
Collision Detection Based on Fuzzy Scene Subdivision

David Mainzer1 and Gabriel Zachmann2

1 Clausthal University, Germany
dm@tu-clausthal.de

2 University of Bremen, Germany
zach@cs.uni-bremen.de

Abstract. We present a novel approach to perform collision detection queries
between rigid and/or deformable models. Our method can handle arbitrary de-
formations and even discontinuous ones. For this, we subdivide the whole scene
with all objects into connected but totally independent parts by a fuzzy clustering
algorithm. Following, for every part our algorithm performs a Principal Com-
ponent Analyses to achieve the best sweep direction for the Sweep-Plane step,
which reduces the number of false positives greatly. Our collision detection algo-
rithm processes all computations without the need of a bounding volume hierar-
chy or any other acceleration data structure. One great advantage of this is that
our method can handle the broad phase as well as the narrow phase within one
single framework. Our collision detection algorithm works directly on all prim-
itives of the whole scene, which results in a simpler implementation and can be
integrated much more easily by other applications. We can compute inter-object
and intra-object collisions of rigid and deformable objects consisting of many
tens of thousands of triangles in a few milliseconds on a modern computer. We
have evaluated its performance by common benchmarks.

Keywords: Collision Detection, Fuzzy Clustering, Physics based Animation,
Computer Animation, Cloth Simulation

1 Introduction

Collision detection between rigid, and/or soft bodies is important for many fields of
computer science, e.g. for physically-based simulations, medical applications like vir-
tual surgery, and cloth simulation. The underlying collision detection needs to check if
collisions occur between a pair of objects as well as self-collisions among deformable
objects. In many applications, an additional requirement is that the collision detection
has to be calculated within milliseconds. Penalty-based physical simulations, for ex-
ample, typically perform a number of iterations for a single rendering frame, requiring
collision detection at n×30Hz, if the scene is rendered at 30Hz.

There exist various approaches that propose spatial subdivision for collision de-
tection or approximate the surface of rigid and soft bodies. These algorithms employ
axis-aligned bounding boxes (AABB) [22], oriented bounding boxes (OBB) [5] or Inner
Sphere Trees (IST) [23] to reduce the computation time.

Most of the earlier efficient collision detection algorithms were sequential ones,
which are perfect for devices that can execute only one instruction at a time. The current

2 Collision Detection Based on Fuzzy Scene Subdivision

trend in computer architecture focuses on multi-core CPUs and many-core GPUs, and
so many parallel collision detection algorithms have been proposed in the last years.
The collision detection algorithm we present in this Chapteris a fast, fully GPU-based
algorithm that can exploit data and thread-level parallelism.

Modern GPUs can be thought of as many-core stream processors, and such stream-
ing architectures have significant implications on algorithm design, especially when
applied to general purpose tasks because they were initially designed for graphics ma-
nipulations. Because of this, many prior GPU-based collision detection algorithms [8,
7, 15] or hybrid combinations of CPU and GPU [6, 11, 16] have been developed. A lot
of well-known culling methods for collision detection algorithms exist, which include
Sort and Sweep [1], also known as Sweep and Prune [3], to limit the number of pairs of
primitives that need to be checked for collision. Without using these culling methods,
a huge amount of computation time is wasted and additional memory access is needed,
which takes a lot of time especially when accessing global memory on GPUs.

1.1 Our Contributions

Our novel Collision Detection Based on Fuzzy Scene Subdivision algorithm is designed
for interactive and exact collision detection in complex environments and can handle
objects movement and deformation at the same time. To achieve these features, our
algorithm subdivides the whole scene, with all objects, into independent, overlapping
parts in the first step. For the segmentation process, we use a GPU-based clustering
algorithm called fuzzy C-means (see Section 4). For all clusters, we can execute the
collision detection steps independently, and this offers the possibility to distribute the
collision detection computation for the clusters to different GPUs. To reduce the num-
ber of false positives we use an adapted version of the Sweep and Prune approach in
combination with Principal Component Analysis (see Section 3). This has the advan-
tage that our algorithm does not need to distinguish between a broad and narrow phase.

Our novel approach is as fast as state-of-the-art collision detection algorithms but
with the additional advantage that our collision detection can be distributed easily to
more than only one GPU, because we subdivides the whole scene into independent but
connected parts; thus it scales very well with the number of GPUs. Also, our collision
detection algorithm works directly on all primitives (e.g. triangles) of the whole scene,
which results in a simpler implementation and can be implemented much more eas-
ily by other applications. In addition to that, working on all primitives directly avoids
approximate errors.

