and compared the mean absolute error (MAE), mean squared error
(MSE), PSNR, and structural similarity index measure (SSIM) on the test sets of the
NYUV2 and SceneNet RGB-D datasets (only depth used). Moreover, we separately
computed the metrics for the different hole/mask categories, which bundle images
with similar ratios of valid/invalid areas to get more detailed insights.

The results on the NYUV2 dataset show that LaMa consistently performs best.
Moreover, we see a better performance of the GAN method on the first four mask
categories, especially if looking at the MAE and MSE, see Table 3.6. The performance
gradually decreases with each category, though, and after the fourth category, the
PConv method overtakes the GAN performance in terms of SSIM and PSNR values.
In comparison, the Conv method is (as expected) the worst-performing one. Gener-
ally, the PConv method seems to be the most consistent method and better at dealing
with bigger holes than the GAN and Conv methods.

Overall, the models seem to perform similarly on the SceneNet RGB-D dataset
as on the NYUV2 dataset (see Table 3.7): For the lower mask categories, the GAN
method outperforms the Conv and PConv methods, while the PConv method shows
better results on the higher categories, and is the most consistent one overall. LaMa
again performs most often the best. However, in terms of SSIM, here, GAN/PConv
perform better.

Qualitative Results After the quantitative evaluation, we did a qualitative evalua-
tion of the inpainting performance based on a selection of test images from different
mask categories. This evaluation is, naturally, subjective but possibly also more re-
latable. Fig. 3.45 shows the results using the NYUV2 dataset. For all three mask

3.3. Enhancement of Depth Images using Deep Neural Networks 89

TABLE 3.6: Inpainting results on the NYUV2 test set using the six
hole categories (percent of invalid pixels; more/bigger holes to the
right). The best value per block is marked in bold. LaMa always
performs best. The GAN method performs second best on smaller
mask categories while the PConv method performs second best on
bigger ones and produces the most consistent results.

Metric/Method (0.01,0.10] (0.10,0.20] (0.20,0.30] (0.30, 0.40] (0.40, 0.50] (0.50,0.60]
MAE/PConv 4.89 5.24 5.10 5.32 5.79 7.61
MAE/Conv 3.53 3.24 3.27 3.52 5.64 13.35
MAE/GAN 1.79 1.77 1.93 2.46 4.48 11.18
MAE/LaMa 0.06 0.18 0.31 0.42 0.64 1.00
MSE/PConv 47.82 54.00 54.21 60.67 77.99 154.54
MSE/Conv 62.90 56.49 58.45 69.16 131.46 612.88
MSE/GAN 6.79 7.34 10.93 16.68 67.83 415.20
MSE/LaMa 0.28 0.87 1.67 2.48 4.81 12.18
PSNR/PConv 35.12 34.81 34.70 34.43 33.27 30.47
PSNR/Conv 32.29 32.40 32.13 31.64 28.59 22.40
PSNR/GAN 41.42 40.51 38.94 37.01 31.13 23.72
PSNR/LaMa 55.04 50.15 47.38 45.74 43.01 39.22
SSIM/PConv 0.9799 0.9771 0.9746 0.9701 0.9630 0.9385
SSIM/Conv 0.9344 0.9230 0.9184 0.9026 0.8819 0.8264
SSIM/GAN 0.9935 0.9874 0.9815 0.9759 0.9480 0.8814
SSIM/LaMa 0.9987 0.9966 0.9943 0.9927 0.9898 0.9842

TABLE 3.7: Inpainting results on the SceneNet RGB-D test set (depth
only). Like in Tab. 3.6, LaMa performs most often best, the GAN
method performs second best on smaller mask categories while the
PConv method performs second best on bigger ones and produces
the most consistent results.

Metric/Method (0.01,0.10] (0.10,0.20] (0.20,0.30] (0.30, 0.40] (0.40, 0.50] (0.50,0.60]
MAE/PConv 66.89 81.85 77.27 65.85 63.67 110.62
MAE/Conv 118.68 103.84 101.80 113.30 182.04 438.79
MAE/GAN 66.49 65.07 72.18 89.61 176.30 414.24
MAE/LaMa 4.28 10.52 16.09 20.75 30.77 45.54
MSE/PConv 21732 23122 21622 18157 16787 32051
MSE/Conv 73128 66152 66116 78239 133677 669006
MSE/GAN 8414 9023 13010 21732 95940 588678
MSE/LaMa 5044 8187 9521 10858 17161 29519
PSNR/PConv 38.83 39.08 39.18 38.91 37.85 35.58
PSNR/Conv 35.50 35.89 35.77 35.41 32.41 26.33
PSNR/GAN 44.37 43.76 42.38 40.34 34.32 26.90
PSNR/LaMa 57.31 53.02 50.59 49.23 46.93 43.82
SSIM/PConv 0.9881 0.9876 0.9867 0.9866 0.9855 0.9818
SSIM/Conv 0.9659 0.9606 0.9556 0.9510 0.9388 0.8919
SSIM/GAN 0.9960 0.9931 0.9885 0.9834 0.9674 0.9166
SSIM/LaMa 0.9958 0.9899 0.9855 0.9829 0.9793 0.9755

90 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

categories, LaMa produces the best results that are very close to the original. The
PConv method is also able to create good results without apparent visual artifacts,
apart from a slight blur in the last row with a mask of 40%-50% hole-to-image ratio.
For the GAN method, the results for the small mask are very close to the ground
truth image. However, on the medium and big masks, we can see slight deteriora-
tions and then even more artifacts occurring, respectively. The Conv method visibly
leads to the worst results throughout all mask categories, as can be seen by the in-
creased blurriness and other (dark, cloudy) artifacts. Generally, we find that the
qualitative results are consistent with the quantitative ones.

Looking at the inpainting results using the SceneNet RGB-D dataset in Fig. 3.46,
we come to similar conclusions, i.e., that LaMa performs better than all the others,
especially for the bigger mask categories. The PConv method creates reasonably
good results for the small and medium mask categories, the GAN performs well in
the small category, and the Conv method is the worst-performing method. How-
ever, on this dataset, all methods except for LaMa have issues with artifacts in the
form of too-bright or too-dark areas that get more severe with bigger masks. This
phenomenon could possibly be because of systemic differences between this dataset
and the one used for training (NYUV2). For instance, this dataset with synthetically
created images generally has sharper edges and objects than the NYUV2 dataset,
which also incorporated errors that slightly degrade the images.

In order to evaluate our models on real-world data, we first investigate the ef-
fects of the inpainting methods on the valid areas. Ideally, they should remain un-
changed. As can be seen in Fig. 3.47, which shows the color-coded deltas between
the original and inpainted images, this is mostly not the case. The PConv method
leads to relatively small differences, mostly along the edges of objects, corners, or
at thin shapes. This could be an effect of the model trying to prevent hard edges
and instead favoring slow transitions. The GAN method performs better at far cor-
ners and edges and, generally, produces images with more even deltas. Moreover, it
creates the sharpest results with more abrupt object transitions. An odd issue with
the GAN method is the distinct artifacts that occur consistently in the upper right
corner. We suspect this to be an issue with the value of the introduced weighting
factor λ for the loss function, as the authors of the original method suggested that
lower values lead to sharper results but, in turn, lead to more artifacts. The Conv
method, again, leads to the worst results and produces the biggest deltas throughout
the whole image. Interestingly, in contrast to the others, LaMa does not change the
originally valid areas at all, which is the best result.

For a final comparison of the models, we compare the resulting images after in-
painting, again, using our own custom dataset. As visible in Fig. 3.48 and Fig. 3.49,
all methods are able to create reasonable predictions for the missing areas, although
the Conv method produces more blurry results. Interestingly, PConv and LaMa as
well as Conv and GAN tend to have a similar behavior. Generally, LaMa tends to
create the most plausible and visually pleasing results, followed by PConv. How-
ever, one drawback of these methods seems to be the prediction around outlier pix-
els. The advantage of LaMa on this real-world dataset is smaller as with the other
datasets though. Moreover, in some cases, the GAN method produces better results,
hence, there seems to be no method that is categorically superior.

Ablation Study To investigate the effects of the individual loss terms, we trained
our partial convolution model (PConv) while switching off one loss term at a time,
e.g., no perceptual-/style-/total variation(TV)/valid loss). While Liu et al. [223]
found that removing the style- or total variation losses leads to significantly worse

3.3. Enhancement of Depth Images using Deep Neural Networks 91

FIGURE 3.45: Visual inpainting results on the NYUV2 test set using
various hole categories (columns). LaMa performs best, the PConv
method performs second best, the GAN struggles with bigger holes,
and the Conv method is the worst.

92 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

FIGURE 3.46: Visual inpainting results on the SceneNet RGB-D test
set (depth only) using various hole categories (columns). All meth-
ods except for LaMa, which performs best, produce distinct arti-
facts. However, PConv and GAN perform reasonably well in the
medium/small categories, and Conv is again the worst-performing
method.

3.3. Enhancement of Depth Images using Deep Neural Networks 93

FIGURE 3.47: Color-coded pixel-wise deltas of originally valid ar-
eas after inpainting using our own dataset. The holes were reinte-
grated from the input data. The Conv method alters the original data
around holes the most (for smoother transitions), the GAN the least,
and LaMa not at all.

94 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

FIGURE 3.48: Inpainting results with our own dataset. The LaMa
method most often produces the best visual results. PConv behaves
quite similar, and both struggles with outliers. However, in some
cases, the GAN performs the best.

3.3. Enhancement of Depth Images using Deep Neural Networks 95

FIGURE 3.49: More inpainting results with our own dataset. Again,
LaMa most often produces the best visual results. PConv behaves
quite similar, and both struggles with outliers. However, in some
cases, the GAN performs the best.

96 Chapter 3. Algorithms and Architectures for Telepresence in Multi-User VR

FIGURE 3.50: Ablation study on inpainted images using PConv and
our dataset. Switching off any loss terms slightly degrades the results.

results, we see comparatively small changes when a loss term is switched off, see
Fig. 3.50. In our case, we see the biggest impact (and degradation) when removing
the valid loss. However, turning off the other loss terms also has slight negative ef-
fects on the results. Hence, the best results can be achieved when incorporating all
loss terms.

3.3.6 Conclusions and Future Work

We presented an approach of real-time reconstruction of missing or invalid areas in
depth images using deep neural networks. In particular, our approach does not use
any guidance by color images. In our approach, we adopted two different U-Net-
based models that originally were designed for color-image inpainting, one using
partial convolutions, and the other one being a patch-based GAN. For comparison,
we took also a basic U-Net and a more sophisticated state-of-the-art model, namely
LaMa. The training was done using the public NYU Depth V2 dataset that we aug-
mented with custom holes. Our quantitative and qualitative evaluations with the
NYUV2 and SceneNet datasets showed that LaMa, overall, produces the best in-
painting results, the GAN method performs especially well on images with smaller
hole-to-image ratios, the partial convolution approach achieves consistently good re-
sults (images with various hole sizes and ratios), and the regular convolution-based
approach fares the worst. Applied to a custom dataset we recorded with an Azure
Kinect sensor, we found that the LaMa model, on average, leads to the visually most
pleasing inpainting results, although the PConv and GAN methods also achieve
reasonably good and coherent results (the latter sometimes even being superior).
To conclude, all methods are able to reconstruct holes of any shape, size, or loca-
tion without any postprocessing procedures, with reasonable to good visual quality.
Also, except for LaMa which is notably slower, they achieve this in a real-time fash-
ion.

3.3. Enhancement of Depth Images using Deep Neural Networks 97

For future work, we would find it worthwhile to also incorporate RGB data as
additional input, if available, to enhance the inpainting results with this extra infor-
mation. It would also be advantageous to create a more realistic noise model that
accurately describes the hole occurrence in the depth images. Other network archi-
tectures such as transformer models, originally from the natural language process-
ing domain, should be investigated to also take advantage of temporal coherency
between subsequent images. Moreover, producing ground truth data for our own
dataset (recorded with the Azure Kinect) would be highly beneficial for the training
and evaluation of the models. One approach for this challenging task would be to
couple the Azure Kinect with another precisely, externally registered depth-sensing
device, such as a stereo camera, from which the depth for the missing areas can be
produced.

99

Chapter 4

Perception of Teleport
Visualizations in Multi User VR

After considering streaming architectures and avatar reconstruction and rendering
methods for telepresence, we now shift the focus to another important aspect of
multi-user VR and telepresence applications: How the participants move through-
out the virtual environments. One of the most popular VR locomotion methods is
the standard teleport metaphor, as it is quick, easy to use and implement, and safe
regarding cybersickness. Hence, we used it, too, for our previously presented telep-
resence application. However, it can be very confusing to onlookers and reduce
their perceived immersion and presence. The reason for this is the discontinuity of
the process, and, therefore, the lack of motion cues. We briefly considered this issue
in Section 1.1.

Now, in this chapter, we deal with the question of how this popular teleport
metaphor can be suitably visualized to onlookers in multi-user VR environments.
To find an answer to this question, we implemented several continuous and dis-
continuous 3D visualizations for the teleport metaphor and conducted a user study
for evaluation. Specifically, we investigated them regarding their ability to prevent
confusion, and spatial awareness as well as perceived spatial- and social presence.

The work presented in this chapter is based on our submitted paper PP1 in Ap-
pendix A.

4.1 Introduction

In the previous chapters, we learned that continuous technological advances and
decreasing costs lead to a growing popularity of virtual reality among researchers,
developers, and consumers alike. The ability to immersively experience virtual envi-
ronments as if actually present makes VR highly interesting for applications ranging
from gaming and entertainment to training and education [414]. See also Section 2.3
for a wide range of example applications. Furthermore, multi-user VR applications
provide co-located or remote participants with the ability to freely interact with each
other and collaborate in shared virtual environments, which has been shown to
be highly beneficial for a wide array of tasks such as liver surgery planning [62],
moderated remote usability testing [54], and computer-aided design and construc-
tion [387]. In these multi-user VR environments, the users get virtually represented
by 3D avatars to enable effective interaction and collaboration. Especially full-body
avatars that realistically depict the user have been shown to be advantageous for the
sense of presence, embodiment [356], trust formation, and task performance [266].
More information about avatars can be found in Section 2.2.2.

100 Chapter 4. Perception of Teleport Visualizations in Multi User VR

FIGURE 4.1: Depiction of the possibly confusing teleport locomotion
in multi-user VR. Left: User teleports to a new location. Right: Af-
ter the instantaneous, discontinuous teleport, the observing user lost
track and is confused.

One of the most important design decisions for a VR system is which type of
locomotion metaphor should be used for traveling greater distances in the virtual
environment [295]. As a reminder, we discussed this and adjacent topics in Sec-
tion 2.2.1. To reiterate the key points, smaller movements are usually handled well
using “room-scale”, in which the actual movements get tracked and directly repli-
cated. Typical locomotion methods for greater distances include (point&click) tele-
portation, redirected walking, walk-in-place, and steering (e.g., via joystick). All
these techniques naturally have different strengths and weaknesses regarding as-
pects such as physical effort, precision, time, etc. [4]. The teleportation metaphor,
for instance, is among the most popular ones, as it is relatively simple, quick, and
proven to be unlikely to induce cybersickness [30, 42]. Cybersickness is a major con-
cern for VR applications. It is similar to motion sickness and is believed to be mainly
caused by a sensory mismatch between the visual and the vestibular and proprio-
ceptive systems [204].

Using the standard teleport locomotion metaphor in multi-user environments,
however, has one significant drawback: The inherent discontinuity of the process
may disrupt multiplayer gameplay and lead to confusion for observers when the
user(’s avatar) seemingly vanishes or emerges from nowhere, as argued by Griffin
and Folmer [133] and reported incidentally by Wang et al. [394]. Figure 4.1 depicts
this scenario. Moreover, this behavior could be easily mistaken to be the result of
network issues, in fact, it would strongly resemble a high-lag connection in online
gaming. Ultimately, the chance for a loss of presence for the observers would be,
presumably, significant. Especially so as it was already established that the abrupt
change of location and the absence of any motion cues can lead to confusion and
a loss of presence for the teleporting user himself [2]. Presence – the sense of be-
ing there/in the virtual environment – is a crucial factor for the quality of the VR
experience, though [330, 300], and should be as high as possible. More about the
concept of presence can be found in Section 2.1.2. Prithul et al. [287], too, identified
the issue of teleportation in multiplayer scenarios and anticipate detrimental effects
to the presence of observers. Hence, they view it as an important direction for future
research.

With this work, we want to tackle this issue and expand on the very sparse re-
search on this topic. Typical dictionary definitions for something “confusing” are:
“Something that is confusing makes it difficult for people to know exactly what is
happening or what to do” [87], or “... because it is difficult to understand” [86].
Therefore, we have implemented several visualization methods to convey the delib-
erate act of teleportation to observing users in a shared virtual environment, similar

4.2. Related Work 101

to Thanyadit et al. [377] and Freiwald et al. [113]. Our main goal is to do a com-
prehensive evaluation of the effects of different teleport visualizations on observers.
Specifically, if the visualizations enhance spatial awareness, prevent confusion, and,
thus, a loss of presence. Therefore, we have formulated the following research ques-
tions:

• R1: Do visualizations help with preventing confusion caused by the teleporta-
tion process?

• R2: Do visualizations help to retain presence when teleporting?

• R3: Do continuous visualizations provide more spatial awareness?

• R4: Which visualization is generally the best (e.g., presence, confusion, user
preference)?

• R5: Do the visualizations differ regarding the distance scalability?

To answer these questions, we have conducted a subsequent study, in which we
investigated the visualizations’ effects on observers, i.e., regarding spatial aware-
ness. In order to guarantee similar conditions and minimize confounding effects,
we opted for a study design with a single observer that views pre-recorded telepor-
tations. In contrast to previous work, we tested multiple scenarios (in/out of-FoV)
and properties such as the spatial and social presence, the plausibility and intuitive-
ness of the visualization as well as the visualizations’ distance scalability. With our
user study and extensive evaluation, we provide valuable insights into this crucial
but under-investigated topic. Moreover, in our study, we did also investigate the
influence of the visualization duration/speed.

4.2 Related Work

Locomotion in virtual reality was and still is extensively researched. The previous
works were most commonly concerned with designing novel advantageous loco-
motion metaphors, as well as examining and comparing them regarding factors of
interest such as cybersickness, presence, user preference, and effectiveness. For in-
stance, Mine [252] was one of the first who described teleportation as a locomotion
metaphor, Bozgeyikli et al. [36] further evaluated the point&teleport locomotion,
Weller et al. [406] recently proposed a novel approach to redirected walking, Wilson
et al. [413] introduced a new method for the walking in place metaphor, Zeleznik
et al. [434] adapted the classic teleport to be a quick dash that provides some op-
tical flow/motion cues and Bhandari et al. [24] compared this technique to regular
teleportation. Interestingly, the latter found no heightened cybersickness using the
dash instead of the standard teleport. A much more comprehensive overview of the
different locomotion metaphors is given by Boletsis [30]. Other works such as the
one by Christou and Aristidou [67] focused on deeper analysis and comparisons of
the locomotion metaphors. In this case, the authors compared steering with telepor-
tation and found the former to lead to more cybersickness and the latter to be faster
yet equally effective. Mayor et al. [241] also analyzed different locomotion methods
regarding presence, cybersickness, and usability and came to similar results. Boletsis
and Cedergren [31] examined a selection of prevalent locomotion techniques regard-
ing their user experience, Lesaca et al. [209] compared different teleport implementa-
tions, and Kruse et al. [191] investigated several jumping gestures for teleportation.
Moreover, Kelly et al. [181] found that rotational self-motion cues positively affect

102 Chapter 4. Perception of Teleport Visualizations in Multi User VR

the spatial updating performance when teleporting. More information specifically
about teleport locomotion can be found in the work by Prithul et al. [287]; gener-
ally, it is found to be highly performant and safe regarding cybersickness, but also
prone to spatial disorientation in the absence of any motion cues and only limited
path integration. Adhikari et al. [2] proposed a hybrid solution between continu-
ous and teleport locomotion to merge their respective benefits by adding a series of
smaller teleport actions to continuous leaning/steering locomotion. With a similar
goal, Griffin and Folmer [133] developed the out-of-body locomotion technique that
switches to a third-person view when a teleport is executed and in which the avatar
gets continuously steered. Similarly, [71] lets the user switch to a bird’s eye view and
navigate from there using raycast aiming.

All these prior works focus on the locomotion method’s effects on the navigating
user himself, though, and do not consider the observer’s perception in multi-user
environments. Even when looking at the related research topic of group navigation,
where the focus lies on designing systems in which groups of people can navigate
a common virtual space together, the findings about multi-user locomotion visual-
ization are sparse. In this area, the main goals are finding and maintaining suitable
formations, as well as, object avoidance, and improving the comprehensibility of the
process. Recent examples from this area are the works by Chheang et al. [64] and
Weissker and Froehlich [403].

How locomotion by teleportation is perceived by others and how it could be fa-
vorably visualized is hardly researched yet. Accordingly, Prithul et al. [287] came to
the same conclusion in their review about the teleportation metaphor. To our knowl-
edge, the only works that explicitly looked into this topic are the ones by Thanyadit
et al. [377] and Freiwald et al. [112, 113]. The latter first compared steering-based
locomotion with teleportation, as well as avatar appearance, in a competitive multi-
user, shared virtual environment. The task was to play a virtual match of snow-
ball and hit the opponent as often as possible. While the player who was to be
questioned was limited to the steering locomotion, the opponent either used steer-
ing too or teleportation. The authors found that the continuous steering locomo-
tion ranked significantly higher regarding co-presence and perceived fairness, while
the avatar’s appearance had only a negligible effect. These results reinforce the as-
sumption of a reduction in the presence and other adverse effects of teleportation
in contrast to continuous locomotion methods. In the subsequent work, Freiwald et
al. [113] did focus on the issue of discontinuous teleport locomotion in shared VR
environments. To create a better experience and increase spatial awareness for ob-
servers, they proposed a system that temporally depicts special “smart avatars” that
mimic the locomotion of the user to the observers. The idea is that these avatars
do a continuous transition to the target destination, although the actual teleport is
discontinuous. Four different transition techniques were implemented and evalu-
ated regarding spatial awareness, attractiveness, and pragmatic and hedonic quality
scores. Generally, the transitions consist of a walking animation, or depict some kind
of trail. The proposed continuous transitions were rated higher for all these factors.

Thanyadit et al. [377], which, together with the later work by Freiwald et al. [112,
113], is the work most closely related to ours, did also identify the unique issues of
teleportation in multi-user settings. Hence, they designed 4 substituted visualiza-
tions as a remedy, namely: hover, jump, fade, and portal. The former two are rather
similar and resemble the continuous dash locomotion technique. The fade visualiza-
tion slowly fades the avatar out and in, at the start and target location, respectively.
The portal method uses separate portals to achieve a similar effect. The authors also

4.3. Proposed Teleport Visualizations 103

identified general design requirements, being time efficiency, traceability, intuitive-
ness, and recognizability, and briefly discussed the visualizations. Moreover, they
did a pilot study with 5 participants that found the hover visualization to be the
preferred one.

Although their work featured multiple similar visualizations as well as evalua-
tion properties as ours, they lack a large, formal evaluation. To this date, the only
comprehensive evaluation of teleportation visualizations for observers is the one by
Freiwald et al. [113]. However, in contrast to us, they did not test multiple sce-
narios, e.g., the influence of teleportation strictly in the observer’s FoV compared
to teleporting in/out of it, or the visualizations’ distance scalability. Moreover, the
visualizations’ effect on the observers’ spatial- and social presence as well as how
plausible and intuitively understandable the visualization depicts the teleportation
process were not evaluated, yet.

4.3 Proposed Teleport Visualizations

In order to investigate which visualization would be best suited to convey the tele-
portation process to observers in a multi-user setting, we decided to implement a
variety of visualization methods. Important properties which we took into consid-
eration were the degree of predictability and traceability the visualization provides,
the time a convincing representation would take, the intuitiveness of the visualiza-
tion, and the general plausibility. The first three properties are similar to the require-
ments Thanyadit et al. [377] proposed. The plausibility, naturally, is dependent on
the exact setting and the user’s representation itself, i.e., the kind of avatar. For our
investigation, we focused on full-body avatars and a generic environment setting
which should make the results more widely applicable. In addition to the standard
point&click teleport that instantly changes the avatar’s location, we opted to im-
plement a teleport with particle trace, a portal metaphor, a beam particle effect, a
quick dash, and a complete walking animation. As all these other methods take
time, in contrast to the standard teleport, we also included a delayed teleport for a
time-normalized comparison.

In the following, we briefly describe the individual visualizations.

• The standard point&click teleport (P&C, or just teleport from now on) instantly
changes the character’s location to the target destination without any visual
feedback to observers, see Fig. 4.2 (a). Although the teleport line/arc that the
user himself usually can see could also be visualized for observers, we decided
against it as this is not the usual practice. Additionally, we have a delayed
implementation in which the character only arrives after the same amount of
time as with the other visualizations (P&C S, or slow teleport).

• The particle trace (P. Trace) visualization is implemented using a particle sys-
tem and shows many continuously emerging (and slowly fading out) particle
spheres along the path from start to destination, see Fig. 4.2 (b). This trace
of particles provides a motion cue to observers. This metaphor is inspired by
several computer games using similar techniques, such as League of Legends
(“Pike” character), as well as, the “dissolve” transition by Freiwald et al. [113].

• The beam effect is a warping- and glowing effect briefly applied to the charac-
ter’s material at the start and end of the teleportation, see Fig. 4.2 (c). It resem-
bles beam effects in many sci-fi movies (e.g., Star Trek) and computer games

104 Chapter 4. Perception of Teleport Visualizations in Multi User VR

TABLE 4.1: Properties of the visualizations. Continuous ones should
be more traceable but less time efficient. Walking should be intuitive
and plausible, the teleport not.

Property P&C P. Trace Beam Portal Dash Walking

Traceability - + - 0 + +

Time Efficiency + - + 0 - -

Intuitiveness - 0/+ + + 0 +

Plausibility - 0 0 0 0 +

and is also part of the “dissolve” transition by Freiwald et al. [113] and similar
to the “Fade” visualization by Thanyadit et al. [377]. It is non-continuous and
rather quick.

• The portal metaphor is generally similar to the beam effect, see Fig. 4.2 (d).
However, instead of applying a visual effect on the character, a portal emerges
through which he then steps. At the destination, another portal pops up from
which the character reemerges. It is similar to the one by Thanyadit et al. [377].

• The dash visualization is similar to the one in [24] and the hovering metaphor
in [377], see Fig. 4.2 (e). The full-body avatar is quickly and continuously trans-
lated in a direct line to the destination, thus, providing the observer with mo-
tion cues, similar to the particle trace.

• The walking visualization is a fully-fledged, pre-recorded walking animation
that is played and shown to the observers, see Fig. 4.2 (f). This should help to
increase the plausibility and be the most natural visualization, depending on
the speed/distance.

Table 3.1 shows an overview of the visualizations we decided to implement and a
comparison of their properties. Again, the plausibility is highly context-dependent.

In general, the visualizations can be classified as continuous and non-continuous
ones. The former usually feature higher tractability and presence but tend to be less
time efficient (at least for the teleporting user) [70]. Example visualizations for this
category would be the dash, the particle trace, and, on the far end of the spectrum,
the full walking animation. Non-continuous visualizations would be the beam ef-
fect, the portal, and, on the other end of the spectrum, the extreme case of the stan-
dard teleport.

4.4 Study

To conduct a user study about the teleportation depiction and its effects (see the last
paragraph of Section 4.2), we have implemented all the aforementioned visualiza-
tions using the Unreal Engine 4.26. In the remainder of this section, we first list the
hypotheses that we formulated based on our research questions, which we stated
at the end of Section 4.1, then describe the experiment which we designed for this
study, and finally, also detail the experiment’s procedure.

4.4.1 Hypotheses

Based on prior work about locomotion in virtual reality, and our own considera-
tions, we defined the following eight hypotheses to answer our research questions.

4.4. Study 105

a b

c d

e f

FIGURE 4.2: Our teleport visualizations: None (the standard point &
click teleport and the delayed variant) (a), particle trace (b), beam (c),
portal (d), dash (e), and walking (f).

106 Chapter 4. Perception of Teleport Visualizations in Multi User VR

From research question R1, and the report by Wang et al. [394], and the definition of
confusing (see Sec. 4.1) we directly derive hypotheses H1 and H2:

• H1: A teleport visualization makes the locomotion process more intuitively
understandable.

• H2: A teleport visualization makes the locomotion process more plausible.

Similarly, to answer research question R2, we formulate hypotheses H3 and H4:

• H3: A teleport visualization has a positive impact on the perceived spatial pres-
ence.

• H4: A teleport visualization has a positive impact on the perceived social pres-
ence.

It was already established that continuous locomotion tends to provide a higher
presence for the teleporting user [70], thus, it arguably holds also for the observers.

To check research question R3, we decided to focus on the abilities to track and
relocate a person, thus, we raise the hypotheses that

• H5: Continuous teleportation visualizations increase the ability to track the
person.

• H6: Continuous teleportation visualizations increase the ability to quickly re-
locate the person.

This is a natural assumption to make, as a continuous visualization directly provides
visual cues to the observer. Moreover, Freiwald et al. [113] reported higher spatial
awareness for observers by using continuous visualizations for teleport locomotion.

As the walking animation is the most natural metaphor (at least when the speed
is appropriate), we answer the research question R4 by hypothesizing (similar to
Freiwald et al. [113]) that

• H7: The walking animation is preferred the most by the users.

Lastly, we would expect that the continuous visualizations have inherently a more
limited range of distances/speeds in which they are convincing and effective. There-
fore, to answer research question R5, we formulate the hypothesis H8:

• H8: Continuous teleport visualizations exhibit a lower distance scalability.

4.4.2 Experimental Setup

To test the teleport visualizations, we created a 3D office scene in the Unreal En-
gine 4.26. As to not distract the participants, the 3D scene is rather minimalistic and
free of clutter, yet, the lighting and the used meshes are of high quality. We imple-
mented all the teleport visualizations that we described in Chapter 4.3 and opted
to use a high-fidelity MetaHuman avatar for the teleporting character. However, to
keep the performance reasonably high, we had to lower the avatar’s hair’s fidelity.
The participants were supposed to stand in the middle of the room and were not
represented by any avatar themselves, again, to minimize distractions. To guaran-
tee comparable conditions for all participants and to minimize confounding effects
between subjects and between different visualizations, we pre-recorded animations
using the OptiTrack motion capture system for the teleporting character to perform

4.4. Study 107

Participant Participant

FoV FoV

Scenario 1: Teleport in FoV Scenario 2: Teleport out of FoV

Start
Start

Target

Target

FIGURE 4.3: Top-down view of the scene setup of our experiment in
VR. Scenario one (in-FoV) is depicted in blue (left), and scenario 2
(out-of-FoV) is in green. Both scenarios consist of a two-way telepor-
tation to the destination (full arrow) and back (dotted arrow). The
exact positions and angles were randomized.

and opted to only have one observer at a time. For each of the different teleport visu-
alizations, the procedure was the same: the character looks around briefly, executes
the teleport by pointing the controller in the destination direction, the visualization
is shown, and the character arrives at the target destination. Finally, the character
turns around and teleports back to the original position. We chose this two-way
teleportation path in an effort to maximize the effect size.

In our experiment, we opted to test two scenarios in a within-subject design. In
the first one, the character starts in full view of the participant and teleports either
from left to right or the other way around. The destination (and the full path) was
always in view, too. We chose this teleport setup in order to have distances as large
as possible in the FoV. The order in which the teleport visualizations were applied
throughout the use case was randomized. Also, to reduce the predictability, possi-
ble mental fatigue and prevent confounding learning effects, the exact teleport angle,
and therefore target destination, was slightly randomized. The distance was always
the same, though. For the second scenario, we focused on a more advanced setting
with a higher potential for a reduction in presence, namely, when the target desti-
nation is out of view of the observing user. The setup was principally the same as
before, however, this time, the character’s target destination was set up to be behind
the observing user. Again, the visualizations’ order as well as the exact target des-
tination were slightly randomized, meaning the character sometimes teleported to
the observer’s back left or back right. Figure 4.3 depicts the setup for both scenarios.
The participants always had to go through both scenarios, although the order was
randomized.

In order to quantitatively measure the observers’ ability to find or track the tele-
porting user, we used the HMD’s built-in eye-tracking system and measured the
time the participants looked (roughly) at the teleporting character. Additionally, the
participants had to point and track the character with a virtual laser pointer, which

108 Chapter 4. Perception of Teleport Visualizations in Multi User VR

we again tracked.
Additionally, to investigate the effect of the visualizations’ duration and their

scalability regarding the teleportation distance, we decided to perform our experi-
ment again with a faster teleport/visualization speed. Empirical tests we conducted
led us to use the durations of 1.42 seconds for the original, slower variant and 0.71
seconds for the faster one over a teleport distance of 2.88 meters. Thus, theoretically,
the user had a speed of 2.03 m/s and 4.06 m/s. The animations were sped up accord-
ingly from their original speed to match the durations. The eventual durations were
always the same for each visualization during the experiment, with the exception of
the standard teleport, which is performed instantly.

Although we employ a within-subject design for the two scenarios (in/out of the
field of view) to get sound results with a reasonable amount of participants, for the
second, faster experiment variant, we made sure to recruit new participants that did
not take part in the original one to reduce the repetitiveness. This makes our study,
ultimately, a mixed design study (a combination of a between-subjects design and a
within-subjects design). We find this to be a good compromise.

4.4.3 Procedure

The study procedure, which is depicted in Fig. 4.4, started with the participants
being informed about the study and its purpose and them giving their consent.
However, the exact goal was not revealed to them; only that it involved multi-user
VR. Then, they were asked to fill out a pre-questionnaire with demographic data,
their experience in VR and with games with avatars, cybersickness, etc. After this,
the participants were given a minute to familiarize themselves with the HMD and
the virtual 3D environment. Additional training was not necessary, as the task was
simply observing and pointing at the avatar. Eventually, the actual experiment (ei-
ther the slow or fast variation) started in which the participants had to observe the
teleportation visualizations (one after another), track the character, and answer our
questionnaires (see below). This procedure then was repeated directly for the other
of the two scenarios. Finally, they were again asked about cybersickness and any
comments on a post-experiment questionnaire.

We decided to let the participants complete the questionnaires directly in VR. The
reason is that recent research on using presence questionnaires in VR suggests that
this reduces the time needed for adjusting between VR and the real world, reduces
potential distracting cues from the real world, and, most importantly, reduces the
occurrence of breaks in presence [330]. Concretely, after each visualization through-
out a scenario, the user was presented with a black screen on which text questions
about spatial and social presence appeared one after each other. At the same time,
the questions were also read out loud by an assistant. The verbally given answers
were written down by the assistant. We decided to limit ourselves to two questions
each to reduce the repetitiveness and the time. The exact questions are listed in Ta-
ble 4.2 and had to be answered using a 7-point Likert scale. The questions are a
subset we carefully selected from the more comprehensive presence questionnaire
by Makransky et al. [231]. In addition to answering the questions about presence,
the participants had to rank the visualizations regarding several criteria, such as
plausibility or target anticipation, after completing each of the two scenarios. The
criteria are listed in Table 4.3. This ranking was also performed in VR. For the rank-
ing, the participants were presented with a gallery of enumerated images of all the
visualizations, serving as a reminder, and had to order them, one time per criteria.
Again, the verbally given answers were written down by the assistant.

4.4. Study 109

Info / Consent

Demographics Quest.

VR Familiarization

VR Experiment

Ranking

Questionnaire

Observe Visualization

Sc
en

ar
io

 1

Questionnaire

Observe Visualization

Sc
en

ar
io

 2

Post-Exp.Quest.

x6

x6

Ranking

Slow Fast

FIGURE 4.4: Diagram of the study procedure. Each participant ex-
perienced both scenarios (in-FoV/out-of-FoV) but took part only in
either the slow or the fast experiment variant.

TABLE 4.2: Our questionnaire about social presence (1./2.) and
spatial presence (3./4.), which is based on the Multimodal Presence
Scale [231]. Answers from “None” to “Very much” using a 7-point
Likert scale.

1. I felt like I was in the presence of another person
in the virtual environment.

2. The person in the virtual environment appeared
to be sentient (conscious and alive) to me.

3. The virtual environment seemed real to me.
4. While I was in the virtual environment, I had a

sense of “being there”.

110 Chapter 4. Perception of Teleport Visualizations in Multi User VR

TABLE 4.3: Our questionnaire in which the participants had to rank
the visualizations according to the various criteria listed below. Each
item begins with “Order the visualizations by”.

1. how plausibly they represented the movement.
2. how intuitively they represented the movement.
3. how well you could anticipate the destination of

the other person with the help given by the visu-
alizations.

4. how fast you could find the other person after
the locomotion took place.

5. perceived speed.
6. how much you liked them.

4.5 Results

Here, we first describe the participants and demographic data and then present qual-
itative data from our questionnaires as well as additional quantitative results.

4.5.1 Participants

For our study, we recruited n = 52 participants with a distribution of 76.9 % men
and 23.1 % women. In our mixed design, a random half of the participants took part
in the slow experiment variant and the other half in the fast one, but all participants
experienced both scenarios. The participants’ ages’ ranged between 18 and 71 years
with an average age of 30.98 (SD = 12.9) years. Asked about previous experience
with VR, 36.5 % reported to have none or very little (less than 5 times), 17.3 % stated
to have moderate experience (5 to 10 times), and 46.2 % had extensive experience
(more than 10 times). Furthermore, 15.4 % of the participants stated to not have any
awareness of the teleportation metaphor for locomotion (in general, not necessarily
regarding VR), while 34.6 % reported to be not familiar with seeing another player
as an avatar in virtual 3D worlds. Regarding previous experience with multiplayer
games (first/third-person only), 23.1 % reported to have none or very little (less than
5 times), 17.3 % stated to have moderate experience (5 to 10 times), and 59.6 % had
extensive experience (more than 10 times).

4.5.2 Qualitative and Quantitative Data

For our presence data, which we gathered using questionnaires with 7-point Lik-
ert scales, we assumed the data to be normally distributed. This assumption was
confirmed by Shapiro-Wilk tests that we performed for validation. To statistically
evaluate our data, we then conducted repeated measure ANOVA to check for sta-
tistically significant differences between groups, followed up by pairwise posthoc
testing using dependent samples t-tests with Bonferroni correction, to find the ex-
act groups with significant differences. As we did employ a different measurement
method for our second questionnaire, namely relative rankings between the visual-
izations, we did assume to have not normally distributed data. This was confirmed
by Shapiro Wilk-tests. Therefore, we employed the Friedman test, followed up by a
pairwise Bonferroni corrected Wilcoxon signed-rank test. Lastly, for the tracked hit
data, we had no definitive assumption for the distribution, which is why we again
performed Shapiro-Wilk tests. As they were not normally distributed according to

4.5. Results 111

the tests, we employed the non-parametric evaluation process for this data. We al-
ways assumed the level of significance (alpha) to be 0.05, as usually done. Note that
we directly show only one plot of the four scenario-variant combinations for each
investigated criterion to keep the evaluation reasonably long and clear. We selected
the ones that we found most representative. For the same reasons, we describe only
the statistical details for the slow experiment variant in detail, as we find it more
meaningful. However, in the discussion part, we also consider the most interesting
results of the fast variant and all the statistical data is listed in corresponding tables
at the end of the result section. Moreover, all plots can be found in Appendix B.

Cybersickenss In regard to cybersickness, the average Likert Score before the ex-
periment was 1.44 (SD = 0.84), which increased slightly to 1.59 (SD = 1.09) after the
experiment. Specifically, before the experiment, 75.0 % of the participants reported
not having any cybersickness (no feeling of nausea, dizziness, or discomfort). 21.1 %
of the participants (11 participants) reported having just slight feelings of nausea,
dizziness, or discomfort, and 3.8 % (2 participants) reported moderate levels of such
feelings. The cybersickness ratings after the experiment stayed mostly the same, or
increased marginally, for the participants who had originally none. Only one par-
ticipant started to have a strong feeling of cybersickness. The two participants that
originally reported moderate cybersickness, reported after the experiment to have
less. Participants that originally reported slight feelings of nausea, dizziness, or dis-
comfort, reported mostly the same afterward.

Presence To measure the presence, we aggregated the two social presence and spa-
tial presence questions, respectively. For the social presence in the “in the field of
view” (IFoV) scenario and slow variant, the walking visualization got the high-
est ratings (M = 4.42, Mdn. = 4.75, SD = 1.87), while the slow teleport (M =
3.25, Mdn. = 3.5, SD = 1.45) and dash (M = 3.25, Mdn. = 3.5, SD = 1.48) got the
lowest. We found the data to be normally distributed and ANOVA (p = 0.0001)
revealed significant differences between the visualizations. Posthoc testing revealed
these to be between the slow teleport and walking (p = 0.0038), teleport and walk-
ing (p = 0.0445), and dash and walking (p = 0.018). Note, in our notation, the latter
visualization is always the one that was rated higher. For the “out of the field of
view” (OFoV) scenario, we got similar results: the walking visualization was again
rated highest (M = 4.31, Mdn. = 4.5, SD = 1.73), the dash (M = 2.98, Mdn. =
2.5, SD = 1.5) and slow teleport (M = 3.37, Mdn. = 3.25, SD = 1.41) the lowest, see
Fig. 4.5 (top). Again, the data was found to be normally distributed and ANOVA
revealed significant differences (p < 0.0001). Posthoc testing showed significant dif-
ferences between the slow teleport and walking (p = 0.0024) and dash and particle
trace/beam/portal/walking (p = 0.0437/0.0326/0.0477/0.003). The pair of teleport
and walking barely missed the threshold with a p value of 0.0521.

For the spatial presence, we found the ratings generally to be slightly higher.
In the IFoV scenario, the walking visualization was again rated the highest (M =
5.19, Mdn. = 5.5, SD = 1.32), the rest were closer together this time, and the portal
was rated lowest (M = 4.35, Mdn. = 4.0, SD = 1.43). As before, ANOVA indicated
significant differences (p = 0.0007), and posthoc testing revealed them to be only be-
tween the dash and the walk visualization (p = 0.0105). However, the pair of slow
teleport and walking missed the threshold just slightly with p = 0.0683. In the OFoV
scenario, walking was rated highest again (M = 5.23, Mdn. = 5.25, SD = 1.3), but
this time the dash was rated lowest (M = 4.23, Mdn. = 4.25, SD = 1.58), see Fig. 4.5

112 Chapter 4. Perception of Teleport Visualizations in Multi User VR

FIGURE 4.5: Social (top) and spatial (bottom) presence results in the
out-of-FoV scenario and slow variant. The walking visualization is
rated highest while the dash is rated lowest.

(bottom). ANOVA returned p < 0.0001 and posthoc testing revealed significant dif-
ferences between the slow teleport/particle trace/beam/portal/dash and walking
(p = 0.0273/0.0202/0.0358/0.0184/0.01). The pair of teleport and walking missed
slightly with p = 0.0708.

