
Fast and Robust Registration of multiple Depth-Sensors and Virtual Worlds

Andre Mühlenbrock, Roland Fischer, René Weller and Gabriel Zachmann
Computer Graphics and Virtual Reality

University of Bremen
Bremen, Germany

Email: muehlenb@uni-bremen.de

Abstract—The precise registration between multiple depth
sensors is a crucial prerequisite for many applications. Previous
techniques frequently rely on RGB or IR images and checker-
board targets for feature detection. However, this prohibits the
usage for use-cases where neither is available or where IR and
depth images have different projections.

Therefore, we present a novel registration approach that
uses depth data exclusively for feature detection, making it
more universally applicable while still achieving robust and
precise results. We propose a combination of a custom 3D
registration target — a lattice with regularly-spaced holes —
and a feature detection algorithm that is able to reliably extract
the lattice and its features from noisy depth images. In addition,
we have integrated the registration procedure to a publicly
available Unreal Engine 4 plugin that allows multiple point
clouds captured by several depth cameras to be registered in
a virtual environment. Despite the rather noisy depth images,
we are able to quickly obtain a robust registration that yields
an average deviation of 3.8 mm to 4.4 mm in our test scenarios.

Keywords-Point clouds; registration; extrinsic calibration;
depth sensors;

I. INTRODUCTION

RGB-D and range cameras are widely used throughout
the research community and for industrial applications,
thanks to the multitude of available and affordable products.
These cameras are often utilized for telepresence and robotic
applications for tasks such as 3D reconstruction, SLAM,
or object recognition. In case of large spaces or to avoid
occlusions, often multiple cameras are used. In these cases,
the sensors have to be calibrated intrinsically (individually)
and extrinsically (registered to each other).

The classical approach for calibration and registration of
multiple cameras is based on feature detection on planar
checkerboards because they provide a good target in color
and IR images. In a first step, the checkerboard itself has
to be detected; then, the inner corners can be extracted
using well-known corner detectors (e.g. [1]), to serve as
point correspondences. Using these correspondences, a rigid
transformation between the different sensors is calculated.
This approach was continuously improved upon (e.g. [2],
[3]) and generally yields robust and precise results.

However, this method is not always applicable, e.g., if
no IR or color images are available. Also, Reyes-Aviles et
al. [4] reported that, depending on the camera model, the
IR images and the corresponding depth images may have

different projections, which leads to errors if the IR images
are used for registration. Performing the registration directly
on depth images or point clouds, on the other hand, leads
to the issue of inherently noisy depth data, which makes
accurate feature detection difficult [5].

In this paper, we present a registration procedure that is
exclusively based on 3D point clouds, therefore avoiding the
need for color or IR images, yet:
• achieving precise registration results,
• being very robust in real use cases,
• taking only a few seconds of recorded images,
• working independently of scene brightness and
• easy to implement.
We achieve this by using a specially designed 3D

checkerboard-like registration target which can be easily
replicated, and a pipeline designed for the precise recog-
nition of the target’s reference points in noisy depth images.
Furthermore, we have made our source code publicly avail-
able.

II. RELATED WORK

As we already mentioned, usually, calibration and regis-
tration of depth sensors is done via the accompanying IR
or RGB sensor images: Macknojia et al. [6] synchronously
captured a checkerboard in a Kinect’s color- and IR images
for extrinsic calibration between the RGB and depth sen-
sor. Extrinsic calibration (or registration) between multiple
Kinect cameras was done similarly using the respective IR
images. Chen et al. [7] captured a checkerboard in the color
and IR images for homography-based calibration, while
Darwish et al. [8] tracked two orthogonal checkerboards and
aimed at improving the depth accuracy.

Some authors, e.g., [9], [10] and [11], also applied the
checkerboard approach but added external optical tracking
systems for depth correction and registration of multiple
cameras into a joint coordinate system, respectively. Al-
though, in this case the cameras’ viewing frusta do not have
to overlap, the requirement for a tracking system is a severe
limitation.