2 Previous Work

Since collision detection is a fundamental technique in many simulations, it has been
extensively investigated by researchers over the last decades. As a result, a large num-
ber of different techniques for collision detection queries and handling exist [20]. In
this section, we focus on those approaches only, that can handle collisions between
deformable objects.

Collision Detection Based on Fuzzy Scene Subdivision 3

y

x
S1x

S1y

E1x

E1y

S2y

E2x

E2y

S2x

S3y

S3x E3x

E3y

S4y

E4x

E4y

S4x

1

2

3

4

PCA

y

x
S1x E1x S2x E2x S3x E3x S4x E4x

E4y E3y

E2y E1y

S4y S3y

S2y S1y

1 2 3 4

(a) The initial scene consisting of a number of
triangles with corresponding bounding boxes
and the result of the Principal Component
Analysis. As can clearly be seen the bounding
boxes of triangle 1 and 2, and triangle 3 and 4
intersect.

(b) Initial scene from Fig. 1a, rotated so that
the direction of the first component of the Prin-
cipal Component Analysis points along the x-
axis. As can clearly be seen, in this example
the number of overlapping bounding boxes re-
duced to zero.

Fig. 1: Improvement of sweep-plane approach via Principal Component Analysis

2.1 Approaches Using Bounding Volume Hierarchies

Using Bounding Volume Hierarchies (BVH) is the most common approach to speed
up collision detection of rigid and deformable objects [4]. Govindaraju et al. [6] used
precomputed chromatic decomposition of a mesh to check for collisions between non-
adjacent primitives. A limitation of this approach is that the connectivity of the mesh has
to be fixed. Consequently, this approach is not applicable when you want to simulate rip-
ping or cutting a virtual object, which have main importance in simulations like virtual
surgery and advanced cloth animation. Greß et al. [7] used stenciled geometry images
to generate GPU-optimized BVH in real-time. This approach is optimized for collision
and self-collision detection for NURBS models or other types of rigid or deformable
parameterized surfaces. This approach is limited to a few thousand NURBS patches.
Kim et al. [11] presented a hybrid CPU-GPU parallel continuous collision detection
(HPCCD) method. HPCCD is based on a BVH and performs efficient reconstructions
for selective parts of the BVH. Because they do the BVH reconstruction on the CPU,
there is a significant communication between GPU and CPU. A GPU-based linear BVH
approach was presented by Lauterbach et al. [12]. Their approach used thread and data
parallelism to perform fast hierarchy operations. The linear BVH is used to check for
collisions between two disjoint objects as well as self-collisions for deformable objects.
Updating these LBVH over more than one GPU is difficult and leads to a huge com-
munication overhead. Tang et al. [18] presented a GPU-based streaming algorithm for
collision detection between deformable models. Their approach used BVH as culling
technique and reduces the computation to generating different streams. This technique
can not be easily extended to use more than one GPU.

4 Collision Detection Based on Fuzzy Scene Subdivision

2.2 GPU-based Collision Detection

Most modern collision detection algorithms using BVH are GPU based. However, there
are some approaches which use distance fields, space subdivision or image-space tech-
niques to improve their performance. Teschner et al. [21] presented a new approach to
collision and self-collision detection of dynamically deforming objects that consist of
tetrahedrons. This proposed algorithm employs a hash function for compressing a po-
tentially infinite regular spatial grid. This hash function maps 3D cells to a hash table,
thus realizing a very efficient spatial subdivision. This approach is limited to objects
that consist of tetrahedrons only. Heidelberger et al. [9] proposed a simple and efficient
algorithm based on Layered Depth Images (LDI). They use a discrete representation of
the intersection volume which allows for volume-based collision queries. The accuracy
of this method corresponds with the LDI resolution and the depth-buffer resolution. Be-
cause the LDI provides only a discrete representation of the underlying objects in some
cases collision may be missed. Morvan et al. [15] presented an algorithm for proximity
queries between a closed rigid object and an arbitrary mesh, for example, deformable,
polygonal mesh. They sampled the distance field of the rigid object over the arbitrary
mesh. One downside of this approach is that one object has to be a rigid body so, they
can not simulate collisions between two soft bodies, for example. A hybrid CPU/GPU
collision detection technique based on spatial subdivision was presented by Pabst et al.
[16]. They prune away non-colliding parts of the scene by using an adapted highly par-
allel spatial subdivision method. Mainzer and Zachmann [14] presented a new approach
to collision and self-collision detection which is completely GPU based. Therefore, they
subdivide the scene into independent parts by fuzzy clustering. However, the thread and
memory management can be improved which results in a less memory consuming im-
plementation.