Plausibility and Intuitiveness Regarding the questions of how plausible and intu-
itively understandable the visualizations were, we got rather similar results, also for
both scenarios (IFoV/OFoV). In all cases, walking was rated the highest (i.e., plau-
sibility, IFoV: M = 5.42, Mdn. = 6, SD = 1.27), and both teleports (i.e., plausibility,
IFoV: M = 1.77/2.54, Mdn. = 2/2.5, SD = 1.42/1.78), as well as the dash (i.e., plau-
sibility, IFoV: M = 2.11, Mdn. = 1.5, SD = 2.08), were rated the lowest, see for exam-
ple Fig. 4.6. The data was found to be not normally distributed. After the Friedman
test, which indicated significant differences, we found them in posthoc testing to be
between the walking visualization (rated higher) and all other ones regarding plau-
sibility, for both the IFoV scenario (p = 0.0002/0.001/0.0061/0.006/0.0169/0.0001),
and the OFoV scenario (p = 0.0002/0.0003/0.0191/0.0143/0.0119/0.0002). In the
case of intuitiveness, significant differences were found again for the walking vi-
sualization (rated higher) and all other ones (except the particle trace in the OFoV
scenario). In the IFoV scenario, we got: p = 0.0002/0.0003/0.0184/0.02/0.0003,

4.5. Results 113

FIGURE 4.6: Results for the plausibility (top) and intuitiveness (bot-
tom) rankings in the out-of-FoV scenario and slow variant. Walking
is rated highest, while both teleport variants and dash got rated the
lowest.

and in the OFoV scenario p = 0.0002/0.0004/0.0004/0.0065/0.0004. Moreover,
in the IFoV scenario, both teleports were rated significantly lower than the beam
(p = 0.0028/0.0374), and in both scenarios, the slow teleport was rated lower than
the particle trace (IFoV: p = 0.0028, OFoV: P = 0.0436).

Target Anticipation and (Re-)Spotability Our results regarding target anticipa-
tion as well as the ease of (re-)spotting the person after the locomotion show that the
walking visualization was rated the highest for both criteria and both scenarios (i.e.,
target anticipation/spotability, IFoV: M = 5.15/5.46, Mdn. = 6, SD = 1.12/1.07),
see for example Fig. 4.7. The dash and particle trace followed suit, while both tele-
ports (i.e., IFoV, target anticipation: M = 1.08/1.5, Mdn. = 1/1, SD = 1.2/1.6, i.e.,
IFoV, spotability: M = 0.46/1.15, Mdn. = 0/1, SD = 0.65/1.12) were rated lowest.
The data was again not normally distributed. Significant differences were found be-
tween many visualizations: In the case of target anticipation, we found significant
differences between the beam visualization and particle trace/dash/walking (IFoV:
p = 0.0014/0.0138/0.0003, OFoV: p = 0.0007/0.0046/0.0001), between the slow
teleport and particle trace/portal/dash/walking (IFoV: p = 0.0003/0.0387/0.0017/

114 Chapter 4. Perception of Teleport Visualizations in Multi User VR

FIGURE 4.7: Results of the target anticipation (top) and (re-) spotabil-
ity (bottom) rankings in the in-FoV scenario and slow variant. Walk-
ing is rated the highest, particle trace and dash follow suit. Both tele-
ports rank the lowest.

0.0002, OFoV: p = 0.0008/0.0034/0.0002/0.0002), between teleport/dash and walk-
ing (IFoV: p = 0.0002/0.0007, OFoV: p = 0.0003/0.0156), as well as between teleport
and particle trace/dash (IFoV: p = 0.004/0.0002, OFoV: p = 0.0060/0.0012). In the
OFoV scenario, we found additionally the portal and walking (p = 0.0037) to be
rated significantly different.

For the (re-)spotability, we found rather similar significant differences. Specif-
ically, we found them for the IFoV scenario to be between the beam and all other
ones except the teleport (p = 0.0027/0.0001/0.0051/0.0002/0.0002), slow teleport
and particle trace/portal/dash/walking (p = 0.0001/0.0003/0.0001/0.0001), be-
tween teleport/portal/dash and walking (p = 0.0001/0.0044/0.0006), between tele-
port and portal/dash (p = 0.008/0.0002), and between teleport/portal and parti-
cle trace (p = 0.0002/0.0125). For the OFoV scenario, we also found rather simi-
lar significant differences: between beam and slow teleport/walking/dash/particle
trace (p = 0.0204/0.0013/0.0027/0.0072), slow teleport and walking/dash/particle
trace/portal/teleport (p = 0.0006/0.0004/0.0005/0.0170/0.0293), particle trace/por-
tal/teleport and walking (p = 0.0169/0.0024/0.0027), as well as between teleport
and dash/particle trace (p = 0.0014/0.0129).

In addition to the questionnaires, we employed controller and eye tracking to

4.5. Results 115

quantify possible differences in the trackability of visualizations. Fig. 4.8 shows rep-
resentative results. Regarding the controller tracking, the particle trace (i.e., IFoV:
M = 79.4, Mdn. = 85.8, SD = 19.4), dash (i.e., IFoV: M = 83.4, Mdn. = 88.8, SD =
17.3), and walking (i.e., IFoV: M = 83.6, Mdn. = 88.3, SD = 17.9) showed the
highest results for both scenarios. The data was found to be not normally dis-
tributed. The Friedman test and posthoc testing revealed that, in the IFoV sce-
nario, significant differences exist between the slow teleport and dash/walking (p =
0.0015/0.0068), between the teleport and particle trace/beam/dash/walking (p =
0.021/0.0230.0003/0.0005), between portal and particle trace (p = 0.0464), also be-
tween beam/portal and walking (p = 0.03/0.0034), and between portal and dash
(p = 0.0031). We got rather similar results for the OFoV scenario: Significant differ-
ences were found between the slow teleport and dash/walking (p = 0.0111/0.0329),
teleport and particle trace/dash/walking (p = 0.0046/0.0002/0.0034), also between
beam and dash (p = 0.0091), and portal and dash/walking (p = 0.0046/0.0042).
For the gaze tracking, the hit ratio was generally higher, and the differences be-
tween visualizations were smaller. However, walking (i.e., IFoV: M = 88.4, Mdn. =
93.76, SD = 11.81), dash (i.e., IFoV: M = 86.6, Mdn. = 93.78, SD = 14.8) and par-
ticle trace (i.e., IFoV: M = 85.1, Mdn. = 90.59, SD = 15.15) still ranked the highest.
Significant differences were found between: slow teleport and dash/walking (IFoV:
p = 0.0028/0.0002, OFoV: p = 0.0211/0.0211), teleport and dash/walking (IFoV:
p = 0.0193/0.0056, OFoV: p = 0.0008/0.0002), and between portal and walking
(IFoV: p = 0.0176, OFoV: p = 0.0007). In the OFoV scenario, we got addition-
ally: teleport/beam and particle trace (p = 0.0034/0.0101), beam and dash/walking
(p = 0.0031/0.0004), and portal and dash (p = 0.0042).

Perceived Speed and User Preference The standard teleport was perceived as
the quickest for both scenarios (i.e., IFoV: M = 6, Mdn. = 6, SD = 1.39), while
the slow teleport (i.e., IFoV: M = 1.65, Mdn. = 1, SD = 2.04) and particle trace
(i.e., IFoV: M = 1.85, Mdn. = 2, SD = 1.49) were perceived as the slowest, see
Fig. 4.9. The data was not normally distributed. Significant differences were found
between (IFoV) slow teleport/particle trace/beam/portal/dash and teleport (p =
0.0002/0.0012/0.0006/0.0168/0.017), and between particle trace and walking (p =
0.0239). For the OFoV scenario, we found them to be between slow teleport/particle
trace/teleport and beam (p = 0.0196/0.0252/0.0003), slow teleport/walking/dash/
particle trace/portal and teleport (p = 0.0002/0.0004/0.0004/0.0002/0.0004).

We found the walking visualization to be the most preferred one for both scenar-
ios (i.e., IFoV: M = 4.38, Mdn. = 5, SD = 1.88), and the slow teleport (i.e., IFoV: M =
1.31, Mdn. = 1, SD = 1.32) and dash (i.e., IFoV: M = 1.42, Mdn. = 1, SD = 1.68) the
least preferred ones, see Fig. 4.10. The data was not normally distributed. We found
significant differences between (IFoV) the slow teleport/teleport/dash and beam
(p = 0.0011/0.0425/0.0058), between slow teleport and particle/portal/walking
(p = 0.009/0.008/0.0045), and between the dash and particle/walking (p = 0.0424/
0.0004). For the OFoV scenario, we found them to be between slow teleport and
beam/walking/particle trace/portal (p = 0.0012/0.0003/0.0030/0.0142), between
dash/teleport and walking (p = 0.0002/0.0114), and between dash and particle
trace (p = 0.0032).

We did also compare the individual results between the scenarios and experi-
ment variants. For the former, we found the differences to be generally very small
and not statistically significant, see for a representative example Figure 4.11 (top).
Between the experiment variants, the differences were more noticeable, although
they were still mostly not statistically significant, see for example Fig. 4.11 (bottom).

116 Chapter 4. Perception of Teleport Visualizations in Multi User VR

FIGURE 4.8: Controller (top) and eye tracking (bottom) hit rate results
in the out-of-FoV/in-FoV scenario and slow variant. The continuous
walking, dash, and particle trace visualizations get the highest rates.
However, for gaze tracking the hit rates are generally higher and dif-
ferences smaller.

FIGURE 4.9: Ranking results for perceived speed in the in-FoV sce-
nario and slow variant. The standard teleport is rated highest while
the slow teleport is rated lowest.

4.5. Results 117

FIGURE 4.10: User preference ranking results in the in-FoV scenario
and slow variant. Walking is rated highest, and both teleports and
the dash are the lowest.

FIGURE 4.11: Relative delta scores of the visualizations between the
IFoV/OFoV scenario (top) and slow/fast variant (bottom) In the for-
mer, the differences are mostly small but continuous visualizations
tend to perform better. In the latter, one can observe more noticeable
differences leading to an equalizing effect (e.g., walk decreasing, dash
increasing).

118 Chapter 4. Perception of Teleport Visualizations in Multi User VR

TABLE 4.4: All data (mean, median, standard deviation) of the
IFoV(I)/OFoV(O) scenarios and slow(s)/fast(f) experiment variants.

Property P&C S P&C P. Trace Beam Portal Dash Walking
M Mdn. SD M Mdn. SD M Mdn. SD M Mdn. SD M Mdn. SD M Mdn. SD M Mdn. SD

Social Pres. I/s 3.25 3.50 1.45 3.44 3.75 1.54 3.63 4.00 1.57 3.58 3.75 1.54 3.56 3.75 1.36 3.25 3.50 1.48 4.42 4.75 1.87
Social Pres. O/s 3.37 3.25 1.41 3.62 3.50 1.42 3.85 3.75 1.59 3.69 3.50 1.46 3.80 4.00 1.46 2.98 2.50 1.50 4.31 4.50 1.73
Social Pres. I/f 3.29 3.00 1.63 3.50 3.25 1.50 3.77 3.50 1.63 3.62 4.00 1.56 3.73 3.50 1.74 3.23 2.75 1.63 4.08 4.00 1.71
Social Pres. O/f 3.50 3.00 1.78 3.33 3.00 1.65 3.67 3.50 1.83 3.58 3.50 1.67 3.46 3.50 1.74 3.63 3.50 1.80 4.17 4.25 1.65
Spatial Pres. I/s 4.38 4.50 1.49 4.46 4.50 1.44 4.44 4.50 1.58 4.60 4.50 1.36 4.35 4.00 1.43 4.54 4.50 1.22 5.19 5.50 1.32
Spatial Pres. O/s 4.50 4.50 1.41 4.62 4.75 1.40 4.73 4.75 1.29 4.48 4.50 1.34 4.46 4.50 1.29 4.23 4.25 1.57 5.21 5.25 1.30
Spatial Pres. I/f 4.23 4.25 1.50 4.38 4.50 1.40 4.33 4.75 1.60 4.31 4.50 1.52 4.08 4.00 1.60 4.02 4.00 1.68 4.54 5.00 1.31
Spatial Pres. O/f 4.42 4.50 1.53 4.12 4.50 1.65 4.25 4.50 1.77 4.29 4.50 1.43 4.08 4.25 1.57 4.21 4.50 1.54 4.75 5.00 1.47
Plausibility I/s 1.77 2.00 1.42 2.54 2.50 1.77 2.81 3.00 1.77 3.42 3.00 1.33 2.92 3.00 2.04 2.12 1.50 2.08 5.42 6.00 1.27
Plausibility O/s 1.81 1.00 1.52 2.12 2.00 1.66 3.15 3.00 1.76 3.23 4.00 1.82 3.00 3.00 1.77 2.23 2.00 1.90 5.46 6.00 1.27
Plausibility I/f 1.54 2.00 1.33 2.42 2.00 1.86 3.27 4.00 1.95 2.81 3.00 1.63 3.12 3.00 1.93 3.08 3.50 1.98 4.77 6.00 1.97
Plausibility O/f 2.15 2.00 1.52 2.35 2.00 1.94 3.12 3.50 1.99 3.23 4.00 1.58 2.54 3.00 2.04 2.88 2.00 1.97 4.73 6.00 1.99
Intuitiveness I/s 1.42 1.50 1.21 1.81 1.00 1.58 3.81 4.00 1.50 3.46 4.00 1.39 2.96 3.00 1.99 2.19 2.00 1.96 5.35 6.00 1.35
Intuitiveness O/s 1.46 1.00 1.39 2.08 2.00 1.81 3.58 4.00 1.72 2.77 3.00 1.63 3.23 3.00 1.70 2.35 2.00 1.87 5.54 6.00 0.95
Intuitiveness I/f 1.62 2.00 1.47 2.27 2.00 1.87 3.38 4.00 1.98 3.08 3.50 1.62 3.27 3.50 2.03 2.62 2.50 1.77 4.77 6.00 1.86
Intuitiveness O/f 2.19 2.00 1.50 2.12 2.00 1.68 3.08 4.00 2.02 2.77 3.00 1.63 2.35 2.00 1.96 3.27 4.00 1.89 5.23 6.00 1.63
Target Anticip. I/s 1.08 1.00 1.20 1.50 1.00 1.61 4.38 4.50 1.39 2.00 2.00 1.06 3.19 3.00 2.08 3.69 4.00 1.38 5.15 6.00 1.12
Target Anticip. O/s 0.77 0.00 1.07 1.54 1.00 1.50 4.35 4.00 1.47 1.92 2.00 1.02 3.08 3.00 1.70 4.00 4.00 1.20 5.35 6.00 0.98
Target Anticip. I/f 0.88 1.00 1.31 1.31 1.00 1.52 4.19 4.00 1.55 2.35 2.00 1.32 3.35 3.00 1.60 3.77 4.00 1.48 5.15 6.00 1.05
Target Anticip. O/f 0.92 1.00 0.98 1.38 1.00 1.53 4.38 4.00 1.42 2.38 2.00 1.27 2.81 3.00 1.72 4.04 5.00 1.40 5.08 6.00 1.44
Ease to Spot I/s 0.46 0.00 0.65 1.15 1.00 1.12 4.46 4.00 0.95 1.85 2.00 0.88 3.23 3.00 1.34 4.38 5.00 0.80 5.46 6.00 1.07
Ease to Spot O/s 0.77 0.00 1.27 1.65 1.00 1.47 3.96 4.00 1.22 2.15 2.00 1.22 2.69 3.00 1.62 4.46 5.00 1.14 5.31 6.00 1.35
Ease to Spot I/f 0.96 1.00 0.92 1.31 1.00 1.46 4.31 4.50 1.64 2.00 2.00 1.33 3.38 3.00 1.58 3.88 4.00 1.53 5.15 5.00 0.97
Ease to Spot O/f 1.23 1.00 1.48 1.27 1.00 1.34 4.15 4.00 1.38 2.15 2.00 1.26 2.42 2.00 1.65 4.19 4.00 1.10 5.58 6.00 0.70
Perceived Speed I/s 1.65 1.00 2.04 5.12 6.00 1.40 1.85 2.00 1.49 3.00 3.00 1.70 3.19 3.00 1.67 2.73 2.50 1.76 3.46 3.50 1.94
Perceived Speed O/s 1.46 0.00 2.16 5.69 6.00 0.55 1.65 1.50 1.38 3.46 4.00 1.50 2.96 3.00 1.40 2.77 3.00 1.68 3.00 3.00 1.74
Perceived Speed I/f 2.69 2.00 1.95 5.19 6.00 1.70 1.85 1.50 1.71 3.65 4.00 1.47 3.15 3.00 1.26 2.31 2.00 1.81 2.15 1.50 2.07
Perceived Speed O/f 2.19 2.00 1.94 4.85 6.00 1.95 2.19 2.00 1.67 3.35 3.50 1.47 3.08 3.00 1.92 2.81 3.00 1.98 2.54 3.00 1.92
User Preference I/s 1.31 1.00 1.32 2.58 2.50 1.55 3.65 4.00 1.90 4.12 4.00 1.34 3.54 3.00 1.86 1.42 1.00 1.68 4.38 5.00 1.88
User Preference O/s 1.23 1.00 1.31 2.54 2.00 1.61 4.08 4.50 1.76 3.50 4.00 1.48 3.38 3.00 1.92 1.46 1.00 1.63 4.81 5.00 1.50
User Preference I/f 1.62 1.00 1.44 2.15 2.00 1.85 4.12 5.00 2.01 3.31 3.50 1.85 3.62 4.00 2.02 2.46 2.00 1.70 3.73 4.00 1.95
User Preference O/f 1.69 1.00 1.49 2.96 3.00 1.87 3.58 4.00 2.19 3.46 3.00 1.82 3.27 3.00 2.03 2.19 2.00 1.70 3.85 4.00 2.11
Cont. Tracking I/s 73.40 79.20 19.00 70.50 75.00 15.40 79.40 85.80 19.40 77.00 81.60 15.00 72.20 75.80 13.00 83.40 88.80 17.30 83.60 88.30 17.90
Cont. Tracking O/s 72.70 81.40 19.80 63.90 70.50 18.00 77.40 84.00 18.70 69.50 78.80 18.90 69.30 71.30 16.90 83.90 93.00 16.70 82.70 93.50 23.80
Cont. Tracking I/f 79.10 80.90 10.90 71.00 71.70 10.00 77.80 82.30 16.70 71.80 73.70 14.30 70.20 74.60 13.10 76.40 77.70 11.80 78.80 79.40 8.60
Cont. Tracking O/f 69.60 77.60 24.70 63.80 70.90 21.30 64.00 72.20 24.30 66.00 69.30 19.50 64.40 67.50 16.80 73.70 80.70 18.60 72.10 78.50 20.40
Gaze Tracking I/s 79.00 86.00 17.30 78.50 81.40 9.70 85.10 90.60 15.20 83.40 86.70 10.50 80.80 85.20 9.00 86.60 93.80 14.80 88.40 93.80 11.80
Gaze Tracking O/s 81.60 88.90 17.70 72.70 79.30 15.60 87.90 95.70 16.90 80.00 84.80 16.60 80.70 84.50 13.70 94.10 97.50 10.30 93.10 96.80 10.90
Gaze Tracking I/f 87.40 89.00 6.20 81.10 83.80 5.30 86.10 88.60 6.90 84.80 85.90 5.90 81.50 83.50 8.90 87.00 87.90 4.10 86.70 87.90 4.60
Gaze Tracking O/f 83.70 88.60 14.60 78.20 82.60 12.90 83.20 87.20 14.90 80.20 84.80 14.00 77.20 79.70 9.90 88.30 88.90 7.10 87.10 88.60 7.20

In the following, we depict tables with all the data that we gathered. Specifically,
we list all medians, means, and standard deviations for all visualizations and sce-
narios/variants. We also list all visualization pairs for which we found significant
differences.

4.6 Discussion

In this section, we interpret the findings of our study, especially with regard to our
hypothesis.

The results about cybersickness are very good, we did not have or see any issues
in this regard.

Our results show, that the walking visualization is consistently rated higher in so-
cial presence than the others, including the teleport, and the difference to the latter to
be statistically significant. For the spatial presence, the results were closer together,
but, still, the walking visualization was always rated highest. In the more criti-
cal OFoV scenario, significant differences to many other visualizations were found,
while in the IFoV scenario, this threshold was mostly not reached, although the ten-
dencies were present, too. These results indicate that the visualization of the teleport
does have a positive effect on spatial as well as social presence. Thus, we can partly
confirm our hypotheses H3 and H4. We can only confirm it partly, as this seems to
be highly dependent on the actual visualization, and just having one not necessarily

4.6. Discussion 119

TABLE 4.5: Plausibility: All statistical different pairs of the
IFoV/OFoV scenarios and slow/fast experiment variants.

IFoV/Slow OFoV/Slow IFoV/Fast OFoV/Fast
Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p
Beam Walking 0.0060 Beam Walking 0.0143 P&C S Walking 0.001 P&C S Walking 0.0069
P&C S Walking 0.0002 P&C S Walking 0.0002 Walking Dash 0.0045 Walking Dash 0.0252

Walking Dash 0.0001 Walking Dash 0.0002 Walking P&C 0.0393
Walking P. Trace 0.0061 Walking P. Trace 0.0191
Walking Portal 0.0169 Walking Portal 0.0119
Walking P&C 0.0010 Walking P&C 0.0003

TABLE 4.6: Intuitiveness: All statistical different pairs of the
IFoV/OFoV scenarios and slow/fast experiment variants.

IFoV/Slow OFoV/Slow IFoV/Fast OFoV/Fast
Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p
Beam P&C S 0.0028 Beam Walking 0.0004 P&C S Walking 0.0024 Beam Walking 0.0086
Beam Walking 0.0184 P&C S Walking 0.0002 Walking Dash 0.0007 P&C S Walking 0.0007
Beam P&C 0.0374 P&C S P. Trace 0.0436 Walking P&C 0.0252 Walking Dash 0.0016
P&C S Walking 0.0002 Walking Dash 0.0004 Walking Portal 0.0159
P&C S P. Trace 0.0028 Walking P. Trace 0.0091 Walking P&C 0.0029

Walking Dash 0.0003 Walking Portal 0.0065
Walking Portal 0.0201 Walking P&C 0.0004
Walking P&C 0.0003

TABLE 4.7: Target Anticipation: All statistical different pairs of the
IFoV/OFoV scenarios and slow/fast experiment variants.

IFoV/Slow OFoV/Slow IFoV/Fast OFoV/Fast
Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p
Beam Walking 0.0003 Beam Walking 0.0001 Beam P&C S 0.0106 Beam P&C S 0.0071
Beam Dash 0.0138 Beam Dash 0.0046 Beam Walking 0.0005 Beam Walking 0.0014
Beam P. Trace 0.0014 Beam P. Trace 0.0007 Beam P. Trace 0.0144 Beam Dash 0.0376
P&C S Walking 0.0002 P&C S Walking 0.0002 P&C S Walking 0.0002 Beam P. Trace 0.0020
P&C S Dash 0.0017 P&C S Dash 0.0002 P&C S Dash 0.0020 P&C S Walking 0.0002
P&C S P. Trace 0.0003 P&C S P. Trace 0.0008 P&C S P. Trace 0.0024 P&C S Dash 0.0003
P&C S Portal 0.0387 P&C S Portal 0.0034 P&C S Portal 0.0023 P&C S P. Trace 0.0009

Walking Dash 0.0007 Walking Dash 0.0156 Walking Dash 0.0026 P&C S Portal 0.0164
Walking P&C 0.0002 Walking Portal 0.0037 Walking Portal 0.0237 Walking Dash 0.0477

Dash P&C 0.0195 Walking P&C 0.0003 Walking P&C 0.0003 Walking Portal 0.0160
P. Trace P&C 0.0040 Dash P&C 0.0012 Dash P&C 0.0041 Walking P&C 0.0008

P. Trace P&C 0.0060 P. Trace P&C 0.0036 Dash P&C 0.0036
Portal P&C 0.0075 P. Trace Portal 0.0493

P. Trace P&C 0.0012

120 Chapter 4. Perception of Teleport Visualizations in Multi User VR

TABLE 4.8: (Re-)Spotability: All statistical different pairs of the
IFoV/OFoV scenarios and slow/fast experiment variants.

IFoV/Slow OFoV/Slow IFoV/Fast OFoV/Fast
Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p
Beam P&C S 0.0027 Beam P&C S 0.0204 Beam Walking 0.0004 Beam Walking 0.0002
Beam Walking 0.0002 Beam Walking 0.0013 Beam Dash 0.0106 Beam Dash 0.0010
Beam Dash 0.0002 Beam Dash 0.0027 Beam P. Trace 0.0054 Beam P. Trace 0.0014
Beam P. Trace 0.0001 Beam P. Trace 0.0072 P&C S Walking 0.0001 P&C S Walking 0.0002
Beam Portal 0.0051 P&C S Walking 0.0006 P&C S Dash 0.0004 P&C S Dash 0.0015
P&C S Walking 0.0001 P&C S Dash 0.0004 P&C S P. Trace 0.0005 P&C S P. Trace 0.0022
P&C S Dash 0.0001 P&C S P. Trace 0.0005 P&C S Portal 0.0018 Walking Dash 0.0007
P&C S P. Trace 0.0001 P&C S Portal 0.0170 Walking Dash 0.0091 Walking P. Trace 0.0205
P&C S Portal 0.0003 P&C S P&C 0.0293 Walking Portal 0.0152 Walking Portal 0.0004

Walking Dash 0.0006 Walking P. Trace 0.0169 Walking P&C 0.0002 Walking P&C 0.0002
Walking Portal 0.0044 Walking Portal 0.0024 Dash P&C 0.0071 Dash Portal 0.0428
Walking P&C 0.0001 Walking P&C 0.0027 P. Trace P&C 0.0034 Dash P&C 0.0003

Dash P&C 0.0002 Dash P&C 0.0014 Portal P&C 0.0090 P. Trace Portal 0.0354
P. Trace Portal 0.0125 P. Trace P&C 0.0219 P. Trace P&C 0.0020
P. Trace P&C 0.0002
Portal P&C 0.0080

TABLE 4.9: Perceived speed: All statistical different pairs of the
IFoV/OFoV scenarios and slow/fast experiment variants.

IFoV/Slow OFoV/Slow IFoV/Fast OFoV/Fast
Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p
Beam P&C 0.0006 Beam P&C S 0.0196 Beam P. Trace 0.0334 P&C S P&C 0.0055
P&C S P&C 0.0002 Beam P. Trace 0.0252 Beam P&C 0.0112 P. Trace P&C 0.0069

Walking P. Trace 0.0239 Beam P&C 0.0003 P&C S P&C 0.0010
Dash P&C 0.0170 P&C S P&C 0.0002 Walking P&C 0.0090

P. Trace P&C 0.0012 Walking P&C 0.0004 Dash P&C 0.0074
Portal P&C 0.0168 Dash P&C 0.0004 P. Trace Portal 0.0450

P. Trace P&C 0.0002 P. Trace P&C 0.0048
Portal P&C 0.0004 Portal P&C 0.0122

TABLE 4.10: User preference: All statistical different pairs of the
IFoV/OFoV scenarios and slow/fast experiment variants.

IFoV/Slow OFoV/Slow IFoV/Fast OFoV/Fast
Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p
Beam P&C S 0.0011 Beam P&C S 0.0012 Beam P&C S 0.0386 Beam P&C S 0.0348
Beam Dash 0.0058 P&C S Walking 0.0003 P&C S Walking 0.0314 P&C S P. Trace 0.0453
Beam P&C 0.0425 P&C S P. Trace 0.0030 P&C S P. Trace 0.0037 Walking Dash 0.0066
P&C Walking 0.0045 P&C S Portal 0.0142 P&C S Portal 0.0280
P&C P. Trace 0.0090 Walking Dash 0.0002 Walking Dash 0.0117
P&C Portal 0.0080 Walking P&C 0.0114

Walking Dash 0.0004 Dash P. Trace 0.0032
Dash P. Trace 0.0424

4.6. Discussion 121

TABLE 4.11: Social presence: All statistical different pairs of the
IFoV/OFoV scenarios and slow/fast experiment variants.

IFoV/Slow OFoV/Slow IFoV/Fast OFoV/Fast
Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p
P&C S Walking 0.0038 P&C S Walking 0.0024 P&C S P. Trace 0.0305 P&C Walking 0.0152
P&C Walking 0.0445 P. Trace Dash 0.0437 P&C S Walking 0.0101
Dash Walking 0.0181 Beam Dash 0.0326 P. Trace Dash 0.0201

Portal Dash 0.0477 Dash Walking 0.0032
Dash Walking 0.0030

TABLE 4.12: Spatial presence: All statistical different pairs of the
IFoV/OFoV scenarios and slow/fast experiment variants.

IFoV/Slow OFoV/Slow IFoV/Fast OFoV/Fast
Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p
Dash Walking 0.0105 P&C S Walking 0.0273 Portal Walking 0.0058

P. Trace Walking 0.0202
Beam Walking 0.0358
Portal Walking 0.0184
Dash Walking 0.0100

TABLE 4.13: Controller tracking: All statistical different pairs of the
IFoV/OFoV scenarios and slow/fast experiment variants.

IFoV/Slow OFoV/Slow IFoV/Fast OFoV/Fast
Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p
P&C S Dash 0.0015 P&C S Dash 0.0111 P&C S P&C 0.0231 Beam Dash 0.0464
P&C S Walking 0.0068 P&C S Walking 0.0329 P&C S Portal 0.0359 Portal Walking 0.0359
P&C P. Trace 0.0211 P&C P. Trace 0.0046 P&C P. Trace 0.0083
P&C Beam 0.0231 P&C Dash 0.0002 P&C Walking 0.0068
P&C Dash 0.0003 P&C Walking 0.0034 P. Trace Portal 0.0426
P&C Walking 0.0005 Beam Dash 0.0091 Portal P. Trace 0.0038

P. Trace Portal 0.0464 Beam Walking 0.0046 Portal P. Trace 0.0038
Beam Walking 0.0301 Portal Dash 0.0042 Portal P. Trace 0.0038
Portal Dash 0.0031 Portal P. Trace 0.0038
Portal Walking 0.0034 Portal P. Trace 0.0038

TABLE 4.14: Gaze Tracking: All statistical different pairs of the
IFoV/OFoV scenarios and slow/fast experiment variants.

IFoV/Slow OFoV/Slow IFoV/Fast OFoV/Fast
Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p Vis. 1 Vis. 2 p
P&C S Dash 0.0028 P&C S Dash 0.0211 P&C S P&C 0.0028 P&C Dash 0.0028
P&C S Walking 0.0002 P&C S Walking 0.0211 P&C S Portal 0.0464 P&C Walking 0.0146
P&C Dash 0.0193 P&C P. Trace 0.0034 P&C P. Trace 0.0091 Beam Dash 0.0464
P&C Walking 0.0056 P&C Dash 0.0008 P&C Dash 0.0062 Portal Dash 0.0004

Portal Walking 0.0176 P&C Walking 0.0002 P&C Walking 0.0003 Portal Walking 0.0034
P. Trace Beam 0.0101 P. Trace Portal 0.0329
Beam Dash 0.0031
Beam Walking 0.0004
Portal Dash 0.0042
Portal Walking 0.0007

122 Chapter 4. Perception of Teleport Visualizations in Multi User VR

improves the presence. Generally, the spatial presence was consistently higher than
the social one, which is understandable, as it might be more affected by the telepor-
tation of the other user. Another reason could be that the social presence was lower
to begin with, as there is no actual social interaction in the experiment. A more com-
plex, dynamic, and engaging environment and setup may be needed to induce more
social as well as spatial presence, to begin with. Then, possibly, we could see also
more differences between the other visualizations. User feedback we collected after
the experiment, points in the same direction, as 2 participants stated that a more de-
tailed environment would be helpful for presence and 8 participants did remark that
the avatar’s look, animation, or interaction with each other was lacking (e.g.: “dead
eyes”, “animations unnatural”, “no eye contact”, “no handshake”). The comments
about the avatar and its animation are interesting, as we recorded them with motion
tracking. Possibly, the actual physical transition between standing and walking was
too abrupt and unnatural, as it was specifically intended for the teleport action. An-
other reason is probably that even the slow experiment variant was sped up from
the actual recording.

Regarding the plausibility and intuitiveness of the locomotion process, our re-
sults clearly show that the walking visualization is consistently rated the highest,
most often significantly, compared to all other ones. Moreover, the standard and de-
layed teleport, as well as the dash were consistently rated the lowest. These results
confirm our expectations that a full walking animation is perceived as very plausi-
ble and intuitive while vanishing and emerging without any motion cues (teleport)
is absolutely not. That the dash is rated low in this regard is understandable, too,
as just translating a static avatar can look weird or jarring. With these results, we
can confirm our hypotheses H1 and H2 that teleport visualizations, in general, make
the locomotion process more intuitively understandable and plausible, thus, reduce
potentially occurring confusion. The degree to which the visualizations improve
plausibility and intuitiveness is, again, clearly defendant on the visualization itself.

The results about target anticipation and the ease of re-spotting the avatar after
the locomotion show, as expected, that continuous visualizations perform signifi-
cantly better than discontinuous ones, especially compared to the visualization-less
teleports. The walking animation performed best overall, and, interestingly, the por-
tal was the best out of the discontinuous ones. The latter result may be because the
portal itself gives an indication of the direction of locomotion, while the beam and
the teleport variants do not give any hints. With these results, we can confirm our
hypotheses H5 and H6, that continuous teleport visualizations are advantageous for
tracking and relocating a teleporting user, thus, increasing spatial awareness. These
findings are in line with the ones by Freiwald et al. [113]. These results moreover
implicitly reinforce hypothesis H1 and H2, as easier tracking and increased spatial
awareness of the other user’s location should reduce confusion, too.

The quantitative results of the controller and gaze tracking, generally, paint the
same picture and confirm the results regarding target anticipation and (re-)spotting.
The continuous visualizations had the highest hit rates, often significantly higher,
reinforcing hypotheses H5 and H6. Generally, the hit rates were higher for the gaze
tracking than the ones from controller tracking and showed smaller differences be-
tween visualizations. This is understandable, as it is plausible that it is faster to
change the eye gaze direction to the target location than the handheld laser pointer.
Arguably, it is also easier to follow the movements of the avatar with the gaze. Inter-
estingly, with this data, the portal performed worse than the beam, while the qual-
itative results were the opposite. This may be due to the portal object distracting
from the avatar.

4.6. Discussion 123

The standard teleport was perceived as the quickest and most often rated sig-
nificantly higher regarding perceived speed than the other visualizations. This is
expected, as it is the only one which is actually performed instantly. The delayed
teleport, however, which takes the same time as the others, was consistently rated as
the slowest. This may be because of the absolute lack of any visuals which may make
the time until reappearance appear longer. The particle trace performed poorly, too,
which may be due to the nature of the effect itself and the slow-rising movement
of the individual particles. In the OFoV scenario, for instance, both these methods
were rated significantly lower than the beam.

Our results show also that the walking animation is clearly the most preferred
visualization, and the teleport variants and the dash were rated lowest. Moreover,
the differences in ratings were often significantly high. This result, together with the
fact that the walking animation was rated best in all other tested categories, except
perceived speed, too, more than confirms our hypothesis H7, that this is the best
teleport visualization. Our results confirm the findings by Freiwald et al. [113], that
continuous visualizations (walking/particle trail (us), walking/dissolve (them)) are
significantly more preferred than the standard teleport.

4.6.1 Comparison of IFoV and OFoV Scenarios

Interestingly, the results for the easier “in the field of view” and more critical “out
of the field of view” scenarios are more similar than we expected. For instance,
the tracked hit rates decreased in the OFoV scenario, especially for discontinuous
methods such as the teleport versions. However, the differences were not as high
as we would have expected. Also, the continuous visualizations tended to perform
better, relative to the others, regarding the target anticipation in the OFoV scenario,
which is reasonable. See for example Figure 4.9 (top). However, again, the difference
between scenarios is smaller than assumed. This may indicate that the standard,
visualization-less teleport is problematic in even simpler scenarios such as our IFoV
scenario, which makes the visualizations even more important.

4.6.2 Comparison of Slow and Fast Experiment

As to the comparison of the slow and fast experiment variants, we did observe that
the presence scores were mostly slightly lower in the faster experiment variant. We
found the tracked hit rates to be generally lower, too, in the fast variant. The hit
rates of the continuous visualizations, which were higher previously, were the most
affected while the hit rates of the teleport variants were less affected. Thus, in the
faster variant, the hit rates between the visualizations were closer together. Inter-
estingly, the ratings about target anticipation and (re-)spotability stayed roughly the
same. Regarding the plausibility and intuitiveness, however, we found that the ad-
vantages of the walking visualization decreased while the dash got better, relatively
(the teleport variants to a lesser degree, too). Thus, we observe a homogenizing
effect again. The continuous visualizations’ scores regarding perceived speed de-
creased (mostly the walking animation), while the discontinuous ones mostly in-
creased, at least in the IFOV scenario. In contrast to the slow experiment variant, we
found the particle trace to have the highest scores regarding user preference in the
IFoV scenario, as it was rated higher and the walking animation lower, see Figure 4.9
(bottom). The rankings for the portal and especially the dash increased, too. We see
the same tendencies for the dash and walking visualizations in the OFOV scenario,
making the particle trace and walking the most preferred visualizations overall. To

124 Chapter 4. Perception of Teleport Visualizations in Multi User VR

summarize, the advantages of the visualizations decreased in the fast experiment
variant, and the differences between the visualizations shrunk, e.g. dash catching
up and walking coming down. We can therefore state that the distance scalability
of the visualizations varies. However, we cannot confirm our hypothesis H8 that
continuous ones are principally worse.

The fact that the walking animation loses so much regarding user preference,
plausibility, and intuitiveness while the dash’s ratings increases, is understandable,
as the walking animation is more sped up, thus looking less natural. We find it
also plausible, that the continuous visualizations fare worse in tracked hit rates, as
these had the highest ratings in the slow variant, and it gets arguably harder for the
observer to track the avatar/visualization when moving faster. Moreover, we see
that the higher the locomotion speed, the lesser the advantages of the visualizations,
especially when they get more unnatural (i.e., the simply sped-up walk animation).
We find this logical, as there is less time that the teleporting user is not visible to the
observer, and there is less time for a continuous visualization to show the motion
cues.

We refer, as mentioned earlier, to Appendix B for all plots, as it would have been
too overwhelming to include them all directly in the result section.

4.7 Limitations

We opted for a high fidelity but also a minimalistic virtual environment, decided to
have a single pre-recorded character teleporting through the scene, and limit our-
selves to a single observer with the simple task of just observing and tracking the
other person moving. We did this, in order to limit distractions of the participants,
focus on the primary question of how the visualizations affect the observer, and min-
imize confounding effects between the users, the environment, and the scenario.
This setup, however, may have not been engaging and long enough to build high
levels of presence, reducing the possible positive effects of the teleport visualiza-
tions. With our design choices for this first study, we are, naturally, also unable to
fully replicate and investigate actual multi-user conditions with multiple users tele-
porting and multiple users observing. Having multiple users teleporting at the same
time could possibly alter the requirements and suitability of the individual visual-
izations, as paths could be intersecting. Similarly, in a more complex and dynamic
environment, other dynamically moving objects could get in the way, or target desti-
nations may be not conventionally reachable. This would make real-time path plan-
ning and visualization and possibly more general visualizations necessary. Also,
having multiple elaborate but equally looking teleport visualizations from various
users at the same time could make the scene more distracting and unclear again.
Moreover, more complex, collaborative tasks than just one-way observation would
be highly interesting to investigate, too, as then it may be more relevant if the ob-
server recognizes the teleport as such and if and when he is aware of the destination
and traveling path.

Another limitation of our current work is that we, for now, focused solely on
the visualizations’ effects on the observers but not on the teleporting user himself.
For instance, the teleporting user probably will prefer a quick teleportation process
to minimize waiting time, while observers, in contrast, would prefer to have some
duration to observe motion cues and increase immersion.

4.8. Conclusions and Future Work 125

4.8 Conclusions and Future Work

With this work, we presented a user study to investigate suitable visualizations to
depict the deliberate act of teleportation to observers in multi-user VR. The goal
was to evaluate if they enhance spatial awareness, reduce confusion and, thus, help
to retain as much presence as possible. For our study, we implemented seven dif-
ferent visualization techniques, continuous and non-continuous ones, into a virtual
environment using the Unreal Engine 4. In our experiment, we compared the visual-
izations and their effects on observers. The properties we examined were perceived
social presence, spatial presence, confusion, distance scalability, and spatial aware-
ness. We found that teleport visualizations can have significant positive effects on
social as well as spatial presence, but do not necessarily have to. Continuous visual-
izations significantly increased spatial awareness. Moreover, various visualizations
were rated significantly higher regarding plausibility and intuitiveness, which indi-
cates less confusion. The results show that the type of visualization affects the dis-
tance scalability and that a walking animation is the overall best-performing, user-
preferred visualization. These findings not only hold when teleporting out of the
observer’s view but also when the start, path, and target are all in view. On the
other hand, the advantages of the visualizations decrease, when increasing the tele-
portation/locomotion speed.

In the future, it would be interesting to conduct a similar study in a more com-
plex, interactive environment with multiple users teleporting and observing and
with collaborative tasks between users. With this, users would have a more engag-
ing experience that induces a higher presence and one would be able to provide a
deeper investigation of the advanced requirements and effects of the visualizations
and the issues arising from teleportation in multi-user VR environments. Further-
more, we would find it interesting to investigate the depth perception of the visual-
izations and how the teleportation visualizations affect the teleporting user’s pres-
ence and usability, as well as how this changes with different distances that have to
be covered.

127

Chapter 5

Large-scale Procedural Terrain
Generation for VR Environments

Previously, we considered how to reconstruct and render presence-inducing avatars
in multi-user VR. However, (multi-user) VR applications usually also need convinc-
ing, high-quality 3D environments to convey a feeling of presence. In some use
cases, RGB-D sensor-based live reconstructions are employed to visualize 3D envi-
ronments or parts thereof. As mentioned in Section 1.1, most commonly, the 3D
environments consist of manually modeled meshes. However, in some areas, man-
ually modeling the environment is not feasible, as large, detailed landscapes are
required. One example of such a scenario is (collaborative) VR testbeds that simu-
late the navigation and interaction of unmanned vehicles and robots with different
terrains. Another example is environmental simulation environments. In these ex-
ample scenarios, accurate, high-quality environments and terrains not only serve to
provide a sense of presence but are also required for accurate simulations. To gen-
erate those terrains efficiently, procedural terrain generation algorithms come into
play.

To also cover the aspect of procedurally generating these 3D environments that
can be used in such VR applications, we present in this section two advanced PTG
systems and the idea for a third one (including theoretical considerations and rel-
evant related work) that serves to broaden the horizon. First, in Section 5.1, we
propose a broadly applicable pipeline for the procedural generation of large-scale
multi-biome landscapes. Then, in Section 5.2, a system is presented that tackles
the more advanced challenge of procedurally generating landscapes with naturally
distributed water bodies such as rivers. Lastly, Section 5.3 presents the previously
mentioned concepts, considerations, and relevant related work for a system that
would be able to procedurally create extraterrestrial planetary surfaces, specifically,
lookalikes of example DEM input images that feature the same characteristics. The
intended use case would be the application of VR testbeds for the aforementioned
simulation of unmanned vehicles.