Herrera et al. [12] proposed a calibration approach that
works directly in the depth image by detecting the outer
checkerboard corners using a time-consuming manual se-
lection. Kreylos [13] exchanged the usual black and white

41

2021 International Conference on Cyberworlds (CW)

2642-3596/21/$31.00 ©2021 IEEE
DOI 10.1109/CW52790.2021.00014

(a) Photo (b) Registered point cloud

Figure 1: Our 3D registration target: a lattice-like board with
25 holes.

checkerboard with a semitransparent that can be observed
directly in the depth image. Similarly, Reyes-Aviles et al. [4]
proposed to use a 3D checkerboard as calibration target and
a process, involving normal estimation, edge detection and
thresholding, to detect it in the depth image. The registration
process proposed by Song et al. [5] relies on a special
checkerboard with regularly-spaced hollow squares. Depth
deviations are handled by a model-based approach that
considers the center points of the holes. Some works like
[14], [15] exchanged checkerboard-like registration targets
with static marker-free 3D objects with known or previously
scanned geometry, e.g. a stack of boxes, which can be
detected in depth maps or point clouds.

III. OUR APPROACH

A. Overview

We have constructed a lattice-like 3D target (see Fig. 1)
and developed a lattice detection algorithm that allows us
to quickly and easily perform registration of multiple depth
sensors. To do this, the lattice is briefly moved in the field
of view of the depth sensors, while our lattice detection
algorithm detects up to 25 point correspondences per frame
for all depth sensors. Using those point correspondences,
we determine a rigid transformation matrix that describes
the transformation of the sensors with respect to each other.

The main challenge of the classical camera registration
procedure is the correct recognition of the board’s features in
the image. Since we use only depth data instead of an RGB
image, we cannot simply reuse the image-based detection
algorithms. In the following, we present a novel approach
that is fast and easy to implement yet achieves robust results.
The detection of the lattice consists of the following steps:

1) Identification of plausible lattice candidates.
2) Detection of hole centers.
3) Identification of lattice center and lattice axes.
4) Outlier removal among hole centers.
5) Correspondence mapping.
6) Correspondence rejection.
7) SVD-based transformation estimation.

(a) Point Cloud (b) Gaps found along scanlines

(c) Clusters of gap segments (d) Plausible clusters

Figure 2: The steps in which we identify lattice candidates.

As a target, we have designed a lattice-like board con-
sisting of 12 bars of size 44 cm x 4 cm x 0.2 cm, which are
available in a typical DIY store (see Fig. 1). By leaving 4 cm
space between the bars in vertical and horizontal direction,
25 holes of size 4 cm x 4 cm are formed, which can be
recognized by depth sensors.

Note that all parts of our recognition algorithm di-
rectly work on an array of 3D coordinates (basically, a
point cloud) that is in scanline order of the original depth
image, and not on the original depth image itself. In this
way, parameters can be defined directly in centimeters
and are independent of the lattice distance to the sensor.

B. Lattice Candidates

In the first step, we search for gaps along the scan-
lines of the original depth image which correspond to the
regular geometry of the lattice (see Fig. 2). We do this
by segmenting individual scanlines based on the Euclidean
distance of individual points. Segments that are at most
as long as the diagonal of a hole and are surrounded
by two scanlines of plausible length are identified as gap
segments. In the next step, we cluster all gap segments
based on their proximity to each other. Using PCA, we
calculate eigenvectors and eigenvalues for each cluster. For
the sake of simplicity, we use only the midpoints of the gap
segments for proximity calculation and the PCA. Based on
the proportions of the eigenvalues, we can efficiently discard
clusters that obviously cannot represent lattice candidates:
due to the symmetric structure of the lattice, we expect the
first two eigenvalues to be similar in size, while the third
eigenvector is many times smaller (we use a factor of 10 as
the threshold), since the lattice is flat. All remaining clusters
of gap segments are considered as lattice candidates.

42

(a) Before filtering (b) After filtering

Figure 3: Side view of the lattice in the point cloud (blue)
before and after filtering noise (e.g. due to the flying pixel
effect). This is done by fitting a plane (black) via RANSAC
into these points, then culling points by thresholding.