3 Sweep-Plane Technique Using PCA for Collision Detection

Due to the fact that our collision detection approach treats all objects in a scene at the
same time, we do not differentiate between individual objects in the rest of this pa-
per. Furthermore, we tread all primitives, whether from the same or from a different
object, as equals which ensures that our approach detects inter-object and intra-object
collisions. A majority of computer animation and simulation use triangles as their fun-
damental modeling primitive and therefore we choose triangles as primitive for our
collision detection approach too. However, our approach can be extended to use other
primitives easily.

During the collision detection process we use an adapted version of the standard
Sweep and Prune approach, a 1D version, hereafter referred to as sweep-plane tech-
nique. We compute the bounding box for every primitive. Each bounding box spans an
interval [Si,Ei] for each primitive Ti on the x-axis. Sorting all intervals along the x-axis
provides information about possible colliding bounding boxes because, two bounding
boxes collide iff one of the four cases [Sa,Sb,Eb,Ea], [Sb,Sa,Ea,Eb], [Sa,Sb,Ea,Eb], or
[Sb,Sa,Eb,Ea] occurs (see Fig. 1).

Fig. 1a depicts an example of a downside of using bounding volumes, like AABB’s
or OBB’s. If, for example, primitives are moving then in a significant amount of cases

Collision Detection Based on Fuzzy Scene Subdivision 5

a huge number of false positives may occur, when we choose any of the fixed world
coordinate axes as sweep direction. In our case, the best sweep direction is the one, that
allows projection to separate the primitives as much as possible. In order to achieve
the best sweep direction, even if the primitives move through 3D spaces, we compute
the Principal Component Analysis (PCA) [10, 13] in every frame, because the direction
of the first principal component maximizes the variance of primitives, after projection
[13].

The type of covariance analysis we perform is commonly used for dimension re-
duction and statistical analysis of data [4]. As data points we use the centroid Ci of
every primitive in the scene. The covariance matrix Cov = [hi j] for all centroid points
C1,C2, . . . ,Cn is given by

hi j =
1
n

n

∑
k=1

(
Ck,i−meani

)
·
(
Ck, j−mean j

)
, (1)

with meani and mean j is the mean of the i-th and the j-th coordinate value of all the
centroid points.

In Fig. 1b we move the direction of the first principal component on the x-axis. Now
we compute the bounding box intervals [Si,Ei] and use the x-axis, more specifically the
direction of the first component of the PCA, respectively, as sweep direction. Compar-
ing Fig. 1a with Fig. 1b depicts the advantages of using the first principal component as
sweep direction. The number of false positives great reduce.

As a consequence, combining sweep-plane and PCA reduces the number of primi-
tive pairs tested for intersection and thus significantly reduces the calculation time.

3.1 Thread Management

In this Section we depict how we determine the minimal number of working (CUDA)
threads, which are needed for identifying all possible colliding pairs. Additionally, we
compute the worst case memory usage, i.e., the space needed to store all possible col-
liding primitives, at the same time.

In the first step we sort all start (Si) and end (Ei) points of the bounding box intervals
along longest principal axis. Additionally an array ”Type” with the information if at
position j is a start (S j → Type == 1) or an end (E j → Type == 0) point is created at
the same time (see Fig. 2 upper part).

On account of the fact that we want to avoid counting overlapping bounding boxes
twice, we only consider the start point (Si) of the bounding box intervals i. If this is not
taken into account, and we consider both the start (Si) and end point (Ei) of the bounding
box interval, for example in the case of [Sa,Sb,Ea,Eb], we will receive two intersections.
Primitive a intersects with primitive b, and vice versa. So, when we consider the start
point (Si) solely, we will get an intersection between primitive a and b only, because Sb
is in the interval [Sa,Ea], whilst Sa is not in the interval [Sb,Eb].