5.1 AutoBiomes: Procedural Generation of Multi-Biome
Landscapes

In this section, we want to present a broadly applicable terrain generation system
that can be used to create large-scale, detailed, diverse virtual environments for a
wide array of VR applications such as virtual testbeds. Although (semi-)automatic
procedural terrain generation is a popular and widely used technique, most of the

128 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

existing methods are usually highly specialized for certain terrain types, and espe-
cially the procedural generation of landscapes composed of different biomes is a
scarcely explored topic.

We propose a novel system, called AutoBiomes, which is capable of efficiently
creating vast terrains with plausible biome distributions and therefore different spa-
tial characteristics. The main idea is to combine several synthetic procedural terrain
generation techniques with digital elevation models and a simplified climate simu-
lation. Moreover, we include an easy-to-use asset placement component that creates
complex multi-object distributions. Our system relies on a pipeline approach with a
major focus on usability. Our results show that our system allows the fast creation
of realistic-looking terrains that can easily be integrated into VR applications.

The work presented in this section is based on our published paper PC4 in Ap-
pendix A.

5.1.1 Introduction

The ever-rising demand for bigger and more complex virtual 3D worlds poses a
challenge for designers to create and fill them with life. There is a broad range of ap-
plications for huge and realistic 3D landscapes, e.g., computer games, movies, and
simulations. With the rising accessibility of HMDs, there is also an increasing oppor-
tunity to explore these worlds in virtual reality in a more immersive environment.
We presented some examples in Section 2.3. Generating these worlds manually is a
laborious and expensive task [6], therefore extensive research was done in the field
of procedural terrain generation. Yet it remains an important topic, as there is still
much potential for improvement. Numerous algorithms for PTG have been pro-
posed which can be roughly categorized into three types: synthetic, physics-based,
and example-based approaches [144, 127]. Each of these approaches comes with its
own strengths and weaknesses. For a brief description, we refer to Section 2.2.6.
Generally, most of the currently used methods and terrain generators follow one of
the mentioned approaches and emphasize only on a single, very specific use case.
Hence, they are hardly capable of satisfying a broader set of requirements [347]. In
consequence, it remains a challenge to create a system with a reasonable compro-
mise of the four most essential but mutually contradictory requirements: realism,
performance, usability, and flexibility (see Fig. 5.1).

Two other significant factors of creating plausible, detailed 3D worlds received
not much attention in the past: the distribution of assets and the generation of land-
scapes as a combination of different biomes. However, with the rising dimensions
of 3D worlds, the interest in landscapes with various characteristics is growing. The
procedural distribution of assets faces similar challenges in balancing the require-
ments as the terrain generation itself and is equally important to create a convincing
environment with an organic feel.

Our main contribution is the design and implementation of a PTG system that
combines the three main approaches, synthetic, physics-based as well as example-
based PTG, and unites the respective advantages to an effective and well-balanced
terrain generator. The goal is to generate realistic terrains while keeping simultane-
ously computation times low and still considering usability and flexibility.

Our focus is not restricted to the generation of huge terrains but covers specifi-
cally terrains composed of different biomes, which is a relatively sparsely explored
topic with additional challenges. As part of our PTG architecture, we propose an
effective biome- and rule-based local-to-global model to populate the terrain with

5.1. AutoBiomes: Procedural Generation of Multi-Biome Landscapes 129

Usability/
Complexity

Realism

Flexibility

Performance

1. Synthe�c

2. Physically-based

3. Example-based

FIGURE 5.1: The three main approaches to PTG and the contradictory
requirements of PTG systems.

assets. This component is a vital step to produce a comprehensive solution for cre-
ating convincing 3D landscapes.

Finally, our system is implemented in the Unreal Engine and designed to be used
completely from within the editor. Optionally, the exported heightmaps can be used
in external applications.

5.1.2 Related Work

Procedural generation is used since the 1980s and numerous different methods were
developed. Noise-based methods belong to the synthetic approach of PTG, one of
the oldest and most widely used techniques. Examples of well-known noise func-
tions are Perlin noise by Ken Perlin [278] and his improved version named Simplex
noise [279]. More complex results can be achieved by combining multiple instances
of noise with different frequencies, called fractal noise. Terrain generation using
noise is very popular because it is easy compared to other approaches and the com-
putational effort is low. Drawbacks are the inherently unintuitive way to adjust noise
parameters and consequently, the difficulty to create genuinely realistic-looking ter-
rain, as described in [149].

On the other hand, physics-based procedural generation methods have their fo-
cus on creating realistic results at the expense of lower computation speed. Very
common are erosion algorithms which try to create the terrain by simulating the
natural erosion processes. In 1989 Musgrave et al. [254] proposed models for ther-
mal and hydraulic erosion simulation which became the basis for a lot of the sub-
sequent research on this topic. Jákó [157] adapted and improved previous work
resulting in more, realistic, versatile and stable results, and presented a faster im-
plementation using the GPU. Another approach is the simulation of fluid dynamics.
Most of its techniques either are grid-based, called Eulerian, or particle-based, called

130 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

Lagrangian. The leading concept for the latter ones is smoothed particle hydrody-
namics, which was well summarized by Ihmsen et al. [151]. Well-known is also the
work of Jos Stam, who eventually presented a convincing real-time fluid solver [353]
which combined both approaches.

Another concept for PTG techniques is based on using examples, e.g., images or
user sketches, and synthesizing terrain according to it. DEMs are digital representa-
tions of real ground surfaces, commonly parts of the earth’s topography, and can also
serve as examples for PTG. Using these DEMs and texture synthesis methods, Zhou
et al. [442] presented a system capable of generating realistic-looking terrains if pro-
vided with appropriate and detailed data. Not long ago generative neural networks
could successfully be applied in the field of PTG. Recently Beckham and Pal [21]
and Wulff-Jensen et al. [417] trained deep convolutional generative adversarial net-
works (DCGANs), developed by Radford et al. [292], on DEMs to create similar
looking heightmaps for terrain generation. Similarly, Guérin et al. [135] used con-
ditional generative adversarial networks to create a set of task-specific synthesizers
which generate terrain features based on sketches. Gatys et al. [125] also proposed
an interesting technique called style transfer where convolutional neural networks
learn to combine the artistic style of one image with the main features of arbitrary
other images.

A comprehensive overview of all kinds of procedural terrain generation and
modeling techniques is given by Galin et al. [119].

In the domain of generating asset distributions, two different concepts can be
found. Local-to-global models are based on the individual object instances and by
constrained-based placement and simulation of interactions the resulting distribu-
tion is determined. Global-to-local models, on the other hand, infer the position of
individuals by a beforehand defined distribution. Both Deussen et al. [83] and Lane
et al. [199] presented convincing individual-based simulation models to generate
plant distributions. A popular distribution to sample objects from is the Poisson dis-
tribution, which ensures a minimal distance between samples. Early techniques for
Poisson-disk sampling relied on the dart-throwing principle. Jones [167] introduced
the combination with a spatial data structure later. Also using spatial subdivision,
Gamito and Maddock [123] proposed an accurate and considerably faster algorithm.

5.1.3 Proposed Approach

We present a PTG system that combines synthetic, physics- and example-based ap-
proaches to produce vast landscapes composed of different biomes and populated
with huge amounts of assets. We chose an incremental pipeline design with a focus
on high performance to ensure providing the user with quick results. The pipeline
currently consists of four individual main steps; each is fully customizable. Direct
visualization of each step improves usability and provides a fast, iterative workflow.
In case a single step does not meet the user’s desires, it can be easily repeated. Addi-
tionally, intermediate results are cached to allow the reuse of finished pipeline steps.
This system design guarantees the best trade-off between the partly contradictory
requirements such as performance, usability, realism, and flexibility.

Figure 5.2 illustrates the individual four steps of our sequential pipeline. The
idea is to generate a coarse base terrain using noise functions first, which gets refined
with biome-specific details later. To compute realistic biome distributions, we imple-
mented a multiple-step climate simulation, which is carefully simplified to meet the
performance requirements while maintaining good results. To add biome-specific
terrain details we chose an example-based approach where DEM data is combined

5.1. AutoBiomes: Procedural Generation of Multi-Biome Landscapes 131

with the previously generated base terrain. Finally, it is possible to generate asset
distributions following a rule-based local-to-global model.

Temperature

Wind

Moisture +
Precipita�on

BiomesDEMs

Noise

Local-to-
Global

Genera�on of
Rough Base-Terrain

Climate Simula�on

Biome-based Terrain
Refinement

Asset Placing

FIGURE 5.2: The concept of our terrain-generation system as a
pipeline model.

The advantage of this approach is that we can use the different PTG styles in the
individual pipeline steps and concatenate them in such a way that brings out the re-
spective strength, which results in a better trade-off between the requirements. The
synthetic noise functions are able to quickly generate a general terrain and are highly
adaptable. The biome distribution is then computed using our physically-based cli-
mate simulation resulting in realistic-looking results while being easily adjustable by
transparent parameters. Highly realistic biome-specific terrain features and details
finally are quickly added by overlaying DEM images, which is an example-based ap-
proach. The individual steps of our pipeline and the chosen methods are described
in more detail later.

For compatibility reasons with external applications, e.g., modeling tools or 3D
rendering engines, we decided to represent our terrains by heightmaps instead of
voxels. Additionally, we use different resolutions for the individual steps of our
pipeline, for example, the climate simulation requires a less detailed grid (see Fig-
ure 5.3). The final heightmap can be exported as a set of tiles in a standard file
format (grayscale images). It can also be used directly in the Unreal Engine 4 which
enables us to use build-in techniques like LOD, instancing, and level streaming. In
the following, we will detail the steps of our pipeline.

Base Terrain

To generate the base terrain, we decided to employ synthetic PTG methods, specif-
ically, noise functions. In this first step we only generate a rough terrain and such
methods offer the most flexibility and widest range of possible terrains while also
being very fast. Moreover, they are not limited in size or resolution. Physically-
and example-based methods would be more restrictive, e.g., have more constraints
between parameters or need specific example images, and the potential benefits of
greater realism and more details are not relevant as we refine the terrain in later
steps. The drawback of noise functions, the need for tedious fine-tuning to get

132 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

Temperature
Grid

Terrain Height
Grid

Biome Grid

Asset Grid

C
lim

at
e

S
im

u
la
ti
o
n

FIGURE 5.3: The used data structures as a stack of regular grids. The
layers can have different resolutions.

realistic-looking results, does not apply because only the high-level terrain has to
be generated.

We create the rough terrain by relying on common noise functions, more pre-
cisely, multiple octaves of simplex noise (using [276]) as this is well suited to gener-
ate a general fractal terrain. This method is fast, scalable, not too complex regarding
usability, and sufficient as a coherent, coarse basis. The noise parameters, as well as
the number of octaves, can be set by the user. However, replacing or adding other
noise functions for more diverse base terrains would be an easy modification. A
user-definable threshold marks the sea level to distinguish between land and water
bodies (see Figure 5.4).

FIGURE 5.4: Left: Example terrain after the base terrain generation
using fractal noise. Areas in blue represent water bodies. Right: Frac-
tal noise as a combination of multiple octaves of simplex noise.

5.1. AutoBiomes: Procedural Generation of Multi-Biome Landscapes 133

Climate Simulation

For the next pipeline step, the computation of the biome distribution, we use a
physics-based approach in contrast to other fully-synthetic methods that often rely
on noise. We have developed a climate simulation that allows the generation of real-
istic, or at least plausible, distributions with a couple of easy-to-understand parame-
ters. By comparison, noise functions would, in our mind, entail more fine-tuning or
result in less realistic terrains, and sketch-based methods would require more man-
ual work which we want to avoid. However, sophisticated simulations are more
computationally expensive, which is why we disregard some effects to simplify the
system and focus on reasonable approximations. The goal of our climate simulation
is to add physically-plausible realism to the terrain while still being moderately fast
to compute.

Following our pipeline-based design, the climate simulation is composed of mul-
tiple, sequential steps by itself, namely, temperature, wind, and precipitation com-
putation, and lastly the biome classification. In detail, our climate simulation works
as follows:

• The first step in our climate simulation is the temperature computation. Here,
we provide two different interpolation methods: a bi-linear interpolation (see
Fig. 5.5 (left)) and a sine-based alternative (see Fig. 5.5 (right)). The former
provides more flexibility for the user, while the latter is more suited to model
one-dimensional gradients resembling the behavior observable on the earth
between the equator and the poles. Both modes account for a height-based
temperature falloff to simulate the temperature decline which occurs with in-
creasing height, and are easily adjustable with a few parameters.

FIGURE 5.5: Example terrains after the temperature calculation. The
temperature is depicted by the color: red meaning hot and blue mean-
ing cold. On the left, the bi-linear corner interpolation was used,
while on the right, the sine-based interpolation was employed.

• The next step is the simulation of the prevailing wind to distribute the later
generated moisture over the terrain. In order to keep the performance reason-
ably high, we use an iterative approach to calculate the wind directions instead
of applying a computationally expensive fluid dynamics solver. Our method
is a simplified version of the semi-Lagrangian scheme [353]. We dropped the
diffusion process and the pressure calculations as we handle these separately

134 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

in a later pipeline step. Therefore, we only consider external forces and self-
advection to simulate the wind and compute its directions in a vector field.
For these two components, we developed a less computationally expensive
algorithm. Figure 5.6 shows an example.

FIGURE 5.6: Example terrain after the wind calculation. The vector
field of arrows depicts the computed prevailing winds. The right im-
age shows a top-down view in which the terrain got flattened for a
better overview.

The basic idea is to specify initial values for the four corners which act as the
external forces. An iterative approach distributes the wind directions on a vec-
tor field: In each iteration, the new wind direction for each cell is computed
by combining it with its adjacent cell in the wind direction and adding a lit-
tle random deviation to simulate micro disturbances. Finally, we additionally
consider the closest corner to model the persistence of the external forces. This
delivers a plausible smoothing or cancellation behavior along the dynamically
moving fringes between the main wind currents. Algorithm 4 depicts the wind
calculation process.

• In the third step, we use the wind and temperature data to compute a pre-
cipitation distribution for the terrain. Again, we decided to use an iterative
simulation-based approach. Basically, cells marked as water represent mois-
ture sources. The evaporation is modeled as a temperature-dependent func-
tion; in fact, it can be chosen between an exponential and a linear version. The
wind currents are responsible for distributing the moisture. Most of the mois-
ture gets transported to the neighboring cell in the direction of the wind, but
some shares also are transferred to the two cells adjacent to the neighbor and
source. The actual distribution depends on the wind’s direction and the pre-
vious moisture amount of all affected cells. With this algorithm, it is possible
to model some form of dispersion and equalization. The amount of precipita-
tion occurring depends on the local moisture and temperature and is modeled
as a two-step process. First, the precipitation arising during moisture trans-
port is computed. By using the previously computed temperature values and
calculating the difference between the target and source, we can also simulate
natural phenomena like rain shadows. Finally, additional precipitation is com-
puted for moisture-holding cells to simulate other, more local causes. Again,

5.1. AutoBiomes: Procedural Generation of Multi-Biome Landscapes 135

Algorithm 4 Computation of the prevailing winds.

Require: user parameters (and corner wind vectors) set
for all C in Grid do . cells in wind vector grid

Ctemp ← DetermineNearestCorner(C)
C.Vector, C.Corner ← Ctemp.Vector
C.CornerDist← CalcDist(C, Ctemp)

for all Iterations do
Gridt ← [][] . second, temporary wind grid
for all Ct in Gridt do

C ← GetCorrespondingCell(Ct) . in main grid
α← CalcAngleDeg(C.Vector)
Ctarget ← CalcTarget(C, α)
if Ctarget is valid then

Ct.Vector ← AVG(C.Vector, Ctarget.Vector)

Ct.Vector ← Ct.Vector + CalcRndDeviation(Ct.Vector)
W ← CalcForceWeigth(C.CornerDist)
Ct.Vector ← w · Ct.Vector + (1− w) · C.Corner

Grid← Gridt

exponential or linear formulas can be used. Although we provide reasonable
standard values, the system can be modified by a set of user parameters steer-
ing the formulas and therefore the results. For more details, see Algorithm 5.
Figure 5.7 shows examples of a terrain and its moisture and precipitation dis-
tributions.

FIGURE 5.7: Example terrain after the precipitation calculation. The
left image shows the moisture and the right image the resulting pre-
cipitation. Areas in red represent low values while blue areas repre-
sent high values of moisture and precipitation, respectively.

136 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

Algorithm 5 Calculation of the precipitation.

Require: all user parameters set
for all Cm in Gridm do . all cells in moisture grid

Angle← CalcAngle(WindVector(Cm))
MP← NewPacckage(Cm) . new moisture package with sender cell
CalcSetReceiver(MP, Angle) . stores MP in all receiving cells

for all Iterations do
for all Cm in Gridm do

if Linear then . lin./exp. evaporation mode
Evap← CalcLinear(Cm)

else
Evap← CalcExp(Cm)

if Cm.Type() is WaterCell then
Cm.Gain← Cm.Gain + Evap

else if Cm.Type() is Border and BorderMoisture set then
Cm.Gain← Cm.Gain + Evap · BorderFactor

for all MP in Cm.Packages do . all receiving moisture packages
AVG ← CalcMoistureAVG(MP.Receivers, Gridmo)
Share← CalcShare(ExpansionFactor, AVG, RedistFactor, MP.Angle)
Mwind ← Share ·MP.Sender.Moisture
MoistureTransports.Pushback(Mwind, MP) . (list) incoming moist.
Cm.Moisture← Cm.Moisture + Mwind

if Cm.Moisture < MaxMoisture then
Cm.Moisture← Cm.Moisture + Cm.Gain . capped at MaxMoisture

if MoistureTransports not empty then
for all MoistValue, MP in MoistureTransports do

Tdi f f ← Gridtemp[Cm]− Gridtemp[MP.Sender]
if Linear2 then . lin./exp. precipitation mode

Precip← CalcLinPrecip(MoistValue, Tdi f f)
else

Precip← CalcExpPrecip(MoistValue, Tdi f f)

Cp.Precip← Cp.Precip + Precip
Cm.Moisture← Cm.Moisture− Precip

Prnd ← CalcRandomPrecip(Cm)
Cp.Precip← Cp.Precip + Prnd
Cm.Moisture← Cm.Moisture− Prnd

Gridmo ← Gridm
Clear(Gridm)

• The last step of the climate simulation is the classification of the resulting
biomes according to the computed properties, in particular, the temperature
and precipitation. For this purpose, we use a slightly modified and discretized
Whittaker diagram [410] as a lookup table. For each pair of temperature and
precipitation values, a specific biome ID is assigned according to the lookup
table. In principle, other classification systems are possible as the lookup table
can be freely changed or replaced by the user. Figure 5.8 shows an example
terrain after the biome classification.

5.1. AutoBiomes: Procedural Generation of Multi-Biome Landscapes 137

FIGURE 5.8: Example terrain after the biome classification. The col-
ors denote different biomes, e.g., orange depicts a hot desert, and
light green depicts grassland.

Terrain Refinement

To complete the terrain generation, the rough base terrain is enriched with more re-
alistic details based on the biome distribution provided by the climate simulation.
We decided to use an example-based approach, in particular, DEMs, to obtain real-
istic biome-specific terrain details because of the vast pool of freely available DEM
data which can be exploited. The DEMs serve as examples that can be blended
onto the base terrain. The advantage is that the DEMs inherently provide realis-
tic biome-specific terrain features and details. To get such realistic details, other
methods would need a lot more user tuning and manual work, e.g., crafting specific
multi-layered noise functions for each biome type, or complex computations in the
case of physically-based methods. Figure 5.9 depicts the refinement process.

Another aspect that has to be considered for multi-biome terrains is, that espe-
cially organic, natural-looking biome transitions are essential. Therefore, we further
customize the previously computed biome borders. Algorithm 6 details the process
but the basic idea is to initially use user-adjustable, simplex-based fractal noise to
distort the borders at a more granular level. For this purpose, we allocate a higher-
resolution biome grid. Compared to more sophisticated techniques from the field
of texture synthesis, this is a simple and fast-to-compute method that guarantees a
result with consistent quality. Depending on the input data, other methods may oc-
casionally result in technically correct but visually unsatisfactory results like straight
biome borders (e.g., graph cut).

In a second step, we compute a biome-based DEM weighting using a convolu-
tion kernel to blend the adjacent biomes and their corresponding DEMs: Each DEM
weight equals the area of the corresponding biome inside the kernel boundaries pro-
portional to the whole kernel region. The strength of the resulting blend and the
required computation time depend on the size of the kernel, which can be set by the
user. The final DEM value can be easily calculated as a weighted sum over the occur-
ring DEMs. For simplicity, we assume a one-to-one relationship between the DEM

138 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

FIGURE 5.9: Biome-based terrain refinement: The base terrain is com-
bined with biome-specific details that are obtained using DEMs.

texels and the terrain heightmap. Finally, we combine the generated biome-specific
detail layer with the base terrain by using a weighted sum of the two heightmaps.

Asset Placement

In the final step of our pipeline, we populate the biomes by placing assets. We have
developed an iterative, rule-based local-to-global model, that, in contrast to global-
to-local models, enables the creation of emergent distributions. Additional advan-
tages are, that the model can easily be modified or extended by further constraints,
and the individual assets, through the defined rules, inherently consider the biome
transitions. We also considered using a global-to-local model in combination with
real plant distribution data, but such data is hardly available for all kinds of biomes.

Our system is designed to use pre-modeled meshes, which allows for arbitrary
generation methods to be used. However, the mesh generation itself, in a mod-
eling sense, is not part of this work. We provide a basic database of pre-defined
assets that can be easily extended by the user. Each asset is associated with a set
of properties, e.g., clustering probability, shadow tolerance, or repelling distance.
An example is depicted in Fig. 5.10. The placement is done iteratively via the dart-
throwing principle where a random position is sampled and checked for the assets
constraints, see Fig. 5.11. Our sampling approach is generally based on Poisson-
disk sampling, where all the points are guaranteed to maintain minimal distances
between each other. However, we extended this basic approach to cover also more
complex multi-object distributions with bilateral constraints. Yet our approach is
very flexible through the easy-to-understand parameters which steer the placement.
We divide the assets into a few main classes, e.g., organic- and inorganic, with cor-
responding relevant parameters, which helps to improve the usability. Additionally,
assets are partitioned into size categories which are processed iteratively such that

5.1. AutoBiomes: Procedural Generation of Multi-Biome Landscapes 139

Algorithm 6 Process of the terrain refinement.

Require: user parameters set, DEMs available
for all Biomes do

DEMs[Biome]← LoadRandomDEM(Biome)
DEMs[Biome]← Shi f tMinHeight(0)

BioMap← CreateBiomeMap()
NoiseMap← CreateFractalNoise()
for [horizontal, vertical] do . one iteration each

for all Cb in BioMap do . all cells in biome map
Cn ← GetNeighbour(up) . right in second iteration
if Cb.biome not equal Cn.biome then

O f f set← NoiseMap(Cb)
Biome← BiomeMap(Cb + O f f set) . in up/right dir.
for all Co between Cb and Cb + O f f set do

Co.Biome← Biome
for all Ch in Gridheight do . cells in height grid

BiomeCounters← InitAll(0) . list of counters
Kernel ← CalculateKernel(KernelSize)
for all Ck in Kernel do . cells overlapped by kernel

C ← C + 1 . counter
BiomeCounters[Ck.Biome]← BiomeCounters[Ck.Biome] + 1

for all BC, Bio in BiomeCounters do
Fraction← BC/C
Ch.DEMHeight← Ch.DEMHeight + Fraction · DEMs[Bio](Ch)

Ch.Value← Ch.DEMHeight · DEMFactor + Ch.BaseHeight · BaseFactor

140 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

smaller assets consider the previously placed bigger ones. With this technique, we
achieve more plausible mixed distributions and environments. Generally, depend-
ing on the parameters, it is possible to model clustered, random, or uniform distri-
bution and anything in between.

FIGURE 5.10: Example of an asset (tree) with various properties that
steer the placement algorithm.

Sample Rnd.
Posi�on

Check
Constraints Valid Pos.

n tries

FIGURE 5.11: Process of finding valid asset spawn positions using
dart throwing.

As seasons have a significant influence on the terrain cover’s visual appearance,
each asset can be associated with up to four different meshes representing its sea-
sonal look. The meshes then are swapped automatically according to the current
season, which can be changed in real-time. Additionally, the UE4 provides instanc-
ing which improves the rendering performance, and a LOD system for dynamic
switching between the placed assets’ detail levels.

5.1.4 Results

We have implemented our terrain generation system directly in the Unreal Engine
4.20 using mainly C++ programming. It is directly accessible via the Unreal Editor
which makes it very convenient for content creators.

We are not aware of quantitative measures to evaluate the quality of automat-
ically generated terrains or biome distributions. Hence, we decided to provide
mainly a qualitative evaluation of our system. We, e.g., show the influence of several
of the most important parameters in the terrain generation pipeline. Additionally,
we present measurements of the performance of each pipeline step in various con-
figurations. Moreover, we are not aware of any directly comparable scientific work
with the same focus – fast procedural multi-biome terrain.

First, we investigate the plausibility of the generated terrains. Figure 5.12 shows
an example of terrain generated with our approach.

Different biomes can be easily distinguished by different surface characteristics.
The distribution of the biomes is a result of correctly simulated natural phenomena
like the occurrences of rain shadows. The easy accessibility of the adequate and
meaningful parameters from the editor makes it easy to generate a vast variety of

5.1. AutoBiomes: Procedural Generation of Multi-Biome Landscapes 141

FIGURE 5.12: A final terrain of our PTG system rendered in the Un-
real Engine (representing 1600 km2. The different surface characteris-
tics caused by the distribution of multiple biomes can be seen easily.
Each biome is also depicted by a different color.

different terrains and asset distributions. For instance, Figures 5.13a, 5.13b and 5.13c
show the influence of the temperature, the wind direction, and the user-based noise,
while all other parameters remained constant: the resulting terrains look very differ-
ent, however, they are still plausible. Figures 5.13d, 5.13e and 5.13f show a variety
of terrains if we change multiple parameters. The interaction of the different param-
eters like base noise, temperature, wind direction, and chosen DEMs is responsible
for the even more wide range of generated terrains. These example terrains show not
only diverse occurring biomes and biome distributions but also drastically varying
surface characteristics and general patterns.

Placing hundreds of thousands of assets with cross-class dependencies to pop-
ulate a huge terrain is easy with our system (see Figure 5.14, where the generated
terrain is populated with around 200,000 assets).

By changing the asset-placement parameters, the user can directly influence the
distribution and density of the assets while maintaining high realism (see the Fig-
ures 5.15a, 5.15b and 5.15c).

The real-time-adjustable season of the year has a significant impact on the land-
scape’s appearance, as can be seen in Figure 5.16, and enables the visualization of
an even wider range of environments and adds an additional layer of realism to the
user if switched dynamically.

Additionally, we have investigated the performance of our terrain generator.
All timings were done on a Windows 10 PC with an Intel Core i7-7800X processor,
NVIDIA GeForce RTX 2070 graphics card, and 16 GB system memory. The running
time of the pipeline depends mainly on the resolution of the particular grids. The
expected running time is O(n3) with n denoting the number of cells per axis. This
is dominated by the simulation of wind and precipitation with an expected running

142 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

(A) (B)

(C) (D)

(E) (F)

FIGURE 5.13: A set of different terrains generated by our system, vi-
sualized on a proxy mesh with biomes depicted by different colors.
In contrast to Figure 5.8 we changed the temperature (a), the wind
directions (b), the base noise (c) numerous parameters at once (d), (e),
(f). Especially the last three examples show how a wide range of dif-
ferent terrains with wildly varying surface characteristics and biome
distributions can be generated. This is a result of the interaction of pa-
rameters like the base noise, temperature, wind direction, and chosen
DEMs.

time of O(n3). The other steps are expected to have a running time of O(n2). How-
ever, the biome classification is actually bound by the constant DEM loading times
and the asset placement is nearly linear in the number of assets. The theoretical
memory consumption is O(n2). In practice, it is dominated by the number of asset
instances.

5.1. AutoBiomes: Procedural Generation of Multi-Biome Landscapes 143

FIGURE 5.14: The same final terrain as in Figure 5.12 with pro-
cedurally distributed assets using our asset placement component.
Around 200,000 instances were spawned in total.

(A) (B)

(C)

FIGURE 5.15: Three different asset distributions generated by our
system. (a): Tight clusters of shrubs in open spaces between trees.
(b): Shrubs growing exclusively in shadowed areas within dense tree
clusters. (c): Dense, clumped distribution of shrubs around loosely
grouped trees.

Figure 5.17 shows the time needed for calculating the individual pipeline steps
with respect to the grid resolutions. All times were measured by performing several
test runs using the Unreal Engine profiling tool and taking the median time over all

144 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

(A) (B)

FIGURE 5.16: A terrain with its cover at different seasons: summer
on the left (a), winter on the right (b). Seasons and the corresponding
meshes can be automatically switched by our system.

test runs.

Te
rra

in
Gen

.

Te
m

per
atu

re
Calc

.

W
in

d Sim
ulat

ion

Prec
ip

ita
tio

n Calc
.

Biom
e Clas

sifi
ca

tio
n

Te
rra

in
Refi

nem
en

t

Asse
t Plac

in
g

0

1

2

3

4

5

6

7

8

9

10
36.6

Ti
m

e
in

s

Resolution 1 Resolution 2 Resolution 3

FIGURE 5.17: Computation times of the different pipeline steps: For
the first pipeline step, the cell resolutions (per axis) were set to 1024,
2048, and 4096, respectively. For the distribution of assets, the reso-
lutions were set to 30, 60, and 120 assets per cell, while for all other
steps, the resolutions are 128, 256, and 512 cells per axis.

The computation time of the individual pipeline steps differs significantly, from
a few milliseconds for the temperature calculation up to 36.6 seconds for the precip-
itation calculation in the most expensive configuration. However, the computations
last in the majority of cases less than ten seconds. The overall most time-consuming
steps are the precipitation calculation and terrain refinement, as expected, but also
the asset placement. The main factor affecting the needed computation time is the
respective grid resolution, but for some pipeline steps, additional parameters also
have a great influence. For example, during the refinement of the terrain, the blend-
ing part takes the most amount of time and therefore, the adjustable blending kernel

5.1. AutoBiomes: Procedural Generation of Multi-Biome Landscapes 145

size has a significant impact on the performance of this step. Figure 5.18 shows how
different kernel sizes affect the performance for the terrain refinement.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

4

8

16

Time in s

K
er

ne
ls

iz
e

(C
el

ls
)

Blending
Rest

FIGURE 5.18: Computation time of the terrain refinement step with
different sizes for the blending kernel (size per axis). The resolution
was fixed to 2048 cells per axis. The middle bar corresponds to the
terrain-refinement result with resolution two in Figure 5.17.

In the case of distributing the assets, it is noteworthy that the computation time
is highly dependent on the combination of the strictness of the placement rules and
the maximum number of iterations per individual placement. Our tests show that
roughly 100 - 300 assets can be placed in a couple of seconds. The time to spawn the
assets in Unreal is included in the placement time and, in general, takes up a consid-
erable amount of it, which is a bit surprising. Figure 5.19 illustrates the interaction
between these parameters and the composition between the time needed for the po-
sitioning and the instance spawning. A higher number of positional tries leads to
both, more instances being actually placed as well as a higher computational time,
as expected. However, with stricter placement rules which are harder to fulfill, i.e.,
increasing the minimum distance between instances, the overall time can actually
decrease even if the time needed for calculating the positions increases relatively.
This is due to fewer valid positions being found and therefore fewer instances being
spawned which is a fairly costly process.

However, even for large grid sizes, our terrain generation requires less than a
minute in almost all cases. These fairly low computation times meet our expecta-
tions and enable quick iterations. Implementing multi-threading could improve the
performance even further as most algorithms are prone to parallelization.

0 1 2 3 4 5 6 7

E, 4

E, 8

D, 4

D, 8

Spaw
ned

Instances115k

103k

290k

284k

Time in s

D
is

tr
ib

ut
io

n,
Tr

ie
s

Pos. Calc.
Spawning

FIGURE 5.19: Calculation time of the asset placement step, parti-
tioned in the phases of position calculation and actual spawning in
the UE, with different distribution rules and a varying amount of po-
sitioning tries per instance. D stands for a difficult to fulfill rule-set
and E for an easy one. Also, the resulting number of spawned assets
is stated; The optimal amount would have been 300k, where k stands
for thousand.

146 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

5.1.5 Conclusions and Future Work

We have presented a pipeline-based system for procedurally generating multi-biome
landscapes. Our pipeline model is easy to use and flexible on both, local and global
scale. Our system can help level designers and other users with generating and
quickly iterating over vast and yet visually plausible multi-biome terrains. This pro-
cess includes the automatic but still user-adjustable population of the terrain with
huge amounts of pre-defined assets following complex distributions. Utilizing a
carefully simplified climate simulation was a central element in the success. It is not
only crucial for creating the biomes themselves and their realistic distribution but is
also the basis for other landscape aspects, e.g., our DEM-based terrain refinement
and also the asset placement relies on the specific biomes. Our results demonstrated
that the generation is reasonably fast while the terrains are visually plausible.

The modular pipeline approach is an excellent base for future work. There are
many possibilities to extend our system or improve existing parts even further. The
most promising additions, in our opinion, would be to implement a simulation step
for river and erosion generation and the introduction of different geological layers
and soil types. Also encasing the system in a meta-iteration to alternate between
biome distribution and terrain generation could be interesting for producing results
that are even more realistic. Regarding improvements, multi-threading and a more
complex wind simulation would be the most important ones. Finally, we see much
potential in investigating the use of neural networks, e.g., style transfer or GANs,
for terrain generation, specifically, generating DEMs and combining them with the
base terrain.

5.2 Procedural Generation of Landscapes with Water Bodies
Using Artificial Drainage Basins

After we previously presented a PTG system that is able to generate landscapes with
various biomes, in this section, we want to tackle an often overlooked aspect of pro-
cedural terrain generation, namely, generating landscapes that feature plausible wa-
ter bodies. Therefore, we propose a method for the procedural generation of huge
landscapes that focuses on creating realistically-looking river networks and lakes as
well as a natural-looking integration. We achieve this by an approach inverse to
the usual way: we first generate rivers and lakes based on artificial drainage basins
and then create the actual terrain by “growing” it, starting at the water bodies. Our
pipeline approach not only enables quick iterations and direct visualization of inter-
mediate results but also balances user control and automation. That means the first
stages provide great control over the layout of the landscape while the later stages
take care of the details with a high degree of automation. Our evaluation shows that
vast landscapes can be created in under half a minute. Also, with our system, it is
quite easy to create landscapes closely resembling real-world examples, highlight-
ing its capability to create realistic-looking landscapes. Our implementation is easy
to extend, highly compatible with external applications thanks to using heightmaps
as underlying data structures, and thus, can be integrated smoothly into existing
workflows.

The work presented in this section is based on our published paper PC1 in Ap-
pendix A.

5.2. Proc. Landscapes with Water Bodies Using Artificial Drainage Basins 147

5.2.1 Introduction

As described in Section 5.1, procedural generation of 3D landscapes is a research
topic of great relevance, as the interest in large, realistic digital landscapes is steadily
rising throughout many fields and industries. We established, that such digital land-
scapes get employed, for example, in computer games, but also movies, simulators,
and virtual testbeds, and that producing realistic and detailed terrains while keep-
ing the workload in check is always a challenge. Naturally, there has always to be a
trade-off between control and automation as fully procedural generated landscapes
usually do not meet specific requirements but designing everything by hand is not
viable either. With greater and denser worlds the challenge is only getting more ex-
acerbated. Numerous works have been presented on the automatic generation of
landscapes and terrains using procedural generation techniques, including our own
work that we presented in Section 5.1.

A sub-topic that got much less attention despite being highly relevant for large
landscapes is the procedural generation and plausible integration of water bodies,
i.e., mainly rivers and lakes but also other features such as smaller streams and
ponds. While rivers/river networks, their natural processes, and interaction with
the surrounding terrain have been – and still are – extensively studied in related
fields such as geology, ecology, and hydrology [308, 46, 47], relatively few works
focused on procedural generation of 3D representations of them in near real-time
speed. Existing scientific models and simulations usually employ only 2D represen-
tations, are more focused on analyzing existing landscapes than creating novel ones,
or are very time-consuming to perform. For instance, one popular model to cre-
ate river networks is optimal channel networks (OCNs) [301, 14]. Brown et al. [38]
gives a good overview of the different works and approaches to create digital rivers
throughout the various research fields.

We propose a method and pipeline for quick and easy procedural generation
of large, plausible-looking landscapes which include and integrate believable water
bodies, i.e., river networks. In our approach, we mimic the mutual influence be-
tween terrain and water bodies by first generating the rivers and lakes based on ar-
tificial drainage basins, and then computing the final terrain. This way, we get more
natural-looking landscapes, than by retroactively adding rivers to a terrain. In order
to demonstrate our proposed approach, we have developed a prototype application
in Unity. In this prototype, we have applied a pipeline approach that makes it easy
to evaluate intermediate results and emphasizes a workflow with quick iterations.
Finally, we have conducted an extensive evaluation of our proposed system.

5.2.2 Related Work

One of the oldest approaches for procedural terrain generation is to use subdivision
techniques such as the midpoint displacement and the diamond square algorithms,
and noise functions (e.g., simplex and ridge noise), as they are able to produce
fractal-like structures, which are also often found in nature. Moreover, such tech-
niques are, generally, relatively easy to use, highly scalable, and computed quickly.
A comprehensive overview of various noise functions is given by Lagae et al. [197].
The drawbacks of those techniques are the intrinsic lack of control over global fea-
tures, and the un-intuitive parameters, which make it hard to create geologically
plausible landscapes.

148 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

A popular approach to providing intuitive control to the user is to add an au-
thoring phase at the beginning, most often in form of a user sketch that acts as a
high-level constraint for the subsequent terrain generation [369, 116].

An approach to create more realistic terrains is to mimic or simulate natural
processes. For instance, Michel et al. [249] create folded terrains with mountain
ranges by using simplified plate tectonics that is based on user sketches and Cor-
tial et al. [76] approximate the movement and collision of user-authored tectonic
plates on a planetary scale. Simulation-based techniques most often focus on ther-
mal or hydraulic erosion, the latter normally encompassing some form of fluid sim-
ulation. One example is Mei et al. [244], who used an adapted shallow-water model
to calculate the erosion and deposition process as well as the sediment transport.
The proposed work was implemented on the GPU. Stava et al. [355] further im-
proved the method and combined two hydraulic erosion algorithms. Cordonnier
et al. [75] combined tectonic uplift from user-provided input maps and simulation
of hydraulic/fluvial erosion based on the stream power equation to generate plau-
sible large landscapes. However, despite efforts to speed up the computations,
most simulation-based approaches are very time-consuming, especially if applied
on large-scale terrain. Another disadvantage is the lack of intuitive control over the
generated terrains.

Realistic-looking large-scale terrains also can be created using example-based
procedural generation techniques such as texture synthesis. For instance, Zhou et
al. [442] employ patch-based texture synthesis to generate terrains based on user
sketches and example DEMs. Gain et al. [117] instead switched to parallel pixel-
based terrain synthesis for higher efficiency; user control is provided by several
modifiable, local constraints. Guerin et al. [135] presented an example-based au-
thoring pipeline in which the user provides a quick sketch of the main terrain fea-
tures, and then a set of neural-network-based terrain synthesizers creates the corre-
sponding terrain. The synthesizers – which are conditional generative adversarial
networks – get trained on real-world example data. Naturally, example-based meth-
ods are limited by the available example data and can only replicate terrain features
and landforms that are represented in the input DEM. Also, high-level geological
constraints and the correct relations between large-scale features such as drainage
basins are usually not taken into account.

Relatively few works explicitly focus on procedural rivers and water bodies as
initial terrain-defining elements, although river networks play an important role in
the natural formation of the terrain. Kelly et al. [180] were the first to propose the
idea of procedurally generating terrain based on river networks and correspond-
ing drainage basins. Here, the river networks were generated based on constrained
midpoint displacement, and then the terrain was computed accordingly. Derzapf
et al. [82] employed a similar approach but applied it on a planetary scale. In the
work by Teoh [373], the terrain generation starts, too, by first procedurally creat-
ing river networks. In this case, rivers are grown from randomly placed outlets
around the land region. In contrast to these works, Genevaux et al. [127] explicitly
take hydrological knowledge into account, additionally, initial user sketches provide
more control. Based on the sketch, a river-network graph is created, river segments
get classified into different types of watercourses, and the surrounding terrain gets
computed using a hierarchical terrain construction tree. Zhang et al. [436] present
a similar approach but generate the rivers based on Tokunaga river networks and
calculate the surrounding terrain using a diffusion process.

For a more comprehensive overview and discussion of procedural terrain gener-
ation techniques, we refer to the presented work by Galin et al. [119].

5.2. Proc. Landscapes with Water Bodies Using Artificial Drainage Basins 149

FIGURE 5.20: Computing river networks using A* pathfinding. The
approach is quick and is able to directly generate lakes too, but the
results are not convincing.

5.2.3 Overview of our Approach

In this section, we will present an overview of our proposed methods and pipeline.
First of all, we will briefly discuss different approaches to procedural terrain gener-
ation that include and emphasize river systems, and explain the reasoning behind
our approach.

The first group to consider is purely simulation-based approaches. These are able
to produce realistically-looking terrains with river networks, e.g., using erosion sim-
ulation. As we prioritize a quick and easy generation over absolute realism, though,
we have decided against these simulation-based approaches. Another approach that
follows the classical order of first generating the terrain and then adding rivers to it
is to use pathfinding algorithms. For instance, an adapted A* pathfinding algorithm
can be used to follow the terrain downwards from randomly placed sources. This
not only has the advantage of being computed rather quickly but also that lakes can
be easily computed by just defining the searched area as a lake, which tends to be
in local minima. However, in our experience, the river networks and their integra-
tion into the terrain were not convincing, as they did not respect geomorphological
constraints. Figure 5.20 shows an example of employing this approach for river gen-
eration. In this thesis, we instead propose to follow the more natural “rivers first”
approach, specifically, first generating river networks based on artificial drainage
basins and then modeling the final terrain after them. Accordingly, we will present
several methods and an integrated pipeline to allow for that.