C. Hole Center Detection

The next step is the identification of the exact hole centers
for each lattice candidate. To do so, we first determine all 3D
points that potentially belong to the physical lattice based on
their proximity to the gap segments. A point is considered
to be a lattice point if it is within a certain radius to at least
one segment of a gap center (we use r = 0.16m to cover the
lattice completely if some holes were missed in the previous
step).

To effectively filter out noise that typically occurs with
depth sensors (e.g. due to the flying pixel effect), we fit a
plane to the point cloud section using RANSAC and define
all points closer than a certain threshold1 to the plane as
inliers (see Fig. 3). We store the indices of these inliers in
an inlier set. All remaining points are defined as outliers.

To identify the holes of the lattice, we again iterate over
all scanlines of the input point cloud, each from the first
inlier to the last inlier. We create segments similar to Section
III-B but this time we mark both, inlier segments in which
all points are in the inlier set as well as outlier segments.
All outlier segments, which are enclosed by inlier segments
are assumed to be a part of a hole. Assuming that these
segments are horizontally aligned, we now vertically join
adjacent outlier segments if they overlap horizontally to
obtain a segment for each hole of the lattice. This vertical
merging of the horizontally running outlier segments is done
efficiently using the union-find structure.

The remaining segments represent the individual holes.
However, since the points of these outlier segments do not lie
in the plane of the lattice, we consider the directly adjacent
inlier points in scanline order, project them onto the plane
computed via RANSAC and use their mean value as hole
centers.

D. Axes Detection and Outlier Removal

To summarize, for each lattice candidate, we have found
a set H of hole center candidates. However, there may be
still incorrectly identified hole centers and additionally, we

1In our actual implementation we use a threshold of 1.5 cm because our
lattice is somewhat bendable.

Figure 4: Visualization of our heuristic that can filter incor-
rectly detected hole centers (gray) and detect directions of x
and y axes. In this example, the red and gray colored points
where detected as hole centers previously.

want to match several point clouds, i.e. we want to use the
potential hole centers as correspondence points.

For this purpose, we have developed a heuristic that can
recognize the axes of the lattice based on the potential hole
centers and that can cope even with quite noisy data. This
heuristic works as follows:

1) Given the set of all found hole centers H , we now
define the following set V of vectors:

V = {n−m | d−δ < dist(m,n) < d+δ, m, n ∈ H},
(1)

where d = hole spacing and δ is a tolerance (in our case
d = 8 cm and δ = 2 cm which represents the geometry
of our lattice). These vectors can be interpreted as
edges between the hole centers. Together, they form
a proximity graph (see Fig. 4).

2) Sort the vectors v ∈ V by their angle α they subtend
with the x-axis:

α(v) =

{
atan2(vy, vx) if atan2(vy, vx) ≥ 0

atan2(vy, vx) + π otherwise
(2)

3) Cluster these vectors based on their angle α. As can
be seen in Fig. 4, this results in two very large clusters
(color coded by the violet and green edges) as well
as several other very small clusters, assuming that it is
indeed a lattice. Thinking of these vectors as edges of a
proximity graph, we define the set of all “good” edges
in one of those two largest clusters as G and the set of
all “bad” edges in the remaining small clusters as B.

4) For each hole center h ∈ H we now consider its
incident edges E(h) and remove hole centers based
on the number of incident “good” edges and incident
“bad” edges, leaving the following set:

Hfiltered = {h | #EG(h) > #EB(h), h ∈ H}, (3)

where EG(h) = E(h)∩G and EB(h) = E(h)∩B. This
way, we very reliably remove incorrect hole centers.

5) Using the remaining hole centers Hfiltered, we look for
the hole center candidate h∗ ∈ H that is closest to the

43

average:

h′ =
1

|H|
∑
hi∈H

hi, (4)

this h∗ will be considered the center of the lattice.
6) By selecting the median vector in both the largest

clusters, we get two very stable vectors which points
along the x-axis and the y-axis (see Fig. 4).