To identify the number of working threads needed to do all intersection tests for a
primitive, we need the amount of bounding box intersections between the bounding box
of a primitive and all other bounding boxes for all primitives. Therefore, a very suitable

6 Collision Detection Based on Fuzzy Scene Subdivision

0Position 1 2 3 4 5 6 7

SABounding Box ID (Start/End) SC SB EC EA EB SD ED . . .

1Type (Start/End) 1 1 0 0 0 1 0 . . .

0prefix sum of Type (pT) 1 2 3 3 3 3 4 . . .

ATriangle ID B C D

0Start position (S) 2 1 6

4End position (E) 5 3 7

ATriangle ID B C D

3−0−1pT [E]− pT [S]−1 3−2−1 3−1−1 4−3−1

2number Threads 0 1 0 = 3

Fig. 2: Determination of the minimal number of threads needed to identify all possible
colliding primitive pairs and the worst case memory usage to store all these pairs.

solution is the prefix sum algorithm from the Thrust3 library using the ”Type” array as
input (see Fig. 2 upper part).

The resulting array pT can be used to compute the working threads needed for a
primitive to do all possible intersection tests. Therefore, we calculate pT [Ei]− pT [Si]−
1 for a primitive i which generates the number of threads needed for each primitive. The
total amount of threads is equal to the number of the worst-case memory usage required
to store all possible colliding primitive pairs.

4 Object Subdivision Using Fuzzy C-Means

Using the first principal component as sweep direction only, will nevertheless pro-
duce false positives, because of the dimensional reduction in the sweep-plane step. The
sweep-plane technique, used to separate the primitives, projects all 3D bounding vol-
umes to 1D points. This means, for example, that in some cases primitives of the front
side and primitives of the backside of an object will be recognized as potentially collid-
ing pairs, even if there is a large distance between them. This recognition will results in
an amount of unwanted false positives.

To eliminate this kind of false positives we subdivide the scene (see Fig. 3 for some
examples) into connected components using fuzzy C-means (FCM) algorithm [2, 17].
We use a fuzzy clustering algorithm because the primitives, which are located on the
border between two clusters, have to be in both clusters. If adjoining clusters are not

3http://thrust.github.com/

Collision Detection Based on Fuzzy Scene Subdivision 7

Fig. 3: Examples of some high-detail objects, partitioned by fuzzy C-means into two
(top row) and 16 clusters, respectively. From left to right: Cloth on Ball (92k triangles),
Funnel (18k triangles), Model of the Female Pelvis (200k triangles), and Dragon (202k
triangles).

connected, then in some cases collisions across the border of the clusters would not be
taken into account (see Fig. 4).

The FCM algorithm is a soft, or fuzzy, version of the well-know k-means clustering
algorithm. In the classic k-means clustering algorithm, every data point is associated
with only the nearest cluster center point. In the fuzzy version of the k-means algorithm,
fuzzy C-means, every data point has a membership value in the range of 0 and 1 for
every cluster. The algorithm tries to minimize the total error, which is the sum of the
squared distances of each data point to each cluster center, if we use the euclidean
distance, weighted by the membership of the data point to each cluster, for all data
points.

Another advantage is that the fuzzy c-means algorithm can be run incrementally
thus exploiting temporal coherence that is inherent in most real scenes. For the next
iteration the algorithm uses the last computation result as starting point and iteratively
minimizes the total error with the new data points. This approach takes advantage of
the fact that the scene changes not very much from one frame to the next one.

Assuming we want to subdivide the scene into c clusters, we compute a sum of
dispersion between the data points xi and a set of prototypes (cluster center points)
v1,v2, . . . ,vc

Q =
c

∑
i=1

n

∑
k=1

ut
ikd(xk,vi) (2)

with d(xk,vi) being a given fixed distance function (e.g. Euclidean distance, or any lp-
Norm in general) between the data points xk and vi, the center point of cluster i.

Furthermore, Eq. 2 contains the fuzziness factor t, t > 1, and a partition matrix
U = [uik], i = 1,2, . . . ,c, k = 1,2, . . . ,n, which allocate the data points to the clusters.