For the implementation of our pipeline, we have used heightmaps as data struc-
tures for data and terrain representation, as they have a smaller memory footprint
and, most importantly, provide much greater compatibility with external applica-
tions than voxels. Even though we do not aim for real-time generation (i.e., an
online algorithm), it is very important to facilitate a quick workflow for the users,
which means having fast computation times as well as direct visualization of inter-
mediate results that can be made modifications upon. These considerations lead us
to employ a pipeline approach in which each step should be computed in a matter

150 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

Control Automa�on

Ocean
Borders

Regions
Rivers &

Lakes
Terrain
Height

1. Marker-Based
Curves

2. Voronoi
Refinement

1. Drainage Basins
Using Flow Map

2. River Calcula�on

3. Lake Growing

1. Marker-Based
Placement

2. Border
Refinement

1. Terrain Growing

2. Texture
Genera�on

FIGURE 5.21: Overview of our procedural generation pipeline. The
first stages feature more user control, the latter ones provide more
automation.

of seconds, be repeatable if modifications are desired, and the results directly be ap-
plied on a proxy mesh for inspection. Fig. 5.21 depicts a high-level overview of our
approach. We start with the general landscape layout by letting the user author the
landmasses using marker-based curves. Then, different regions can be marked (e.g.,
flatland, or mountains). Following this, the river networks, including lakes, are com-
puted based on artificial drainage basins. Finally, the terrain height gets computed
based on the previous steps. In the earlier stages, we emphasize providing the user
with more control over the algorithm, while the later stages have a higher degree
of automation. The reasoning for this is that the user should have a great influence
over the general layout and shape of the landscape and its landmasses, which are
defined in the earlier stages of the pipeline, but not be overwhelmed with a host of
detail decisions all over the landscape. Smaller modifications at the places where
it is deemed necessary could be better done afterward via a polishing pass with a
sculpting tool.

5.2.4 Our Terrain Generation Pipeline in Detail

Ocean Borders

Our pipeline begins with the coastlines that separate the landmasses from the ocean.
As the user should have great flexibility to shape the general terrain to his needs, we
prioritized providing great manual control instead of excessive levels of automation
for this part of the pipeline. To define the overall shape of a landmass, the user can
place marker objects throughout the scene, which we then compute a closed curve
from. This curve defines the coastline: the area within forms the landmass, and the
rest represents the ocean (or the other way round, depending on a user setting), see
Fig. 5.22. Multiple landmasses can be built by repeating the process. If no markers
are placed, the whole scene forms a single landmass without an ocean. The mark-
ers contain location information, a rotation, and a strength parameter affecting the
marker’s influence, specifically, the curvature of the tangent (higher strength values
resulting in less curvature). The curve is then computed by interpreting the mark-
ers as knots/control points of a cubic spline, the evaluation is done in the order
the markers were placed. The final segmentation into land and ocean is stored in a
regular grid whose granularity can be set by the user.

5.2. Proc. Landscapes with Water Bodies Using Artificial Drainage Basins 151

FIGURE 5.22: Authoring of the general shape of the landmass borders
using marker objects which act as spline control points (red points
with arrows). The white curve represents the generated spline and
the green area depicts the final refined landmass. First 3 images: in-
creasing strength values (reducing the curvature of the tangent).

152 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

In order to improve the outlines and get a more natural look, we have devel-
oped multiple refinement options for constrained randomization based on Voronoi
diagrams. Generally, we randomly place Voronoi sites on the map and define the
regions using the Manhattan distance. We use this metric, as the computations are
done on a regular grid; other metrics can be applied, too, though. In the first refine-
ment variant, each Voronoi region gets classified to represent landmass or ocean, de-
pending on if the corresponding Voronoi site is inside or outside the spline, see the
top left image in Fig. 5.23. This ensures that the general layout defined by the spline
is retained, but the actual border is randomized. The granularity of the Voronoi di-
agram can be set by the user. To efficiently produce finer, more detailed borders,
this refinement step can be followed up by a second iteration in which additional
Voronoi sites are placed around the previously computed border, see the top right
image in Fig. 5.23. Alternatively, this second iteration can be applied using a priority
queue based on (fractal Perlin) noise for the growth of the regions, see Algorithm 7
for details of this process. Although computationally more expensive, it produces
more varied results through more inhomogeneous region growth and can lead to the
formation of small islands. The noise parameters influence the output, e.g., a higher
frequency produces finer structures, and more octaves enable features of different
scales. Fig. 5.23 (bottom row) shows an island with the different refinement variants
applied.

Algorithm 7 Border refinement (2. iteration, Voronoi + noise)

Require: 1. refinement iteration done, RegionMap set
B← BorderCells . From 1. iteration
Q← [] . Empty priority queue
for all VoronoiSites do

P← Random(B) + RandomXY(MaxRadius)
Q.Enqueue(P, Noise(P))

B← []
while Q not empty do

C ← Q.Dequeue()
for all N do . Valid, unsearched neighbor cells

RegionMap[N]← RegionMap[C]
Searched[N]← True
Q.Enqueue(N, Noise(N))

if CheckI f Border(C) then
B.Add(C)

Regions

After the landmasses are defined, the next step is to partition them into regions of
different terrain types. Terrain types we have implemented are flatland (default),
mountain, and desert. Others can be added easily, though. One option to divide the
landmass into different regions could have been to use cellular noise. However, in
this pipeline step, we again focused on giving the user great control over the layout
of the regions by allowing the manual distribution of regions over the terrain. Alter-
natively, a random distribution is available too. A region is defined similarly to the
coastlines in the previous step by placing region markers. This time they contain pa-
rameters regarding the terrain type, the extent, and its border, which is randomized

5.2. Proc. Landscapes with Water Bodies Using Artificial Drainage Basins 153

FIGURE 5.23: Border refinement based on Voronoi diagrams. Top
row: the two iterations of border refinement. The left image shows
the result after the first iteration (the black ellipse depicts the initial
spline, and the white outline is the ocean border). The right image
shows the second refinement iteration with the final border (yellow
outline). Bottom row: The left image shows the land after one itera-
tion, the middle image after two iterations, and the right image after
two iterations with noise-based sampling.

154 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

FIGURE 5.24: Segmentation of the land into different regions (green:
flatland, yellow: desert, brown: mountains). Region borders can be
customized using noise (note the different characteristics of the bor-
ders).

using noise. Fig. 5.24 illustrated an example terrain with three regions and different
border characteristics. Region overlaps are solved according to the placement order.
After the regions are placed, we iterate through all cells that represent land and store
the id of the region they lie in.

River Networks and Lakes

The next step in the pipeline is the generation of the river network. This is one of the
most important steps in the whole pipeline, as it directly impacts the eventual ter-
rain/heightmap generation. When analyzing naturally generated terrain, the land-
scape can be divided into catchment areas – also called drainage basins. These are
the areas where water is collected by surface runoff (e.g., from precipitation). They
are often divided by mountains or hills. This means that by artificially generating
those catchment areas, we know afterward where we can place hills and mountains.
To generate the catchment areas, we have developed a method inspired by optimal
channel networks [301, 14]. Similarly to them, we define a finite graph G(V, E) over
a regular grid spanning the landscape. The nodes v ∈ V correspond to the cells of
the grid, and the edges e ∈ E link neighboring nodes and enable the flow of wa-
ter between them. We then construct a spanning forest F over G that acts as a flow
graph/flow network, i.e., G gets partitioned into a number of spanning trees T –
acyclic, directed, rooted sub-graphs. Each outlet acts as a root of one of these trees,
which each represent one river network or its catchment area.

Our procedure is shown in Fig. 5.25 and starts by placing down several potential
outlets around the coasts (left image) and also around mountain regions. The sepa-
ration between those outlets happens so that the rivers can be generated differently
based on terrain type. The number of outlets can be set by the user separately for

5.2. Proc. Landscapes with Water Bodies Using Artificial Drainage Basins 155

1 2 3

FIGURE 5.25: The process of computing rivers and lakes. First (1),
random outlets are selected at the ocean borders (red dots). Then (2),
we compute the flow directions across the land (see arrows), starting
at the outlets and then consecutively and randomly selecting previ-
ously evaluated cells (green arrow in the highlighted area) to process
their unprocessed neighbors (grey arrows). Eventually (3), we ran-
domly place river sources (blue dots) and create the actual rivers by
following the flow map (blue lines). Lakes are grown from random
points on the river.

each region type. Placing outlets around desert regions is excluded from this pro-
cess. Then, we compute the catchment areas by construction of the spanning forest
that indicates the flow directions. This is done by calculating random flow direc-
tions for all cells in the uniform grid and storing them in a flow map (middle image
of Fig. 5.25) that procedurally connects all cells from mountain and flatland regions.
This process starts at the river outlets by adding all outlet cells into a fringe set.
Then, consecutively, random cells from this set get selected and their unsearched,
valid neighbor cells get processed by assigning the flow direction (pointing to the
current cell) and, in turn, adding them to the fringe set. By using a random selection
order, we guarantee a homogeneous growth of the spanning trees/propagation of
the flow map and, thus, the drainage basins. Algorithm 8 shows the procedure in
more detail.

This process also avoids desert regions to ensure that they stay dry when placing
the rivers. The number of outlets influences the shape of the river networks. The
fewer outlets are generated compared to the number of river sources, the higher the
branching factor in the final river networks will be. This is because the individual
rivers, starting at their sources, are more often routed to the same outlet and, thus,
join somewhere along the way. Important to note is, however, that not all outlets
will necessarily have rivers run into them. In Fig. 5.26 (left), an example landscape
is shown with arrows depicting the corresponding flow map (due to the perspective
there are slight offsets).

Following these preparations, we can proceed to generate the actual rivers. A
possible approach for this would be to calculate the amount of water that would
flow through each cell. This could be done by placing water evenly on the grid
and following along each water unit with the previously generated flow directions
while adding up how many water units traverse each cell. Rivers could then be
placed in every cell that has an amount of water higher than a specified threshold.
This method would work but lead to a relatively even distribution of river sources.
Instead, we place the river sources randomly on the map and then follow the flow
directions until the ocean is reached (right image of the image sequence of Fig. 5.25).
This yields the advantage of a more random distribution of sources. The amount
of river sources placed is again controlled by the user and can be set separately for

156 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

Algorithm 8 River Generation

Q← DistributeFlatlandOutlets(NumFO) . Queue w. outlets at ocean borders
while Q not empty do

cell P← Q.Pop()
N ← RandomUnconnectedNeighbour(P, FlowDirectionMap)
FlowDirectionMap(N)← P
HeightMap(N)← HeightMap(P) + CalcGrowthFactor(N)
Q.Enqueue(N)

Q← DistributeMountainOutlets(NumMO) . At borders to flatland/ocean
for all O do . Mountain outlets

if O next to flatland then
N ← RandomUnconnectedFlatlandNeighbour(O, FlowDirectionMap)
FlowDirectionMap(N)← O
HeightMap(O)← HeightMap(N) + CalcGrowthFactor(N)

else
HeightMap(O)← 0

while Q not empty do
cell P← Q.Pop()
N ← RandomUnconnectedNeighbour(P, FlowDirectionMap)
FlowDirectionMap(N)← P
HeightMap(N)← HeightMap(P) + GrowthFactor
Q.Enqueue(N)

DistributeMountainSources(NumMS)
DistributeFlatlandSources(NumFS)
for all S do . All flatland/mountain sources

S.SetDry(Chance)
cell P← S
while P.Type() not ocean do

set type of P as (dried) river
RiverStrengthMap(P)← RiverStrengthMap(P) + RiverGrowthFactor
P← FlowDirectionMap(P)
if NumLakes < MaxLakes and random chance then

GenerateLake(P, RiverStrengthMap(P))
for all S do

WidenRiver(S, FlowdirectionMap, RiverMaxWidth)

5.2. Proc. Landscapes with Water Bodies Using Artificial Drainage Basins 157

FIGURE 5.26: Left: An example map with arrows roughly indicating
the corresponding flow map. Right: A map highlighting the river
strength/width with different colors (green indicating weak rivers
and red strong ones).

mountain and flatland regions. An example terrain with multiple rivers is illustrated
in Fig. 5.27 (left). Users also can set the chance for a river to be a dried-out riverbed
instead of a normal river. In our implementation, each river adds a certain amount
of strength to a cell when flowing through it, thus, when two rivers join, their re-
spective strength is combined from thereon. Based on this strength, we calculate the
width of the river and accordingly assign more cells to it. Fig. 5.26 (right) depicts a
color-coded example of the various rivers and their respective strength (red: strong,
green: weak). The calculation of the width can be skipped by a user setting, though.
It is also possible to set a maximum width for rivers. This can be useful when using
a calculation grid with a lower resolution where one cell already covers a larger area
of the final map.

For each cell a river travels through, there is a chance to generate a lake. The size
of the lake depends on the strength of the river cell it is generated from: the higher
the strength, the more likely it becomes for the lake to be bigger. In addition, the
size is limited by user-set maxima and minima. To produce lakes that vary in shape,
a noise function is applied to the lake borders. The user can set the frequency, the
strength, and the number of octaves of the noise function. All the cells inside the
border are classified as lake. In order to avoid overfilling the map with too many
lakes and to give control to the user, it is possible to set a maximum amount of
lakes generated for mountain and flatland regions. In addition, the lake generation
is limited to one lake per river source. After generating a lake, the river generation
continues. Fig. 5.27 (right) shows an example terrain with lakes and river networks
in which the rivers have different strengths.

With our approach to create river networks, we are also able to generate distinct
river deltas. For this, we perform a second, locally-bound iteration of generating
drainage basins and then rivers. However, here we reverse the process: If a river
delta should be generated, we select a river cell instead of a coastline cell as the
starting point from which we compute the flow map; in this case only a regional
one. Then, we select multiple coastline cells to be outlets from where rivers – the
eventual distributaries of the delta – are created by following the computed regional

158 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

FIGURE 5.27: Left: A terrain with rivers generated in flatland (green).
Right: The same terrain as in the left picture but with rivers of varying
width and the addition of lakes.

flow directions back to the original river cell. We allow this process to randomly
occur in the general vicinity of the ocean, see Fig. 5.28 for examples of this process.

Terrain

After generating the rivers and lakes, we calculate the terrain’s height based on them
and all the information that was produced in the previous steps of the pipeline.
Algorithm 9 shows the process.

Algorithm 9 Heightmap Generation

Q← all coast, river, lake cells . priority queue with height as priority
while Q not empty do

cell P← Q.Pop()
for all N do . neighbours of P

if N unchecked and N.Type() not ocean then
GrowthFactor ← CalcGrowthFactor(N)
HeightMap(N)← HeightMap(P) + GrowthFactor
Q.Push(N)
N.Checked(True)

The terrain will be “grown” starting at the oceans, rivers, and lakes and contin-
uously rises while departing from them, see Fig. 5.29. To do this, all starting cells
are added to a priority queue with the priority being the initial height of the cells.
The initial height of water cells was computed during the river generation in the
previous stage: cells marked as river directly get assigned a height which steadily
increases from the outlet onwards based on a region-based steepness, although a
distance-based curve is possible too. When a cell is removed from the queue, all the
neighbors that have not been traversed yet will receive a new height by the addi-
tion of a growth value. The growth value is calculated by taking into account the
terrain growth factor of the region the cell is in, and a random value obtained from

5.2. Proc. Landscapes with Water Bodies Using Artificial Drainage Basins 159

FIGURE 5.28: Two example landscapes in which river deltas were
computed (using different visualization modes). The red dot in the
left image depicts the position from which the river delta computa-
tion was started, the circle shows the radius of the local flow map,
and the yellow dots mark the stream outlets.

noise functions that also depend on the region. The height value is also interpo-
lated between the different region types to allow for a smoother transition between
them. The exact height calculation for a cell x′ which is the neighbor of an already
computed cell x is described by the following equation:

h(x′) = hx + st · bd + sr · (1− bd) + |nt · at| (5.1)

In this, hx is the height of cell x, st is the terrain/region-dependent growth factor
which itself is computed using a distance-based interpolation between all regions
in the area, bd is a distance-based blending factor, sr a growth factor for rivers, nt
the noise output whose frequency is again terrain-dependent, and at is a terrain-
dependent amplitude. The latter is calculated as at = st · kt in which kt is a terrain-
dependent noise strength.

Fig. 5.30 shows two example terrains with computed height; note the more pro-
nounced hills in the right image. The growth value itself does not change the final
height of the terrain, though, as it is difficult to know exactly what the result would
be. To guarantee the final height is controllable, the heightmap is scaled to fit the
global world width and height parameters that can be set by the user.

Visualization

The last step of the pipeline is the visual representation of the generated terrain. This
is not part of the actual terrain generation but serves an important role in giving
the user information about the results of the previous steps which allows for quick
changes if desired. To visualize the terrain, we generate a mesh by first assigning a
vertex to each cell of the heightmap and then calculating the corresponding triangles
and UV coordinates. In default mode, the vertices’ height is directly taken from the
heightmap, but we also support a mode in which the mesh omits the height and

160 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

FIGURE 5.29: Terrain growing process. The height of river cells in-
creases (brighter color) while departing from the outlet (left image).
Then, the land is grown (darker color means higher) from the rivers
outwards using a height-based priority-queue (middle image). The
growth depends on the region (right image).

FIGURE 5.30: Final terrains with computed height. Note that increas-
ing the slope parameter for the flatland (green) leads to higher, more
pronounced hills (right image).

stays completely flat. This mode can be useful for earlier pipeline steps, e.g., the
border generation, where the height information is not relevant yet, and a flat map
is easier to evaluate. Finally, we generate textures for the terrain mesh. The user can
choose from multiple rendering modes using different textures, which are illustrated
in Fig. 5.31: The normal-texture mode displays a gradient that is dependent on the
height, the region mode visualizes each region with a separate color, and the height
mode displays a normalized heightmap as texture.

5.2.5 Results

In order to evaluate our proposed procedural system, we present a brief complexity
analysis, extensive practical performance measurements, and a qualitative evalua-
tion.

Complexity Analysis

The overall run-time complexity of our pipeline is

O(nc · ns · nl) (5.2)

with nc being the number of grid cells, ns being the number of river sources, and nl
being the number of lakes. This means that the time complexity depends linearly

5.2. Proc. Landscapes with Water Bodies Using Artificial Drainage Basins 161

FIGURE 5.31: Different rendering modes highlight different aspects
of the terrain. On the top left is the normal-texture mode with water
bodies depicted in blue and a height-based color gradient for land. In
the top right is the region mode, in which each region gets a different
color, and rivers and lakes get colored in light blue. The bottom image
shows the height mode with a black-and-white normalized height-
based gradient.

on the number of river sources, the number of lakes, and the number of cells in the
grid. Similarly, the space complexity is O(nc).

Performance Evaluation

After the theoretical considerations, we did extensive real-world performance mea-
surements of our system as a whole as well as of each pipeline step individually.
All performance measurements were done using a PC with Windows 10, an Intel i7
7800x processor, 16 GB of main memory, and an Nvidia GeForce 2070 graphics card.
As the performance is mainly dependent on the number of grid cells nc, we con-
ducted all measurements with sizes of nc = 5122, 10242, 20482 and took the median
of 20 runs.

In Fig. 5.32 we illustrate the computational time of the whole pipeline over the
different grid sizes, whereby the timings of the individual pipeline steps are stacked
on top of each other. As we can see, the computation is very fast: with low to

0 2 4 6 8 10 12 14 16 18 20 22 24

20482

10242

5122

Time in s

G
ri

d
Si

ze

Borders Regions Rivers
Terrain Visual.

FIGURE 5.32: The calculation times for the complete pipeline over
multiple grid sizes. Even with a grid size of 20482 the whole pipeline
gets computed in under 25 seconds.

162 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

medium-sized grids, the whole process is done in a couple of seconds, single steps
being computed nearly in an instant, and even with the biggest tested grid resolu-
tion of 20482, the pipeline gets computed in under 25 seconds. Looking at the tim-
ings for the individual pipeline steps, the calculation of the region and rivers is the
fastest and, compared to the other steps, negligible throughout all resolutions. At
lower resolutions of 5122, the calculation of the terrain’s height and the visualization
take the most time with 0.39 and 0.38 seconds, respectively. At higher resolutions
of 20482, however, the border computation takes the longest with 7.6 seconds, fol-
lowed by the terrain with 7.5 seconds. The reason for this is that the computational
time of most pipeline steps grows with factors closely around the expected one of 4
that corresponds to the linear growth regarding the number of grid cells (quadratic
regarding grid side length) which we established in the theoretical complexity anal-
ysis. The time for the border calculation, in practice, growth with factors around 5,
though.

Investigating deeper what exactly causes the computational time in the individ-
ual steps, we find that in the river step, the calculation of the drainage basins via
the flow map takes up > 88% of the time while the following computation of rivers
and lakes takes nearly no time, see Table 5.1. Accordingly, the number of rivers and
lakes does not have a significant effect. The main factor regarding the performance
is therefore the overall grid resolution. Some other parameters, however, also have
a notable influence on the needed time for computation. For instance, in the first
pipeline step – the border calculation –, the second iteration of border refinement
takes considerably longer than the first one, as a higher number of Voronoi points
is used. Also, if the second refinement iteration is applied with additional noise
(default setting), it takes even more time to compute, as in this case, we use a prior-
ity queue. This is also the reason for the higher practical growth factor of this step.
Regarding the visualization step, the computation of the textures takes roughly four-
fifths of the time of the step while the mesh generation itself only takes one-fifth.

TABLE 5.1: Detailed timings of some pipeline steps for a grid resolu-
tion of 20482.

Step Substep Time (ms)

Borders
Refine. (1i) 851
Refine. (2i) 1601
Refine. (2i+N) 7600

Rivers Drainage B. 796
Rivers+Lakes 100

Visual. Mesh 800
Textures 3426

Qualitative Evaluation

To our knowledge, there are no metrics to quantify the quality and realism of proce-
dural terrains and water bodies. Thus, in order to evaluate the quality and plausibil-
ity of the terrain generated with the proposed system and to showcase its versatility,
we did a qualitative evaluation. For this, we have created several landscapes with
different settings, which can be seen in Fig. 5.33, and reviewed the production pro-
cess as well as the results regarding usability, flexibility, and plausibility. With our
system, it is possible to produce a vast variety of shapes for the coastline. Single
continents, as well as island groups, can be created by varying the number and po-
sition of land markers. Generally, we found the process very efficient and flexible;

5.2. Proc. Landscapes with Water Bodies Using Artificial Drainage Basins 163

simpler shapes can be realized very quickly with just a few markers, but by using a
greater number, the user also can create more complex worlds. Similarly, the whole
process to create a terrain is very easy and straightforward, as our pipeline design
allows for quick iterations and the saving of intermediate results. Also, although we
provide many parameters to fine-tune each step to the user’s liking, in most cases
the majority of them don’t necessarily have to be changed and our pre-configured
default settings will suffice.

Furthermore, several different height profiles can be generated. It is possible to
generate large-scale maps, such as the examples in Fig. 5.33 but also landscapes at
smaller scales, as shown in figure Fig. 5.34. Thanks to our focus on water bodies
and the approach to create river networks before the final terrain, the procedural
landscapes produced with our system are quite natural looking and feature plausi-
bly embedded river networks that recreate the typical dendric structures from the
real ones. In general, we found that the generated results look very plausible and,
presumably, the majority of different demands on the produced landscapes can be
satisfied.

To further evaluate the plausibility of the generated terrains, we have compared
them with parts of the real world’s terrain based on publicly available height data.
For this comparison, we took DEMs – which represent elevation data of the real
world’s terrain –, constructed 3D meshes of them, and attempted to replicate the
real terrain as closely as possible with our system while only investing a reasonable
amount of time (a couple of minutes). As an example, we randomly took a section
of the Severo-Evensky District in Magadan Oblast in Russia (61.21703, 160.21836) as
a real-world reference. Fig. 5.35 shows the comparison between the mesh represen-
tations of both landscapes, the left image shows the real terrain, and the right one
our systems replication of it.

As can be seen, it is possible to recreate a similar general shape of the coastline.
Because the generation is heavily based on random components, it is impossible to
generate a coastline that matches exactly. The mountain ranges are distributed with
a good approximation of the reality. We were not able to acquire real-world refer-
ences with satisfactory information about river networks, therefore, the map was
generated only using dried riverbeds (no lakes, no explicitly visualized rivers). It is
not possible to perfectly match the behavior where terrain touches the world border
as the real map is a part of a larger landscape and thus, rivers flow through the bor-
der. Our terrain generation algorithm does not have information about the terrain
outside the grid borders and thus cannot replicate this behavior. However, the in-
land parts of the river networks were generated in a believable way. Even though
the pathways of the riverbeds differ from the original directions, the individual parts
of river networks have similar overall shapes. This can be observed, for instance, in
the northern parts of the mountains in Fig. 5.35. The heightmaps of both terrains
are depicted in Fig. 5.36. Again, the general shape, as well as the dendric structures
caused by the rivers, resemble the original, although they do not match perfectly. In
general, it was possible to create a good approximation of the real terrain.

5.2.6 Conclusions and Future Work

With this work, we have presented a system for the procedural generation of vast
landscapes with a focus on the natural and realistically-looking integration of water
bodies. This is achieved by the approach of first generating river networks and lakes
based on drainage basins and then the actual terrain. A quick and agile workflow
is facilitated thanks to our pipeline design in which each stage is computed and

164 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

FIGURE 5.33: Example landscapes generated with our system. Note
the high variability and plausibility.

5.2. Proc. Landscapes with Water Bodies Using Artificial Drainage Basins 165

FIGURE 5.34: Examples of small-scale landscapes.

FIGURE 5.35: Comparison of a real world’s terrain (left) and our
recreation (right), both visualized with meshes. Note that our recre-
ation is quite similar.

166 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

FIGURE 5.36: Comparison of a real world’s heightmap (left) and our
recreated terrain’s heightmap (right). Our system is able to recreate
the fractal nature found in the real world.

visualized in a matter of seconds. According to our performance measurements,
a high-fidelity landscape (grid resolution of 20482) can be computed in under 25
seconds. In order to balance the amount of control, usability, and efficiency, we have
designed the first pipeline stages to allow the authoring of the general landscape and
its layout, while the later stages are more automation-heavy on the terrain details.
Of course, our methods in the various stages of our pipeline are easily modifiable
to much more or even less control, so it can be easily adapted to different needs in
different workflows. Our qualitative evaluation demonstrated the great variability
of our approach and a dedicated comparison with real-world terrain based on DEM
data illustrated the capability to quickly create terrains strongly resembling the real
ones.

In the future, one should explore the option of performing the two steps of river
and terrain generation in a multi-iteration cycle that gradually refines the landscape.
This would resemble the real procedures of terrain generation more closely, and
thus, may produce even more realistically looking and detailed results. Another op-
tion would be to increase the landscape’s variety by adding more landscape features
and region types such as oxbow lakes, wetlands, and cliffs. Lastly, parallelization of
some calculations could improve the computational times further.

5.3 Procedural Terrain Lookalikes - Generating Extraterres-
trial Planetary Surfaces for VR Testbeds

In contrast to the previous two PTG systems we presented, which were mostly fo-
cused on Earth-like terrains, here, we consider a notably different scenario. Specif-
ically, we look at procedurally generating extraterrestrial planetary surfaces based

5.3. Procedural Terrain Lookalikes for VR Testbeds 167

on example DEMs – so-called lookalikes – for planning and simulation of space mis-
sions. However, this work is designed to be an outlook and show the diverse range
of possible scenarios of PTG for VR-based testbeds, and thus, is only theoretical.

5.3.1 Introduction

Planning and conducting space missions is extremely complex, time-consuming,
and costly. One example of such a mission is to autonomously explore and investi-
gate planet surfaces such as the one on Mars. Virtual testbeds can help to accurately
simulate and test many aspects of such missions in advance, thus, reducing costs and
saving development time. Let us consider the mentioned example of autonomous
swarm exploration. In a virtual testbed, the autonomous agents, including actua-
tors and sensors, and their behavior can be accurately simulated, see for instance the
work by Teuber/Weller et al. [374, 407]. Naturally, this requires a realistic 3D ter-
rain model of the planet’s surface. Manual modeling of detailed, large-scale terrains
would be highly laborious. In case of the Mars, many DEMs, generated using satel-
lite scans, are available. However, most are not detailed enough for a proper and
meaningful simulation of unmanned ground vehicles and those that are relatively
precise (HiRISE), are scarcely distributed. Procedural terrain generation could be
used to solve this issue, though. Coarse DEMs could be augmented with finer details
using synthetic/procedural methods such as noise or subdivision techniques, see for
example the work by Li et al. [215, 214]. The drawback to this is that it is quite hard
to produce realistic results with these techniques [149], especially without many de-
tailed references, and would require a lot of laborious fine-tuning. Another possibly
more promising approach could be to follow an example-based approach. Specif-
ically, the idea would be to use one high-detailed DEM as input-example and to
procedurally generate lookalikes – terrains that look similar and follow similar sta-
tistical characteristics as the input. An additional benefit with this approach would
be, that many slightly varying, but still plausible and helpful, terrains could be gen-
erated to test the unmanned vehicles with, thus, increasing the robustness.

In the following, we will present and discuss two promising directions/options,
including relevant related work, that follow the described example-based approach
to generate terrain lookalikes.

5.3.2 Related Work and Promising Approaches

There exist many diverse approaches and methods for example-based PTG that
could be employed for our task. In this section, we give an overview of the most
relevant and promising of these methods and discuss them as well as potential is-
sues. In fact, we identified two different general approaches into which most work
can be partitioned and will consider both separately. The first one would be to em-
ploy classical heuristic-based methods from the field of image-based terrain analysis
in combination with procedural/synthetic and multifractal methods, such as noise,
from the field of image/texture synthesis. The second approach would be to em-
ploy generative machine or deep learning instead, e.g., GANs, and constrain them
to generate similar output as the given input.

168 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

Heuristic- and Noise-based Lookalikes

There is already a lot of research in the adjacent or more general areas of image
and texture syntheses, image-based terrain analysis and classification, and example-
based image generation. Hence, we prdeopose to employ and adapt these tech-
niques for the task of generating (martian) terrain lookalikes. This approach would
consist of two steps: First, the input DEM would have to be analyzed and described,
possibly even explicitly classified, using suitable and expressive heuristics and ter-
rain descriptors. Then, the second step would entail the procedural generation
or synthetization of terrains (heightmaps) that exhibit similar characteristics. This
could be done using, for instance, a combination of various noise methods or other
multi-fractal methods. As there would be a huge exploration space of possible pa-
rameter combinations, an efficient optimization algorithm should be used to find
suitable ones.

Related works that focus on terrain analysis and classification are for example
that by Zhao et al. [441], who employed object-based image analysis in order to
extract terrace landforms in DEMs. For this, they used a multi-resolution segmen-
tation method based on the slope, positive and negative terrain indices, accumu-
lative curvature slope, coefficient of variation in elevation, terrain roughness, and
slope of slope. For the subsequent classification, they used the mean and variance
of the above-mentioned terrain descriptors as well as a gray-level co-occurrence ma-
trix. The latter consisted of various variables, namely, contrast, correlation, homo-
geneity, entropy, and angular second moment. Stepinski and Bagaria [357] pre-
sented a stacked approach for the classification of physiographic maps in which
they combine pixel-based and feature-based classification: First, the Iwahashi and
Pike classifier (consisting of slope gradient, surface texture, and local convexity)
is used for pixel-wise base terrain classification. Then, contextual information is
considered by constructing secondary features based on the previous base classifi-
cation. Concretely, the local normalized frequencies and spatial patterns (using a
modified multi-scale local binary pattern operator) are taken into account for the
feature generation. Eventually, clustering and segmentation are done using the “re-
cursive hierarchical segmentation algorithm”. Another interesting work is the one
by Kawale and Ferris [179], who presented a method to synthesize terrain profiles
with statistical properties similar to measured example ones for vehicle durability
and ride quality simulations. For this, the measured terrain is analyzed using de-
scriptors such as the rainflow count and the international roughness index. Then,
they employ an autoregressive model which maximizes the statistical conformity of
the synthesized with the measured terrain. Kalbermatten et al. [171] presented an
bottom–up approach for the multi-scale analysis of geomorphological and geologi-
cal features in DEMs using the wavelet transform. Their approach also encompasses
a filtering procedure that enhances the high-pass information from each scale and
discards low-pass information. Similarly, Eisank et al.[97] employed also a multi-
resolution segmentation method for DEM-based image analysis. Specifically, they
used the “multi-resolution segmentation” algorithm and, for their use-case of map-
ping drumlins, chose the convergence index, slope height, normalized height, wet-
ness index, and vertical distance to channel network as terrain descriptors.

Feature detection and terrain classification directly based on terrain descriptors
such as slope and roughness are difficult, though, as these are bound to the local
scale. In reality, features and terrain types are often nested and vary by the chosen
scale. Thus, we deem it necessary to employ a multi-scale or multi-resolution ap-
proach. Which combination of the wide range of terrain descriptors works best, and

5.3. Procedural Terrain Lookalikes for VR Testbeds 169

at which scale, would have to be further analyzed and empirically tested. Obviously,
not all descriptors make sense in our case, e.g., the wetness index. However, for clas-
sification, we would tend to use a combination of geometrical/geomorphological
features, Wavelet/Gabor transform, and co-occurrence matrix features.

For the part of procedurally generating the terrain lookalike, we can look at the
field of example-based texture synthesis. There, textures are procedurally generated,
often based on noise functions. Typical ones would be Perlin noise, Simplex noise,
Worley noise but also Gabor noise. For instance, Galerne et al. [118] presented an ap-
proach for generating a wide range of Gaussian textures using bandwidth-quantized
Gabor noise and an example input image. However, it fails to preserve larger fea-
tures. Gilet et al. [129] proposed local random-phase noise, encompassing Gabor
noise and noise by Fourier series, for procedural texturing with control over struc-
tural features and separate sampling in the spatial and spectral domains. Pavie et
al. [274] presented locally controlled Spot noise as an extension of the local random-
phase noise extending the range of representable patterns. Heitz and Neyret [142]
proposed a by-example noise using a histogram-preserving blending operator that
synthesizes new textures with the same appearance as an input one that is stochastic.

Again, which combination of noise functions performs best to conditionally gen-
erate the lookalike heightmaps requires further analyzation and testing, locally con-
trolled Spot noise seems to be especially promising, but we would employ a com-
bination of multiple noise functions over various scales and employ optimization
algorithms to find suitable parameter combinations.

A principal issue with PTG, and terrain lookalike generation specifically, is the
lack of established metrics to quantify the realism, or perceptual similarity of the
generated images/heightmaps to the input. Usual quality/similarity metrics such
as MSE, MAE, and PSNR can only be used for direct pixel-wise comparisons and do
not account for perceptual, structural, or semantic similarity. The SSIM, its variants
(e.g., multi-scale SSIM [399]) and some perceptual-driven metrics (e.g., perceptual
image quality assessment [107], visual signal-to-noise ratio [56]) do somewhat ac-
count for the aspects of structure and perception and would be the most promising
metrics for a quantitative evaluation. On the other hand, the heuristics used to de-
scribe the input terrain and its characteristics for the lookalike generation could also
be employed for the evaluation, too. However, ideally, the quality of the results
and similarity to the input, or, which metric/heuristic performs best in this regard,
would be rated or determined by a panel of experts.

In conclusion, there exist already various methods that deal with either terrain
analysis and classification, even though they are focusing on the Earth, or image/
texture synthesis using noise. Thus, we find it practicable to employ, combine,
and adapt these methods for the lookalike generation of Mars. Which concrete
(noise) methods and heuristics work best would have to be further analyzed but
the mentioned issue of scale should definitively be considered, i.e., by using a multi-
resolution/scale approach. However, in the following, we also want to consider the
alternative approach of using deep learning instead.

Machine/Deep Learning-based Lookalikes

The second promising option we propose is to take advantage of machine/deep
learning and generative neural networks, which showed impressive results in vari-
ous computer vision and image processing tasks, including image synthesis, lately.
We briefly talked about this already in the related work sections of our previous

170 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

contributions 3.3 and 5.1. One issue with this is, of course, the sparsity of avail-
able training data. As a remedy, a comprehensive and effective data augmentation
workflow would be crucial. Additionally, DEMs from areas of the Earth can, and
probably should, be used, too, to increase the amount of training data. Some areas
on the Earth, specifically, desert-like and moderately rocky ones such as the Negev
desert, some parts of Morocco, or the Canary Islands, do have similarities with (parts
of) the Mars terrain [134]. In fact, such areas do get used for tests and simulations
of space equipment and manned/unmanned vehicles today. Thus, an option would
be to combine all training data, from the Earth and Mars, but, possibly a better, al-
ternative would be to train on the DEMs from Earth and retrain and refine with the
data from Mars.

As to which network architecture to use, we have identified three groups to con-
sider: GANs, vision transformers, and diffusion-based models. The most widely
used of these are certainly the GANs. They have been used for various image-based
generative tasks, including game level and heightmap/terrain generation. For in-
stance, Ping and Dingli [282] used conditional GANs to create tile-based game lev-
els that follow the same design patterns as the input example. Similarly, Torrado
et al. [302] employed conditional GANs and bootstrapping to more efficiently gen-
erate 2D game levels and account for longer-range dependencies. Wulff-Jensen et
al. [417] trained a deep convolutional GAN on DEMs of the Alps to generate similar
heightmaps. For evaluation, they used the MSE and SSIM metrics and found the
GAN-based heightmaps superior to the ones generated by Perlin noise. Voulgaris
et al. [390] proposed a conditional patch-based GAN to synthesize detailed terrain
heightmaps only using sparse input height maps. Panagiotou and Charou [267], in
contrast, employed a combination of conditional and unconditional GANs to syn-
thesize plausible RGB satellite images and corresponding 3D point clouds. Spick et
al. [351, 350] proposed using a spatial GAN in order to learn spatially-invariant fea-
tures of input DEMs and generate similar terrain height maps (and corresponding
RGB textures) and found it to perform better than deep convolutional GANs. Again,
the SSIM and MSE were used for evaluation, as well as a subjective evaluation. Li
et al. [212] used a conditional patch-based GAN focusing specifically on generating
geomorphological valid features and landforms. Zhang et al. [437] also employed a
conditional GAN, but in contrast to the others, trained it (using multiple discrimina-
tors) to distinguish between terrain styles, both spatially and across different scales.
The generator then generates terrains by fusing multiple of these styles. Moreover,
Chen et al. [59] presented an implicit periodic field network (which is based on a
GAN and periodic encoding) for example-based pattern synthesis. The goal is to
capture the inner statistics of the given pattern and produce tileable images recre-
ating the patterns with smooth transitions and local variations. Lastly, we want to
highlight the work by Liu et al. [224], although it does not entail a GAN. Instead,
they proposed a perception-driven example-based approach to procedural texture
generation using a new principle component analysis-based CNN. The idea is that
the network extracts the textures features, predicts the perceptual qualities of the
input (empirically collected and labeled, e.g., contrast, uniformity), and a proce-
dural/noise model including its parameters that is best suited to recreate similar
output.

An interesting idea is to combine deep neural networks such as GANs with
evolutionary algorithms. For instance, Liapis et al. [219] proposed to alternative
between the exploration of novel and diverse content using constrained novelty
search and transforming the found content, and adapting the fitness function us-
ing deep denoising autoencoders. Thus, the results get iteratively refined. Other

5.3. Procedural Terrain Lookalikes for VR Testbeds 171

works such as the ones by Volz et al. or Irfan et al. [389, 155] employ a combination
of GANs/variable autoencoders and latent variable evolution to search for novel
content with desirable attributes. This approach seems to be particularly promising
as it should make the generation process more efficient and targeted.

The second group of generative networks is diffusion-based networks, which
recently outclassed GANs in image synthesis tasks [84, 146]. In contrast, they are
likelihood-based and do not suffer from issues such as mode collapse and training
instabilities. They are significantly slower and extremely memory-intensive, though.
To make them more efficient and enable higher-resolution synthesis, Rombach et
al. [306] proposed applying the diffusion model to the latent space of pre-trained
U-Nets. However, to our knowledge, they were not applied to DEMs/heightmaps
yet. Hence, it would be highly interesting to evaluate their performance regarding
DEM-based terrain (lookalike) generation.

The third group we want to consider is vision transformers. Originally designed
for natural language processing tasks, they rapidly grow in popularity and show
also promising results in computer vision tasks, including, in some cases, gener-
ative ones. For instance, Chang et al. [57] proposed a bidirectional transformer
for image synthesis that shows impressive results on image generation and ma-
nipulation tasks. Park and Kim [270], in contrast, presented a transformer-based
generator for image synthesis that uses style vectors. They propose to combine it
with either the new self-attention mechanism “Linformer” by Wang et al. [397] or
StyleGAN2 [177] for more efficient high-resolution image generation. As with the
diffusion-based models, we are not aware of any works applying vision transform-
ers on heightmaps/DEMs for example-based PTG. Thus, we would like to investi-
gate how they, solely or as an encoder in a GAN, perform and if they can beat classic
convolution-based GANs.

Recently, several works such as the one by Khalifa et al. [184] also proposed
the idea of using reinforcement learning by interpreting the procedural generation
task as a Markov decision process and iteratively selecting actions that maximize
the expected result’s quality. Applied to PTG, the given terrain could iteratively be
transformed towards a specified goal. The interesting questions are what suitable
transformation actions would be and how to specify the goal (a terrain lookalike).
Regarding the former, we do not think pixel-wise height adjustments would make
sense but would envision either localized modificators (similar to the ones used in
3D modeling and sculpting tools) or pre-defined global noise functions or filters.
One issue with this approach could be the vast action space, though. For the latter
question, the goal specification, we have the same challenge as with all other (deep
learning) methods, namely, how to objectively evaluate the resulting lookalikes. In
deep learning-based image generation, the Fréchet inception distance and its vari-
ants, such as the conditional Fréchet inception distance, are commonly used to assess
the (class-conditional) quality (realism, diversity) of the resulting images. As with
the first presented approach of using heuristics, a panel of experts would be ideal to
either directly assess the results or determine the most suitable metric.

Our recommendation for the deep learning approach would be to first investi-
gate and compare the performance of one state-of-the-art model of each group for
this specific task of DEM lookalike generation before going deeper and optimizing
and tuning the model further.

All in all, both of the presented and discussed options for the example-based
Mars-terrain lookalike generation seem to be viable and promising but need further
investigation and prototyping. Objective evaluation of the quality and similarity of
the result is a shared issue that needs to be dealt with, e.g., by a panel of experts.

172 Chapter 5. Large-scale Procedural Terrain Generation for VR Environments

We suspect that the heuristics and noise-based approach might be more targeted
and better to control but require more tuning and is worse at generalization than
the deep learning approach. Possibly, both approaches could be combined for the
best performance, e.g., by taking the geometric and geomorphological heuristics into
account when using a generative neural network.

173

Chapter 6

Applications for Multi-User VR in
the Medical Field

Throughout this thesis, we discussed various aspects of multi-user VR and telep-
resence applications, e.g., generating detailed virtual environments, live-capturing
and streaming of remote scenes and avatars as well as enhancement, reconstruction,
and rendering of these, too. In this chapter, we want to present two applications of
multi-user VR for the medical field. This area is especially interesting, as, there exist
many scenarios and applications that can profit from multi-user VR. The first one
is the volumetric depiction of and interaction with medical data such as CT scans.
Although there exist specialized programs for this task, they usually do not support
immersive exploration through VR or are limited to single-user usage. In Section 6.1,
we, therefore, present an easy-to-use and expandable system for volumetric medical
image visualization with support for multi-user VR interactions. The main idea is
to combine a state-of-the-art open-source game engine, the Unreal Engine 4, with a
new volume renderer.