7) At this point, we do not know which of the two vectors
represents the x-axis and which the y-axis as well as
their signs. To resolve this ambiguity, we consider the
points of the point cloud surrounding the lattice: these
are usually the points of the hand and arms holding
the lattice. So, we calculate a vector from h∗ to the
center of these hand points and flip both the previous
found vectors and assign them so that the x-axis always
points in the direction of the hands. Let us assume for
the moment that always the front side of the lattice is
visible in the depth image: Then we can set the plane
normal found by RANSAC as the z-axis, which then
determines the y-axis.

If we find that the two vectors we determined in step (6) are
not roughly orthogonal, or #Hfiltered is too small, we discard
this candidate, since it is more likely not to be the lattice in
this case. Using this heuristic and making the preliminary
assumption that the lattice is always visible from the front,
we were able to determine the center and axes of the lattice
as well as remove incorrect hole centers.

E. Point Correspondences

In principle, it would be possible to use only the centers of
the lattice across multiple sensors as point correspondences
over multiple frames. However, the more point correspon-
dences are used over a large space, the more accurate and
stable the registration becomes. Therefore, it is desirable to
use all the hole centers instead of just the center one. By
using all hole centers, we get up to 25 times more point
correspondences over a larger space in the same time.

However, since we still lack the information whether the
lattice in the original depth image is seen from the front
or from the back, we cannot yet establish a clear mapping
between multiple sensors. Therefore, we first perform a less
precise registration with only two point correspondences per
frame, namely (a) the lattice center as well as (b) the lattice
center shifted in the direction of the x-axis, since the x-axis
always points in the direction of the hands. After that rough
registration, we can transform the z-axis vector of the lattice
seen in sensor A into the coordinate system of sensor B and
use z′B = ±zB as z-axis and y′B = ±yB as y-axis (since we
created the y-axis using the z-axis), depending on which sign
gives zA · zB . In this way, we have resolved the ambiguity
of the lattice side and ensure that lattices visible from the

same side in different cameras have the same sign.2

Now we generate ideal positions of the 25 hole centers
using h∗ and the axes of the lattice. We assign IDs from 0
to 24 to these hole centers along the axes. However, in order
to also take into account small distortions of the point cloud
caused by the depth sensor, we now search for the respective
nearest hole center actually found. If there is none within
a small radius around the ideal hole center, this hole center
will not be considered as a correspondence point. We now
define hole centers with the same ID in both sensor A and
sensor B as points correspondences.

F. Correspondence Rejection and Registration

Up to this point, we have found point correspondences
for which the 3D coordinates in camera space of several
cameras are known. However, since our lattice detection
is not completely immune to errors, very rare errors in
the point correspondences are possible. To ensure that in
these cases the accuracy of the registration is not degraded,
we filter the point correspondences using the RANSAC-
based correspondence rejection of the Point Cloud Library
[16]. Finally, with the remaining point correspondences, we
perform the registration using the SVD-based transformation
estimation.

IV. RESULTS

In this section, we present our results regarding the
accuracy of our registration into a ground truth coordinate
system (see Section IV-A), the stability of lattice detection
when the lattice is rotating (see Section IV-B), the runtime of
lattice detection (see Section IV-C), and further observations,
such as the precision and recall of lattice detection (see
Section IV-D).

A. Ground-Truth Evaluation

To investigate the accuracy of our registration, we tracked
the lattice using both Optitrack and a Microsoft Azure
Kinect combined with our detection algorithm. To track
the lattice with Optitrack, we attached seven markers to
the lattice to achieve sufficient accuracy. These Optitrack
markers were detected in the Azure Kinect depth image by
our method as hole centers (see Fig. 5). However, our heuris-
tic generally detected these hole centers as incorrect hole
centers, resulting in no noticeable effect on the detection of
the lattice.

2In fact, we could likewise correctly assign the orientation vectors of
the lattice obtained via our heuristic to the x-axis and y-axis via the rough
registration without taking into account the positions of the hands. However,
this would have two disadvantages: On the one hand, for a rough estimation
of the transformation we could only use the center of the lattice and not the
center shifted in the x-direction, which leads to the need for more frames
and movement along different axes for a stable result. On the other hand,
when registering the depth cameras to the world coordinate system (see
Section V), we would need to know the direction of the motion controllers
relative to the lattice center anyway.