8 Collision Detection Based on Fuzzy Scene Subdivision

A fuzziness factor t = 1 means that the algorithm is doing a hard clustering, like fuzzy
k-means, and if t → ∞ the membership will be equal in all clusters. The fuzzy cluster-
ing algorithm will iteratively optimize Eq. 2. In each iteration, all elements uik of the
partition matrix U are updated using Eq. 3.

uik =
1

∑
c
j=1(

dki
d ji
)

2
t−1

(3)

In the next step the algorithm updates the cluster centers vk:

vk =
∑

n
i=1 ut

ik · xi

∑
n
i=1 ut

ik
. (4)

The algorithm repeats these steps until the center points converge.
In the initialization phase, we choose the stop criterion much smaller than during

runtime. We also limit the number of iterations for the clustering process to a fixed num-
ber at runtime because it is not necessary to get a perfect clustering. These properties
ensure that the time, needed for clustering, will not rise dramatically when the scene
changes drastically.

5 GPU-based Collision Detection

Algorithm 1 GPU-based Collision Detection
Each line is mapped to a massively parallel computation kernel

Input: primitives of all objects
Output: intersecting pairs of primitives
1: subdivide scene into c clusters using fuzzy C-means
2: for all clusters do in parallel
3: compute and apply PCA
4: sort AABBs along longest principle axis
5: collect all overlapping intervals
6: for all overlapping intervals do in parallel
7: if AABB intersect along y-axis then
8: do primitive-primitive intersection test
9: end if

10: end for
11: end for

In this section, we show how our method combines all previously introduced tech-
niques. Algorithm 1 provides a short overview of the pipeline of our collision detection
approach with the main procedures, which are mapped to a set of computation kernels.

First of all, we subdivide the whole scene into independent, overlapping parts by
fuzzy clustering. Thus, we use the centroid of all primitives to decide to what cluster
a primitive belongs to. Using a well-chosen stop criterion and a maximum number of

Collision Detection Based on Fuzzy Scene Subdivision 9

iterations for the clustering process, limits the time needed for clustering, even when the
scene changes significantly. The stop criterion determines when the clustering process
has reached an almost steady state, that means the movement of the cluster center point
of all clusters is smaller than the predefined criterion.

Now we can do the following steps for every cluster independently. As described in
Section 3, we do a PCA using the centroid of the primitives of the cluster. The result
of the PCA is applied to the primitives of the cluster, which means that the direction of
the first component of the PCA points along the x-axis (step “Clustering and PCA” in
Fig. 7 and 8).

We are now use the x-axis as sweep-plane direction because this direction maxi-
mizes the variance of primitives after projection. Therefore, we compute the bounding
box of all primitives of this cluster. We calculate the bounding box for the x-dimension
and y-dimension in the same step. In this way we can exploit the fact that we can get
completely coalesced memory access, which results in a lower computation time (step
“Compute AABBs” in Fig. 7 and 8). We have coalesced memory access because, for ex-
ample primitive k, will be adapted by the thread with tid = k, which can read all vertices
from position k and write the result to memory at position k, and consequently there is
no discontinuous read or write access to the memory. We do not compute the bound-
ing box for the z-dimension because our approach only use the x- and y-dimension for
the bounding box intersection test. We explain the fact why we omit the z-dimension
bounding box intersection test in the following section.

After computing the bounding boxes for all primitives of this cluster, we sort them
along the x-axis using a highly-tuned Radix Sort algorithm from the Thrust library.

The next challenge is to collect all bounding box intervals which intersects in the x-
dimension. In order to avoid counting overlapping bounding boxes twice, which would
increase computation time and memory needed for the collision detection, we only
consider the start point (Si) of a bounding box interval. In order to receive the required
memory and the position where to put all possible colliding pairs, we use the prefix sum
(or so called scan) algorithm from the Thrust library. This step, see “Collect overlapping
intervals” in Fig. 7 and 8, takes up the most computation time in our collision detec-
tion algorithm. The problem is that it is not possible to access the memory completely
coalesced, which slows down the computation process.

After collecting all possible colliding pairs, whose intervals overlap in x-dimension,
we verify whether the bounding boxes of both primitives overlap in the y-dimension or
not. We omit an bounding box overlap test for the z-dimension, because it takes more
time to read the bounding box information from memory and to compare the values,
than using the primitives vertices, which may potentially needed further in the case
both primitives intersect, to test if the primitives overlap in the z-dimension. In the case
of using a complex polygon as primitive the algorithm will not omit the z-dimension
bounding box test. If that is the case, and both primitives overlap in all three dimensions,
the algorithm performs a primitive-primitive intersection test.

Our collision detection algorithm compute all colliding primitive pairs and, if needed,
the intersection point or line, respectively.