Another application domain in the medical area in which VR and the 3D repre-
sentation/ visualization of medical data are employed to great benefit is VR anatomy
atlases for anatomy education. These provide students with detailed, interactive 3D
human anatomical models that can be repeatedly explored in a virtual environment.
Often, they get also annotated with additional information. As they usually only
support individual learning and there is sparse research on the effectiveness of col-
laborative anatomy learning in VR, we developed a collaborative VR anatomy atlas
and conducted a user study to compare the learning progress and usability between
individual and collaborative use. More information about this can be found in Sec-
tion 6.2.

6.1 Volumetric CT Data Visualization for Collaborative VR
Environments

In clinical practice, medical imaging technologies such as CT or MRI have become an
important and routinely used technique for diagnosis. Advanced 3D visualization
techniques of this data, e.g., by using volume rendering, provide doctors with a
better spatial understanding for reviewing complex anatomy. However, programs
for the visualization of medical imaging data, are usually limited to exactly this topic
and can be hardly extended to new functionality, for instance, multi-user support.
In contrast, immersive VR interfaces like tracked HMDs and natural user interfaces
could provide doctors an easier, more immersive access to information and support
collaborative discussions with remote colleagues.

174 Chapter 6. Applications for Multi-User VR in the Medical Field

Thus, in this section, we propose a multi-user VR system based on the state-of-
the-art game engine that includes a custom volume rendering solution to directly
visualize volumetric medical data such as CT images. The underlying game engine
basis guarantees the extensibility and allows for easy adaption of our system to new
hardware and software developments. In our example application, remote users can
meet in a shared virtual environment and view, manipulate and discuss the volume-
rendered data in real time. Our new volume renderer for the Unreal Engine 4 is
capable of real-time performance, as well as, high-quality visualization.

The work presented in this section is based on our published paper PC3 in Ap-
pendix A.

6.1.1 Introduction

Computed tomography is an x-ray-based medical imaging procedure that produces
sequences of 2D cross-sectional images (called slices) of solid objects like the human
body and therefore allows the visualization and inspection of the inner parts. It is
a vital examination tool in medicine, especially for radiologists, and is widely used
in clinical practice. Its use cases range from diagnosis and therapeutics to preven-
tive medicine and screening of diseases. CT images are, for example, commonly
used for visualization purposes in tumor board reviews or for postmortem imaging
in forensic pathology. 3D visualization of the CT data is rarely taken advantage of
yet. However, it is slowly getting more important. Due to rising processing power
and continuous research in algorithms and rendering techniques, faster and more
advanced 3D visualization techniques are developed. The main benefit is the more
intuitive, three-dimensional visualization of the data. This makes it easier and faster
to get an overview of the data and an understanding of the spatial relations, vol-
umes, and general layout of the depicted objects. This is helpful for analyzing com-
plex anatomy or conveying medical situations in an easy-to-understand way. Typi-
cal 3D visualization techniques are maximum/minimal intensity projection, surface
shaded display, also called indirect volume rendering, and direct volume rendering
(DVR). We briefly touched up on this topic in Section 2.2.4, but to elaborate, sur-
face shaded display shows opaque three-dimensional surfaces, called isosurfaces,
of specific objects or organs in the volume data determined by a density-dependent
segmentation. To render the isosurface, a polygonal model has to be constructed
first. Its main advantage is the high performance, however, the binary classification
may lead to incorrect classifications and artifacts [110]. DVR does not face these
problems, as it is not limited to this binary classification. Instead, DVR accounts for
the possibility of multiple tissue types per voxel and maps the densities to opacities
and colors using transfer functions. This results in a semi-transparent rendering [77,
96].

In Section 1.1, we already mentioned that currently, both 2D and 3D CT recon-
structions are typically viewed on 2D screens or projectors, which limits the advan-
tages of volumetric visualizations. On the other hand, VR devices such as the HTC
Vive become popular in many fields as they provide immersive stereoscopic visual-
izations with intuitive user interfaces and novel cooperative multi-user capabilities.
VR offers a natural progression over previous 2D telepresence tools and leads to a
new quality of collaborative work, as users can meet and intuitively interact with
virtual objects as well as with each other in a shared virtual 3D environment. This
makes VR an important tool for the entertainment industry but also for industrial,
educational, and medical applications. For example, a current trend is to use VR
for simulators in which users can be trained and educated realistically and in a safe

6.1. Volumetric CT Data Visualization for Collaborative VR Environments 175

virtual environment (e.g., laparoscopy, heart surgery, and even orthopedic opera-
tions [173]). These benefits and the increasing display resolutions of newer headsets
make VR in general, and multi-user VR particularly, well suited for use cases like
inspection and discussion of volumetric medical data and corresponding 3D visual-
izations as part of diagnosis or pre-operative planning [257].

VR applications and their virtual environments are typically created and pow-
ered by 3D graphics engines like Unity or the Unreal Engine which provide features
such as high-quality graphics and automatic VR integration. However, they are usu-
ally mesh/polygon-based and, out of the box, do not support volume rendering.

We propose a system based on the Unreal Engine 4 in which multiple users
can collaboratively inspect and interact with volume-rendered CT data in real-time
within a VR environment resembling an operating room. For this purpose, we com-
bine mesh- and volume rendering into an immersive multi-user application. This
includes a custom direct volume renderer for the Unreal Engine and several opti-
mization and lighting techniques to achieve real-time performance as well as a good
visualization quality. Additionally, we have developed a custom pipeline for pro-
cessing CT images allowing easy and effective visualization of multiple windows in
parallel.

6.1.2 Related Work

Volume rendering is a promising tool for medical visualization as it proved to be use-
ful for planning of surgical treatment of nasal bone fractures [348], acetabular frac-
tures [395], virtual endoscopy [190] or the visualization of complex anatomy such
as the ossicular chain in chronic suppurative otitis media [138] or for visualizing
the relationship between stent-grafts and arterial vessels [365]. Recently, a DVR ap-
proach for serial PET–CT scans that preserves anatomical consistency was presented
by Jung et al. [170]. Key elements are an automated serial transfer function optimiza-
tion, an interactive serial segmentation algorithm and a GPU implementation. The
high computational effort of DVR can be mitigated by algorithmic optimizations,
e.g., early ray termination and empty space skipping [313]. Also, the visual quality
can be improved, e.g., by applying local ambient occlusion [145]. Berger et al. [22]
have shown that the novel, more complex cinematic rendering technique (based on
Monte Carlo path tracing) provides a superior visualization to the classic volume
rendering using ray casting, however, the significantly slower computation is still
a challenge. Ryan Brucks [39] developed a custom volume rendering implementa-
tion for the Unreal Engine 4, however, it is only rudimentary and not designed for
medical data, leading to artifacts.

Several evaluations show that VR can be beneficial in a wide range of medi-
cal applications, foremost simulators for training different surgical procedures [200,
289]. For example, Kozak et al. [189] introduced a virtual reality retina surgery sim-
ulator using optical coherence tomography data. Additionally, a study by Feud-
ner et al. [109] concluded that VR-trained students achieved a significantly higher
wet-lab performance of capsulorhexis. Often, medical imaging plays a central role
in these applications: e.g., Maloca et al. [233] proposed an OpenGL-based immer-
sive VR system for real-time volume rendering of optical coherence tomography
data that renders the volume data using point clouds in a virtual environment. An
accompanying study suggested that it could be helpful for education and preop-
erative planning. Similarly, Scholl et al. [321] developed a medical VR application
for 3D visualization based on volume rendering that allows to interact with the vol-
ume using, for instance, a dynamic clipping plane and modifiable transfer functions.

176 Chapter 6. Applications for Multi-User VR in the Medical Field

Real-time performance is achieved by the use of several acceleration and optimiza-
tion techniques, including lens matched shading, shadow ray diffuse culling, and
semi-adaptive sampling. Adams et al. [1] used the Unity 3D engine to develop an
immersive VR application for medical imaging in which CT images and correspond-
ing, segmented 3D models can be viewed and manipulated. Magdics et al. [229] also
used Unity to develop an educational VR application in which DVR, including volu-
metric ambient occlusion, is used for visualizing Nasal Cavities based on MRI data.
Faludi et al. [106] presented a VR application that uses not only DVR but also haptic
rendering of medical data. However, none of these systems support multiple users
or collaborative work, which is another popular and promising research area.

Regarding collaborative medical VR, Cecil et al. [52] developed a system for or-
thopedic surgery, specifically, less invasive stabilization system surgery. It also in-
cludes a haptic interface. Similarly, Paiva et al. [265] presented a VR simulator for
surgical team training, in which users can assume various roles in a virtual oper-
ating room (e.g., surgeon, anesthetist, etc.) or join as an observer. The users get
visualized by full-body avatars and Leap Motion-based hand-tracking is employed
for detailed interactions. Chheang et al. [63] proposed a promising collaborative VR
system for planning and simulation of laparoscopic liver surgery. Interactive, vir-
tual 3D organ models are reconstructed based on patient data and visualized in a
virtual operating room. In addition to the VR controllers, surgery joysticks can be
used for training. Christensen et al. [66] positively evaluated the feasibility of team
training in VR for robot-assisted minimally invasive surgery, and Elvezio et al. [99]
designed a VR system for collaborative symmetric and asymmetric interactions and
found that low latencies (below 15 ms) are crucial for effective collaboration. These
works, however, do not feature 3D visualization of CT data.

6.1.3 Proposed Approach

The goal of our system is to combine the benefits of collaborative VR and medical 3D
visualization into an immersive, interactive application based on a modern, exten-
sible open-source 3D game engine, specifically the Unreal Engine 4. As the engine
does not support (direct) volume rendering out of the box, we have developed and
integrated a ray-marching-based volume renderer, based on Ryan Brucks’ rudimen-
tary implementation [39], focusing on a good trade-off between speed and visual
quality.

We have decided to use the Unreal Engine 4 for several reasons: first, it is known
for its high graphical fidelity, second, it supports most available VR devices like
the HTC Vive with a platform-independent interface, and it has networking capa-
bilities included. Moreover, due to its open-source implementation, it can be eas-
ily extended with native C++ programming but also offers an easy graphical pro-
gramming interface via Blueprints. We decided to directly benefit from Unreal’s
networking architecture, hence, we use a client-server model enabling users to host
and join sessions via a lobby system, whereby the first client acts also as a server. An
overview of the whole system design is shown in Figure 6.1.

An overview depicting all the necessary steps to volumetrically render the CT
data in the UE4 is shown in Fig. 6.2. First, the CT data, which usually uses the DI-
COM file format, has to be read. Then, the CT data requires a preprocessing step
before it can be effectively used. Moreover, we combine the data into 2D sequence
maps before eventually importing them into the Unreal Engine. The next step is
to construct an octree for optimization purposes. The processed data can then be

6.1. Volumetric CT Data Visualization for Collaborative VR Environments 177

FIGURE 6.1: System architecture of our application. The first client
acts also as a server.

Read
DICOM CT

Data

Pre-
process

Data

Generate
2D

Sequence
Maps

Import in
UE4

Construct
Octree

Direct
Volume

Rendering

FIGURE 6.2: Pipeline of our UE4-based direct volume rendering ap-
proach of CT data.

rendered seamlessly into the polygonal scene using our shader-based DVR solu-
tion. We have integrated several lighting techniques such as local ambient occlusion
to improve the visual quality. Our DVR approach achieves real-time performance
guaranteeing a smooth VR experience. In the following, we will describe the indi-
vidual parts of our system in detail.

Direct Volume Rendering

In order to visualize the CT data in our Unreal Engine-based virtual environment,
we opted for a DVR approach based on ray marching. Our pipeline is specifically
designed for the visualization of CT data, thus, the first step is to read and process
the CT DICOM files (which is the usual format) in a preprocessing phase. For this
purpose, we wrote scripts utitilizing pydicom to parse the relevant information, see
Table 6.1, and compute the density values (in Hounsfield units (HU)).

To map the density to opacity, we employ multiple, freely adjustable, default
windows with corresponding transfer functions. The advantage of having multiple
windows is that each feature captured by a window can be visualized with high

TABLE 6.1: Relevant DICOM attributes parsed from the CT data.

Keyword Ex. Value
Slice Thickness 3.0

Rows 512
Columns 512

Rescale Intercept -1024
Rescale Slope 1

Window Center [40, 700]
Window Width [350, 1800]

178 Chapter 6. Applications for Multi-User VR in the Medical Field

FIGURE 6.3: Window blending according to the RADIO algorithm.
Left: bone, lung, soft tissue windows. Right: blended CT image.

FIGURE 6.4: Right: sequence map of CT slices. Left: corresponding
reconstruction in the shader.

contrast. To store the windows in a single grayscale image (8 bit) we decided to
blend the windows similar to the RADIO algorithm by Mandell et al. [234], which
maintains the relative attenuation relationships between the fundamental anatomic
densities and thus accommodates radiologists and their expectations. Figure 6.3
depicts the underlying concept. However, any other blending algorithm would be
compatible too.

Additionally, the volumetric data set has to be transformed into a format suitable
for import and further processing in the Unreal Engine, therefore, we arrange the
individual 2D slices of the volume sequentially into sequence maps, sometimes also
called a flipbook (see Fig. 6.4). Each CT slice is then a sub-image in the sequence map.
This is a typical approach to store volumetric data due to common limitations such
as 3D engines not supporting volume textures, and pixel shaders heavily relying on
textures as an input source. An overview of all steps done during the preprocessing
phase is shown by Algorithm 10.

We have implemented the ray casting directly in a pixel shader. We use a unit
cube as a geometrical proxy mesh and reconstruct the volume coordinates from the
generated sequence maps. In order to avoid artifacts of box-aligned samples (left di-
agram in Fig. 6.5), we align the first sampling points to stacked view-aligned planes
instead (middle diagram in Figure 6.5). Additionally, we precompute the sampling
step length and the maximal number of samples fitting in the volume outside of the
ray casting loop to reduce overhead. The calculation is based on the CT data set’s
proportions, the ray’s accordingly adjusted starting position, and a user-adjustable
factor allowing for arbitrary changes to the sampling rate. More details about the
aforementioned handling of the sequence maps and the general sampling procedure

6.1. Volumetric CT Data Visualization for Collaborative VR Environments 179

Algorithm 10 Preprocessing stage

Require: DICOM files, WindowSettings[]
BlendedWindows[Slices.Num], GradientMaps[Slices.Num]
Slices← ReadDicom(DICOMFiles)
Slices← Sort(Slices)
for each Slice in Slices do

Tags← ReadTags(Slice)
Densities← CompDensity(Tags, Slice) . in Hounsfield Units
windows[]← CompWindows(Densities, WindowSettings[]) . 3 windows
BlendedWindows[Slice]← BlendWindows(windows[]) . mod. RADIO alg.
GradientMaps[Slice]← CentralDi f f erences(BlendedWindows[Slice])

SeqMapd ← CompSeqMap(BlendedWindows)
SeqMapg ← CompSeqMap(GradientMaps)
Octree← ConstructOctree(SeqMapd) . BONO octree
OctreeMap← EncodeOctree(Octree)

Box-aligned Plane-aligned Plane-aligned + Jittered

FIGURE 6.5: Sampling positions in the volume. Left: in the naive ap-
proach the start sample positions align with the box mesh and cause
patterned artifacts throughout the volume. Middle: sampling posi-
tions on equidistant view-aligned planes. Right: the sample positions
are additionally jittered along the ray axis.

can be read in Ryan Brucks’ volume rendering guide for the Unreal Engine 4 [39].
We provide the possibility to apply stochastic jittering and a 2×2 ordered grid super
sampling anti-aliasing (SSAA) to improve the visual quality (see the right diagram
in Fig. 6.5). Moreover, we achieve trilinear interpolation using a combination of bi-
linear interpolation of the textures and linear interpolation between slices.

Regarding convincing yet fast shading and shadowing, we opted to implement
a couple of different and not-too-complex local illumination methods and compare
the visual results. Firstly, at each sample position, we cast shadow rays to deter-
mine the amount of occlusion. For this purpose, we dynamically track the position
of multiple light sources. This method enables proper self-shadowing from multiple
dynamic lights, however, is rather computationally expensive. Therefore, we lower
the shadow rays’ sampling frequency in contrast to the primary rays’. Secondly, we
implemented the classic Blinn-Phong shading model that is evaluated at each sam-
pling position. It is rather cheap to compute and enables local lighting approxima-
tion by diffuse and specular reflections which can be configured on a per-material
basis. We approximate the needed surface normals, which are not present in CT
data, based on the local gradient using the central differences technique in the pre-
processing phase. Lastly, we also implemented volumetric local ambient occlusion
(LAO). Here, the sampling point is shaded based on the amount of occlusion, which
is estimated by the opacities of the local neighborhood. This method can be used to

180 Chapter 6. Applications for Multi-User VR in the Medical Field

prevent full shadows, which may obscure fine details. Another advantage is that it
is not based on gradients, which are often not well-defined (e.g., in homogeneous
regions) and susceptible to noise. Algorithm 11 outlines the raycasting process.

Algorithm 11 Shader-based raycasting (without octree)

Require: SeqMapd, SeqMapg , proxy volume Proxy
for each Pixel (in parallel) do

Start← CompStartPos(Camera, Proxy)
Start← AlignAndJitter(Start)
Step← CompStepLength(SliceDepth, NumSlices, UserFactor)
MaxSamples← CompMaxSamples(Proxy, Start, Step)
CurPos← Start; SampleID ← 0
while SampleID < MaxSamples and AccumOpacity < 1 do

Opacity← SampleTriLin(CurPos, SeqMapd, Step)
AccumOpacity← AccumOpacity + Opacity
Color ← CompSampleColor(Opacity)
if ShadowRays set to True then

Occlusion← ShootShadowRays(CurPos, Lights[])
Color ← Shade(Color, Occlusion)

else if LAO set to True then
Color ← LAO(Color, CurPos, SeqMapd)

else
Color ← BlinnPhong(Color, CurPos, Camera, Lights[], SeqMapg)

AccumColor ← CompColor(Color, AccumColor, AccumOpacity)
CurPos← CurPos + Step

To increase the performance, we reduce the number of samples being taken by
early ray termination and empty space skipping using an octree. Early ray termi-
nation means that if the front-to-back accumulated opacity reaches 100 percent, the
rest of the volume further back is obscured and does not need to be sampled any
more, thus, the loop is terminated “early”. Moreover, many regions in the CT data
are possibly empty, in this case, for instance, being just air. Therefore, they don’t
need to be sampled repeatedly. The octree partitions the space hierarchically into
homogeneous regions based on the density. Regions with a near-zero density are
practically empty and can be skipped in the sampling process, see Figure 6.6. We
construct the octree using a pointer-free branch-on-need strategy and encode it in a
texture during the preprocessing phase, as the data is static. During sampling, the
octree is traversed top-down similar to the parametric approach described in [297].

Collaborative VR

Generally, we made use of the Unreal Engine’s polygonal and stereo rendering ca-
pabilities and VR support to build our application. To create a believable virtual
environment, thus, enhancing the immersion and the experience for the users, we
build a 3D scene resembling an operation room in which the users can interact. Sim-
ilarly, users are represented by static mesh avatars modeled after doctors in medical
outfits. Our avatars consist of separate models for the head and hands; their cor-
responding positions are tracked directly by the HMD and the accompanying con-
trollers. To avoid issues with possibly faulty and distracting animations by inverse
kinematics, we refrain from using full-body avatars. Each user can be identified by

6.1. Volumetric CT Data Visualization for Collaborative VR Environments 181

FIGURE 6.6: Empty space skipping using an octree (visualized in 2D).
The CT data is hierarchically segmented (rectangles) and gets sam-
pled by a viewing ray (red arrow). If an empty space cell is sampled
(gray node with red outline), all further samples in the same cell get
skipped (gray nodes).

a personal name shown over the avatar. Figure 6.7 shows a session with three users
inspecting the CT data in the virtual operating room.

We included a lobby system with which users can create or search for active
sessions, or alternatively join one via a known IP, thus, enabling multiple of these
virtual shared environments to exist in parallel. The left image in Fig. 6.8 shows
an example of the lobby screen. Also, although VR usage is our main focus, VR
and non-VR users can mix and collaborate without restriction as we have imple-
mented movement and interaction metaphors for both of them. For example, we
implemented physical 3D buttons placed in the scene for VR users and keyboard
shortcuts for non-VR users to manipulate the properties of the 3D visualization, see
the right image in Fig. 6.8. To reduce the latency between user input and perceived
action, which has been shown to be crucial for a positive user experience in previ-
ous studies [393], all (inter)actions from users are executed locally first, before being
sent and replicated on the server, from which they are finally broadcasted to all re-
maining users. Furthermore, the Unreal Engine provides some additional latency
optimization techniques which help to minimize and stabilize the time needed for
communication between client and server.

As a locomotion metaphor for VR users, we decided to use the classical telepor-
tation approach, in combination with room-scale locomotion, as it minimizes the
occurrence of cybersickness [67]. The teleportation works in the classical fashion,
however, users can choose the new orientation via the controller’s trackpad, and
teleporting on top of objects or out of the room is being prevented. A problem aris-
ing from using teleportation in a multi-user environment is that the actual process
of vanishing and reemerging somewhere else will be confusing for observers as it
resembles the typical effects of a slow network connection or network errors. There-
fore, we have implemented a particle effect, to highlight the deliberate action of the
teleportation process.

To allow for collaborative work between users, we replicate not only their avatars
but also the complete state of the 3D visualization of the CT data, making it a sin-
gle shared object in the scene that is rendered from the individual users’ viewpoint.
It can be grabbed, moved, and rotated freely and naturally using the controller for
optimal (re)view (see Fig. 6.9). Non-VR users, however, can rotate the object via an

182 Chapter 6. Applications for Multi-User VR in the Medical Field

FIGURE 6.7: Several networked users inspecting the 3D visualized
CT data in a shared virtual environment.

FIGURE 6.8: Left: A lobby system provides access to hosting or join-
ing multi-user sessions. Right: Physical buttons enable the real-time
switching of the 3D visualization’s properties, e.g., the lighting mode
or transfer function.

6.1. Volumetric CT Data Visualization for Collaborative VR Environments 183

FIGURE 6.9: Several images illustrating how the 3D visualization can
be grabbed and freely moved and rotated for a better view. The back-
ground was hidden in the image in the bottom right.

orbiting mode. To keep it simple, we do not restrict concurrent manipulation, which
internally would be executed sequentially, as users can coordinate themselves. The
replicated hands in VR make it easy to point to specific spots or areas in the 3D visu-
alization and to make gestures, which help in discussing the data, showing findings,
or planning interventions.

In addition to the 3D visualization of the medical data, users in our application
have the possibility to view accompanying 2D images, e.g., the raw CT data, on a
virtual TV screen in the OR. This may be useful if there is a need to quickly check for
specific fine details not visible in the 3D visualization. Finally, the complete scene
but the 3D visualization can be dynamically hidden, resulting in a black background,
for an undistracted contrast-rich view.

6.1.4 Results

We have evaluated the quality as well as the performance of the main aspects of
our approach. To show the quality of our volumetric renderer, we visually compare
our results to two competing visualization tools. Additionally, we did extensive
measurements regarding the performance under various conditions, e.g., different
lighting models and optimization methods. For the evaluations, we used several
real-world CT data sets obtained by a hospital. The number of slices varies between
the data sets and ranges from 47 to 317. We have developed and tested our work
based on the Unreal Engine 4.22. Figure 6.10 shows our volume renderer with dif-
ferent active windows. In the left image, only the bone window is applied. The
middle image depicts, among others, inner structures of the liver, small intestine,
colon, and skin. Finally, in the right image, all three windows (the third one be-
ing soft tissue) are simultaneously visualized. Our DVR is able to effectively render
single materials like bone as well as compositions of multiple materials simultane-
ously, and thus, the complete range of CT data. This helps in conveying the spatial
relationships between organs and getting a good understanding of the data.

184 Chapter 6. Applications for Multi-User VR in the Medical Field

(A) (B) (C)

FIGURE 6.10: Our volume renderer applied to a CT data set using
different windows: bone (a), bowel and skin (b), and soft tissue, com-
bined with the previous windows (c).

Figure 6.11 depicts our renderer with the different lighting settings. The left im-
age shows a bone window using only shadow rays. Self-shadowing can be seen
which helps in conveying depth, however, because of the limited sampling rate
for shadow rays, the shadows are coarse and imprecise. In the middle image, we
switched on the Blinn-Phong lighting model. A possible issue with this technique
is, that, depending on the position of the light source relative to the visualized ob-
ject, areas may lie completely in the shadows, and thus, can be hard to inspect if no
additional ambient lighting is applied. The right image, however, shows the combi-
nation with the LAO technique. This combination circumvents the problem of full
shadows and results in the best lighting. The transition between being in complete
light and full shadow is the most fine-granular and accounts for the local neighbor-
hood providing the best depth perception and understanding of object shapes.

Figure 6.12 illustrates a comparison of our renderer (first image) with the com-
mon visualization tools RadiAnt DICOM Viewer in the standard 3D volume ren-
dering mode (second image), and the Visualization Toolkit (VTK) with maximum
intensity projection as a composition scheme (third image). The comparison shows
that our renderer generates visualizations that are very effective in conveying a per-
ception of depth and giving a clear and understandable overview of the data set as
a whole. At the same time, our renderer produces precise, plastic visualizations of
the individual materials. VTK uses maximum intensity projection which results in
relatively flat images with missing details. The advanced lighting and shading of
our renderer make the assessment of the spatial relations between the objects easy.
Although the results by RadiAnt are very good too, they tend to exhibit slightly
stronger artifacts and a simpler shading is used.

Fig. 6.13 depicts another comparison of our volume renderer with RadiAnt and
VTK, similar to the one in Fig. 6.12, but with a different dataset. The results are
similar: our rendering solution produces high-quality results that provide a good
depth perception.

In Figure 6.14, we show a comparison of multiple optimization techniques that
we have implemented to reduce artifacts. The first image (A) shows the basic DVR
without any optimization, which results in strong artifacts. Using pre-integration
(image (B)), the artifacts can be reduced significantly and the individual organs can
be seen more clearly. The remaining artifacts can be reduced further using either

6.1. Volumetric CT Data Visualization for Collaborative VR Environments 185

(A) (B) (C)

FIGURE 6.11: Our volume renderer using different illumination
methods: shadow rays (a), additional Blinn-Phong lighting (b), both
combined with LAO (c). As can be seen, the latter enhances depth
perception through superior shadowing.

stochastic jittering (C), or SSAA (D).
A performance evaluation was done on a PC with Windows 10, Intel Core i7 4790

CPU, Nvidia Titan V graphics card, 32GB of system memory, and a Full HD monitor.
To perform the measurements, we used the native GPU profiler of the Unreal Engine
and took the average of multiple runs.

The theoretical computational complexity of our DVR isO(m · n · l) with m being
the number of primary rays, n being the number of samples taken per ray, and l
being the number of light sources. The number of rays is directly dependant on
the screen resolution (and SSAA), therefore, theoretically exhibiting a linear growth
with the number of pixels. Though, by the inherently parallel computation by the
GPU, the complexity is lowered. The number of samples per ray can be chosen
accordingly to the the number of slices. In practice, however, many factors have
a significant impact on the performance, e.g., the chosen lighting method, the data
itself, as well as its distribution in the volume.

Figure 6.15 shows the performance of our renderer and the influence of factors
such as the number of slices and different lighting methods. As expected, having
more slices leads, generally, to a lower performance. It should be noted, though,
that the individual data sets are unique and the contained data itself also impacts the
performance. It is also not surprising, that more complex lighting models take more
time to compute. However, in all cases, our renderer outperforms the rudimentary
volume rendering solution by Ryan Brucks [39], independent of the chosen lighting
models. Actually, we achieve real-time performance for VR in all our test cases.

Additionally, we have evaluated the efficiency of our octree implementation for
empty space skipping. Figure 6.16 shows a comparison between using the octree
and empty space skipping and a variant without them. Both versions were tested
using the LAO lighting mode and 2×2 SSAA. With the octree, we measured perfor-
mance improvements for all test data sets of up to 49.4 %. The average improvement
was 14.7 %, while the empty space ratio varied between roughly 45 % and 55 %, ex-
cept for one data set with only 36 %(see Figure 6.17). This shows that our octree

186 Chapter 6. Applications for Multi-User VR in the Medical Field

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

FIGURE 6.12: Comparison of our volume renderer (a,d,g) with the
visualization tools RadiAnt using 3D volume rendering (b,e,h) and
VTK using maximum intensity projection (c,f,i). Each row shows dif-
ferent windows, from top to bottom: bone, lung and skin, both and
soft tissue.

6.1. Volumetric CT Data Visualization for Collaborative VR Environments 187

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

FIGURE 6.13: Another comparison of our volume renderer (a,d,g)
with the visualization tools RadiAnt using 3D volume rendering
(b,e,h) and VTK using maximum intensity projection (c,f,i). Each row
shows different windows, from top to bottom: bone, lung and skin,
both and soft tissue.

188 Chapter 6. Applications for Multi-User VR in the Medical Field

(A) (B)

(C) (D)

FIGURE 6.14: Artifact minimization using different optimization
techniques: (A) no optimization, (B) pre-integration, (C) pre-
integration and stochastic jittering, (D) pre-integration and SSAA.

6.1. Volumetric CT Data Visualization for Collaborative VR Environments 189

FIGURE 6.15: The Performance using different lighting models and
data sets with a varying amount of slices. Our methods are marked
with asterisks, “Brucks” is a rudimentary volume rendering integra-
tion in Unreal. Even though advanced lighting models increase the
computational time, our renderer is real-time capable in all cases and
significantly faster than the implementation by Brucks.

implementation is effective in increasing the performance, especially for high-slice
data sets. The latter fact may be surprising on the first because the amount of empty,
skippable, space is unique to each data set and not necessarily correlated to the num-
ber of slices. However, data sets with more slices often do exhibit more potential for
empty space skipping because of the higher granularity. This usually leads to a
higher sampling frequency and, thus, to a higher number of redundant sampling
positions in empty regions.

Finally, we have measured the network performance, specifically the latency.
However, in order to get objective and comparable results, we avoided a real inter-
net transmission that is highly dependent on individual factors such as connection
quality or distance. Instead, we set up the client and server on two different comput-
ers which were connected via a router, and measured the round time of the network
messages from client to server and back. The average time was 16.8 ms with a stan-
dard deviation of 1.6 ms that is added by our system. Obviously, in the case of an
internet connection, additional latency has to be added. To conclude, our application
is very well suited for collaborative work as actions from other users are replicated
quickly. Accordingly, the user feedback, regarding the multi-user VR experience as
well as the medical visualization, is very positive so far.

Tables 6.2 and 6.3, show an overview of all employed datasets, including statis-
tics such as memory consumption, the ratio of empty space, and rendering times in
various settings.

190 Chapter 6. Applications for Multi-User VR in the Medical Field

FIGURE 6.16: The performance impact of the octree for empty space
skipping over different data sets with a varying number of slices and
2×2 SSAA. Especially data sets with a high number of slices benefit
the most.

FIGURE 6.17: The performance impact of our octree over different
data sets with a varying number of slices and 2×2 SSAA, compared
to the ratio of empty space of the volume. Data sets with more slices
profit the most from the octree, however, the relation seems to be only
loosely tied to the ratio of empty space.

6.1. Volumetric CT Data Visualization for Collaborative VR Environments 191

TABLE 6.2: Overview over the dataset and their statistics (first half))
including the rendering performance in various settings and lighting
modes. SM stands for the shadow ray-based lighting, BP for the addi-
tional Blinn-Phong lighting, and UE4 for the method by Brucks. The
performance measurements were done using early ray termination
(ERT).

Dataset Description Size (8bit) Empty
Ratio Time in ms (ERT)

Images Octree SSAA+LAO No SSAA
(MB) (KB) Plain Octree SM BP LAO UE4

p03_78e
512x512x81

ST: 3mm
3.9 30.5 76.1% 5.7 5.7 5.7 5.7 5.7 7.2

p02_360
512x512x100

ST: 3mm
4.2 60.9 60.9% 6.0 5.6 5.7 5.7 5.7 7.5

p01_04
512x512x150
ST: 1.5mm

4.5 60.9 40.3% 6.0 5.8 5.7 5.8 6.2 7.6

p03_788
512x512x256
ST: 1.5mm

6.8 60.9 57.1% 7.8 6.2 5.8 5.9 6.8 9.8

p08_1b14
512x512x47

ST: 2mm
1.3 76.1 49.0% 5.7 5.7 5.7 5.7 5.7 6.5

192 Chapter 6. Applications for Multi-User VR in the Medical Field

TABLE 6.3: Overview over the dataset and their statistics (second
half) including the rendering performance in various settings and
lighting modes. SM stands for the shadow ray-based lighting, BP
for the additional Blinn-Phong lighting, and UE4 for the method by
Brucks. The performance measurements were done using early ray
termination (ERT).

Dataset Description Size (8bit) Empty
Ratio Time in ms (ERT)

Images Octree SSAA+LAO No SSAA
(MB) (KB) Plain Octree SM BP LAO UE4

p06_12f9
512x512x134

ST: 3mm
3.0 60.9 51.1% 6.0 5.7 5.7 5.7 6.0 6.9

p07_16c1
512x512x317
ST: 1.5mm

5.3 76.1 58.5% 11.5 7.6 5.8 6.1 7.9 13.2

p09_24f
512x512x165

ST: 3mm
3.4 60.9 54.7% 6.9 5.9 5.8 5.8 6.3 7.6

p09_24d
512x512x119

ST: 3mm
7.7 30.5 48.9% 6.0 5.7 5.7 5.7 6.0 7.0

p05_f21
512x512x279
ST: 1.5mm

5.4 38.1 54.2% 11.5 8.3 5.7 5.7 8.3 13.1

6.2. Anatomy Learning through a Collaborative VR Anatomy Atlas 193

6.1.5 Conclusions and Future Work

We have presented a multi-user virtual reality system for medical visualization based
on a state-of-the-art game engine that is capable of 3D visualizing computed to-
mography data in real time and with high visual quality. This is achieved by our
custom ray-marching-based direct volume renderer which we have implemented
using shaders and integrated into the Unreal Engine. Our renderer supports differ-
ent lighting models, transfer function selection, and artifact-reducing methods. Our
evaluation shows that we achieve VR-capable framerates of more than 100 Hz even
for complex data sets consisting of more than 300 slices and with advanced lighting
features such as ambient occlusion enabled. Our system includes a multi-user com-
ponent and is designed as a shared virtual environment resembling a real operation
room, thus, enabling immersive collaborative work between co-located or remote
users. Thanks to the combination of the sophisticated game engine, VR, and our
fast high-quality direct volume renderer, users can interact with each other and the
shared visualized CT data in an immersive virtual environment and (re)view and
discuss the 3D data in a comprehensive natural way. This makes our system ideally
suited for pre-operative planning, possibly tumor boards, post-operative evaluation,
or patient education.

In the future, the interaction possibilities should be expanded with the volume
visualization, specifically, it may be benefitial to integrate a dynamic clipping plane
for a better view of internal regions and a volumetric drawing tool allowing for
quick sketches and annotations inside the volume. Other improvements would be a
direct integration and parallelization of the preprocessing part to speed up the work-
flow and allowing for a dynamic adjustment of the transfer functions. To improve
the visualization of complex structures and organs that involve multiple materials
support for multi-dimensional transfer functions could be added. Finally, it may be
worthwhile investigating if hierarchical irregular grids lead to performance gains
over the currently used regular octree.

6.2 Anatomy Learning through a Collaborative VR Anatomy
Atlas

The last section was concerned with 3D visualization of medical data, such as CT im-
ages, in collaborative VR to improve diagnosis, pre-operative planning, etc. Another
aspect to consider is how to help with the education of doctors, i.e., how to facilitate
efficient learning of anatomical knowledge. Again, specialized VR tools for teaching
and training that provide interactive 3D visualizations, such as anatomy atlases, are
a promising solution. They can provide highly interactive and engaging learning
environments where students can immersively and repeatedly inspect and interact
with virtual 3D anatomical structures. Moreover, multi-user VR environments can
be employed for collaborative learning, which may enhance the learning experience.
Concrete applications are still rare, though, and the effect of collaborative learning
in VR – if the collaboration is as beneficial as with traditional learning – has not been
adequately explored yet.

In this Section, we, therefore, present a collaborative VR anatomy atlas with an
accompanying user study with n = 33 participants that we conducted to evalu-
ate the effectiveness of virtual collaboration on the example of anatomy learning.
Specifically, we investigated the learning progress as well as the usability between
single-user and multi-user learning.

194 Chapter 6. Applications for Multi-User VR in the Medical Field

The work presented in this section is based on our accepted but not yet published
paper PP3 in Appendix A.

6.2.1 Introduction

The teaching of human anatomy is fundamental in medical education as it forms
the basis for the development of clinical and surgical knowledge among profes-
sional [340, 183]. Classically, anatomy is thought through dissection, prosection,
and lectures. However, dissection is costly and time-consuming, prosection relies
heavily on the skill and expertise of the anatomist [101], and lectures may not be ef-
fective in promoting active learning and engagement compared to more interactive
approaches. Moreover, the availability of human cadavers and animal specimens
for dissection is limited [32].

VR has become increasingly prevalent as a tool in (medical) education [236, 304]
as it is not affected by these limitations and can provide more intuitive and en-
gaging [343, 17] learning experiences. More (general) examples can be found in
Section 2.3. However, most current VR-based learning applications are limited to
single-user usage, and there is minimal research on the effectiveness of collabora-
tive VR-based learning. Collaborative learning, in general, has been shown to have
positive effects on learning outcomes [50, 165, 194] and to provide numerous other
benefits, such as more positive interpersonal relationships [259], though.

To investigate if collaboration in VR (anatomy learning) also provides benefits
and more positive outcomes than individual VR learning, we developed a multi-
user VR anatomy learning application and conducted a user study to evaluate its
effectiveness. Concretely, we examined the participants’ learning progress as well as
the general usability when using the VR learning environment, individually and in
groups. With these results, we provide valuable insights into this sparsely-researched
area.

6.2.2 Related Work

The use of VR for medical education and training, including anatomy teaching, got
much attention lately [286]. For example, Fairen et al. [105] developed and evalu-
ated a VR anatomy teaching tool that provides real-time, interactive 3D representa-
tions of various anatomical structures that were augmented with additional infor-
mation. An evaluation with anatomy students showed very positive results. Codd
and Choudhury [72] compared anatomy teaching using 3D virtual reality with tra-
ditional methods and, interestingly, found no significant learning advantages using
VR. In contrast, Kurul et al. [192] also conducted a study on anatomy training com-
paring immersive, interactive 3D VR with classical teaching methods and found the
former to lead to significantly higher test scores. Another example highlighting the
benefits of VR to anatomical education is the Immersive 3D Anatomy Atlas by Gloy
et al. [131]. It provides a realistic 3D model of the human body in an immersive
environment and allows users to explore individual anatomical structures interac-
tively. An evaluation showed that the VR group took significantly less time to an-
swer anatomical questions and had significantly better test results than students that
learned using textbooks.

Only a few works allow for collaboration in VR and even fewer investigate its ef-
fects and benefits, though. For instance, Boedecker/Schott et al. [29, 323] developed
a collaborative, immersive VR application for liver surgical planning that provides
multiple teaching and training scenarios for varying group sizes. An exploratory

6.2. Anatomy Learning through a Collaborative VR Anatomy Atlas 195

FIGURE 6.18: Two users within our Collaborative VR Anatomy At-
las examining anatomy. Each user has an avatar consisting of a vir-
tual HMD and one pair of hands (light blue, highlighted in black and
white boxes).

study indicated positive outcomes for usability and presence. Similarly, De Back et
al. [78, 12] also presented a collaborative, immersive VR learning environment and
found that collaborative learning provided greater learning gains compared to con-
ventional textbook learning. For a more detailed overview and review of VR for
anatomy education, we refer to the work by Lee et al. [205].

6.2.3 Implementation

For our work, we decided to use the Immersive Anatomy Atlas by Gloy et al. [131]
as a basis, as it already provided a good implementation of a VR anatomy learning
application. For our Collaborative VR Anatomy Atlas, we extended it mainly by
multi-user functionality in order to allow multiple users to meet, interact, and col-
laboratively learn within a shared environment, see Figure 6.18. Each user is repre-
sented by an avatar consisting of a virtual HMD and a pair of hands with which they
are able to grab, move, and interact with objects. We decided on this avatar model,
as it doesn’t require complicated scanning setups and is not prone to distracting or
glitchy behavior. We use a client-server model based on the network functionality
provided by the Unreal Engine 4, which allows for shared learning sessions between
users in the same local network or over the internet. The avatars, body parts, and
other interactive objects, such as the operation table, instruments, and tablets, get
replicated (synchronized) between users using remote procedure calls. The network
traffic is minimized using struct replication, delta replication, caching, and careful
selection of reliable/unreliable replication channels. We also developed a VR quiz
(post-test) to evaluate participants’ anatomy knowledge after their learning session.

6.2.4 Study

For our study, we formulated the following research questions that we intend to an-
swer: (R1) Is the Collaborative VR Anatomy Atlas effective for anatomy learning?
Based on prior research that found benefits in collaborative learning [196, 259], we
wanted to investigate if (R2) collaborative learning in VR also leads to better learning

196 Chapter 6. Applications for Multi-User VR in the Medical Field

outcomes than individual VR learning. Additionally, we wanted to evaluate the us-
ability (R3), in general, and especially if there are any differences between individual
and collaborative learning.

6.2.5 Design and Setup

For our study, we employed a between-subject design, hence, we divided the partic-
ipants randomly into two groups: one group testing the single-user condition and
the other group testing the multi-user condition (pair-wise, same room).

During the learning sessions using our Collaborative VR Anatomy Atlas, the
participants were represented through three-point tracked avatars and were able to
freely move around using room-scale VR and teleportation. The virtual environment
resembled an operating room and included a virtual anatomic 3D model that they
were supposed to interact with and explore in order to learn about the anatomy. To
provide a good user experience, we ensured that the frame rate was maintained at
90 frames per second.

In order to evaluate the learning effectiveness, we designed a multiple-choice test
consisting of 8 general anatomy questions. This test was conducted two times: one
time before the learning session on paper (pre-test), and one time after the learning
session directly in VR through our VR quiz (post-test). During the quiz, the partic-
ipants had the opportunity to see and learn the correct answers even after answer-
ing incorrectly. By comparing the results of the two tests, we calculate the learning
progress. Additionally, we employed the System Usability Scale (SUS) [37] to test
the usability.

Procedure

After giving consent, the participants were asked to complete a demographical ques-
tionnaire and complete our pre-test questionnaire (on paper). Following this, the
Collaborative VR Anatomy Atlas application and its usage were briefly explained.
Lastly, the participants had time to freely explore and familiarize themselves with
the VR environment.