44

(a) Point cloud (b) After applying our heuristic

Figure 5: Seven Optitrack markers (highlighted in red)
attached to the lattice to record ground truth data. Left: the
recorded point cloud; right: the generated proximity graph in
which the clusters of edges are color coded. The Optitrack
markers generate false hole center candidates, but these are
consistently filtered by our heuristics and do not affect the
lattice detection.

(a) Scenario A (b) Scenario B

Figure 6: Two scenarios used for ground truth evaluation,
from the perspective of the depth sensor.

Since Optitrack and the Kinect use the same infrared
light at a wavelength of 850 nm, there was occasionally a
pulsating noise throughout the depth image (see Fig. 9). We
ran Optitrack at 30fps (almost the same frame rate with
which the Azure Kinect recorded), as the pulsating noise
was least likely to show up this way. The pulsating noise
caused a greatly increased runtime of the algorithm in those
frames, since many lattice candidates were detected in flat
background objects. However, this lattice candidates were
successfully discarded by our detection algorithm and does
not seem to have influence on our results.

We conducted the evaluation in front of two different
backgrounds (see Fig. 6), hereafter also called scenarios,
while moving the lattice slowly. In scenario B, the distance
between the sensor and the lattice was between 1.0 m and
1.95 m, with the center of the lattice residing in a volume
of roughly 0.6 m³.3 In scenario A, the distance between the

3The entire lattice was about in 1.5 m³ in scenario B, but since we could
only record a single ground truth reference point via Optitrack, we only used
the detected center points of the lattice as point correspondences between
the two systems. This is why the smaller value is more relevant.

Table I: Mean error between ground truth lattice center and
detected lattice center after registration.

Scenario A Mean Error SD n rem.
Calibration Set 3.83 mm 2.10 mm 2401 20
Test Set 3.95 mm 1.69 mm 1880 1

Scenario B Mean Error SD n rem.
Calibration Set 4.38 mm 2.07 mm 1270 14
Test Set 4.40 mm 2.10 mm 871 5

Note: Rare error detections with an higher error that 20 mm were excluded
from the error calculation because they are removed during registration
during outliner rejection anyway and generally have no influence on the
registration result itself (the ”n” column indicates the number of used frames
whereas the “rem.” column indicates the number of removed frames).

sensor and the lattice was between 0.85 m and 2.05 m, with
the center of the lattice residing inside a volume of roughly
1.2 m³.

Using the lattice centers as point correspondences, we
registered the Microsoft Azure Kinect’s point cloud into Op-
titrack’s coordinate system. We then measured the deviation
of the registered center point from the center point detected
by Optitrack. In both scenes we observed a quite similar
error averaging only 3.83 mm to 4.40 mm (see Table I). This
deviation is much smaller than the systematic error of up
to 11 mm + 0.1% of the distance (as given by the Azure
Kinect’s technical specifications) and a random error of up
to 17 mm [17]. The average error of the ground truth data
was specified by Optitrack’s Motive software as 0.7 mm. The
expected error due to the lack of synchronization between
Optitrack and the Azure Kinect is 1.56 mm.4

Overall, the error of our registration method is well within
the accuracy of the depth sensor we use. We hypothesize that
our registration method is capable of achieving even better
precisions with more accurate depth cameras.

B. Rotational stability

In this experiment, we tried to determine the robustness
of our method w.r.t. the angle between camera’s line of sight
an the lattice’s normal. Using a thin thread, we clamped the
lattice as symmetrically as possible between two tripods and
let it rotate slowly around the y-axis of the lattice (see Fig.
7) in the range from −90° to 90°. This was recorded with an
Azure Kinect. Assuming that the lattice is clamped exactly,
the expectation is that the detected lattice center location
will not change regardless of the orientation of the lattice.

After recording the lattice at a distance of approximately
1.5 m, we obtained an average deviation from the mean
center along the x-axis of 0.9 mm (SD: 1.0 mm), along the y-
axis of 0.4 mm (SD: 0.3 mm), and along the z-axis of 1.8 mm
(SD: 1.3 mm) over a range from −57.0° to 59.7° (see Fig.
8) — at larger angles, the lattice was no longer detected.
The deviation along the y-axis (up-axis), was very small,

4This arises from an average grid movement speed of 18.8 cm/s in
scenario A and 30 fps, which yields 188 mm/s × 0.0083 s.