10 Collision Detection Based on Fuzzy Scene Subdivision

5.1 Accuracy and Limitations

Our collision detection algorithm will recognize all intersections between all primitives.
Therefore, our approach perform bounding box intersection tests with all primitives
of a cluster, to detect all colliding primitive pairs. However, in the case of significant
differences in the size of the primitives, it could happen that a primitive is completely
assigned to one cluster, but collides with a primitive which is completely assigned to
an adjoining cluster. The reason for this is that our approach use the centroid, which
represents a primitive for the clustering process. To prevent this, we have to decrease
the membership value in the clustering step. This results in a higher degree of overlap
between adjoining clusters (see Fig. 4). The size of the overlap has to be at least as large
as the overall maximum distance from primitive’s centroid to one of its vertices:

max
i=1,2,...,n

(max
k=0,1,2

(‖Ci− vertexi,k‖2)) (5)

mCl2

mCl1

m

f1
f 2

f3

e1

e2

e3

Cluster
Cl2

Cluster
Cl1

mCl2

mCl1

m

f1
f 2

f3

e1
e2

e3

Cluster
Cl2

Cluster
Cl1

Fig. 4: The Figure shows two adjoining clusters with two triangles, one colored in yel-
low and one in grey. The yellow triangle is completely assigned to the yellow cluster
Cl1 and the grey triangle is completely assigned to the grey cluster Cl2. On the left side
of the Figure we choose the overlap d(m,mCl1) == d(m,mCl2) < ‖ f3‖2 < ‖e3‖2. Ac-
cordingly, like you can see in the Figure, it is possible that the yellow triangle intersect
with the grey one. In this case this collision will not be recognized by our collision de-
tection. On the left side of the Figure we increase the overlap such that d(m,mCl1) ==
d(m,mCl2)< ‖ fi‖2, i= 1,2,3 and d(m,mCl1) == d(m,mCl2)< ‖ei‖2, i= 1,2,3. As a re-
sult it is impossible that triangles, which are completely assigned to a different cluster,
can intersect.

From this follows one small restriction for our approach. The large overlap between
clusters can affect the performance in some scenarios, because of a higher number of

Collision Detection Based on Fuzzy Scene Subdivision 11

collision computations. This limitation can be avoided by virtually subdividing huge
primitives. The virtual primitives are used for clustering and sorting instead of the initial
primitive.

If the size of all primitives is more or less equal, than our algorithm chooses a
membership value so that the overlap between adjoining clusters consists of exactly
two primitives.

6 Results

We have implemented our collision detection algorithm on a NVIDIA GeForce GTX
480 using the CUDA toolkit 5.0 as development environment. Because our collision de-
tection algorithm is purely GPU-based, components like CPU and RAM do not have ef-
fect on the running time. However, for the sake of completeness, we will provide the key
data of our system. Our collision detection algorithm is implemented in C++/CUDA.
The platform for benchmarking consists of a PC running Gentoo Linux with an Intel
Core i5-2500K 3.30GHz CPU and 8GB of memory. For sorting and prefix computation
steps we used Thrust, a parallel algorithms library.

6.1 Benchmarking

Fig. 5: The upper row shows the frames 0, 10, 40, 60 and 93 of the Cloth on Ball
benchmark. The lower row shows the frames 0, 125, 200, 375 and 500 of the Funnel
benchmark.

To evaluate the performance of our collision detection algorithm in different situa-
tions, we choose some often used collision detection benchmarks to compare our results
against other approaches. Experiments have shown that subdividing the scene into 2 re-
spectively 4 clusters, when the objects are far apart from each other, for a single GPU
provides the best performance. Therefore, in the following benchmarks we subdivided
the scene into 2 clusters.

In Fig. 6 we show the average collision detection time needed for all benchmarks
compared with state-of-the-art collision detection algorithms. Our approach is slightly

12 Collision Detection Based on Fuzzy Scene Subdivision

slower than the CStreams [18] technique but this approach can not be easily extended
to more than one GPU. Comparing our approach to the hybrid CPU/GPU collision
detection techniques [16, 11] and the multi-core collision detection approach [19] shows
that our technique performs better.