During the following learning session, the participants had to explore (individ-
ually, or team-wise) the virtual anatomic model and complete various tasks. For
instance, discovering the human anatomy, searching for specific organs (e.g., the
spleen, pancreas, liver), and finding answers to the pre-test questions. No assistance
was given during task completion, but the tasks were repeatable and no time limit
was given.

Upon completion of the tasks, the participants were transitioned to the quiz level
and took the anatomy post-test. There, they had to answer the shown questions by
pressing the corresponding 3D buttons. After the post-test, the participants had
to complete the usability questionnaire (on paper). They were also asked if they
experienced any motion sickness and to provide subjective feedback. The procedure
was identical for both conditions, with the exception that the participants of the
multi-user group were explicitly instructed to work together on the anatomical tasks
and to learn collaboratively. However, at the VR quiz level, they were required to
complete the post-test independently.

6.2. Anatomy Learning through a Collaborative VR Anatomy Atlas 197

0

10

20

30

40

50

60

70

80

90

100

Singe-User Mul�-User

SU
S

Sc
o

re

Usability

FIGURE 6.19: Left: Learning progress (delta between pre- and
post-test) for single- and multi-user groups. The single-user group
learned, on average, slightly better. Right: The SUS scores. The scores
are generally high but the single-user group’s feedback is more posi-
tive

6.2.6 Results

As the data was, as expected, normally distributed, we conducted independent
samples t-tests to test for statistically significant differences between the single and
multi-user groups.

The study was conducted with n = 33 participants (11 single user, 22 multi-user).
The single-user group was made up of 2 female (18.2 %) and 9 male (81.8 %) partic-
ipants while the multi-user group was made up of 14 men (63.6 %) and 8 women
(36.4 %). Moreover, a substantial percentage of single users (54.5 %) and a smaller
percentage of multi-users (22.7 %) reported having extensive experience with VR,
a significant percentage of single users (36.4 %) and multi-users (31.8 %) reported
having used VR before, while a minority of single users (9.1 %) and a substantial
percentage of multi-users (45.5 %) had no experience with VR.

In order to investigate the learning effectiveness, we computed the participants’
learning progress as the difference (delta) between the pre- and post-test results, see
Fig. 6.19 (left). The single-user group, on average, did have slightly higher learning
progress: the mean score was 2.636 (SD = 1.859), whereas the multi-user group’s
mean score was 1.818 (SD = 1.140). The median, however, is more similar between
the groups. A t-test showed a marginal difference in the mean scores between the
groups: (t(31) = 1.569, p = 0.127). However, the result is still above the usual
threshold of p ≤ 0.05 for statistical significance.

The perceived usability of the Collaborative VR Anatomy Atlas was measured
using the SUS. The corresponding SUS scores were calculated using the standard
methodology and are depicted in Fig. 6.19 (right). Overall, the participants provided

198 Chapter 6. Applications for Multi-User VR in the Medical Field

positive feedback and moderate to high ratings. The mean SUS score for the single-
user group was 75.227 (SD = 8.976) and for the multi-user group 66.364 (SD =
14.15). The t-test revealed that there is a noticeable difference in means between the
single-user and multi-user groups, although the usual threshold of p = 0.005 for
statistical significance was just not reached (t(31) = 1.887, p = 0.069).

6.2.7 Discussion

Looking at the results, participants in both conditions had high learning progress.
These positive results may come due to the VR learning environment allowing the
participants to interact with the content in an immersive, engaging, and interactive
way, or the 3D representation, which could have been helpful to understand the sub-
ject matter and the spatial relations between anatomical structures. We can therefore
answer the first research question R1: our Collaborative VR Anatomy Atlas is, gen-
erally, effective in enhancing the knowledge and understanding of anatomy, which
is in line with prior research [236, 304], that found learning using VR to be beneficial.

Interestingly, the learning progress is not higher for the collaborative learning
condition. In fact, it is slightly (but not statistically significant) lower. Thus, we could
not find VR learning to be more effective in collaboration than individually, which
answers the research question R2. This result is surprising since collaborative learn-
ing is generally considered beneficial [50, 165, 194]. A potential explanation could
be the single-user group having less prior knowledge about anatomy, thus, having
more learning potential. Another possible reason may be that the participants that
learned individually could better focus on the task while participants in the shared
environment were more distracted by each other and the more complex multi-user
environment, leading to a higher cognitive load. Additionally, our chosen avatar
representation may have not provided a sufficient level of immersion, personaliza-
tion, and embodiment, which possibly lead to a low feeling of social presence. One
also has to consider the option that the task of anatomy learning in VR may be one
that is not benefiting from collaboration.

Regarding our research question R3, we found that the results of the usability
questionnaire are positive, especially for the single-user group. This shows that our
Collaborative VR Anatomy Atlas provides a medium to good user experience. The
score for the multi-user group is noticeably lower, though. This reinforces our as-
sumption that participants in the multi-user condition perceived the environment
as more complex and demanding, potentially leading to a higher cognitive load.
Thus, the low usability may be a core explanation for the lower learning progress in
the multi-user condition. The subjective feedback given by the participants during
and after the learning session was generally very positive.

6.2.8 Conclusions and Future Work

In order to investigate the effectiveness of collaborative learning in VR, we devel-
oped the Collaborative VR Anatomy Atlas, a virtual reality system for anatomy ed-
ucation, and evaluated it by conducting a user study with n = 33 participants in
which we compared individual with collaborative learning. Our application pro-
vides an immersive multi-user learning environment in which users can interac-
tively explore detailed anatomical structures. The results show that our Collab-
orative VR Anatomy Atlas was effective in anatomy learning for both single and
multi-user scenarios. Moreover, the participants reported medium to high usability

6.2. Anatomy Learning through a Collaborative VR Anatomy Atlas 199

scores. However, we could not find significant advantages (or differences) regard-
ing the learning effectiveness of the collaborative learning scenario. The usability
even tended to be slightly lower. We suspect this to be due to the more complex
shared environment and a higher cognitive load. Other reasons could be that the
used avatars were not immersive enough, leading to low social presence, or that
learning anatomy in VR is a task that does not necessarily benefit from collaboration.
Nonetheless, we demonstrated that collaborative VR can be an effective approach to
anatomy learning with huge potential to improve the current medical education sys-
tems.

In the future, we see much potential in further enhancing the usability and user
experience for multi-user usage and would reccommend to conduct further studies
to examine the impact of presence, cognitive load, and more immersive avatars. It
would also be important to normalize the learning progress based on pre-existing
knowledge.

201

Chapter 7

Conclusions and Outlook

This chapter provides a summary of this thesis and its key contributions (Section 7.1).
Additionally, a brief outlook on promising future research areas is given (Section 7.2).
To keep this chapter brief, however, only the main concepts and results get presented
here; more detailed results, including discussions, can be found in the respective
chapters.

7.1 Summary

Multi-user VR is an upcoming technology with immense potential to raise the qual-
ity of remote collaborative work to a new level throughout the industry, entertain-
ment, and research. The benefits are a more immersive 3D visualization, natural user
interactions, and the ability to provide arbitrary, highly detailed, virtual scenes, ob-
jects, and scenarios that can be freely, interactively, and repeatedly explored. These
can also be augmented with live-captured data and avatars of the users. Moreover,
the shared environment is accessible from anywhere to any number of participants
that can interact and collaborate with each other. These aspects make multi-user VR
an ideal tool for training and education, data visualization, telepresence/remote as-
sistance, and a good virtual testbed for simulations. The goal of this thesis was to
address various issues and challenges that hinder multi-user VR applications from
fully using their potential in practice. These challenges were mostly related to the
reconstruction, visualization, and rendering of 2D and 3D data (i.e., avatars, live-
captured RGB-D images/point clouds, and mesh-based environments) in the shared
virtual environment. Furthermore, we considered closely related tasks such as com-
pression and streaming of this data. While each contribution’s section already entails
a closely related conclusion, we want to give a brief recap of them here, outline the
main findings, and draw a final résumé.

The first contribution to multi-user VR and telepresence is the development and
evaluation of a low-latency point cloud streaming and rendering pipeline that we
embedded in the application domain of surgery assistance. Our pipeline allows re-
mote experts to observe live operations in a virtual operating room and interact with
the local doctor and other remote participants. This is achieved by using multiple
RGB-D cameras and real-time processing, streaming, and reconstructing of the cap-
tured data. Each user, also remote ones, gets visualized by live-reconstructed point
cloud-based avatars. Most telepresence systems only support one RGB-D camera,
are complicated to set up, or create high latency and bandwidth. In contrast, our
system is easy to use, is designed for minimal latencies, and supports an arbitrary
number of RGB-D cameras. Using custom filtering and compression algorithms,
parallelization, and two self-developed fast rendering methods, we achieve motion-
to-photon latencies of just 120-150 ms and 23.4 MB/s of bandwidth per camera (loss-
less). We also developed a prototype for real-time face reconstruction that allows one

202 Chapter 7. Conclusions and Outlook

to see other users’ faces, including the current mimics, even though they are wearing
HMDs. Our user study, which we have conducted in a hospital, showed that the sys-
tem is perceived very well by the doctors and they have a high interest in using it in
practice. Also, they had strong feelings of presence, thanks to, among other things,
the live-reconstructed 3D avatars and our custom point cloud rendering solutions.

In VR-based telepresence systems such as the one we proposed, live reconstruc-
tions of the remote scenes and avatars are usually based on RGB-D data, however,
these require a lot of bandwidth when streamed raw to other participants. Especially
the depth data poses an issue, as it cannot be compressed effectively and artifact-free
using the standard color image and video compression algorithms. Time constraints
are another challenge, as the images usually get captured with 30 Hz and any pro-
cessing and compression should be performed equally fast or even faster. We, there-
fore, aimed to further enhance the real-time data streaming between participants in
collaborative VR by presenting a lossless real-time compression algorithm for depth
data. It achieves a higher compression ratio than current algorithms such as RVL and
helps to reduce the bandwidth requirements significantly, even though we focused
on achieving a good trade-off between speed and compression ratio instead of ab-
solutely minimal sizes. Our algorithm is based on the RVL algorithm and extends it
by our self-developed span-based adaptive intra-image predictor, inter-image delta
computations, parallelization, and further compression using Zstandard. An eval-
uation showed that our algorithm achieves significantly higher compression ratios
than RVL and other compression methods while still being real-time capable.

In order to provide detailed, high-quality live reconstructions in multi-user VR,
the captured depth images not only have to be effectively compressed but also pre-
processed. Raw depth images inherently contain noise and, perhaps more critically,
are usually incomplete, meaning, riddled with areas of no or invalid data. We tack-
led the latter issue by proposing a deep-learning-based approach to depth image
inpainting/completion, which is able to quickly reconstruct the missing areas with-
out any color image guidance. For this, we adopted two U-Net-based networks that
(like most networks) originally were designed for color-image inpainting. The first
network uses partial convolution layers and the second one is a patch-based GAN.
Using multiple public and custom-made data sets, our comprehensive evaluation
showed significant improvements in image quality. The GAN-based network per-
formed best on images with smaller hole-to-image rations while the network with
partial convolutions performed uniformly well. Moreover, the inference timings
for both networks were low enough for real-time employment. More sophisticated
networks such as LaMa do provide, on average, better results but are significantly
slower and not quite real-time capable anymore.

Traveling greater distances in virtual environments is often done using the tele-
port locomotion metaphor as, among other reasons, it is safe regarding cybersick-
ness. In shared virtual environments, such as our previously presented telepresence
system, this can lead to confusion and a reduction in presence for onlookers as they
get no visual feedback about the process. In order to preserve the feeling of pres-
ence when teleporting, we developed and evaluated suitable teleport visualization
methods that can be shown to onlookers while teleporting. These included contin-
uous and non-continuous ones such as particle effects, portals, walking animations,
and others. Our study with multiple scenarios and locomotion durations showed
that the visualizations can help significantly with the comprehension of the delib-
erate teleport process. Specifically, we found benefits regarding the social- and spa-
tial presence, spatial awareness, and prevention of confusion. However, we found
also that the benefits of the visualizations decrease when increasing the locomotion

7.1. Summary 203

speed/shortening its duration, and that type of visualization is highly relevant and
not all visualizations perform equally well. Our results indicate that continuous
ones often tend to perform better and that especially the realistic walking animation
consistently performed best.

As discussed previously, having an immersive, detailed virtual environment is
an important aspect in multi-user VR. Some domains, for instance, robotics, the auto-
motive industry as well as the aerospace industry, often are especially dependent on
large-high-quality 3D environments. One example is virtual testbeds, which require
realistic, feature-rich large-scale landscapes to simulate the interaction and behavior
of vehicles or other systems with the local terrain. To also contribute to this area,
we presented multiple novel procedural terrain generation systems that focus on a
series of complex issues. First, we proposed a PTG system that is able to generate
huge, varied landscapes with plausible biome distributions. To achieve this, various
procedural methods, exemplar-based methods, and a simplified climate simulation
were combined into a single pipeline that also is easy to use. Next, we also pre-
sented a PTG approach to generate landscapes with realistic-looking and plausibly
distributed water bodies, such as rivers and lakes, which is a sparsely researched
but nonetheless important topic. Our design is based on artificially created drainage
basins that dictate the eventual terrain. Our evaluations show that the proposed
PTG systems are not only easy and quick to use but also generate huge, highly vari-
able terrains that are able to closely mimic realistic terrains. Finally, we theoretically
discussed a system that, given an input DEM, would produce visually and statis-
tically similar look-alikes. This would enable engineers and researchers to quickly
generate a number of slightly varying terrains that, at the same time, follow given
requirements. This, in turn, would help to virtually test their systems on a vast
number of conditions.

Exploring potential applications domains for multi-user VR, we found the med-
ical area to be especially promising. We already found that having highly detailed
virtual environments and live 3D reconstructions of remote scenes and other partic-
ipants are important for multi-user VR and telepresence. However, in the medical
area, there is often also additional medial data that could be 3D visualized for col-
laborative, interactive inspection in VR, e.g., to help with diagnosis or pre-operative
planning. Thus, we developed a custom direct volume renderer for medical data
and integrated it into a multi-user VR application that is based on the Unreal Engine
4. This allows doctors to collaboratively and remotely visualize and interact with
volumetric medical data, e.g., CT scans, in an immersive and more natural way than
the currently used programs with standard 2D interfaces. Our renderer provides
various advanced lighting techniques and dynamically selectable transfer functions,
as well as various optimization techniques that increase performance and reduce ar-
tifacts. For instance, pre-integration, stochastic jittering, and an octree. Thus, the
evaluation showed that our renderer provides high-quality visuals and VR-capable
framerates of more than 100 Hz, which makes it ideal for tasks such as pre-operative
planning or for spontaneous consultation during VR-assisted operations.

Another highly relevant area in medicine in which (multi-user) VR can provide
benefits is education, e.g., with learning of anatomical knowledge through so-called
VR anatomy atlases. In classical learning, collaboration tends to be beneficial. If this
is also the case when using VR, is hardly researched yet. Thus, to evaluate the ef-
fectiveness of collaborative learning in VR and its potential benefits over individual
learning, we developed a multi-user VR anatomy learning application that provides
users with the ability to collaboratively explore and interact with a virtual 3D model

204 Chapter 7. Conclusions and Outlook

of the human anatomy and its individual organs. A user study revealed that the ap-
plication is effective for anatomy learning and provides good usability. However, we
could not find collaborative learning to be more effective than individual learning.

With the contributions made within this thesis, we tackled many challenges and
significantly raised the current state of the art of collaborative VR throughout a wide
range of areas. For instance, our contributions regarding real-time RGB-D data en-
hancement, streaming, 3D reconstruction, and rendering substantially improve the
ability to provide highly detailed live 3D data and avatars to local and remote par-
ticipants in the virtual environment, i.e., in the context of a telepresence/surgery
assistance system. This increases the quality of these systems and makes them more
viable and accessible in practice. Using our volume renderer, the participants are
also able to immersively visualize and interact with volumetric data, such as CT
scans, directly in the shared virtual environment and our proposed teleport visual-
izations help to prevent confusion and retain presence for users in shared environ-
ments. Lastly, our contributions to PTG improve the capabilities regarding realistic,
detailed environment visualization and simulation, i.e., in virtual testbeds. Even-
tually, with the ensemble of contributions that we presented within this thesis, in-
cluding not only novel algorithms and methods but also studies and comprehensive
evaluations, we were able to improve collaborative VR on many fronts and provide
critical insights into various research topics.

What may come in the future, or at least what we see as worthwhile future re-
search directions, will be outlined in the following.

7.2 Outlook

Despite the recent advances in collaborative VR and the contributions of this thesis,
there are still many areas of future research that have great potential to improve the
current state of collaborative VR even further. In the following, we want to show a
brief outlook on these possible directions and promising research ideas. For specific
limitations of our contributions and more detailed ideas to mitigate them, we refer
to the individual contributions’ future work sections.

As mentioned, high-quality personalized avatars are crucial for collaborative
VR, and in this regard, we see still a lot of potential for improvement regarding
(re)construction and rendering. One prospective way for future research would be
to develop algorithms that not only reconstruct avatars from RGB-D data but also
smoothly and more efficiently merge the data from multiple views to prevent oc-
clusions and reduce the uncertainty inherent in the data. Current algorithms that
achieve this are computationally very complex and take too much time. Related
is the issue of the peoples’ faces being occluded by the HMD. As seeing the other
person’s face is highly relevant and beneficial for many applications, it is highly im-
portant to investigate methods to reconstruct the faces, including the mimics, in real
time. Fortunately, modern HMDs start to include eye- and facial trackers more often,
which helps to get live data about the mimics and can be used for facial reconstruc-
tion. To achieve good results that accurately depict the real person’s face and don’t
look weird or extremely unnatural is not trivial though. Our prototype may be a
good step in the right direction.

We also see tremendous potential in taking advantage of the recent develop-
ments in deep learning. Training and employing specialized CNNs showed to be
highly beneficial in various areas, mostly image processing and computer vision, but
also in rendering. Collaborative VR could greatly benefit from these developments.

7.2. Outlook 205

For instance, we think deep learning and CNNs have great potential in RGB-D pro-
cessing tasks such as denoising and inpainting, but also super sampling; the limited
depth sensor resolution is actually a significant obstacle. Moreover, recent works
showed that deep learning can also be successfully used for 3D rendering. Therefore,
it might be worth it to see if and how neural networks can be used to replace tradi-
tional RGB-D reconstruction and rendering algorithms. The same questions apply to
direct volume rendering in VR. One approach could be to train a neural network to
generate highly realistic avatars based on the current pose/skeleton, including mim-
ics provided by eye trackers, etc., and pre-made scans of the user. Naturally, ease of
use and high usability are important factors for practicability. Therefore, research
and development would be needed to track the user’s pose/skeleton just using a
consumer webcam or smartphone and create the scans, too, just using a couple of
images or a short video by a typical smartphone camera.

Despite our contribution to RGB-D compression, there is still potential for fur-
ther improvement, as, still, huge amounts of data have to be transmitted over often
limited connections. The most profitable approach may be to try to make use of the
GPU and develop effective compression algorithms that are highly parallelizable,
even though this is traditionally difficult, as the potential for efficiency improve-
ments is huge. Therefore, it could also be an interesting approach to take advantage
of the recent advances in deep learning and try to develop and employ state-of-the-
art models for deep data compression. An inherent advantage would be that the
inference is usually taking place on the GPU. The issue could also be tackled from
another angle, though. Namely, by trying to find more efficient solutions on a higher
abstraction level. Here, techniques from related research fields such as networking
get relevant. An idea could be to develop adaptive rendering or compression strate-
gies that dynamically change the rendering/compression quality/precision based
on the available bandwidth, similar to a classical LOD system. Using eye tracking,
the quality could also be adapted spatially, i.e., only the areas that are looked at get
rendered/compressed in the highest possible quality. Another avenue to increase
the efficiency would be to consider predictive rendering techniques. On the one
hand, these could be applied to the rendering of the final images themselves to save
rendering time, but on the other hand, the avatar’s motion could be predicted, too,
to lower the required update frequency (rendering, transmission). Moreover, the
perceived latency for the own avatar could possibly be reduced.

There are even more possible research topics regarding avatars, though. For in-
stance, we discussed how the avatar representation and their movement through
the scene are highly important for the sensation of (tele)presence. Our research into
teleport visualizations definitely helps to improve the depiction for onlookers, how-
ever, it is still necessary to also consider the visualizations’ effects on the acting user
himself, i.e., usability, embodiment, and presence, especially as they may consume a
significant amount of time. Finding a good trade-off between the conflicting require-
ments between onlookers and the acting user would be an interesting challenge.

In the end, we can agree that (multi-user) VR is an exciting and highly relevant
technology, that, still, has huge growth potential and exhibits various interesting
directions for future research.

207

Appendix A

Publications

Some parts of this thesis appeared already in the following core publications (chrono-
logical order):

PC1 Fischer, R., Boeckers, J., Zachmann G. (2022). Procedural Generation of Land-
scapes with Water Bodies Using Artificial Drainage Basins. In: Computer
Graphics International (CGI). Lecture Notes in Computer Science, vol 13443.
Springer.

PC2 Fischer, R., Mühlenbrock, A., Kulapichitr, F., Uslar, V.N., Weyhe, D., Zach-
mann, G. (2022). Evaluation of Point Cloud Streaming and Rendering for VR-
Based Telepresence in the OR. In: Virtual Reality and Mixed Reality. EuroXR
2022. Lecture Notes in Computer Science, vol 13484. Springer.

PC3 Fischer, R., Chang, KC., Weller, R., Zachmann, G. (2020). Volumetric Medical
Data Visualization for Collaborative VR Environments. In: Virtual Reality and
Augmented Reality. EuroVR 2020. Lecture Notes in Computer Science, vol
12499. Springer

PC4 Fischer, R., Dittmann, P., Weller, R., Zachmann, G. (2020). AutoBiomes: proce-
dural generation of multi-biome landscapes. In: The Visual Computer (36).

PC5 Fischer, R., Dittmann, P., Schröder-Dering, C., Zachmann, G. (2020). Improved
Lossless Depth Image Compression. In: Journal of WSCG, 28.

Currently submitted works that include parts of this thesis (acceptance still pend-
ing (PP2) or accepted but not published yet (PP1,PP3)):

PP1 Fischer, R., Jochens, M., Weller, R., Zachmann, G. (2023). How Observers Per-
ceive Teleport Visualizations in Virtual Environments. In: ACM Symposium
on Spatial User Interaction (SUI).

PP2 Fischer, R., Roßkamp, J., Hudcovic, T., Schlegel, A., Zachmann G. (2023). In-
painting of Depth Images using Deep Neural Networks for Real-Time Appli-
cations. In: International Symposium on Visual Computing (ISVC).

PP3 Almaree, H., Fischer, R., Weller, R., Zachmann, G. (2023). Collaborative VR
Anatomy Atlas - Investigating Multi-user Anatomy Learning. In: Virtual Re-
ality and Mixed Reality. EuroXR 2023.

Moreover, there are a number of co-authored papers that are related and where I
was involded by giving ideas and advice, helped with the evaluation or the writing.
However, they are not directly part of this thesis. Again, in chronological order:

208 Appendix A. Publications

PR1 Mühlenbrock, A., Fischer, R., Schröder-Dering, C. et al. (2022). Fast, accurate
and robust registration of multiple depth sensors without need for RGB and
IR images. In: The Visual Computer.

PR2 Mühlenbrock, A., Fischer, R., Weller, R., Zachmann, G. (2021). Fast and Robust
Registration of multiple Depth-Sensors and Virtual Worlds. In: International
Conference on Cyberworlds (CW), pp. 41-48.

PR3 Mühlenbrock, A., Fischer, R., Weller, R., Zachmann, G. (2021). Fast and Robust
Registration and Calibration of Depth-Only Sensors. In: Eurographics 2021
Posters.

PR4 Reinschluessel, A., Fischer, R., Schumann, C., Uslar, V., Muender, T. et al.
(2019). Introducing Virtual & 3D-Printed Models for Improved Collaboration
in Surgery. In: Proceedings of the 18th Annual Meeting of the German Society
for Computer- and Robot-Assisted Surgery (CURAC).

209

Appendix B

Additional Plots for Section 3.2

In the following, I depict all plots that were generated during the evaluations for Sec-
tion 3.2 – How Observers Perceive Teleport Visualizations in Virtual Environments.
They were not all directly shown in the mentioned section to maintain clarity.

210 Appendix B. Additional Plots for Section 3.2

FIGURE B.1: Social presence in the IFoV/OFoV scenarios and
slow/fast experiment variants.

FIGURE B.2: Spatial presence in the IFoV/OFoV scenarios and
slow/fast experiment variants.

Appendix B. Additional Plots for Section 3.2 211

FIGURE B.3: Plausibility in the IFoV/OFoV scenarios and slow/fast
experiment variants.

FIGURE B.4: Intuitiveness in the IFoV/OFoV scenarios and slow/fast
experiment variants.

212 Appendix B. Additional Plots for Section 3.2

FIGURE B.5: Target anticipation in the IFoV/OFoV scenarios and
slow/fast experiment variants.

FIGURE B.6: Ease to re-spot in the IFoV/OFoV scenarios and
slow/fast experiment variants.

Appendix B. Additional Plots for Section 3.2 213

FIGURE B.7: Perceived speed in the IFoV/OFoV scenarios and
slow/fast experiment variants.

FIGURE B.8: User preference in the IFoV/OFoV scenarios and
slow/fast experiment variants.

214 Appendix B. Additional Plots for Section 3.2

FIGURE B.9: Controller tracking in the IFoV/OFoV scenarios and
slow/fast experiment variants.

FIGURE B.10: Gaze tracking in the IFoV/OFoV scenarios and
slow/fast experiment variants.

215

Bibliography

[1] Haley Adams et al. “Development and evaluation of an immersive virtual re-
ality system for medical imaging of the ear”. In: Medical Imaging 2019: Image-
Guided Procedures, Robotic Interventions, and Modeling. Vol. 10951. International
Society for Optics and Photonics. SPIE, 2019, pp. 265 –272.

[2] Ashu Adhikari et al. “Integrating Continuous and Teleporting VR Locomo-
tion Into a Seamless ‘HyperJump’ Paradigm”. In: IEEE Transactions on Visual-
ization and Computer Graphics (2022), pp. 1–17.

[3] Sarvesh Agrewal et al. “Defining Immersion:: Literature Review and Impli-
cations for Research on Audiovisual Experiences”. In: Journal of the Audio En-
gineering Society 68.6 (2020), pp. 404–417.

[4] Majed Al Zayer, Paul MacNeilage, and Eelke Folmer. “Virtual Locomotion:
A Survey”. In: IEEE Transactions on Visualization and Computer Graphics 26.6
(2020), pp. 2315–2334.

[5] Abdenour Amamra. “GPU-based real-time RGBD data filtering”. In: Journal
of Real-Time Image Processing 14 (Sept. 2014).

[6] Alba Amato. “Procedural Content Generation in the Game Industry”. In:
Game Dynamics. Springer, 2017, pp. 15–25.

[7] Steven J. Anbro et al. “Behavioral Assessment in Virtual Reality: An Evalua-
tion of Multi-User Simulations in Healthcare Education”. In: Journal of Orga-
nizational Behavior Management 0.0 (2022), pp. 1–45.

[8] Víctor H. Andaluz et al. “Multi-user Industrial Training and Education Envi-
ronment”. In: Augmented Reality, Virtual Reality, and Computer Graphics. Ed. by
Lucio Tommaso De Paolis and Patrick Bourdot. Springer International Pub-
lishing, 2018, pp. 533–546.

[9] David Antón et al. “Augmented Telemedicine Platform for Real-Time Re-
mote Medical Consultation”. In: Jan. 2017, pp. 77–89. ISBN: 978-3-319-51810-
7.

[10] Karim Armanious et al. “Adversarial Inpainting of Medical Image Modali-
ties”. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP).
2019, pp. 3267–3271.

[11] Knut Augestad and Rolv-Ole Lindsetmo. “Overcoming Distance: Video/-
Conferencing as a Clinical and Educational Tool Among Surgeons”. In: World
Journal of Surgery 33 (July 2009), pp. 1356–1365.

[12] Tycho T de Back et al. “Benefits of immersive collaborative learning in CAVE-
based virtual reality”. In: Int. Journal of Educational Technology in Higher Edu-
cation 17 (2020), pp. 1–18.

[13] Gabriel Costa Backes and Tiago Augusto Engel. “Real-Time Massive Terrain
Generation using Procedural Erosion on the GPU”. In: 2018.

216 Bibliography

[14] Paul Balister et al. “River landscapes and optimal channel networks”. In: Pro-
ceedings of the National Academy of Sciences 115.26 (2018), pp. 6548–6553.

[15] Filippo Bannò et al. “Real-Time Compression of Depth Streams through
Meshification and Valence-Based Encoding”. In: Proceedings of the 11th ACM
SIGGRAPH International Conference on Virtual-Reality Continuum and Its Appli-
cations in Industry. VRCAI ’12. Singapore, Singapore: Association for Com-
puting Machinery, 2012, 263–270. ISBN: 9781450318259.

[16] Rosa Baños et al. “Immersion and Emotion: Their Impact on the Sense of
Presence”. In: Cyberpsychology & behavior : the impact of the Internet, multimedia
and virtual reality on behavior and society 7 (Jan. 2005), pp. 734–41.

[17] Woodrow Barfield et al. “Presence and performance within virtual environ-
ments”. In: Virtual environments and advanced interface design (1995), pp. 473–
513.

[18] Andrea Bartl et al. “Affordable But Not Cheap: A Case Study of the Effects of
Two 3D-Reconstruction Methods of Virtual Humans”. In: Frontiers in Virtual
Reality 2 (2021).

[19] Stephan Beck and Bernd Froehlich. “Volumetric calibration and registration
of multiple RGBD-sensors into a joint coordinate system”. In: 2015 IEEE Sym-
posium on 3D User Interfaces (3DUI). 2015, pp. 89–96.

[20] Stephan Beck et al. “Immersive Group-to-Group Telepresence”. In: IEEE trans-
actions on visualization and computer graphics 19 (Apr. 2013), pp. 616–25.

[21] Christopher Beckham and Christopher Pal. “A step towards procedural ter-
rain generation with GANs”. In: arXiv preprint arXiv:1707.03383 (2017).

[22] Florian Berger et al. “Application of Cinematic Rendering in Clinical Routine
CT Examination of Ankle Sprains”. In: American Journal of Roentgenology 211.4
(Oct. 2018), pp. 887–890.

[23] N. Berte and Cyril Perrenot. “Surgical apprenticeship in the era of simula-
tion”. In: Journal of Visceral Surgery 157 (Apr. 2020).

[24] Jiwan Bhandari, Paul MacNeilage, and Eelke Folmer. “Teleportation without
Spatial Disorientation Using Optical Flow Cues”. In: GI ’18. Toronto, Canada:
Canadian Human-Computer Communications Society, 2018, 162–167. ISBN:
9780994786838.

[25] Conrad Fifelski-von Böhlen et al. “Virtual Reality Integrated Multi-Depth-
Camera-System for Real-Time Telepresence and Telemanipulation in Care-
giving”. In: 2020 IEEE International Conference on Artificial Intelligence and Vir-
tual Reality (AIVR). 2020, pp. 294–297.

[26] Frank Biocca, Chad Harms, and Judee Burgoon. “Towards A More Robust
Theory and Measure of Social Presence: Review and Suggested Criteria.” In:
Presence 12 (Oct. 2003), pp. 456–480.

[27] Gary Bishop and Henry Fuchs. “Research directions in virtual environments:
report of an NSF Invitational Workshop, March 23-24, 1992, University of
North Carolina at Chapel Hill”. In: COMG. 1992.

[28] Roland Blach. “Virtual Reality Technology - An Overview”. In: Product Engi-
neering: Tools and Methods Based on Virtual Reality. Springer Netherlands, 2008,
pp. 21–64.

Bibliography 217

[29] Christian Boedecker et al. “Using virtual 3D-models in surgical planning:
workflow of an immersive virtual reality application in liver surgery”. In:
Langenbeck’s archives of surgery 406 (2021), pp. 911–915.

[30] Costas Boletsis. “The New Era of Virtual Reality Locomotion: A Systematic
Literature Review of Techniques and a Proposed Typology”. In: Multimodal
Technologies and Interaction 1.4 (2017). ISSN: 2414-4088.

[31] Costas Boletsis and Jarl Cedergren. “VR Locomotion in the New Era of Vir-
tual Reality: An Empirical Comparison of Prevalent Techniques”. In: Advances
in Human-Computer Interaction 2019 (Apr. 2019), pp. 1–15.

[32] Marco Bonali et al. “Surgical Instruments and Preparation of the Specimen”.
In: Comparative Atlas of Endoscopic Ear Surgery: Training Techniques Based on an
Ovine Model (2021), pp. 9–27.

[33] Daniele Bonatto et al. “Explorations for real-time point cloud rendering of
natural scenes in virtual reality”. In: 2016 International Conference on 3D Imag-
ing (IC3D). 2016, pp. 1–7.

[34] Jean Botev and Steffen Rothkugel. “High-Precision Gestural Input for Im-
mersive Large-Scale Distributed Virtual Environments”. In: Proceedings of the
9th Workshop on Massively Multiuser Virtual Environments. MMVE’17. Taipei,
Taiwan: Association for Computing Machinery, 2017, 7–11.

[35] Doug A. Bowman, Ryan P. McMahan, and Eric D. Ragan. “Questioning Nat-
uralism in 3D User Interfaces”. In: Commun. ACM 55.9 (Sept. 2012), 78–88.
ISSN: 0001-0782.

[36] Evren Bozgeyikli et al. “Point & Teleport Locomotion Technique for Virtual
Reality”. In: Proceedings of the 2016 Annual Symposium on Computer-Human
Interaction in Play. CHI PLAY ’16. Austin, Texas, USA: Association for Com-
puting Machinery, 2016, 205–216. ISBN: 9781450344562.

[37] John Brooke. “SUS: a retrospective”. In: Journal of usability studies 8.2 (2013),
pp. 29–40.

[38] Rocko Brown and Gregory Pasternack. “How to build a digital river”. In:
Earth-Science Reviews 194 (May 2019).

[39] Ryan Brucks. Creating a Volumetric Ray Marcher. 2016. https : / / shaderbits .
com/blog/creating-volumetric-ray-marcher. Accessed: 2020-07-17.

[40] Antoni Buades, Jose-Luis Lisani, and Marko Miladinović. “Patch-Based Video
Denoising With Optical Flow Estimation”. In: IEEE Transactions on Image Pro-
cessing 25.6 (2016), pp. 2573–2586.

[41] Saniye Tugba Bulu. “Place presence, social presence, co-presence, and satis-
faction in virtual worlds”. In: Computers & Education 58.1 (2012), pp. 154–161.
ISSN: 0360-1315.

[42] Fabio Buttussi and Luca Chittaro. “Locomotion in Place in Virtual Reality: A
Comparative Evaluation of Joystick, Teleport, and Leaning”. In: IEEE Trans-
actions on Visualization and Computer Graphics PP (July 2019), pp. 1–1.

[43] Abraham G. Campbell et al. “Uses of Virtual Reality for Communication in
Financial Services: A Case Study on Comparing Different Telepresence In-
terfaces: Virtual Reality Compared to Video Conferencing”. In: Advances in
Information and Communication. Ed. by Kohei Arai and Rahul Bhatia. Springer
International Publishing, 2020, pp. 463–481.

https://shaderbits.com/blog/creating-volumetric-ray-marcher
https://shaderbits.com/blog/creating-volumetric-ray-marcher

218 Bibliography

[44] Chao Cao, Marius Preda, and Titus Zaharia. “3D Point Cloud Compression:
A Survey”. In: July 2019, pp. 1–9. ISBN: 978-1-4503-6798-1.

[45] Julie Carmigniani and Borko Furht. “Augmented Reality: An Overview”. In:
Handbook of Augmented Reality. Ed. by Borko Furht. Springer New York, 2011,
pp. 3–46.

[46] Francesco Carrara et al. “Dendritic connectivity controls biodiversity pat-
terns in experimental metacommunities”. In: Proc. of the National Academy of
Sciences of the United States of America 109 (Apr. 2012), pp. 5761–6.

[47] Luca Carraro et al. “Generation and application of river network analogues
for use in ecology and evolution”. In: Ecology and Evolution 10 (June 2020).

[48] Polona Caserman, Philipp Achenbach, and Stefan Göbel. “Analysis of In-
verse Kinematics Solutions for Full-Body Reconstruction in Virtual Reality”.
In: 2019 IEEE 7th International Conference on Serious Games and Applications for
Health (SeGAH). 2019, pp. 1–8.

[49] Polona Caserman, Augusto Garcia-Agundez, and Stefan Göbel. “A Survey
of Full-Body Motion Reconstruction in Immersive Virtual Reality Applica-
tions”. In: IEEE Transactions on Visualization and Computer Graphics 26.10 (2020),
pp. 3089–3108.

[50] Ashley Casey and Victoria A Goodyear. “Can cooperative learning achieve
the four learning outcomes of physical education? A review of literature”. In:
Quest 67.1 (2015), pp. 56–72.

[51] Davide Castelvecchi. “Low-cost headsets boost virtual reality’s lab appeal”.
In: Nature 533.7602 (2016).

[52] J. Cecil et al. “Collaborative virtual environments for orthopedic surgery”.
In: 2013 IEEE International Conference on Automation Science and Engineering
(CASE). 2013, pp. 133–137.

[53] Hubert Cecotti. “Cultural Heritage in Fully Immersive Virtual Reality”. In:
Virtual Worlds 1.1 (2022), pp. 82–102. ISSN: 2813-2084.

[54] Kapil Chalil Madathil and Joel S. Greenstein. “An investigation of the effi-
cacy of collaborative virtual reality systems for moderated remote usability
testing”. In: Applied Ergonomics 65 (2017), pp. 501–514.

[55] Yadvendar Champawat and Subodh Kumar. “Online point-cloud transmis-
sion for tele-immersion”. In: Dec. 2012, pp. 79–82.

[56] Damon Chandler and Sheila Hemami. “VSNR: A wavelet-based Visual Signal-
to-Noise Ratio for natural images”. In: Image Processing, IEEE Transactions on
16 (Oct. 2007), pp. 2284 –2298.

[57] H. Chang et al. “MaskGIT: Masked Generative Image Transformer”. In: 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE
Computer Society, June 2022, pp. 11305–11315.

[58] C. Chen, R. Jafari, and N. Kehtarnavaz. “UTD-MHAD: A multimodal dataset
for human action recognition utilizing a depth camera and a wearable inertial
sensor”. In: 2015 IEEE International Conference on Image Processing (ICIP). Sept.
2015, pp. 168–172.

[59] H. Chen et al. “Exemplar-based Pattern Synthesis with Implicit Periodic Field
Network”. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). IEEE Computer Society, June 2022, pp. 3698–3707.

Bibliography 219

[60] Hanting Chen et al. “Pre-trained image processing transformer”. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021, pp. 12299–12310.

[61] Rong Chen et al. “Depth Image Denoising via Collaborative Graph Fourier
Transform”. In: Digital TV and Wireless Multimedia Communication. Ed. by
Guangtao Zhai, Jun Zhou, and Xiaokang Yang. Springer Singapore, 2018,
pp. 128–137. ISBN: 978-981-10-8108-8.

[62] Vuthea Chheang et al. “A collaborative virtual reality environment for liver
surgery planning”. In: Computers & Graphics 99 (2021), pp. 234–246.

[63] Vuthea Chheang et al. “Collaborative Virtual Reality for Laparoscopic Liver
Surgery Training”. In: 2019 IEEE International Conference on Artificial Intelli-
gence and Virtual Reality (AIVR). 2019, pp. 1–17.

[64] Vuthea Chheang et al. “Group WiM: A Group Navigation Technique for Col-
laborative Virtual Reality Environments”. In: 2022 IEEE Conference on Virtual
Reality and 3D User Interfaces Abstracts and Workshops (VRW). 2022, pp. 556–
557.

[65] SungIk Cho et al. “Effects of volumetric capture avatars on social presence in
immersive virtual environments”. In: 2020 IEEE Conference on Virtual Reality
and 3D User Interfaces (VR). 2020, pp. 26–34.

[66] Nicklas Christensen et al. “Feasibility of Team Training in Virtual Reality for
Robot-Assisted Minimally Invasive Surgery”. In: Apr. 2018, pp. 1–4.

[67] Chris G. Christou and Poppy Aristidou. “Steering Versus Teleport Locomo-
tion for Head Mounted Displays”. In: Augmented Reality, Virtual Reality, and
Computer Graphics. Springer International Publishing, 2017, pp. 431–446.

[68] Pietro Cipresso et al. “The Past, Present, and Future of Virtual and Aug-
mented Reality Research: A Network and Cluster Analysis of the Literature”.
In: Frontiers in Psychology 9 (Nov. 2018), p. 2086.

[69] Arnis Cirulis, Lauris Taube, and Zintis Erics. “Automated Generation of Dig-
ital Twin in Virtual Reality for Interaction with Specific Nature Ecosystem”.
In: Universal Access in Human-Computer Interaction. User and Context Diversity.
Ed. by Margherita Antona and Constantine Stephanidis. Springer Interna-
tional Publishing, 2022, pp. 187–202.

[70] Jeremy Clifton and Stephen Palmisano. “Effects of Steering Locomotion and
Teleporting on Cybersickness and Presence in HMD-Based Virtual Reality”.
In: Virtual Real. 24.3 (Sept. 2020), 453–468. ISSN: 1359-4338.

[71] Sebastian Cmentowski, Andrey Krekhov, and Jens Krüger. “Outstanding: A
Multi-Perspective Travel Approach for Virtual Reality Games”. In: Proc. of
the Annual Symposium on Computer-Human Interaction in Play. CHI PLAY ’19.
Barcelona, Spain: Association for Computing Machinery, 2019, 287–299. ISBN:
9781450366885.

[72] Anthony M Codd and Bipasha Choudhury. “Virtual reality anatomy: Is it
comparable with traditional methods in the teaching of human forearm mus-
culoskeletal anatomy?” In: Anatomical sciences education 4.3 (2011), pp. 119–
125.

220 Bibliography

[73] Charlotte Coles. Virtual Reality: The Most Disruptive Technology of the Next
Decade. Reseach article on IDTechEx. 2020. https : / / www. idtechex . com /
it/research-article/virtual-reality-the-most-disruptive-technology-of-the-
next-decade/22183. Last accessed on 25. January 2023.

[74] Yann Collet. Zstandard - a fast real-time compression algorithm. Github repos-
itory. 2016. https : / / github . com / facebook / zstd; accessed on 26. Februar
2020.

[75] Guillaume Cordonnier et al. “Large Scale Terrain Generation from Tectonic
Uplift and Fluvial Erosion”. In: Computer Graphics Forum 35 (May 2016).

[76] Yann Cortial et al. “Procedural Tectonic Planets”. In: Computer Graphics Forum
38 (May 2019), pp. 1–11.