45

(a) Set-up illustration (b) Set-up photo

Figure 7: Experiment setup to determine the deviation of
the detected center point during the rotation of the lattice
around its own axis.

Figure 8: Deviation of the center point during rotation
around the y-axis of a lattice, which was clamped between
two tripods with sewing threads.

as expected. The slightly higher deviation along the z-axis
compared to the x-axis could also be at least partly due to the
expected error of Azure Kinect camera’s depth values (which
mainly influence the z-value) [17]. Furthermore, our lattice
has a thickness of 4 mm and was built with an accuracy of
only about 1-2 mm.

C. Runtime

Since pulsating noise in scenario A and scenario B
strongly affected the runtime of our lattice detection al-
gorithm in individual frames due to interference between

(a) (b) (c) (d)

Figure 9: Pulsating noise in the recorded point cloud due to
inference between Optitrack and the Azure Kinect, which
both use infrared light with a wavelength of 850 nm. In the
image sequence shown, the noise varies from no noise (a)
to very intense noise (d).

Figure 10: Scenario C which was not affected by occasional
pulsating noise by avoiding the additional tracking system.

Table II: Runtimes of our lattice detection algorithm in
different scenarios (without parallelization).

Scenario A (n = 7034) Mean SD Max
Candidate search 8.9 ms 15.9 ms 230.1 ms
Candidate processing 10.9 ms 13.06 ms 344.2 ms
Plausible candidates 0.79 0.56 5

Total 19.8 ms 23.9 ms 457.3 ms

Scenario B (n= 3931) Mean SD Max
Candidate search 12.8 ms 8.4 ms 67.8 ms
Candidate processing 11.7 ms 7.75 ms 62.84 ms
Plausible candidates 1.18 0.73 6

Total 24.5 ms 14.2 ms 116.1 ms

Scenario C (n= 4022) Mean SD Max
Candidate search 9.3 ms 2.1 ms 19.4 ms
Candidate processing 9.9 ms 5.0 ms 53.6 ms
Plausible candidates 1.20 0.48 4

Total 19.2 ms 6.4 ms 60.5 ms

Note: Scenarios A and B where affected by occasional pulsating noise due
to interference between Optitrack (which was used as ground truth in our
experiments) and Azure Kinect and are to be understood as extreme cases
with regard to performance.

Optitrack and the Microsoft Azure Kinect (see Fig. 9),
we performed a recording in a third scenario C, in which
no additional tracking system was present that could have
caused interference (see Fig. 10). Nevertheless, we have
presented the average running times of the algorithm for
all three scenarios in Table II.

While Scenario B has a more complex background,
which leads to a slightly higher mean runtime of 24.5 ms
(SD: 14.2 ms) compared to Scenario A with 19.8 ms (SD:
23.9 ms), the impact of the occasional pulsating noise was
particularly greater in scenario A due to the planar back-
ground. As expected, in scenario C the standard deviation
(SD) and the maximum runtime (Max) are significantly
lower because there is no pulsating noise due to the inter-
ference of the depth sensor with a tracking system.

In addition, we observed that the runtime of the algorithm
decreased the farther the lattice was from the camera (see

46

Figure 11: Dependence of the runtime on distance between
lattice and sensor in scenario C only (considering frames
where a lattice was detected).

Table III: Precision and recall of the lattice detection algo-
rithm in Scenario C.

Scenario n TP FP TN FN PPV TPR
A 6049 4281 21 0 1747 0.995 0.7

B 3593 2141 19 0 1433 0.991 0.60

C 4022 3629 24 0 369 0.992 0.91

Note that in scenario A the lattice sometimes leaves the camera’s view
frustum completely, while in scenario B the lattice is only partially visible
in at least some frames. Since our lattice recognizer sometimes also detected
edge cases, we could not clearly determine at what point an unrecognized
lattice is counted as TN or FN. Therefore, we counted frames in which no
lattice was detected as FN even if the lattice was only partially visible or not
visible at all. So, the recall in these two scenarios is probably significantly
higher in reality, especially in scenario A.