Bench. Our CSt. Pab. HP MC

Cl. on Ball 20.24 18.6 36.6 23.2 32.5

Funnel 6.53 4.4 6.7 – –

Fig. 6: Collision detection computation times in milliseconds. The timings include both
external and self-collision detection. CStreams (CSt.) – GPU-based streaming algo-
rithm for collision detection [18], Pab. – a hybrid CPU-GPU collision detection tech-
nique based on spatial subdivision [16], HP – a hybrid CPU-GPU parallel continuous
collision detection [11], MC – a multi-core collision detection algorithm running on a
16 core PC [19]

Cloth on Ball In this benchmark, a cloth (92k triangles) drops down on a rotating
ball (760 triangles) (see Fig. 5 upper row). Thereby the cloth has a huge number of
self-collisions. This benchmark is subdivided into 93 frames. Our collision detection
algorithm needs for this benchmark 20.24ms in average (see Table 6).

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90

tim
e/

m
ill

is
ec

frame number

Complete collision detection
Tri-Tri intersection

Collect overlapping intervals
Sort AABBs

Compute AABBs
Clustering and PCA

Fig. 7: Collision detection time needed for Cloth on Ball (92k triangles) Benchmark.

Fig. 7 shows that the collision detection time needed to compute all collisions from
frame 60 onwards increase because the number of self-collisions increase heavily like

Collision Detection Based on Fuzzy Scene Subdivision 13

you can see on the Fig. 5 (upper row). Our collision detection algorithm needs more time
to collect all possible colliding triangles and has to do more intersection tests between
them. The benchmark, provided by the UNC Dynamic Scene Benchmarks collection,
itself contains self intersecting triangles, which means that real collisions occur, like
you can see at frame 93.

Funnel A cloth (14.4k triangles) falls into a funnel (2k triangles) and passes through it,
due to the force applied by a ball (1.7k triangles). The ball slowly increased in volume
over the time (see Fig. 5 lower row). Our collision detection algorithm needs for this
benchmark 6.53ms in average (see table 6).

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400 450

tim
e/

m
ill

is
ec

frame number

Complete collision detection
Tri-Tri intersection

Collect overlapping intervals
Sort AABBs

Compute AABBs
Clustering and PCA

Fig. 8: Collision detection time needed for Funnel (18.5k triangles) Benchmark.

Fig. 8 depicts that the collision detection time needed to compute all collisions
increase slightly between frame 150 and frame 345. In these frames the cloth hit the
funnel and slides a little bit into the funnel. From frame 345 onwards the ball push the
cloth trough the funnel, and produces a huge number of self-collisions which results in
an higher computation time needed for collision detection.

7 Conclusions and Future Work

We presented a novel, accurate and fast collision detection algorithm which is com-
pletely GPU-based and does not require additional communication between host (CPU)
and device (GPU). Our Collision Detection Based on Fuzzy Scene Subdivision tech-
nique can perform collision queries between rigid and/or deformable models consisting
of many tens of thousands of triangles in a few milliseconds. One great advantage of
this is that our method can handle the broad phase as well as the narrow phase within
one single framework. Arguably, our method is much easier to implement than many

14 Collision Detection Based on Fuzzy Scene Subdivision

other GPU-based deformable collision detection approaches, because we do not need
any BV hierarchy or other acceleration data structure. Our results show that our col-
lision detection algorithm is as fast as state-of-the-art approaches. However, because
of the subdivision process our collision detection approach can be distributed easily to
more GPUs.

A multi-GPU version of our algorithm is currently being implemented to evaluate
the speed improvement. We believe that we can further improve the performance of our
algorithm by improving the PCA process, to reduce the number of false positives, even
when the objects are deform intensive or closely intertwined. An interesting extension
would certainly be to handle triangles which size significantly differ. To realize this we
can use virtual subdivision for the degenerated triangles. Finally, we will extend the
approach to perform other proximity queries, including distance and penetration depth
or volume queries.

Acknowledgments The Cloth on Ball and Funnel simulation benchmarks are cour-
tesy of the UNC Dynamic Scene Benchmarks collection and was provided by Naga
Govindaraju, Ilknur Kabul, Stephane Redon and Simon Pabst.

References

1. D. Baraff. Dynamic simulation of non-penetrating rigid body simulation. PhD thesis, PhD
thesis, Cornell University, 1992.

2. J.C. Bezdek. Pattern recognition with fuzzy objective function algorithms. Kluwer Academic
Publishers, 1981.

3. J.D. Cohen, M.C. Lin, D. Manocha, and M. Ponamgi. I-COLLIDE: An interactive and
exact collision detection system for large-scale environments. In Proceedings of the 1995
symposium on Interactive 3D graphics. ACM, 1995.