[77] Evelyn Dappa et al. “Cinematic rendering – an alternative to volume render-
ing for 3D computed tomography imaging”. In: Insights into Imaging 7 (Sept.
2016).

[78] Tycho T De Back, Angelica M Tinga, and Max M Louwerse. “Learning in
immersed collaborative virtual environments: design and implementation”.
In: Interactive Learning Environments (2021), pp. 1–19.

[79] Aikaterini Dedeilia et al. “Medical and Surgical Education Challenges and
Innovations in the COVID-19 Era: A Systematic Review”. In: In Vivo 34 (June
2020), pp. 1603–1611.

[80] Teng Deng et al. “Multiple consumer-grade depth camera registration using
everyday objects”. In: Image and Vision Computing 62 (2017), pp. 1–7.

[81] Ye Deng et al. “T-Former: An Efficient Transformer for Image Inpainting”. In:
Proceedings of the 30th ACM International Conference on Multimedia. MM ’22.
Association for Computing Machinery, 2022, pp. 6559–6568.

[82] Evgenij Derzapf et al. “River Networks for Instant Procedural Planets”. In:
Computer Graphics Forum 30 (Nov. 2011), pp. 2031 –2040.

[83] Oliver Deussen et al. “Realistic Modeling and Rendering of Plant Ecosys-
tems”. In: Proceedings of the 25th annual conference on Computer graphics and
interactive techniques. ACM. 1998, pp. 275–286.

[84] Prafulla Dhariwal and Alexander Nichol. “Diffusion models beat gans on im-
age synthesis”. In: Advances in neural information processing systems 34 (2021),
pp. 8780–8794.

[85] Massimiliano Di Luca et al. “Locomotion Vault: The Extra Mile in Analyz-
ing VR Locomotion Techniques”. In: Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. CHI ’21. Association for Computing
Machinery, 2021.

[86] Cambridge Dictionary. Definifion of confusing. https://dictionary.cambridge.
org/de/worterbuch/englisch/confusing. Accessed: 2023-03-29.

[87] Collins Dictionary. Definifion of confusing. https : / / www. collinsdictionary.
com/de/worterbuch/englisch/confusing. Accessed: 2023-03-29.

[88] Sylvie Dijkstra-Soudarissanane et al. “Multi-Sensor Capture and Network
Processing for Virtual Reality Conferencing”. In: Proceedings of the 10th ACM
Multimedia Systems Conference. MMSys ’19. Amherst, Massachusetts: Associ-
ation for Computing Machinery, 2019, 316–319.

https://www.idtechex.com/it/research-article/virtual-reality-the-most-disruptive-technology-of-the-next-decade/22183
https://www.idtechex.com/it/research-article/virtual-reality-the-most-disruptive-technology-of-the-next-decade/22183
https://www.idtechex.com/it/research-article/virtual-reality-the-most-disruptive-technology-of-the-next-decade/22183
https://github.com/facebook/zstd
https://dictionary.cambridge.org/de/worterbuch/englisch/confusing
https://dictionary.cambridge.org/de/worterbuch/englisch/confusing
https://www.collinsdictionary.com/de/worterbuch/englisch/confusing
https://www.collinsdictionary.com/de/worterbuch/englisch/confusing

Bibliography 221

[89] Guanting Dong, Yueyi Zhang, and Zhiwei Xiong. “Spatial Hierarchy Aware
Residual Pyramid Network for Time-of-Flight Depth Denoising”. In: Com-
puter Vision – ECCV 2020. Ed. by Andrea Vedaldi et al. Springer International
Publishing, 2020, pp. 35–50. ISBN: 978-3-030-58586-0.

[90] Mingsong Dou et al. “Fusion4D: Real-time Performance Capture of Challeng-
ing Scenes”. In: ACM Transactions on Graphics 35 (July 2016).

[91] Mingsong Dou et al. “Motion2fusion: Real-Time Volumetric Performance
Capture”. In: ACM Trans. Graph. 36.6 (Nov. 2017).

[92] Antoine Dricot and João Ascenso. “Hybrid Octree-Plane Point Cloud Geom-
etry Coding”. In: 27th European Signal Processing Conference (EUSIPCO). 2019,
pp. 1–5.

[93] Antoine Dricot, Fernando Pereira, and João Ascenso. “Rate-Distortion Driven
Adaptive Partitioning for Octree-Based Point Cloud Geometry Coding”. In:
25th IEEE International Conference on Image Processing (ICIP). 2018, pp. 2969–
2973.

[94] Alexander Duda and Udo Frese. “Accurate Detection and Localization of
Checkerboard Corners for Calibration”. In: British Machine Vision Conference.
Sept. 2018.

[95] Gilles Dussault and Maria Franceschini. “Not enough there, too many here:
Understanding geographical imbalances in the distribution of the health
workforce”. In: Human resources for health 4 (Feb. 2006), p. 12.

[96] Lars C. Ebert et al. “Forensic 3D Visualization of CT Data Using Cinematic
Volume Rendering: A Preliminary Study”. In: American Journal of Roentgenol-
ogy 208.2 (Feb. 2017), pp. 233–240.

[97] Clemens Eisank, Mike Smith, and John Hillier. “Assessment of multiresolu-
tion segmentation for delimiting drumlins in digital elevation models”. In:
Geomorphology (June 2014).

[98] Somayya Elmoghazy et al. “Survey of Immersive Techniques for Surgical
Care Telemedicine Applications”. In: June 2021, pp. 1–6.

[99] Carmine Elvezio et al. “Collaborative Virtual Reality for Low-Latency Inter-
action”. In: The 31st Annual ACM Symposium on User Interface Software and
Technology Adjunct Proceedings. Oct. 2018, pp. 179–181.

[100] David Englmeier, Wanja Sajko, and Andreas Butz. “Spherical World in Minia-
ture: Exploring the Tiny Planets Metaphor for Discrete Locomotion in Vir-
tual Reality”. In: 2021 IEEE Virtual Reality and 3D User Interfaces (VR). 2021,
pp. 345–352.

[101] Mohamed Estai and Stuart Bunt. “Best teaching practices in anatomy edu-
cation: A critical review”. In: Annals of Anatomy-Anatomischer Anzeiger 208
(2016), pp. 151–157.

[102] Chris Evans. IL Gigante: Michelangelo’s David in VR. (Talk) VR experience that
digitially reproduces Michelangelo’s David. 2018. https://www.gdcvault .
com/play/1025161/contactUs. Last accessed 05 June 2023.

[103] Chris Evans et al. IL DIVINO: Michelangelo’s Sistine Ceiling in VR. VR ex-
perience that digitially reproduces the Sistine Chapel. 2019. http ://www.
sistinevr.com/. Last accessed 05 June 2023.

https://www.gdcvault.com/play/1025161/contactUs
https://www.gdcvault.com/play/1025161/contactUs
http://www.sistinevr.com/
http://www.sistinevr.com/

222 Bibliography

[104] Experius VR. Nefertari: Journey to Eternity. (Article) VR experience that digi-
tially reproduces Nefertari’s tomb in 3D. 2018. https://timeandhistory.com/
nefertari-journey-to-eternity/. Last accessed 05 June 2023.

[105] Marta Fairén González et al. “Virtual reality to teach anatomy”. In: Eurograph-
ics 2017: education papers. European Association for Computer Graphics (Eu-
rographics). 2017, pp. 51–58.

[106] Balázs Faludi et al. “Direct Visual and Haptic Volume Rendering of Medical
Data Sets for an Immersive Exploration in Virtual Reality”. In: Medical Image
Computing and Computer Assisted Intervention – MICCAI 2019. Springer Inter-
national Publishing, 2019, pp. 29–37.

[107] Xuan Fei et al. “Perceptual image quality assessment based on structural sim-
ilarity and visual masking”. In: Signal Processing: Image Communication 27.7
(2012), pp. 772–783.

[108] Yu Feng, Shaoshan Liu, and Yuhao Zhu. “Real-Time Spatio-Temporal LiDAR
Point Cloud Compression”. In: 2020 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). 2020, pp. 10766–10773.

[109] Elisabeth M. Feudner et al. “Virtual reality training improves wet-lab per-
formance of capsulorhexis: results of a randomized, controlled study”. In:
Graefe’s Archive for Clinical and Experimental Ophthalmology 247.7 (Jan. 2009),
p. 955.

[110] Elliot K. Fishman et al. “Volume Rendering versus Maximum Intensity Pro-
jection in CT Angiography: What Works Best, When, and Why”. In: Radio-
Graphics 26.3 (2006), pp. 905–922.

[111] Gerd Flodgren et al. “Interactive telemedicine: effects on professional practice
and health care outcomes”. In: The Cochrane database of systematic reviews 9
(Sept. 2015), p. CD002098.

[112] Jann Philipp Freiwald et al. “Effects of Avatar Appearance and Locomotion
on Co-Presence in Virtual Reality Collaborations”. In: Proceedings of Mensch
Und Computer 2021. MuC ’21. Ingolstadt, Germany: Association for Comput-
ing Machinery, 2021, 393–401. ISBN: 9781450386456.

[113] Jann Philipp Freiwald et al. “The Continuity of Locomotion: Rethinking Con-
ventions for Locomotion and Its Visualization in Shared Virtual Reality
Spaces”. In: ACM Trans. Graph. 41.6 (Nov. 2022). ISSN: 0730-0301.

[114] F. A. Fridriksson et al. “Become your Avatar: Fast Skeletal Reconstruction
from Sparse Data for Fully-tracked VR”. In: ICAT-EGVE 2016 - Posters and
Demos. The Eurographics Association, 2016.

[115] Ryoske Fujii, Ryo Hachiuma, and Hideo Saito. “RGB-D Image Inpainting
Using Generative Adversarial Network with a Late Fusion Approach”. In:
ArXiv abs/2110.07413 (2020).

[116] James Gain, Patrick Marais, and Wolfgang Straßer. “Terrain sketching”. In:
Jan. 2009, pp. 31–38.

[117] James Gain, B. Merry, and Patrick Marais. “Parallel, Realistic and Control-
lable Terrain Synthesis”. In: Computer Graphics Forum 34 (May 2015).

[118] Bruno Galerne et al. “Gabor Noise by Example”. In: ACM Trans. Graph. 31.4
(July 2012).

[119] Eric Galin et al. “A Review of Digital Terrain Modeling”. In: Computer Graph-
ics Forum (2019).

https://timeandhistory.com/nefertari-journey-to-eternity/
https://timeandhistory.com/nefertari-journey-to-eternity/

Bibliography 223

[120] Dominik Gall et al. “Embodiment in Virtual Reality Intensifies Emotional Re-
sponses to Virtual Stimuli”. In: Frontiers in Psychology 12 (Sept. 2021).

[121] Luigi Gallo et al. “Comparative evaluation of methods for filtering Kinect
depth data”. In: Multimedia Tools and Applications 74 (May 2014).

[122] Guillaume Gamelin et al. “Point-cloud avatars to improve spatial commu-
nication in immersive collaborative virtual environments”. In: Personal and
Ubiquitous Computing 25 (June 2021).

[123] Manuel N Gamito and Steve C Maddock. “Accurate Multi-Dimensional Pois-
son-Disk Sampling”. In: ACM Transactions on Graphics (TOG) 29.1 (2009), 8:1–
8:19.

[124] Danilo Gasques et al. “ARTEMIS: A Collaborative Mixed-Reality System for
Immersive Surgical Telementoring”. In: Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. CHI ’21. Yokohama, Japan: Associa-
tion for Computing Machinery, 2021. ISBN: 9781450380966.

[125] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. “Image style transfer
using convolutional neural networks”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2016, pp. 2414–2423.

[126] Daphne Geerse, Bert Coolen, and Melvyn Roerdink. “Kinematic Validation
of a Multi-Kinect v2 Instrumented 10-Meter Walkway for Quantitative Gait
Assessments”. In: PLOS ONE 10 (Oct. 2015), e0139913.

[127] Jean-David Génevaux et al. “Terrain generation using procedural models
based on hydrology”. In: ACM Transactions on Graphics (TOG) 32.4 (2013),
p. 143.

[128] Fabian Giesen. Implementation of several rANS variants. Repository on Github.
2014. https : / / github . com / rygorous / ryg _ rans; Accessed on 26. Februar
2020.

[129] Guillaume Gilet et al. “Local Random-Phase Noise for Procedural Texturing”.
In: ACM Trans. Graph. 33.6 (Nov. 2014).

[130] Philip A. Glemser et al. “A New Approach for Photorealistic Visualization
of Rendered Computed Tomography Images”. In: World Neurosurgery 114
(2018), e283–e292. ISSN: 1878-8750.

[131] Kilian Gloy et al. “Immersive anatomy atlas: Learning factual medical knowl-
edge in a virtual reality environment”. In: Anatomical Sciences Education 15.2
(2022), pp. 360–368.

[132] Google Arts and Culture, makemepulse. VersaillesVR: The Palace Is Yours. VR
experience that digitially reproduces the Versailles palace in 3D. 2019. https:
//artsandculture.google.com/project/versailles. Accessed: 05 June 2023.

[133] Nathan Navarro Griffin and Eelke Folmer. “Out-of-Body Locomotion: Vec-
tionless Navigation with a Continuous Avatar Representation”. In: 25th ACM
Symposium on Virtual Reality Software and Technology. VRST ’19. Parramatta,
NSW, Australia: Association for Computing Machinery, 2019.

[134] Guest Editor: Gernot Groemer. “Simulating Mars on Earth”. In: Astrobiology
14.5 (2014), pp. 357–359.

[135] Éric Guérin et al. “Interactive Example-based Terrain Authoring with Condi-
tional Generative Adversarial Networks”. In: ACM Trans. Graph. 36.6 (2017),
228:1–228:13.

https://github.com/rygorous/ryg_rans
https://artsandculture.google.com/project/versailles
https://artsandculture.google.com/project/versailles

224 Bibliography

[136] Simon N. B. Gunkel et al. “From 2D to 3D video conferencing: modular RGB-
D capture and reconstruction for interactive natural user representations in
immersive extended reality (XR) communication”. In: Frontiers in Signal Pro-
cessing 3 (2023). ISSN: 2673-8198.

[137] Kaiwen Guo et al. “Real-Time Geometry, Albedo, and Motion Reconstruction
Using a Single RGB-D Camera”. In: ACM Trans. Graph. 36.4 (July 2017).

[138] Yong Guo et al. “CT two-dimensional reformation versus three-dimensional
volume rendering with regard to surgical findings in the preoperative assess-
ment of the ossicular chain in chronic suppurative otitis media”. In: European
journal of radiology 82.9 (Sept. 2013), 1519—1524.

[139] Manoj Gupta, Jörg Lechner, and Basant Agarwal. “Performance Analysis of
Kalman Filter in Computed Tomography Thorax for Image Denoising”. In:
Recent Patents on Computer Science 12 (2019), pp. 1–1.

[140] H. Hamout and A. Elyousfi. “Fast Depth Map Intra Coding for 3D Video
Compression Based Tensor Feature Extraction and Data Analysis”. In: IEEE
Transactions on Circuits and Systems for Video Technology (2019), pp. 1–1. ISSN:
1558-2205.

[141] Vincent Havard et al. “Digital twin and virtual reality: a co-simulation envi-
ronment for design and assessment of industrial workstations”. In: Production
& Manufacturing Research 7.1 (2019), pp. 472–489.

[142] Eric Heitz and Fabrice Neyret. “High-Performance By-Example Noise Using
a Histogram-Preserving Blending Operator”. In: Proc. ACM Comput. Graph.
Interact. Tech. 1.2 (Aug. 2018).

[143] S. Hemanth Kumar and K. R. Ramakrishnan. “Depth compression via planar
segmentation”. In: Multimedia Tools and Applications 78 (July 2018).

[144] Mark Hendrikx et al. “Procedural content generation for games: A survey”.
In: ACM Transactions on Multimedia Computing, Communications, and Applica-
tions (TOMM) 9.1 (2013), p. 1.

[145] F. Hernell, P. Ljung, and A. Ynnerman. “Local Ambient Occlusion in Di-
rect Volume Rendering”. In: IEEE Transactions on Visualization and Computer
Graphics 16.4 (2010), pp. 548–559.

[146] Jonathan Ho et al. “Cascaded diffusion models for high fidelity image gener-
ation”. In: The Journal of Machine Learning Research 23.1 (2022), pp. 2249–2281.

[147] Dirk Holz and Sven Behnke. “Fast Range Image Segmentation and Smooth-
ing Using Approximate Surface Reconstruction and Region Growing”. In:
vol. 194. June 2012. ISBN: 978-3-642-33931-8.

[148] Patrik Huber et al. “A multiresolution 3d morphable face model and fitting
framework”. In: Proceedings of the 11th International Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory and Applications. University
of Surrey. 2016.

[149] Tuomo Hyttinen. “Terrain Synthesis Using Noise”. MA thesis. University of
Tampere, 2017.

[150] IDC. Worldwide Augmented and Virtual Reality Spending Guide. 2022. https :
//www.idc.com/getdoc.jsp?containerId=prUS49916122; Accessed on 25.
Janurary 2023.

https://www.idc.com/getdoc.jsp?containerId=prUS49916122
https://www.idc.com/getdoc.jsp?containerId=prUS49916122

Bibliography 225

[151] Markus Ihmsen et al. “SPH Fluids in Computer Graphics”. In: Eurographics
2014 - State of the Art Reports. Ed. by Sylvain Lefebvre and Michela Spagnuolo.
The Eurographics Association, 2014.

[152] Wijnand Ijsselsteijn and Giuseppe Riva. “Being There: The Experience of Pres-
ence in Mediated Environments”. In: EMERGING COMMUNICATION 5 (Jan.
2003), pp. 3–16.

[153] ImmersiveTouch Inc. ImmersiveView: (Screencapture) feature demonstration video
of the VR medical visualization software. 2018. https://www.immersivetouch.
com/immersiveview-vr. Last accessed on 25. January 2023.

[154] Fortune Business Insights. Market Research Report: Virtual Reality Market Size,
Share & covid-19 Impact Analysis. 2022. https://www.fortunebusinessinsights.
com/industry-reports/virtual-reality-market-101378. Accessed: 25. January
2023.

[155] Ayesha Irfan, Adeel Zafar, and Shahbaz Hassan. “Evolving Levels for Gen-
eral Games Using Deep Convolutional Generative Adversarial Networks”.
In: 2019 11th Computer Science and Electronic Engineering (CEEC). 2019, pp. 96–
101.

[156] Phillip Isola et al. “Image-to-Image Translation with Conditional Adversar-
ial Networks”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). July 2017, pp. 5967–5976.

[157] Balázs Jákó. “Fast Hydraulic and Thermal Erosion on GPU”. In: Eurographics
2011 - Short Papers. 2011.

[158] Euee S. Jang et al. “Video-Based Point-Cloud-Compression Standard in
MPEG: From Evidence Collection to Committee Draft [Standards in a Nut-
shell]”. In: IEEE Signal Processing Magazine 36.3 (2019), pp. 118–123.

[159] Julian Jang-Jaccard et al. “WebRTC-based video conferencing service for tele-
health”. In: Computing 98 (Jan. 2016), pp. 169–193.

[160] Jinwoo Jeon et al. “Struct-MDC: Mesh-refined unsupervised depth comple-
tion leveraging structural regularities from visual SLAM”. In: IEEE Robot. and
Autom. Letters 7.3 (2022), pp. 6391–6398.

[161] Boyi Jiang et al. “SelfRecon: Self Reconstruction Your Digital Avatar From
Monocular Video”. In: Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR). June 2022, pp. 5605–5615.

[162] Fan Jiang, Xubo Yang, and Lele Feng. “Real-Time Full-Body Motion Recon-
struction and Recognition for off-the-Shelf VR Devices”. In: Proceedings of the
15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applica-
tions in Industry - Volume 1. VRCAI ’16. Zhuhai, China: Association for Com-
puting Machinery, 2016, 309–318.

[163] Wu Jin, Li Zun, and Liu Yong. “Double-Constraint Inpainting Model of a
Single-Depth Image”. In: Sensors 20.6 (2020).

[164] Michal Joachimczak, Juan Liu, and Hiroshi Ando. “Real-Time Mixed-Reality
Telepresence via 3D Reconstruction with HoloLens and Commodity Depth
Sensors”. In: Proceedings of the 19th ACM International Conference on Multi-
modal Interaction. ICMI ’17. Glasgow, UK: Association for Computing Ma-
chinery, 2017, 514–515. ISBN: 9781450355438.

[165] David W Johnson, Roger T Johnson, and Mary Beth Stanne. “Cooperative
learning methods: A meta-analysis”. In: (2000).

https://www.immersivetouch.com/immersiveview-vr
https://www.immersivetouch.com/immersiveview-vr
https://www.fortunebusinessinsights.com/industry-reports/virtual-reality-market-101378
https://www.fortunebusinessinsights.com/industry-reports/virtual-reality-market-101378

226 Bibliography

[166] Brett Jones et al. “RoomAlive: Magical Experiences Enabled by Scalable,
Adaptive Projector-Camera Units”. In: Oct. 2014.

[167] Thouis R Jones. “Efficient Generation of Poisson-Disk Sampling Patterns”. In:
Journal of Graphics Tools 11.2 (2006), pp. 27–36.

[168] Justin Joseph and R. Periyasamy. “An image driven bilateral filter with adap-
tive range and spatial parameters for denoising Magnetic Resonance Im-
ages”. In: Computers & Electrical Engineering 69 (2018), pp. 782–795. ISSN: 0045-
7906.

[169] Hanseul Jun and Jeremy Bailenson. “Temporal RVL: A Depth Stream Com-
pression Method”. In: 2020 IEEE Conference on Virtual Reality and 3D User In-
terfaces Abstracts and Workshops (VRW). 2020, pp. 664–665.

[170] Younhyun Jung et al. “A direct volume rendering visualization approach for
serial PET–CT scans that preserves anatomical consistency”. In: International
Journal of Computer Assisted Radiology and Surgery 14.5 (May 2019), pp. 733–
744.

[171] Michael Kalbermatten et al. “Multiscale analysis of geomorphological and
geological features in high resolution digital elevation models using the
wavelet transform”. In: Geomorphology 138.1 (2012), pp. 352–363.

[172] Maximilian Kaluschke et al. “A Shared Haptic Virtual Environment for Den-
tal Surgical Skill Training”. In: 2021 IEEE Conference on Virtual Reality and 3D
User Interfaces Abstracts and Workshops (VRW) (2021), pp. 347–352.

[173] Maximilian Kaluschke et al. “HIPS – A Virtual Reality Hip Prosthesis Im-
plantation Simulator”. In: 2018 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR). Mar. 2018.

[174] Ahmed Kamal and Carlos Andujar. “Designing, testing and adapting naviga-
tion techniques for the immersive web”. In: Computers & Graphics 106 (2022),
pp. 66–76. ISSN: 0097-8493.

[175] Keito Kamimura et al. “Teleclinical Support System via MR-HMD Displaying
Doctor’s Instructions and Patient Information”. In: Mar. 2021, pp. 477–479.

[176] Julius Kammerl et al. “Real-time compression of point cloud streams”. In:
2012 IEEE International Conference on Robotics and Automation. 2012, pp. 778–
785.

[177] Tero Karras et al. “Analyzing and Improving the Image Quality of Style-
GAN”. In: June 2020, pp. 8107–8116.

[178] Shunichi Kasahara et al. “Malleable Embodiment: Changing Sense of Embod-
iment by Spatial-Temporal Deformation of Virtual Human Body”. In: Proceed-
ings of the 2017 CHI Conference on Human Factors in Computing Systems. CHI
’17. Denver, Colorado, USA: Association for Computing Machinery, 2017,
6438–6448.

[179] Sujay Kawale and John Ferris. “Developing a Methodology to Synthesize Ter-
rain Profiles and Evaluate their Statistical Properties”. In: SAE Technical Papers
(Apr. 2011).

[180] Alex Kelley, Michael Malin, and Gregory Nielson. “Terrain simulation using
a model of stream erosion”. In: vol. 22. Aug. 1988, pp. 263–268.

[181] Jonathan W. Kelly et al. “Teleporting through virtual environments: Effects of
path scale and environment scale on spatial updating”. In: IEEE Transactions
on Visualization and Computer Graphics 26.5 (2020), pp. 1841–1850.

Bibliography 227

[182] Thomas P. Kersten et al. “Virtual Reality for Cultural Heritage Monuments
– from 3D Data Recording to Immersive Visualisation”. In: Digital Heritage.
Progress in Cultural Heritage: Documentation, Preservation, and Protection. Ed.
by Marinos Ioannides et al. Springer International Publishing, 2018, pp. 74–
83.

[183] Os Keyes et al. “Reimagining (women’s) health: HCI, gender and essentialised
embodiment”. In: ACM Transactions on Computer-Human Interaction (TOCHI)
27.4 (2020), pp. 1–42.

[184] Ahmed Khalifa et al. “PCGRL: Procedural Content Generation via Reinforce-
ment Learning”. In: Artificial Intelligence and Interactive Digital Entertainment
Conference. 2020.

[185] Konstantina Kilteni, Raphaela Groten, and Mel Slater. “The Sense of Embod-
iment in Virtual Reality”. In: Presence Teleoperators & Virtual Environments 21
(Nov. 2012).

[186] Hansung Kim et al. “Outdoor Dynamic 3-D Scene Reconstruction”. In: IEEE
Transactions on Circuits and Systems for Video Technology 22.11 (2012), pp. 1611–
1622.

[187] Naimin Koh, Pradeep Kumar Jayaraman, and Jianmin Zheng. “Parallel Point
Cloud Compression Using Truncated Octree”. In: 2020 International Confer-
ence on Cyberworlds (CW). 2020, pp. 1–8.

[188] Jan Kolkmeier et al. “With a little help from a holographic friend: the Open-
IMPRESS mixed reality telepresence toolkit for remote collaboration systems”.
In: Nov. 2018, pp. 1–11.

[189] Igor Kozak et al. “Virtual reality simulator for vitreoretinal surgery using in-
tegrated OCT data”. In: Clinical ophthalmology (Auckland, N.Z.) 8 (Mar. 2014),
pp. 669–672.

[190] Arno Krüeger et al. “Sinus Endoscopy - Application of Advanced GPU Vol-
ume Rendering for Virtual Endoscopy”. In: IEEE transactions on visualization
and computer graphics 14 (Jan. 2009), pp. 1491–8.

[191] Lucie Kruse et al. “On the Use of Jumping Gestures for Immersive Teleporta-
tion in VR”. In: Dec. 2020.

[192] Ramazan Kurul et al. “An alternative method for anatomy training: Immer-
sive virtual reality”. In: Anatomical Sciences Education 13.5 (2020), pp. 648–656.

[193] Joseph Kvedar, Molly Coye, and Wendy Everett. “Connected Health: A Re-
view Of Technologies And Strategies To Improve Patient Care With Telemedi-
cine And Telehealth”. In: Health affairs (Project Hope) 33 (Feb. 2014), pp. 194–
9.

[194] Eva Kyndt et al. “A meta-analysis of the effects of face-to-face cooperative
learning. Do recent studies falsify or verify earlier findings?” In: Educational
research review 10 (2013), pp. 133–149.

[195] Marjan Laal and Seyed Mohammad Ghodsi. “Benefits of collaborative learn-
ing”. In: Procedia - Social and Behavioral Sciences 31 (2012). World Conference
on Learning, Teaching & Administration - 2011, pp. 486–490.

[196] Marjan Laal and Seyed Mohammad Ghodsi. “Benefits of collaborative learn-
ing”. In: Procedia-social and behavioral sciences 31 (2012), pp. 486–490.

[197] Ares Lagae et al. “A Survey of Procedural Noise Functions”. In: Computer
Graphics Forum 29 (Dec. 2010).

228 Bibliography

[198] Chengyuan Lai et al. “The Cognitive Loads and Usability of Target-based and
Steering-based Travel Techniques”. In: IEEE Transactions on Visualization and
Computer Graphics PP (Aug. 2021), pp. 1–1.

[199] Brendan Lane, Przemyslaw Prusinkiewicz, et al. “Generating Spatial Distri-
butions for Multilevel Models of Plant Communities”. In: Graphics Interface
2002 Conference. Citeseer. 2002, pp. 69–80.

[200] Christian Larsen et al. “The efficacy of virtual reality simulation training in
laparoscopy: A systemic review of randomized trials”. In: Acta obstetricia et
gynecologica Scandinavica 91 (June 2012), pp. 1015–28.

[201] Abdul Latif et al. “A Critical Evaluation of Procedural Content Generation
Approaches for Digital Twins”. In: J. Sensors 2022 (2022), pp. 1–13.

[202] Rifat Latifi et al. “Telemedicine and telepresence for trauma and emergency
management”. In: Scandinavian journal of surgery : SJS : official organ for the
Finnish Surgical Society and the Scandinavian Surgical Society 96 (Feb. 2007),
pp. 281–9.

[203] Marc Erich Latoschik et al. “The Effect of Avatar Realism in Immersive Social
Virtual Realities”. In: Proceedings of the 23rd ACM Symposium on Virtual Reality
Software and Technology. Association for Computing Machinery, 2017. ISBN:
9781450355483.

[204] Joseph J. LaViola. “A Discussion of Cybersickness in Virtual Environments”.
In: SIGCHI Bull. 32.1 (Jan. 2000), 47–56. ISSN: 0736-6906.

[205] Ji Eun Lee et al. “Effectiveness of virtual reality-based learning for anatomy
education: A systematic review and meta-analysis”. In: Anatomical Sciences
Education 14.5 (2021), pp. 587–600.

[206] Juyoung Lee, Sang Chul Ahn, and Jae-In Hwang. “A Walking-in-Place Method
for Virtual Reality Using Position and Orientation Tracking”. In: Sensors 18.9
(2018).

[207] Sihaeng Lee et al. “Multi-Scaled and Densely Connected Locally Convolu-
tional Layers for Depth Completion”. In: 2022 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). 2022, pp. 8360–8367.

[208] Paolo Leoncini et al. “Multiple NUI Device Approach to Full Body Tracking
for Collaborative Virtual Environments”. In: Augmented Reality, Virtual Real-
ity, and Computer Graphics. Ed. by Lucio Tommaso De Paolis, Patrick Bourdot,
and Antonio Mongelli. Springer International Publishing, 2017, pp. 131–147.

[209] Dominic Lesaca et al. “Comparing Teleportation Methods for Travel in Ev-
eryday Virtual Reality”. In: 2022 IEEE Conference on Virtual Reality and 3D
User Interfaces Abstracts and Workshops (VRW). 2022, pp. 238–242.

[210] Jie Li et al. “Designing a Social VR Clinic for Medical Consultations”. In: Ex-
tended Abstracts of the 2020 CHI Conference on Human Factors in Computing Sys-
tems. CHI EA ’20. Honolulu, HI, USA: Association for Computing Machinery,
2020, 1–9.

[211] Peng Li et al. “Evaluation of the ICP Algorithm in 3D Point Cloud Registra-
tion”. In: IEEE Access 8 (2020), pp. 68030–68048.

[212] Sijin Li et al. “Generating Terrain Data for Geomorphological Analysis by
Integrating Topographical Features and Conditional Generative Adversarial
Networks”. In: Remote Sensing 14 (Feb. 2022).

Bibliography 229

[213] Wenbo Li et al. “MAT: Mask-Aware Transformer for Large Hole Image In-
painting”. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). June 2022, pp. 10748–10758.

[214] Xi-zhi Li, René Weller, and Gabriel Zachmann. “Procedural 3D Asteroid Sur-
face Detail Synthesis”. In: Eurographics 2020 - Short Papers. Ed. by Alexan-
der Wilkie and Francesco Banterle. The Eurographics Association, 2020. ISBN:
978-3-03868-101-4.

[215] Xi-zhi Li, René Weller, and Gabriel Zachmann. “AstroGen–Procedural Gener-
ation of Highly Detailed Asteroid Models”. In: 2018 15th International Confer-
ence on Control, Automation, Robotics and Vision (ICARCV). IEEE. 2018, pp. 1771–
1778.

[216] Yang LI et al. “Gesture interaction in virtual reality”. In: Virtual Reality & In-
telligent Hardware 1.1 (2019), pp. 84–112.

[217] Ziheng Li et al. “Promising Generative Adversarial Network Based Sinogram
Inpainting Method for Ultra-Limited-Angle Computed Tomography Imag-
ing”. In: Sensors 19.18 (2019).

[218] Zun Li and Jin Wu. “Learning Deep CNN Denoiser Priors for Depth Image
Inpainting”. In: Applied Sciences 9.6 (2019).

[219] Antonios Liapis et al. “Transforming exploratory creativity with DeLeNoX”.
In: Proceedings of the 4th International Conference on Computational Creativity,
ICCC 2013. Ed. by Mary Lou Maher et al. Proceedings of the 4th International
Conference on Computational Creativity, ICCC 2013. Faculty of Architecture,
Design and Planning, The University of Sydney, 2013, pp. 56–63.

[220] Bor-Shing Lin et al. “Temporal and Spatial Denoising of Depth Maps”. In:
Sensors (Basel, Switzerland) 15 (Aug. 2015), pp. 18506–25.

[221] Jenny Lin et al. “A virtual reality platform for dynamic human-scene interac-
tion”. In: Nov. 2016, pp. 1–4.

[222] Guilin Liu. PyTorch Implementation of the Partial Convolution Layer for Padding
and Image Inpainting. 2018. https://github.com/NVIDIA/partialconv, Ac-
cessed on 23. July 2023.

[223] Guilin Liu et al. “Image Inpainting for Irregular Holes Using Partial Convo-
lutions”. In: European Conference on Computer Vision. 2018.

[224] Jun Liu et al. “Perception-driven procedural texture generation from exam-
ples”. In: Neurocomputing 291 (2018), pp. 21–34.

[225] Junshan Liu et al. “Static Terrestrial Laser Scanning (TLS) for Heritage Build-
ing Information Modeling (HBIM): A Systematic Review”. In: Virtual Worlds
2.2 (2023), pp. 90–114. ISSN: 2813-2084.

[226] Yunpeng Liu et al. “Hybrid Lossless-Lossy Compression for Real-Time Depth-
Sensor Streams in 3D Telepresence Applications”. In: Advances in Multimedia
Information Processing – PCM 2015. Springer International Publishing, 2015,
pp. 442–452. ISBN: 978-3-319-24075-6.

[227] Matthew Lombard and Theresa Ditton. “At the Heart of It All: The Concept
of Presence”. In: J. Comput. Mediat. Commun. 3 (2006), p. 0.

[228] Stefan Maas et al. “A mixed reality telemedicine system for collaborative ul-
trasound diagnostics and ultrasound-guided interventions”. In: AboutOpen 9
(Apr. 2022), pp. 15–20.

https://github.com/NVIDIA/partialconv

230 Bibliography

[229] M. Magdics, D. White, and S. Marks. “Extending a Virtual Reality Nasal
Cavity Education Tool with Volume Rendering”. In: 2018 IEEE International
Conference on Teaching, Assessment, and Learning for Engineering (TALE). 2018,
pp. 811–814.

[230] Ilya Makarov and Gleb Borisenko. “Depth Inpainting via Vision Transformer”.
In: 2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct
(ISMAR-Adjunct). Oct. 2021, pp. 286–291.

[231] Guido Makransky, Lau Lilleholt, and Anders Aaby. “Development and val-
idation of the Multimodal Presence Scale for virtual reality environments: A
confirmatory factor analysis and item response theory approach”. In: Com-
puters in Human Behavior 72 (2017), pp. 276–285. ISSN: 0747-5632.

[232] Fangchang Mal and Sertac Karaman. “Sparse-to-Dense: Depth Prediction
from Sparse Depth Samples and a Single Image”. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). 2018, pp. 1–8.

[233] Peter M. Maloca et al. “High-Performance Virtual Reality Volume Render-
ing of Original Optical Coherence Tomography Point-Cloud Data Enhanced
With Real-Time Ray Casting”. In: Translational vision science & technology 7.4
(July 2018), pp. 2–2.

[234] Jacob C. Mandell et al. “Clinical Applications of a CT Window Blending Al-
gorithm: RADIO (Relative Attenuation-Dependent Image Overlay)”. In: Jour-
nal of Digital Imaging 30.3 (June 2017), pp. 358–368.

[235] Aihua Mao et al. “Easy and Fast Reconstruction of a 3D Avatar with an RGB-
D Sensor”. In: Sensors (Switzerland) 17 (May 2017).

[236] Douglas B Markant et al. “Enhanced memory as a common effect of active
learning”. In: Mind, Brain, and Education 10.3 (2016), pp. 142–152.

[237] Esteban Segarra Martinez, Annie S. Wu, and Ryan P. McMahan. “Research
Trends in Virtual Reality Locomotion Techniques”. In: 2022 IEEE Conference
on Virtual Reality and 3D User Interfaces (VR). 2022, pp. 270–280.

[238] Mohamed Marzouk. “Using 3D Laser Scanning to Analyze Heritage Struc-
tures: The Case Study of Egyptian Palace”. In: Journal of Civil Engineering and
Management 26 (Jan. 2020), pp. 53–65.

[239] Elias Matsas, George-C. Vosniakos, and Dimitrios Batras. “Modelling Simple
Human-Robot Collaborative Manufacturing Tasks in Interactive Virtual En-
vironments”. In: Proceedings of the 2016 Virtual Reality International Conference.
VRIC ’16. Laval, France: Association for Computing Machinery, 2016.

[240] Keigo Matsumoto et al. “Unlimited Corridor: Redirected Walking Techniques
Using Visuo Haptic Interaction”. In: ACM SIGGRAPH 2016 Emerging Tech-
nologies. SIGGRAPH ’16. Anaheim, California: Association for Computing
Machinery, 2016. ISBN: 9781450343725.

[241] Jesus Mayor, Laura Raya, and Alberto Sanchez. “A Comparative Study of
Virtual Reality Methods of Interaction and Locomotion Based on Presence,
Cybersickness, and Usability”. In: IEEE Transactions on Emerging Topics in
Computing 9.3 (2021), pp. 1542–1553.

[242] Jillian McGrath et al. “Using Virtual Reality Simulation Environments to As-
sess Competence for Emergency Medicine Learners”. In: Academic Emergency
Medicine 25 (Sept. 2017).

Bibliography 231

[243] S. Mehrotra et al. “Low-complexity, near-lossless coding of depth maps from
kinect-like depth cameras”. In: 2011 IEEE 13th International Workshop on Mul-
timedia Signal Processing. Oct. 2011, pp. 1–6.

[244] Xing Mei, Philippe Decaudin, and Bao-Gang Hu. “Fast Hydraulic Erosion
Simulation and Visualization on GPU”. In: Oct. 2007, pp. 47 –56. ISBN: 978-0-
7695-3009-3.

[245] R. Mekuria, K. Blom, and P. Cesar. “Design, Implementation, and Evaluation
of a Point Cloud Codec for Tele-Immersive Video”. In: IEEE Transactions on
Circuits and Systems for Video Technology 27.4 (Apr. 2017), pp. 828–842. ISSN:
1558-2205.

[246] Rufael Mekuria, Kees Blom, and Puente César. “Design, Implementation and
Evaluation of a Point Cloud Codec for Tele-Immersive Video”. In: IEEE Trans-
actions on Circuits and Systems for Video Technology 27 (Jan. 2016), pp. 1–1.

[247] Rufael Mekuria et al. “A 3D Tele-Immersion System Based on Live Captured
Mesh Geometry”. In: Proceedings of the 4th ACM Multimedia Systems Confer-
ence. MMSys ’13. Oslo, Norway: Association for Computing Machinery, 2013,
24–35. ISBN: 9781450318945.

[248] Andre Mühlenbrock et al. “Fast and Robust Registration of Multiple Depth-
Sensors and Virtual Worlds”. In: 2021 International Conference on Cyberworlds
(CW). 2021, pp. 41–48.

[249] Élie Michel, Arnaud Emilien, and Marie-Paule Cani. “Generation of Folded
Terrains from Simple Vector Maps”. In: Eurographics. 2015.

[250] Microsoft. Azure Kinect DK depth camera documentation. 2022. https://docs.
microsoft . com/en- us/azure/kinect - dk/depth- camera. Last accessed 6.
September 2022.

[251] Dongbo Min, Jiangbo Lu, and Minh N. Do. “Depth Video Enhancement Based
on Weighted Mode Filtering”. In: IEEE Transactions on Image Processing 21.3
(2012), pp. 1176–1190.

[252] Mark R. Mine. Virtual Environment Interaction Techniques. Tech. rep. 1995.

[253] R. Mur-Artal and J. D. Tardós. “ORB-SLAM2: An Open-Source SLAM System
for Monocular, Stereo, and RGB-D Cameras”. In: IEEE Transactions on Robotics
33.5 (Oct. 2017), pp. 1255–1262. ISSN: 1941-0468.

[254] F Kenton Musgrave, Craig E Kolb, and Robert S Mace. “The synthesis and
rendering of eroded fractal terrains”. In: ACM Siggraph Computer Graphics.
Vol. 23(2). ACM. 1989, pp. 41–50.

[255] Aunnoy K Mutasim, Anil Ufuk Batmaz, and Wolfgang Stuerzlinger. “Pinch,
Click, or Dwell: Comparing Different Selection Techniques for Eye-Gaze-
Based Pointing in Virtual Reality”. In: ACM Symposium on Eye Tracking Re-
search and Applications. ETRA ’21 Short Papers. Virtual Event, Germany: As-
sociation for Computing Machinery, 2021.

[256] R. A. Newcombe et al. “KinectFusion: Real-time dense surface mapping and
tracking”. In: 2011 10th IEEE International Symposium on Mixed and Augmented
Reality. Oct. 2011, pp. 127–136.

[257] Brian J. Nguyen et al. “Evaluation of Virtual Reality for Detection of Lung
Nodules on Computed Tomography”. In: Tomography (Ann Arbor, Mich.) 4.4
(Dec. 2018), pp. 204–208.

https://docs.microsoft.com/en-us/azure/kinect-dk/depth-camera
https://docs.microsoft.com/en-us/azure/kinect-dk/depth-camera

232 Bibliography

[258] Wang Ning et al. “MUSICAL: Multi-Scale Image Contextual Attention Learn-
ing for Inpainting”. In: Aug. 2019, pp. 3748–3754.

[259] Timothy J Nokes-Malach, J Elizabeth Richey, and Soniya Gadgil. “When is it
better to learn together? Insights from research on collaborative learning”. In:
Educational Psychology Review 27 (2015), pp. 645–656.

[260] Kristine Nowak. “Defining and Differentiating Copresence, Social Presence
and Presence as Transportation”. In: (Nov. 2001).

[261] Kristine Nowak and Frank Biocca. “The Effect of the Agency and Anthropo-
morphism on Users’ Sense of Telepresence, Copresence, and Social Presence
in Virtual Environments”. In: Presence Teleoperators and Virtual Environments
12 (Oct. 2003), pp. 481–494.

[262] Matthias Oberhauser et al. “What’s Real About Virtual Reality Flight Simula-
tion?: Comparing the Fidelity of a Virtual Reality With a Conventional Flight
Simulation Environment”. In: Aviation Psychology and Applied Human Factors
8 (Mar. 2018), pp. 22–34.