Fig. 11). This can be simply explained by the fact that the
further away the lattice is, the fewer points of the point cloud
have to be processed.

Note that our algorithm is currently not parallelized and
was running on a single core of an AMD Ryzen 9 3900X
processor in all of our evaluations.

D. Further observations

Furthermore, we calculated the precision (PPV = TP
TP+FP)

and recall (TPR = TP
TP+FN) for all three scenarios (see Table

III).
We have observed that with the Azure Kinect, individual

holes of the lattice are occasionally invisible in the original
depth image. We noticed in our experiments that this de-
pends on the background behind the lattice (e.g. normal of
the surface and reflectivity) and occurs primarily only when
the distance to the background is greater than the operating
range of the Azure Kinect (in the NFOV unbinned mode we
used, the operating range is 0.5 m – 3.86 m)[17]. We suspect
that this might be related to a filter of the Azure Kinect or
the Azure Kinect SDK, which seems to bridge areas between

(a) View through the HMD (b) Physical setup

Figure 12: Rendering of the point clouds of two Kinects
registered into a virtual scene seen from a first-person view
in an HMD (a) and from a third perspective (b).

Figure 13: The lattice with the motion controllers of the
HP Reverb G2 attached using a bracket allowing for precise
registration of depth sensors with the virtual scene.

invalid pixels. In scenario B, this effect presumably had a
significant impact on the number of false negative detections
as well as on recall due to the distant background (partly
> 6m), while the effect was almost negligible in scenarios
A and C. However, this effect had no impact on the success
of fast and accurate calibration in any of the scenarios tested.

V. UNREAL ENGINE 4 PLUGIN

We implemented our registration process in a publicly
available Unreal Engine 4 plugin that can be used for arbi-
trary depth sensors. In addition, we have created a sample
Unreal project for use with the Microsoft Azure Kinect, in
which any number of Azure Kinects can be registered with
each other. Furthermore, the depth sensors can be registered
into the virtual world (see Fig. 12).

To enable the depth sensors to also be registered in a
virtual world, we designed a bracket to which our lattice
and two motion controllers can be attached. This allows to
move the lattice and the motion controllers simultaneously
while maintaining a fixed relative distance between them
(see Fig. 13). We determined the fixed offsets to the motion
controllers in the lattice coordinate system by measuring the
distance of the lattice center to the origin of the motion
controller along each axis manually. Using the pose of the
lattice returned by our detection algorithm and the fixed
offsets to both motion controllers, we obtain the position of

47

the motion controllers in the depth sensor coordinate system.
By recording these positions with simultaneous positions
of the motion controllers in the coordinate system of the
virtual world, we can register all depth sensors into the
world coordinate system of the virtual world using SVD-
based transformation estimation again.

The Unreal Engine 4 plugin and the sample
project can be found at: https://gitlab.informatik.uni-
bremen.de/cgvr public/lattice based registration

VI. CONCLUSION

We have presented a novel approach for the registration
of depth sensors based exclusively on depth data. As a
registration target, we designed a lattice-like board with
regularly-spaced holes which are visible in the depth im-
age. Our algorithm is able to detect the board reliably in
depth images of real-world applications and is very easy to
implement. In our three test scenarios, which we recorded
using a Microsoft Azure Kinect, we are able to achieve a
precision of more than 0.99 with our lattice detection algo-
rithm, while the algorithm only needs an average runtime
of roughly 20 ms on a single core of an AMD Ryzen 9
3900X. The average deviation of the lattice from the ground
truth measurement (obtained using Optitrack) was 3.8 mm to
4.4 mm. In addition, we integrated our registration procedure
to a published Unreal Engine 4 plugin, which also allows
multiple depth sensors to be registered into a virtual world.

In the future, we plan to improve our registration method
with additional techniques: We are considering using mul-
tiple rigid transforms as proposed by Deng et al. [18] to
better compensate slight distortions due to the depth camera
in a larger volume. In addition, we can use depth cameras
that do not support hardware synchronization, e.g., with the
optimization presented by Beck et al. [11]. Finally, we are
thinking about developing a simple detection of the lattice
in the color image to optionally register RGB sensors with
the depth sensor as well.