4. C. Ericson. Real-time collision detection. Morgan Kaufmann, 2004.
5. S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A Hierarchical Structure for Rapid

Interference Detection. Computer Graphics, 30(Annual Conference Series):171–180, 1996.
6. N.K. Govindaraju, D. Knott, N. Jain, I. Kabul, R. Tamstorf, R. Gayle, M.C. Lin, and

D. Manocha. Interactive collision detection between deformable models using chromatic de-
composition. In ACM Transactions on Graphics (TOG), volume 24, pages 991–999. ACM,
2005.

7. A. Greß, M. Guthe, and R. Klein. Gpu-based collision detection for deformable parame-
terized surfaces. In Computer Graphics Forum, volume 25, pages 497–506. Wiley Online
Library, 2006.

8. Alexander Greß and Gabriel Zachmann. Object-space interference detection on pro-
grammable graphics hardware. In M. L. Lucian and M. Neamtu, editors, SIAM Conf. on
Geometric Design and Computing, pages 311–328, Seattle, Washington, November 13–17
2003. Nashboro Press.

9. Bruno Heidelberger, Matthias Teschner, and Markus Gross. Real-time volumetric intersec-
tions of deforming objects. In Proceedings of Vision, Modeling and Visualization, volume 3,
2003.

10. I. Jolliffe. Principal component analysis. Wiley Online Library, 2005.
11. D. Kim, J.P. Heo, J. Huh, J. Kim, and S. Yoon. Hpccd: Hybrid parallel continuous collision

detection using cpus and gpus. In Computer Graphics Forum, volume 28, pages 1791–1800.
Wiley Online Library, 2009.

Collision Detection Based on Fuzzy Scene Subdivision 15

12. C. Lauterbach, Q. Mo, and D. Manocha. gproximity: Hierarchical gpu-based operations for
collision and distance queries. In Computer Graphics Forum, volume 29, pages 419–428.
Wiley Online Library, 2010.

13. Fuchang Liu, Takahiro Harada, Youngeun Lee, and Young J Kim. Real-time collision culling
of a million bodies on graphics processing units. In ACM Transactions on Graphics (TOG),
volume 29, page 154. ACM, 2010.

14. David Mainzer and Gabriel Zachmann. CDFC: Collision Detection Based on Fuzzy Cluster-
ing for Deformable Objects on GPUs. In WSCG 2013 - POSTER Proceedings, volume 21,
pages 5–8, Plzeň, Czech Republic, 7 2013. Poster.

15. T. Morvan, M. Reimers, and E. Samset. High performance gpu-based proximity queries
using distance fields. In Computer graphics forum, volume 27, pages 2040–2052. Wiley
Online Library, 2008.

16. S. Pabst, A. Koch, and W. Straßer. Fast and scalable cpu/gpu collision detection for rigid and
deformable surfaces. In Computer Graphics Forum, volume 29, pages 1605–1612. Wiley
Online Library, 2010.

17. Witold Pedrycz. Knowledge-based clustering: from data to information granules. Wiley-
Interscience, 2005.

18. M. Tang, D. Manocha, J. Lin, and R. Tong. Collision-streams: fast gpu-based collision
detection for deformable models. In Symposium on Interactive 3D Graphics and Games,
pages 63–70. ACM, 2011.

19. Min Tang, Dinesh Manocha, and Ruofeng Tong. Mccd: Multi-core collision detection be-
tween deformable models using front-based decomposition. Graphical Models, 72(2):7–23,
2010.

20. M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi, A. Fuhrmann,
M. p. Cani, F. Faure, N. Magnenat-thalmann, W. Strasser, and P. Volino. Collision detection
for deformable objects. In Computer Graphics Forum, pages 61–81, 2004.

21. Matthias Teschner, Bruno Heidelberger, Matthias Müller, Danat Pomeranets, and Markus
Gross. Optimized spatial hashing for collision detection of deformable objects. In Proceed-
ings of Vision, Modeling, Visualization VMV’03, pages 47–54, 2003.

22. G. Van Den Bergen. Efficient collision detection of complex deformable models using aabb
trees. Journal of Graphics Tools, 2(4):1–13, 1997.

23. Rene Weller and Gabriel Zachmann. Inner sphere trees for proximity and penetration queries.
In Robotics: Science and Systems Conference (RSS), Seattle, WA, USA, June/July 2009.