[263] Catherine S. Oh, Jeremy N. Bailenson, and Gregory F. Welch. “A System-
atic Review of Social Presence: Definition, Antecedents, and Implications”.
In: Frontiers in Robotics and AI 5 (2018).

[264] Sergio Orts et al. “Holoportation: Virtual 3D Teleportation in Real-time”. In:
Oct. 2016.

[265] Paulo Paiva et al. “SimCEC: A Collaborative VR-Based Simulator for Surgical
Teamwork Education”. In: Computers in Entertainment 16 (Apr. 2018), pp. 1–
26.

[266] Ye Pan and Anthony Steed. “The impact of self-avatars on trust and col-
laboration in shared virtual environments”. In: PLOS ONE 12 (Dec. 2017),
e0189078.

[267] Emmanouil Panagiotou and Eleni Charou. “Procedural 3D terrain generation
using Generative Adversarial Networks”. In: arXiv preprint arXiv:2010.06411
(2020).

[268] Giuseppe Papari, Nasiru Idowu, and Trond Varslot. “Fast Bilateral Filtering
for Denoising Large 3D Images”. In: IEEE Transactions on Image Processing 26.1
(2017), pp. 251–261.

[269] Mathias Parger et al. “Human Upper-Body Inverse Kinematics for Increased
Embodiment in Consumer-Grade Virtual Reality”. In: Proceedings of the 24th
ACM Symposium on Virtual Reality Software and Technology. VRST ’18. Tokyo,
Japan: Association for Computing Machinery, 2018.

[270] Jeeseung Park and Younggeun Kim. “Styleformer: Transformer based Gener-
ative Adversarial Networks with Style Vector”. In: 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 2022, pp. 8973–8982.

[271] The Insight Partners. Augmented reality (AR), virtual reality (VR), and mixed
reality (MR) market size worldwide in 2021 and 2028 [Graph]. In: Statista. 2022.
URL: https : / / www. statista . com / statistics / 591181 / global - augmented -
virtual-reality-market-size/ (visited on 01/25/2023).

[272] Harshada Patel, Michael Pettitt, and John R. Wilson. “Factors of collaborative
working: A framework for a collaboration model”. In: Applied Ergonomics 43.1
(2012), pp. 1–26.

https://www.statista.com/statistics/591181/global-augmented-virtual-reality-market-size/
https://www.statista.com/statistics/591181/global-augmented-virtual-reality-market-size/

Bibliography 233

[273] Emilee Patrick et al. “Using a Large Projection Screen as an Alternative to
Head-Mounted Displays for Virtual Environments”. In: Proc. of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’00. The Hague, The
Netherlands, 2000, 478–485. ISBN: 1581132166.

[274] Nicolas Pavie et al. “Procedural Texture Synthesis by Locally Controlled Spot
Noise”. In: May 2016.

[275] Fabrizio Pece, Jan Kautz, and Tim Weyrich. “Adapting Standard Video Codecs
for Depth Streaming”. In: Jan. 2011, pp. 59–66.

[276] Jordan Peck. FastNoise SIMD. Software library for noise. 2016. https://github.
com/Auburns/FastNoiseSIMD. Last accessed 23 May 2019.

[277] Fernando Pereira et al. “Point cloud coding: A privileged view driven by a
classification taxonomy”. In: Signal Processing: Image Communication 85 (Apr.
2020), p. 115862.

[278] Ken Perlin. “An Image Synthesizer”. In: SIGGRAPH Computer Graphics 19.3
(1985), pp. 287–296.

[279] Ken Perlin. “Improving Noise”. In: Proceedings of the 29th Annual Conference
on Computer Graphics and Interactive Techniques. SIGGRAPH ’02. ACM, 2002,
pp. 681–682.

[280] Michael Pfandler et al. “Virtual reality-based simulators for spine surgery:
a systematic review”. In: The Spine Journal 17.9 (2017), pp. 1352–1363. ISSN:
1529-9430.

[281] Ken Pfeuffer et al. “Gaze + Pinch Interaction in Virtual Reality”. In: Proceed-
ings of the 5th Symposium on Spatial User Interaction. SUI ’17. Association for
Computing Machinery, 2017, 99–108.

[282] Kuang Ping and Luo Dingli. “Conditional Convolutional Generative Ad-
versarial Networks Based Interactive Procedural Game Map Generation”.
In: Advances in Information and Communication. Ed. by Kohei Arai, Supriya
Kapoor, and Rahul Bhatia. Springer International Publishing, 2020, pp. 400–
419.

[283] Filipi Pires, Carlos Costa, and Paulo Dias. “On the Use of Virtual Reality
for Medical Imaging Visualization”. In: Journal of Digital Imaging 34 (2021),
pp. 1034 –1048.

[284] Johanna Pirker. “The Potential of Virtual Reality for Aerospace Applications”.
In: 2022 IEEE Aerospace Conference (AERO). 2022, pp. 1–8.

[285] Thammathip Piumsomboon et al. “Mini-Me: An Adaptive Avatar for Mixed
Reality Remote Collaboration”. In: Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. CHI ’18. Montreal QC, Canada: Associ-
ation for Computing Machinery, 2018, 1–13.

[286] Bernhard Preim, Patrick Saalfeld, and Christian Hansen. “Virtual and Aug-
mented Reality for Educational Anatomy”. In: Digital Anatomy: Applications
of Virtual, Mixed and Augmented Reality. Springer, 2021, pp. 299–324.

[287] Aniruddha Prithul, Isayas Adhanom, and eelke folmer. “Teleportation in Vir-
tual Reality; A Mini-Review”. In: Frontiers in Virtual Reality 2 (Oct. 2021).

[288] E. Prodromou et al. “A Multi-User Virtual Reality Application For Visual-
ization And Analysis In Medical Imaging”. In: 2020 IEEE 20th International
Conference on Bioinformatics and Bioengineering (BIBE). 2020, pp. 795–800.

https://github.com/Auburns/FastNoiseSIMD
https://github.com/Auburns/FastNoiseSIMD

234 Bibliography

[289] Yeshwanth Pulijala et al. “Effectiveness of Immersive Virtual Reality in Surgi-
cal Training - A Randomized Control Trial”. In: Journal of Oral and Maxillofacial
Surgery 76 (Oct. 2017).

[290] Christian Felix Purps, Simon Janzer, and Matthias Wölfel. “Reconstructing
Facial Expressions of HMD Users for Avatars in VR”. In: ArtsIT, Interactivity
and Game Creation. Ed. by Matthias Wölfel, Johannes Bernhardt, and Sonja
Thiel. Springer International Publishing, 2022, pp. 61–76.

[291] Zhen Qin et al. “Image inpainting based on deep learning: A review”. In:
Displays 69 (2021), p. 102028. ISSN: 0141-9382.

[292] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised representa-
tion learning with deep convolutional generative adversarial networks”. In:
arXiv preprint arXiv:1511.06434 (2015).

[293] Irene Rae et al. “A Framework for Understanding and Designing Telepres-
ence”. In: Proceedings of the 18th ACM Conference on Computer Supported Coop-
erative Work & Social Computing. CSCW ’15. Vancouver, BC, Canada: Associa-
tion for Computing Machinery, 2015, 1552–1566. ISBN: 9781450329224.

[294] Eric Ragan et al. “Studying the Effects of Stereo, Head Tracking, and Field
of Regard on a Small-Scale Spatial Judgment Task”. In: IEEE transactions on
visualization and computer graphics 19 (Aug. 2012).

[295] Jussi Rantala et al. “Comparison of Controller-Based Locomotion Techniques
for Visual Observation in Virtual Reality”. In: Multimodal Technologies and In-
teraction 5.7 (2021), p. 31. ISSN: 2414-4088.

[296] Anke V. Reinschluessel et al. “Virtual Reality for Surgical Planning – Evalua-
tion Based on Two Liver Tumor Resections”. In: Frontiers in Surgery 9 (2022).

[297] Jorge Revelles et al. “An Efficient Parametric Algorithm for Octree Traversal”.
In: (May 2000).

[298] César Iván Aguilar Reyes et al. “An Adaptive Virtual Reality-Based Training
System for Pilots”. In: Proceedings of the Human Factors and Ergonomics Society
Annual Meeting 66.1 (2022), pp. 1962–1966.

[299] Jean Pierre Richa et al. “AdaSplats: Adaptive Splatting of Point Clouds for
Accurate 3D Modeling and Real-Time High-Fidelity LiDAR Simulation”. In:
Remote Sensing 14.24 (2022). ISSN: 2072-4292.

[300] Simon Riches et al. “Factors Affecting Sense of Presence in a Virtual Reality
Social Environment: A Qualitative Study”. In: Cyberpsychology, behavior and
social networking 22 4 (2019), pp. 288–292.

[301] Riccardo Rigon et al. “Optimal Channel Networks - a Framework for the
Study of River Basin Morphology”. In: Water Resources Research 29 (June 1993),
pp. 1635–1646.

[302] Ruben Rodriguez Torrado et al. “Bootstrapping Conditional GANs for Video
Game Level Generation”. In: IEEE Conference on Games (CoG). 2020, pp. 41–48.

[303] Greg Roelofs and Richard Koman. PNG: The Definitive Guide. O’Reilly & As-
sociates, Inc., 1999. ISBN: 1565925424.

[304] Tae Hoon Roh et al. “Virtual dissection of the real brain: integration of photo-
graphic 3D models into virtual reality and its effect on neurosurgical resident
education”. In: Neurosurgical Focus 51.2 (2021), E16.

Bibliography 235

[305] Edgar Rojas et al. “Telementoring in Leg Fasciotomies via Mixed-Reality:
Clinical Evaluation of the STAR Platform”. In: Military Medicine 185 (Jan.
2020), pp. 513–520.

[306] Robin Rombach et al. “High-resolution image synthesis with latent diffusion
models”. In: Proceedings of the IEEE/CVF conference on computer vision and pat-
tern recognition. 2022, pp. 10684–10695.

[307] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional
Networks for Biomedical Image Segmentation”. In: Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2015. Ed. by Nassir Navab et al.
Springer International Publishing, 2015, pp. 234–241.

[308] David L. Rosgen. “A classification of natural rivers”. In: Catena 22 (1994),
pp. 169–199.

[309] Juergen Rossmann and Michael Schluse. “Virtual Robotic Testbeds: A Foun-
dation for e-Robotics in Space, in Industry - And in the Woods”. In: 2011
Developments in E-systems Engineering. 2011, pp. 496–501.

[310] Daniel Roth and Marc Erich Latoschik. “Construction of the Virtual Embod-
iment Questionnaire (VEQ)”. In: IEEE Transactions on Visualization and Com-
puter Graphics 26.12 (2020), pp. 3546–3556.

[311] Daniel Roth et al. “Real-time Mixed Reality Teleconsultation for Intensive
Care Units in Pandemic Situations”. In: 2021 IEEE Conference on Virtual Reality
and 3D User Interfaces Abstracts and Workshops (VRW). Mar. 2021, pp. 693–694.

[312] Elby Roy, Mahmoud M. Bakr, and Roy George. “The need for virtual reality
simulators in dental education: A review”. In: The Saudi Dental Journal 29.2
(2017), pp. 41–47. ISSN: 1013-9052.

[313] Daniel Ruijters and Anna Vilanova. “Optimizing GPU volume rendering”.
In: Journal of WSCG 14.1-3 (2006), pp. 9–+.

[314] Tijana Ruzic and Aleksandra Pizurica. “Context-Aware Patch-Based Image
Inpainting Using Markov Random Field Modeling”. In: IEEE Transactions on
Image Processing 24.1 (2015), pp. 444–456.

[315] Rafael Sacks, Amotz Perlman, and Ronen Barak. “Construction safety train-
ing using immersive virtual reality”. In: Construction Management and Eco-
nomics 31 (Sept. 2013), pp. 1005–1017.

[316] Timothy Sanders and Paul Cairns. “Time Perception, Immersion and Mu-
sic in Videogames”. In: Proceedings of the 24th BCS Interaction Specialist Group
Conference. 2010, 160–167.

[317] Shyam Prathish Sargunam and Eric D. Ragan. “Evaluating Joystick Control
for View Rotation in Virtual Reality with Continuous Turning, Discrete Turn-
ing, and Field-of-View Reduction”. In: Proceedings of the 3rd International Work-
shop on Interactive and Spatial Computing. IWISC ’18. Richardson, Texas: Asso-
ciation for Computing Machinery, 2018, 74–79.

[318] Sukla Satapathy and Rajiv Ranjan Sahay. “Robust depth map inpainting us-
ing superpixels and non-local Gauss-Markov random field prior”. In: Signal
Processing: Image Communication 98 (2021), p. 116378.

[319] Peter Scarfe and Andrew Glennerster. “The Science Behind Virtual Reality
Displays”. In: Annual Review of Vision Science 5 (Sept. 2019).

236 Bibliography

[320] D. Scharstein and C. Pal. “Learning Conditional Random Fields for Stereo”.
In: 2007 IEEE Conference on Computer Vision and Pattern Recognition. June 2007,
pp. 1–8.

[321] Ingrid Scholl et al. “MedicVR”. In: Bildverarbeitung für die Medizin 2019.
Springer Fachmedien Wiesbaden, 2019, pp. 152–157.

[322] Danny Schott et al. “A VR/AR Environment for Multi-User Liver Anatomy
Education”. In: 2021 IEEE Virtual Reality and 3D User Interfaces (VR). 2021,
pp. 296–305.

[323] Danny Schott et al. “A VR/AR Environment for Multi-User Liver Anatomy
Education”. In: 2021 IEEE Virtual Reality and 3D User Interfaces (VR). 2021,
pp. 296–305.

[324] Thomas Schöps et al. “Large-scale outdoor 3D reconstruction on a mobile
device”. In: Computer Vision and Image Understanding 157 (2017). Large-Scale
3D Modeling of Urban Indoor or Outdoor Scenes from Images and Range
Scans, pp. 151–166. ISSN: 1077-3142.

[325] Christoph Schröder et al. “DynCam: A Reactive Multithreaded Pipeline Li-
brary for 3D Telepresence in VR”. In: Proc. of the 20th ACM Virtual Reality
International Conference (VRIC 2018). ACM. 2018. ISBN: 978-1-4503-5381-6.

[326] Christoph Schröder et al. “DynCam: A Reactive Multithreaded Pipeline Li-
brary for 3D Telepresence in VR”. In: Proceedings of the Virtual Reality Inter-
national Conference - Laval Virtual. VRIC ’18. Laval, France: Association for
Computing Machinery, 2018. ISBN: 9781450353816.

[327] Thomas Schubert, Frank Friedmann, and Holger Regenbrecht. “The Expe-
rience of Presence: Factor Analytic Insights”. In: Presence: Teleoperators and
Virtual Environments 10.3 (June 2001), pp. 266–281.

[328] Thomas W. Schubert. “A New Conception of Spatial Presence: Once Again,
with Feeling”. In: Communication Theory 19.2 (Apr. 2009), pp. 161–187. ISSN:
1050-3293.

[329] S. Schwarz et al. “Emerging MPEG Standards for Point Cloud Compression”.
In: IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9.1 (Mar.
2019), pp. 133–148. ISSN: 2156-3365.

[330] Valentin Schwind et al. “Using Presence Questionnaires in Virtual Reality”.
In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Sys-
tems. CHI ’19. Glasgow, Scotland Uk: Association for Computing Machinery,
2019, 1–12. ISBN: 9781450359702.

[331] Hanna Söderholm et al. “The potential impact of 3D telepresence technology
on task performance in emergency trauma care”. In: Nov. 2007, pp. 79–88.

[332] Yusuf Sermet and Ibrahim Demir. “GeospatialVR: A web-based virtual real-
ity framework for collaborative environmental simulations”. In: Computers &
Geosciences 159 (2022), p. 105010. ISSN: 0098-3004.

[333] S. Shahriyar et al. “Lossless depth map coding using binary tree based de-
composition and context-based arithmetic coding”. In: 2016 IEEE Interna-
tional Conference on Multimedia and Expo (ICME). July 2016, pp. 1–6.

[334] Mingwen Shao et al. “Multi-scale generative adversarial inpainting network
based on cross-layer attention transfer mechanism”. In: Knowledge-Based Sys-
tems 196 (2020), p. 105778.

Bibliography 237

[335] Ling Shen et al. “Single-Shot Semantic Image Inpainting with Densely Con-
nected Generative Networks”. In: Proceedings of the 27th ACM International
Conference on Multimedia. MM ’19. 2019, pp. 1861–1869.

[336] William Sherman and Alan Craig. Understanding Virtual Reality—Interface,
Application, and Design. Jan. 2002. ISBN: 1558603530.

[337] William R Sherman and Alan B Craig. Understanding virtual reality: Interface,
application, and design. Morgan Kaufmann, 2018.

[338] Dev Yashpal Sheth et al. “Unsupervised Deep Video Denoising”. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (ICCV). Oct.
2021, pp. 1759–1768.

[339] John Short, Ederyn Williams, and Bruce Arthur Christie. “The social psychol-
ogy of telecommunications”. In: 1976.

[340] Anjali Singal, Agam Bansal, and Priti Chaudhary. Cadaverless anatomy: Dark-
ness in the times of pandemic Covid-19. 2020.

[341] Mel Slater. “A Note on Presence Terminology”. In: Presence Connect 3 (Jan.
2003).

[342] Mel Slater. “Immersion and the illusion of presence in virtual reality”. In:
British Journal of Psychology 109 (Mar. 2018).

[343] Mel Slater. “Immersion and the illusion of presence in virtual reality”. In:
British journal of psychology 109.3 (2018), pp. 431–433.

[344] Mel Slater. “Place illusion and plausibility can lead to realistic behaviour in
immersive virtual environments”. In: Philosophical Transactions of the Royal So-
ciety B: Biological Sciences 364 (2009), pp. 3549 –3557.

[345] Mel Slater, Bernhard Spanlang, and David Corominas. “Simulating Virtual
Environments within Virtual Environments as the Basis for a Psychophysics
of Presence”. In: ACM Trans. Graph. 29.4 (July 2010).

[346] Mel Slater et al. “A Separate Reality: An Update on Place Illusion and Plausi-
bility in Virtual Reality”. In: Frontiers in Virtual Reality 3 (June 2022), p. 914392.

[347] Ruben M Smelik et al. “A survey on procedural modelling for virtual worlds”.
In: Computer Graphics Forum. Vol. 33(6). Wiley Online Library. 2014, pp. 31–50.

[348] Sun Wha Song et al. “Clinical utility of three-dimensional facial computed
tomography in the treatment of nasal bone fractures: a new modality involv-
ing an air-bone view with a volume rendering technique”. In: Indian journal
of otolaryngology and head and neck surgery : official publication of the Association
of Otolaryngologists of India 65.Suppl 2 (Aug. 2013), pp. 210–215.

[349] Yanan Song, Weiming Shen, and Kunkun Peng. “A novel partial point cloud
registration method based on graph attention network”. In: The Visual Com-
puter 39 (Feb. 2022).

[350] Ryan J. Spick, Peter Cowling, and James Alfred Walker. “Procedural Genera-
tion using Spatial GANs for Region-Specific Learning of Elevation Data”. In:
2019 IEEE Conference on Games (CoG). 2019, pp. 1–8.

[351] ryan rs spick and james walker. “Realistic and Textured Terrain Generation
Using GANs”. In: Proceedings of the 16th ACM SIGGRAPH European Conference
on Visual Media Production. CVMP ’19. London, United Kingdom: Association
for Computing Machinery, 2019. ISBN: 9781450370035.

238 Bibliography

[352] Misha Sra and Chris Schmandt. “MetaSpace: Full-body Tracking for Immer-
sive Multiperson Virtual Reality”. In: Nov. 2015, pp. 47–48.

[353] Jos Stam. “Real-time fluid dynamics for games”. In: Proceedings of the Game
Developer Conference. 2003.

[354] J.-L. Starck, M. Elad, and D.L. Donoho. “Image decomposition via the combi-
nation of sparse representations and a variational approach”. In: IEEE Trans-
actions on Image Processing 14.10 (2005), pp. 1570–1582.

[355] Ondrej Stava et al. “Interactive Terrain Modeling Using Hydraulic Erosion.”
In: July 2008, pp. 201–210.

[356] Anthony Steed et al. “An ‘In the Wild’ Experiment on Presence and Embod-
iment using Consumer Virtual Reality Equipment”. In: IEEE Transactions on
Visualization and Computer Graphics 22.4 (2016), pp. 1406–1414.

[357] Tomasz F. Stepinski and Chaitanya Bagaria. “Segmentation-Based Unsuper-
vised Terrain Classification for Generation of Physiographic Maps”. In: IEEE
Geoscience and Remote Sensing Letters 6.4 (2009), pp. 733–737.

[358] Vladimiros Sterzentsenko et al. “Self-Supervised Deep Depth Denoising”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
Oct. 2019.

[359] Robin Strak et al. “Comparison Between Video-Mediated and Asymmetric
3D Teleconsultation During a Preclinical Scenario”. In: Proceedings of Mensch
Und Computer 2021. MuC ’21. Ingolstadt, Germany: Association for Comput-
ing Machinery, 2021, 227–235.

[360] J. Sturm et al. “A Benchmark for the Evaluation of RGB-D SLAM Systems”.
In: Proc. of the International Conference on Intelligent Robot Systems (IROS). Oct.
2012.

[361] Po-Chang Su, Ju Shen, and Muhammad Usman Rafique. “RGB-D Camera
Network Calibration and Streaming for 3D Telepresence in Large Environ-
ment”. In: 2017 IEEE Third International Conference on Multimedia Big Data
(BigMM). 2017, pp. 362–369.

[362] Zhuo Su et al. “RobustFusion: Robust Volumetric Performance Reconstruc-
tion Under Human-Object Interactions From Monocular RGBD Stream”. In:
IEEE Trans. on Pattern Analysis and Machine Intelligence 45 (2021), pp. 6196–
6213.

[363] G. J. Sullivan et al. “Overview of the High Efficiency Video Coding (HEVC)
Standard”. In: IEEE Transactions on Circuits and Systems for Video Technology
22.12 (Dec. 2012), pp. 1649–1668. ISSN: 1558-2205.

[364] Xuebin Sun et al. “A Novel Point Cloud Compression Algorithm Based on
Clustering”. In: IEEE Robotics and Automation Letters 4.2 (2019), pp. 2132–2139.

[365] Zhonghua Sun. “Multislice CT angiography in abdominal aortic aneurysm
treated with endovascular stent grafts: Evaluatio of 2D and 3D visualisa-
tions”. In: Biomedical Imaging and Intervention Journal 3 (Oct. 2007).

[366] Ivan E Sutherland et al. “The ultimate display”. In: Proceedings of the IFIP
Congress. Vol. 2. 506-508. New York. 1965, pp. 506–508.

[367] Roman Suvorov et al. “Resolution-Robust Large Mask Inpainting With
Fourier Convolutions”. In: Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV). Jan. 2022, pp. 2149–2159.

Bibliography 239

[368] Susumu Tachi. “From 3D to VR and further to telexistence”. In: 2013 23rd
International Conference on Artificial Reality and Telexistence (ICAT). 2013, pp. 1–
10.

[369] François-Xavier Talgorn and Farès Belhadj. “Real-Time Sketch-Based Terrain
Generation”. In: June 2018, pp. 13–18.

[370] Yifu Tao et al. “3D Lidar Reconstruction with Probabilistic Depth Completion
for Robotic Navigation”. In: 2022 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). Oct. 2022, pp. 5339–5346.

[371] Matias Tassano, Julie Delon, and Thomas Veit. “FastDVDnet: Towards Real-
Time Deep Video Denoising Without Flow Estimation”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June
2020.

[372] Chia-Chi Teng et al. “Interactive Augmented Live Virtual Reality Streaming:
A Health Care Application”. In: June 2018, pp. 143–147. ISBN: 978-1-4503-
6389-1.

[373] Soon Teoh. “RiverLand: An Efficient Procedural Modeling System for Creat-
ing Realistic-Looking Terrains”. In: Nov. 2009, pp. 468–479. ISBN: 978-3-642-
10330-8.

[374] Joern Teuber et al. “VaMEx-VTB – A Modular Virtual Testbed for Multimodal
Autonomous Planetary Missions”. In: Proceeding of the 70th International As-
tronautical Congress. International Astronautical Congress (IAC-2019), October
21-25, Washington DC, DC, United States. 2019.

[375] Nadia Thalmann and Daniel Thalmann. “Virtual humans: Thirty years of re-
search, what next?” In: The Visual Computer 21 (Dec. 2005), pp. 997–1015.

[376] D. Thanou, P. A. Chou, and P. Frossard. “Graph-Based Compression of Dy-
namic 3D Point Cloud Sequences”. In: IEEE Transactions on Image Processing
25.4 (Apr. 2016), pp. 1765–1778. ISSN: 1941-0042.

[377] Santawat Thanyadit et al. “Substituting Teleportation Visualization for Col-
laborative Virtual Environments”. In: Symposium on Spatial User Interaction.
SUI ’20. Virtual Event, Canada: Association for Computing Machinery, 2020.
ISBN: 9781450379434.

[378] Jörn Thieling, Manuel Mathar, and Jürgen Roßmann. “Automated generation
of virtual road scenarios for efficient tests of driver assistance systems”. In:
2017 IEEE AUTOTESTCON. 2017, pp. 1–9.

[379] Jan-Noël Thon. “Immersion revisited: on the value of a contested concept”.
In: Extending Experiences. Structure, Analysis and Design of Computer Game Play-
er Experience. Lapland University Press, 2008, pp. 29–43.

[380] Balasaravanan Thoravi Kumaravel et al. “Loki: Facilitating Remote Instruc-
tion of Physical Tasks Using Bi-Directional Mixed-Reality Telepresence”. In:
Oct. 2019, pp. 161–174. ISBN: 978-1-4503-6816-2.

[381] Michal Tölgyessy et al. “Evaluation of the Azure Kinect and Its Comparison
to Kinect V1 and Kinect V2”. In: Sensors 21 (Jan. 2021), p. 413.

[382] Theodoros Togias et al. “Virtual reality environment for industrial robot con-
trol and path design”. In: Procedia CIRP 100 (2021). 31st CIRP Design Confer-
ence 2021 (CIRP Design 2021), pp. 133–138. ISSN: 2212-8271.

240 Bibliography

[383] Nikolaos Tsamitros et al. “Virtual Reality-Based Treatment Approaches in the
Field of Substance Use Disorders”. In: Current Addiction Reports 8 (Sept. 2021),
pp. 1–9.

[384] D. Tschumperle and R. Deriche. “Vector-valued image regularization with
PDEs: a common framework for different applications”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 27.4 (2005), pp. 506–517.

[385] Chenxi Tu et al. “Compressing continuous point cloud data using image com-
pression methods”. In: 2016 IEEE 19th International Conference on Intelligent
Transportation Systems (ITSC). 2016, pp. 1712–1719.

[386] Huawei Tu et al. “Crossing-Based Selection with Virtual Reality Head-Mount-
ed Displays”. In: CHI ’19. Glasgow, Scotland Uk: Association for Computing
Machinery, 2019, 1–14.

[387] Dimitrios Ververidis, Spiros Nikolopoulos, and Ioannis Kompatsiaris. “A Re-
view of Collaborative Virtual Reality Systems for the Architecture, Engineer-
ing, and Construction Industry”. In: Architecture 2.3 (2022), pp. 476–496.

[388] Ryan J. Vitacion and Li Liu. “Procedural Generation of 3D Planetary-Scale
Terrains”. In: 2019 IEEE International Conference on Space Mission Challenges for
Information Technology (SMC-IT). 2019, pp. 70–77.

[389] Vanessa Volz et al. “Evolving Mario Levels in the Latent Space of a Deep Con-
volutional Generative Adversarial Network”. In: Proceedings of the Genetic and
Evolutionary Computation Conference. GECCO ’18. Kyoto, Japan: Association
for Computing Machinery, 2018, 221–228.

[390] Georgios Voulgaris, Ioannis Mademlis, and Ioannis Pitas. “Procedural Ter-
rain Generation Using Generative Adversarial Networks”. In: 2021 29th Eu-
ropean Signal Processing Conference (EUSIPCO). 2021, pp. 686–690.

[391] Gregory K Wallace. “The JPEG still picture compression standard”. In: IEEE
transactions on consumer electronics 38.1 (1992), pp. xviii–xxxiv.

[392] Thomas Waltemate et al. “The Impact of Avatar Personalization and Immer-
sion on Virtual Body Ownership, Presence, and Emotional Response”. In:
IEEE Transactions on Visualization and Computer Graphics 24.4 (2018), pp. 1643–
1652.

[393] Thomas Waltemate et al. “The Impact of Latency on Perceptual Judgments
and Motor Performance in Closed-Loop Interaction in Virtual Reality”. In:
Proceedings of the 22nd ACM Conference on Virtual Reality Software and Tech-
nology. VRST ’16. Munich, Germany: Association for Computing Machinery,
2016, 27–35.

[394] Cheng Yao Wang et al. “Again, Together: Socially Reliving Virtual Reality Ex-
periences When Separated”. In: Proceedings of the 2020 CHI Conference on Hu-
man Factors in Computing Systems. CHI ’20. Honolulu, HI, USA: Association
for Computing Machinery, 2020, 1–12. ISBN: 9781450367080.

[395] Huixiang Wang et al. “Application of an innovative computerized virtual
planning system in acetabular fracture surgery: A feasibility study”. In: Injury
47.8 (2016), pp. 1698 –1701.

[396] Ruoqing Wang, Sufei Li, and Ercan E. Kuruoglu. “A Novel Algorithm for Im-
age Denoising Based on Unscented Kalman Filtering”. In: Int. J. Inf. Commun.
Techol. 5.3/4 (June 2013), 343–353. ISSN: 1466-6642.

Bibliography 241

[397] Sinong Wang et al. “Linformer: Self-Attention with Linear Complexity”. In:
ArXiv abs/2006.04768 (2020).

[398] Tzu-Yang Wang et al. “Effect of Body Representation Level of an Avatar on
Quality of AR-Based Remote Instruction”. In: Multimodal Technologies and In-
teraction 4.1 (2020).

[399] Z. Wang, E.P. Simoncelli, and A.C. Bovik. “Multiscale structural similarity
for image quality assessment”. In: The Thrity-Seventh Asilomar Conference on
Signals, Systems & Computers, 2003. Vol. 2. 2003, 1398–1402 Vol.2.

[400] O. Wasenmüller, M. Meyer, and D. Stricker. “Augmented Reality 3D Discrep-
ancy Check in Industrial Applications”. In: 2016 IEEE International Symposium
on Mixed and Augmented Reality (ISMAR). Sept. 2016, pp. 125–134.

[401] M. J. Weinberger, G. Seroussi, and G. Sapiro. “LOCO-I: a low complexity,
context-based, lossless image compression algorithm”. In: Proceedings of Data
Compression Conference - DCC ’96. Mar. 1996, pp. 140–149.

[402] M. J. Weinberger, G. Seroussi, and G. Sapiro. “The LOCO-I lossless image
compression algorithm: principles and standardization into JPEG-LS”. In:
IEEE Transactions on Image Processing 9.8 (Aug. 2000), pp. 1309–1324. ISSN:
1941-0042.

[403] Tim Weissker and Bernd Froehlich. “Group Navigation for Guided Tours in
Distributed Virtual Environments”. In: IEEE Transactions on Visualization and
Computer Graphics 27.5 (2021), pp. 2524–2534.

[404] René Weller et al. “Effects of immersion and navigation agency in virtual
environments on emotions and behavioral intentions”. In: Frontiers in Virtual
Reality 3 (2022). ISSN: 2673-4192.

[405] René Weller et al. “LenSelect: Object Selection in Virtual Environments by
Dynamic Object Scaling”. In: Frontiers in Virtual Reality 2 (2021), p. 70.

[406] Rene Weller, Benjamin Brennecke, and Gabriel Zachmann. “Redirected walk-
ing in virtual reality with auditory step feedback”. In: The Visual Computer 38
(July 2022), pp. 1–12.

[407] Rene Weller et al. “VR-Interactions for Planning Planetary Swarm Explo-
ration Missions in VaMEx-Vtb”. In: 2021 IEEE Aerospace Conference (50100).
2021, pp. 1–11.

[408] Stephan Wenninger et al. “Realistic Virtual Humans from Smartphone
Videos”. In: Proceedings of the 26th ACM Symposium on Virtual Reality Software
and Technology. VRST ’20. Association for Computing Machinery, 2020.

[409] Thomas Whelan et al. “Real-time large-scale dense RGB-D SLAM with vol-
umetric fusion”. In: The International Journal of Robotics Research 34.4-5 (2015),
pp. 598–626.

[410] Robert H Whittaker. Communities and Ecosystems. Macmillan Company, 1975.

[411] T. Wiegand et al. “Overview of the H.264/AVC video coding standard”. In:
IEEE Transactions on Circuits and Systems for Video Technology 13.7 (July 2003),
pp. 560–576. ISSN: 1558-2205.

[412] Andrew D. Wilson. “Fast Lossless Depth Image Compression”. In: Proceed-
ings of the 2017 ACM International Conference on Interactive Surfaces and Spaces.
ISS ’17. Brighton, United Kingdom: Association for Computing Machinery,
2017, 100–105. ISBN: 9781450346917.

242 Bibliography

[413] Preston Tunnell Wilson et al. “VR Locomotion: Walking > Walking in Place
> Arm Swinging”. In: Proceedings of the 15th ACM SIGGRAPH Conference on
Virtual-Reality Continuum and Its Applications in Industry - Volume 1. VRCAI
’16. Zhuhai, China: Association for Computing Machinery, 2016, 243–249.
ISBN: 9781450346924.

[414] Isabell Wohlgenannt, Alexander Simons, and Stefan Stieglitz. “Virtual real-
ity”. In: Business & Information Systems Engineering 62.5 (2020), pp. 455–461.

[415] Ryan Wongsa. PyTorch Implementation of the paper: Image Inpainting for Irregular
Holes Using Partial Convolutions. 2020. https ://github.com/ryanwongsa/
Image-Inpainting.

[416] Yuanjie Wu et al. “Using a Fully Expressive Avatar to Collaborate in Virtual
Reality: Evaluation of Task Performance, Presence, and Attraction”. In: Fron-
tiers in Virtual Reality 2 (Apr. 2021).

[417] Andreas Wulff-Jensen et al. “Deep Convolutional Generative Adversarial Net-
work for Procedural 3D Landscape Generation Based on DEM”. In: 6th EAI
International Conference on Arts and Technology, Interactivity & Game Creation.
Jan. 2018, pp. 85–94. ISBN: 978-3-319-76907-3.

[418] Nannan Xi and Juho Hamari. “Shopping in virtual reality: A literature review
and future agenda”. In: Journal of Business Research 134 (2021), pp. 37–58.

[419] Jinsheng Xiao et al. “Blind video denoising via texture-aware noise estima-
tion”. In: Computer Vision and Image Understanding 169 (2018), pp. 1–13. ISSN:
1077-3142.

[420] Chaohao Xie et al. “Image Inpainting With Learnable Bidirectional Attention
Maps”. In: Oct. 2019, pp. 8857–8866.

[421] Xu Xie et al. “VRGym: A Virtual Testbed for Physical and Interactive AI”. In:
Proceedings of the ACM Turing Celebration Conference - China. ACM TURC ’19.
Association for Computing Machinery, 2019. ISBN: 9781450371582.

[422] Wenge Xu et al. “Evaluation of Text Selection Techniques in Virtual Reality
Head-Mounted Displays”. In: 2022 IEEE International Symposium on Mixed and
Augmented Reality (ISMAR). 2022, pp. 131–140.

[423] Zhaoyi Yan et al. “Shift-Net: Image Inpainting via Deep Feature Rearrange-
ment”. In: European Conference on Computer Vision. 2018.

[424] Eun Kyoung Yang, Jee Hyun Lee, and C. Hun Lee. “Virtual reality environ-
ment-based collaborative exploration of fashion design”. In: CoDesign 0.0
(2023), pp. 1–19.

[425] Su Yang, Shishuo Xu, and Wei Huang. “3D Point Cloud for Cultural Heritage:
A Scientometric Survey”. In: Remote Sensing 14.21 (2022). ISSN: 2072-4292.

[426] Shouwen Yao. “Autonomous-driving vehicle test technology based on vir-
tual reality”. In: The Journal of Engineering 2018 (Aug. 2018).

[427] Raymond Yeh et al. “Semantic Image Inpainting with Deep Generative Mod-
els”. In: July 2017, pp. 6882–6890.

[428] Mary K. Young, John J. Rieser, and Bobby Bodenheimer. “Dyadic Interactions
with Avatars in Immersive Virtual Environments: High Fiving”. In: Proceed-
ings of the ACM SIGGRAPH Symposium on Applied Perception. SAP ’15. Tübin-
gen, Germany: Association for Computing Machinery, 2015, 119–126. ISBN:
9781450338127.

https://github.com/ryanwongsa/Image-Inpainting
https://github.com/ryanwongsa/Image-Inpainting

Bibliography 243

[429] Difeng Yu et al. “Target Selection in Head-Mounted Display Virtual Reality
Environments”. In: J. Univers. Comput. Sci. 24 (2018), pp. 1217–1243.

[430] Jiahui Yu et al. “Free-Form Image Inpainting With Gated Convolution”. In:
Oct. 2019, pp. 4470–4479.

[431] Kevin Yu et al. “Avatars for Teleconsultation: Effects of Avatar Embodiment
Techniques on User Perception in 3D Asymmetric Telepresence”. In: IEEE
Transactions on Visualization and Computer Graphics PP (Aug. 2021), pp. 1–1.

[432] Kevin Yu et al. “Duplicated Reality for Co-located Augmented Reality Col-
laboration”. In: IEEE Transactions on Visualization and Computer Graphics 28.5
(2022), pp. 2190–2200.

[433] Yingchen Yu et al. “Diverse Image Inpainting with Bidirectional and Au-
toregressive Transformers”. In: Proc. of the 29th ACM Int. Conf. on Multimedia
(2021).

[434] R.C. Zeleznik et al. “Pop through button devices for VE navigation and inter-
action”. In: Proceedings IEEE Virtual Reality 2002. 2002, pp. 127–134.

[435] Chenyang Zhang, Teng Huang, and Qiang Zhao. “A New Model of RGB-D
Camera Calibration Based On 3D Control Field”. In: Sensors 19 (Nov. 2019),
p. 5082.

[436] Huijie Zhang et al. “Synthetic Modeling Method for Large Scale Terrain Based
on Hydrology”. In: IEEE Access 4 (2016), pp. 6238–6249.

[437] Jian Zhang et al. “Authoring Multi-style Terrain with Global-to-Local Con-
trol”. In: Graphical Models 119 (Nov. 2022).

[438] Qiuwen Zhang et al. “Low-complexity depth map compression in HEVC-
based 3D video coding”. In: EURASIP Journal on Image and Video Processing
2015.1 (2015), p. 2.

[439] Xiaobo Zhang et al. “Image inpainting based on deep learning: A review”.
In: Information Fusion 90 (Sept. 2022).

[440] Yinda Zhang and Thomas Funkhouser. “Deep Depth Completion of a Single
RGB-D Image”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). June 2018.

[441] Hanqing Zhao et al. “Extraction of Terraces on the Loess Plateau from High-
Resolution DEMs and Imagery Utilizing Object-Based Image Analysis”. In:
ISPRS International Journal of Geo-Information 6.6 (2017).

[442] Howard Zhou et al. “Terrain Synthesis from Digital Elevation Models”. In:
IEEE transactions on visualization and computer graphics 13 (Aug. 2007), pp. 834–
48.

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Overview and Contributions

	Overview and State of the Art of the Area of Multi-User VR
	Terminology
	Virtual Reality
	Presence, Immersion, and Embodiment

	Important Aspects of (Multi-User) VR
	Interaction and Locomotion
	Avatars
	Sensing and Tracking Methods
	RGB-D/Depth Enhancement

	Reconstruction and Rendering Methods
	Streaming and Compression of Sensor Data
	Virtual Environments

	Example Application Domains

	Algorithms and Architectures for Telepresence in Multi-User VR
	Development and Evaluation of a Point Cloud Streaming and Rendering Pipeline
	Introduction
	Related Work
	System Overview
	Multi-User VR Environment
	Point Cloud Streaming
	Point Cloud Registration and Rendering

	Results
	Performance
	Network

	User Studies
	Study 1: Qualitative Feedback, Presence, and Preference
	Study 2: Comparison of Point Cloud Rendering Solutions

	Limitations
	Face Reconstruction

	Conclusions and Future Work

	(Improved) Lossless Depth Image Compression Methods
	Introduction
	Related Work
	Proposed Approach
	Adaptive Span-Based Prediction
	Inter-Frame Delta Computation
	Further bit reduction
	Parallel Execution

	Results
	Additional Data
	Evaluation of Lossy Video Compression

	Conclusions and Future Work

	Enhancement of Depth Images using Deep Neural Networks
	Introduction
	Related Work
	Categorization of Depth Errors
	Proposed Approach
	Datasets
	Preprocessing Pipeline
	Network Details
	Training Procedure

	Results
	Conclusions and Future Work

	Perception of Teleport Visualizations in Multi User VR
	Introduction
	Related Work
	Proposed Teleport Visualizations
	Study
	Hypotheses
	Experimental Setup
	Procedure

	Results
	Participants
	Qualitative and Quantitative Data

	Discussion
	Comparison of IFoV and OFoV Scenarios
	Comparison of Slow and Fast Experiment

	Limitations
	Conclusions and Future Work

	Large-scale Procedural Terrain Generation for VR Environments
	AutoBiomes: Procedural Generation of Multi-Biome Landscapes
	Introduction
	Related Work
	Proposed Approach
	Base Terrain
	Climate Simulation
	Terrain Refinement
	Asset Placement

	Results
	Conclusions and Future Work

	Procedural Generation of Landscapes with Water Bodies Using Artificial Drainage Basins
	Introduction
	Related Work
	Overview of our Approach
	Our Terrain Generation Pipeline in Detail
	Ocean Borders
	Regions
	River Networks and Lakes
	Terrain
	Visualization

	Results
	Complexity Analysis
	Performance Evaluation
	Qualitative Evaluation

	Conclusions and Future Work

	Procedural Terrain Lookalikes - Generating Extraterrestrial Planetary Surfaces for VR Testbeds
	Introduction
	Related Work and Promising Approaches
	Heuristic- and Noise-based Lookalikes
	Machine/Deep Learning-based Lookalikes

	Applications for Multi-User VR in the Medical Field
	Volumetric CT Data Visualization for Collaborative VR Environments
	Introduction
	Related Work
	Proposed Approach
	Direct Volume Rendering
	Collaborative VR

	Results
	Conclusions and Future Work

	Anatomy Learning through a Collaborative VR Anatomy Atlas
	Introduction
	Related Work
	Implementation
	Study
	Design and Setup
	Procedure

	Results
	Discussion
	Conclusions and Future Work

	Conclusions and Outlook
	Summary
	Outlook

	Publications
	Additional Plots for Section 3.2
	Bibliography