ACKNOWLEDGMENT

This work was partially supported by BMBF grant
13GW0264D.

REFERENCES

[1] C. G. Harris, M. Stephens et al., “A combined corner and
edge detector.” in Alvey vision conference, vol. 15, no. 50.
Citeseer, 1988, pp. 10–5244.

[2] M. Rufli, D. Scaramuzza, and R. Siegwart, “Automatic de-
tection of checkerboards on blurred and distorted images,”
in 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2008, pp. 3121–3126.

[3] A. Duda and U. Frese, “Accurate detection and localization
of checkerboard corners for calibration,” in 29th British Ma-
chine Vision Conference. British Machine Vision Conference
(BMVC-29), September 3-6, Newcastle, United Kingdom,
2018.

[4] F. Reyes-Aviles, P. Fleck, D. Schmalstieg, and C. Arth,
“Improving rgb image consistency for depth-camera,” Journal
of WSCG, vol. 28, pp. 105–113, 01 2020.

[5] X. Song, J. Zheng, F. Zhong, and X. Qin, “Modeling devia-
tions of rgb-d cameras for accurate depth map and color im-
age registration,” Multimedia Tools and Applications, vol. 77,
06 2018.

[6] R. Macknojia, A. Chavez-Aragon, P. Payeur, and R. La-
ganiere, “Calibration of a network of kinect sensors for
robotic inspection over a large workspace,” 01 2013, pp. 184–
190.

[7] C. Chen, B. Yang, S. Song, M. Tian, J. Li, W. Dai, and
L. Fang, “Calibrate multiple consumer rgb-d cameras for
low-cost and efficient 3d indoor mapping,” Remote Sensing,
vol. 10, p. 328, 02 2018.

[8] W. Darwish, W. Li, S. Tang, B. Wu, and W. Chen, “A
robust calibration method for consumer grade rgb-d sensors
for precise indoor reconstruction,” IEEE Access, vol. 7, pp.
8824–8833, 2019.

[9] R. Avetisyan, M. Willert, S. Ohl, and O. Staadt, “Calibration
of depth camera arrays,” 06 2014.

[10] S. Beck and B. Froehlich, “Volumetric calibration and reg-
istration of multiple rgbd-sensors into a joint coordinate
system,” in 2015 IEEE Symposium on 3D User Interfaces
(3DUI), 2015, pp. 89–96.

[11] ——, “Sweeping-based volumetric calibration and registra-
tion of multiple rgbd-sensors for 3d capturing systems,” in
2017 IEEE Virtual Reality (VR), 2017, pp. 167–176.

[12] D. Herrera C., J. Kannala, and J. Heikkilä, “Joint depth and
color camera calibration with distortion correction,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 34, no. 10, pp. 2058–2064, 2012.

[13] O. Kreylos, “Kinect camera calibration,” 2013, http://doc-ok.
org/?p=289.

[14] T. Deng, J. Cai, T.-J. Cham, and J. Zheng, “Multiple
consumer-grade depth camera registration using everyday
objects,” Image and Vision Computing, vol. 62, pp. 1 – 7,
2017.

[15] A. Papachristou, N. Zioulis, D. Zarpalas, and P. Daras,
“Markerless structure-based multi-sensor calibration for free
viewpoint video capture,” 01 2018.

[16] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library
(PCL),” in IEEE International Conference on Robotics and
Automation (ICRA), Shanghai, China, May 9-13 2011.

[17] Microsoft Corporation, “Azure kinect dk hardware
specifications,” 2020, https://docs.microsoft.com/en-us/
azure/kinect-dk/hardware-specification.

[18] T. Deng, J.-C. Bazin, T. Martin, C. Kuster, J. Cai, T. Popa,
and M. Gross, “Registration of multiple rgbd cameras via
local rigid transformations,” in 2014 IEEE International Con-
ference on Multimedia and Expo (ICME), 2014, pp. 1–6.

48

