
To my parents

who provided me

such a �ne start in life

Diploma Thesis

Exact and Fast Collision Detection

Gabriel Zachmann

����

Contents

� Introduction �

��� Collision Detection � What For� �
��� Classi�cation �

����� Object Representations �
����� Types of Collision Detection �

��	 Outline of the Thesis ��
��
 Preliminaries ��

� Previous Work ��

��� Computational Geometry �	
��� Con�guration Space ��
��	 Non B�Rep Approaches ��
��
 Approximate Algorithms ��
��� Distance Based Algorithms ��
��� Object Hierarchies �
��� Space�Time Approach ��
��� Flexible Objects ��
�� Computing the Exact Time of Collision � � � � � � � � � � � � � � � � �	
���� Discussion �

� Pairwise Collision Detection ��

	�� Introduction ��
	�� Arbitrary Objects ��

	���� Speed�up by Relaxation of Accuracy � � � � � � � � � � � � � � 	�
	���� Point�in�Polygon Test � 	�

	�	 Objects Consisting of Convex Polygons � � � � � � � � � � � � � � � � 	�
	�
 Convex Objects � 	�

	�
�� A Modi�ed Cyrus�Beck Algorithm � � � � � � � � � � � � � � � 	�
	�
�� Separating Planes �
�

	�� Closed Objects �
�
	���� Point�in�Polyhedron Test �
�

	�� Divide and Conquer �
�
	���� Simultaneous Recursive Traversal of Box�Trees � � � � � � � �

	���� Parallelism ��
	���	 Constructing the Box�Tree ��
	���
 Conclusion ��
	���� Results �	
	���� Other Intra�Object Hierarchies � � � � � � � � � � � � � � � � � ��

	�� Other Approaches ��
	���� Using the Z�Bu�er �

� CONTENTS

	���� Using a Convex Algorithm for Non�Convex Objects � � � � � ��

� B�Rep Data Structures ��

�� Data Structures for B�Reps �	

���� Classi�cation ��

���� The DCEL ��

���	 Building the DCEL from the Input File � � � � � � � � � � � � ��

�� Topological�Geometrical Properties ��

���� Topological Properties ��

���� Geometrical Properties ��

� Space Partitioning Methods ��

��� Need for Space Partitioning ��
��� Bounding Volumes ��

����� E�cient Transformation of Boxes � � � � � � � � � � � � � � � � �

��	 Classi�cation ��
��
 Octrees ��

��
�� Basic Insertion Algorithm �
��
�� Finding �Nearby� Objects �
��
�	 Moving an Object �
��
�
 Results �
��
�� Future directions �

��� Grids �

����� Non�axis�aligned Bounding Boxes � � � � � � � � � � � � � � � � �
����� Results �

��� Generalized Octrees ���
��� Without Space Subdivisions ���

� Parallelization �	�

����� Parallel Computation of Bounding Boxes and Transformation
Matrices ��

��� Terminology and Limits ���
��� Detecting Multiple Collisions in Parallel � � � � � � � � � � � � � � � � ���
��	 Parallelizing a Single Object�Pair Request � � � � � � � � � � � � � � � ���

��	�� Fine�Grain Parallelization ���
��	�� Medium Grain ���

��
 Concurrent Collision Detection ��
��� Dual Concurrent Algorithms ���
��� Results ���

� Implementation and Interface ���

����� The Collision Interest Matrix � � � � � � � � � � � � � � � � � � ���
����� Bu�ers Between Application and Collision Module � � � � � � ���

��� Overview of the Module ���
��� Functional Interface ��
��	 Implementation Details of Selected Algorithms � � � � � � � � � � � � ��	

��	�� Time�Stamps ��	
��	�� E�cient Coding ��

��	�	 Collision Detection Among Arbitrary Polyhedra � � � � � � � ���
��	�
 Octree Algorithms ���

��
 Lessons learnt ���

CONTENTS �

� The Potter
 an Application ���

��� A Simple Modeling Algorithm �	�
��� Results �	�

� Collision Detection for Virtual Buttons ���

�	 Conclusion and Future Work ���

���� Conclusion �	�
���� Future work �	�

�� Acknowledgements ���

Bibliography ���

� CONTENTS

Chapter �

Introduction

��� Collision Detection � What For�

Collision detection has many di�erent applications� for example� in physically based
simulation� where moving objects are simulated� In order to determine their behav�
ior over time� the most basic information needed is the time and position of collision
together with the exact point of collision� Only if this information is known exactly�
the collision response can determine how objects will react� according to their mass�
mass distribution� velocities� etc�

Animation is one of many applications of physically based simulation� An ani�
mation system does not really need absolutely correct physical simulation� usually
it su�ces that the behavior and paths of objects look realistic� An animator speci�
�es weight� initial speed� and maybe an inertia tensor� too� and has the simulation
module compute the paths of the objects� Then he compares those with the paths
he had in mind and veri�es that they look realistic� If so� he�s done� otherwise he
tweaks some parameters of the objects until the output matches with his intention�

Another area is robotics� A common application is path planning �ELP���� given
the geometry of an object and the start and end point of the motion of it� the task is
to �nd a path among several obstacles so that the object will never hit any obstacle�

For tele�operation� the goal is usually to avoid any collision between the tool �e�g��
a robot arm�� which is remotely operated� and any fragile obstacle �CAS���

NC milling and CAD also utilize collision detection in order to make sure that
the path of the milling tool does not cut o� any parts with the back of the tool
�HL���

In virtual reality� collision detection can be used to facilitate intuitive interaction
�ADG�
�� natural manipulation of the environment� any kind of physically based
simulation� and modeling� In general� collision detection with appropriate collision
response can make a virtual reality application look more believable �Hubbard	�
�which is supposedly why it is called virtual �reality��� because collision detection
is usually the �rst step towards objects behaving more �real��

� Introduction

��� Classi�cation

����� Object Representations

The internal representation of graphical objects has great impact on the choice of
algorithms� not only for collision detection� but also for rendering� modeling� and
many other parts of an interactive graphical system�

The last �� years� several di�erent approaches to object representation have
emerged� A very basic classi�cation is boundary based vs� volume based�

Boundary based object representations are the classical b�rep �see also Section
��
free form surfaces� �augmented� octrees �CCV��� NAB��� FK���� and hierarchical
b�reps �see Section �����

Among volume based object representations are the well�known octree �YKFT�
�
TS�
� FA��� NAB��� Dyer��� TKM�
�� BSP �PY�� TN��� NAT�� Torres�� Vanecek Jr����
and CSG� Less known representations are sphere splines �MT�� which approximate
an object by moving a sphere along some spline curve while varying its radius� ray�
reps �MMZ
�� which represent an object by a collection of parallel line segments
of varying length and position� and the H�P model� which approximates an object
by slices of a sphere �CM����

Other representations are primitive instancing� constructive solid geometry �a
generalization of primitive instancing�� and sweep representations�

Discussion

All of these object representations have been devised to suit special needs� BSPs
are suitable for hidden�surface removal without z�bu�er hardware and have found
their way into solid modellers� Free form surfaces are good for modeling curved
surfaces with higher continuity� Octrees are also used in solid modellers and for
representing volume data�

Octrees and BSP trees are well suited for intersection computation of polyhedral
objects� however� we are not really interested in the complete intersection of two
polyhedra� which is another polyhedron �the construction problem�� but only in
solving the decision problem whether there is an intersection of two polyhedra or
not�

While BSPs represent an object exactly by intersections of half spaces� octrees
approximate an object by a hierarchical decomposition into cubes� Thus� octrees
cannot provide for exact collision detection algorithms �unless we use augmented
octrees��

Neither BSPs nor octrees seem to be suitable for objects which change their
geometry� because in this case their BSP� or octree�representation would have to be
re�computed� Also� octrees have to be recomputed when the object moves� which
is particularly expensive� because the motion includes rotation �octrees are based
on axis aligned cubes�� In any case� a b�rep representation seems to be needed
in addition to a BSP or octree representation� at least for the renderer� Thus� in
an integrated system� two representations would have to be maintained� which is
always prone to inconsistencies� increases memory requirements� and might destroy
any e�ciency gain�

Furthermore� in order to achieve a fairly reasonable accuracy with octree repre�
sentations� quite a bit of memory has to be spent�

The advantage of b�reps is that they can easily hold topological information
about the geometry� like adjacency and incidence of features �i�e�� vertices� edges�
polygons�� Octrees are better suited for computing mechanical properties like mass�

��� Classi�cation �

volume� inertia tensors� etc� �LR��� TKM�
�� However� if the geometry does not
change� these properties can be pre�computed at load time� and then the octree can
be discarded�

Sphere splines and sphere coverings �the discrete variant of sphere splines �OB���
are also only approximate representations� thus they cannot provide for exact col�
lision detection algorithms�

The considerations above have led to the decision to use solely b�reps for poly�
hedra� and to build any additional data structures� which might be needed for
speed�up� on top of these b�reps�

����� Types of Collision Detection

In a typical application using any kind of collision detection� there are two major
parts within the collision handling module� the collision detection and the collision
response� The collision detection part determines whether simulated objects would
penetrate each other� while the collision response part uses the output of the former
part to prevent this to happen� Although both parts pose interesting problems� we
will focus only on the collision detection part �except in Section ��� For further
reading on the collision response part see �MW��� BJ�� Hahn����

Collision detection algorithms can be classi�ed by several criteria�

� approximate vs� exact� approximate collision detection is usually biased� i�e��
the algorithm tends to favor one answer over the other �see Section 	�
��
and 	���� The bias is caused by using some sort of geometry simpli�cation or
a probabilistic algorithm�

� time as a fourth dimension vs� purely three�dimensional� timeless geometries�
approaches which take time into account are �Hubbard	� Canny����

The time dimension can be used to compute the exact time of a collision� or
it can be used to exploit time coherency in order to speed up the collision
detection procedure�

Timeless approaches consider all objects only at a certain time� but they do
keep in mind that objects probably move � unlike approaches in computa�
tional geometry� If timeless approaches have to provide the time of collision
more accurately� they will resort to some kind of back�tracking method�

� speed�up by object hierarchies �YW	� �above object level or on intra�object
level�� by space subdivision �see Section ��� or by plane sweep �MS��a� AS���

� restriction of the domain� mostly� the class of polyhedra is restricted to convex
ones� Other possible restrictions could be closed objects �see Section 	��� or
polyhedra consisting of convex polygons �see Section 	�	��

� �exible vs� rigid objects� the issue of collision detection between �exible �also
called �soft�� objects �Gascuel	� SWF�	�� which change their geometry with
time� complicates the problem signi�cantly� because either no pre�computation
can be used at all� or the pre�computation has to be updated with every change
of geometry� Self�intersections might have to be checked for� too �MW����
Some algorithms are based on parametric object representations �e�g�� free�
form surfaces�� while others still use b�reps�

� Introduction

� on�line vs� o��line� many applications can do without on�line collision de�
tection� because the application is not driven by real�time input like in VR
environments� for example� path planning in robotics or physically based sim�
ulation for animation�

� incremental vs� �from�scratch�� incremental methods try to exploit results of
an earlier collision query �see Section 	�
�� for an example�� This is a form of
exploiting time coherency�

For a short discussion on di�erent types of collisions see Section 	���
With robotics� collision detection usually does not have to be real�time or exact�

usually path planning can be done o��line� and it su�ces if the path makes sure
that there won�t be any collision� However� if there are moving obstacles whose
motions are not known in advance� path planning will become more like on�line
collision avoidance in a not fully predetermined environment�

Also� animation� NC milling� and CAD usually do not necessarily need real�time
collision detection� It is desirable� however� to have collision detection as fast as
possible� then� the path of the milling tool can be adjusted interactively during
the planning phase� with animation systems� the properties of objects �mass� initial
speed� etc�� can be modi�ed on�line by the animator until the path computed by
the simulation module matches what the animator originally had in mind�

Collision avoidance with tele�operation does need real�time collision detection�
However� usually it does not need exact detection� since there should always be
some safety distance between tool and obstacles� there is no point in doing exact
collision detection� So� the avoidance system may as well utilize approximate object
representations� which help a lot in speeding up the task �CAS���

In virtual reality� the requirements are most severe� Under all circumstances�
the collision detection must be real�time in order to attain the e�ect of immersion�
For physically based simulation within a VR environment� it is also highly desirable
to have exact and accurate collision detection� because there won�t be a second
chance to tweak if the output of the simulationmodule is not satisfactory� Although
interaction in virtual environments �e�g�� pressing 	D buttons� might not really need
the exact point of collision� a detection too inaccurate �e�g�� only bounding box tests�
disturbs the impression of realism�

Common di�culties with collision detection

There are several di�culties that commonly arise when the ultimate goal is real�time
exact collision detection�

� pairwise tests� on the object level as well as on the edge��face�level� a naive
algorithm has to test all possible pairs of edges and faces� and also all possible
pairs of objects �Hubbard	��

� discrete time� this makes it hard to compute the exact time of collision�

Dynamic graphical systems display all objects at certain time intervals� usually
as soon as the application is done with all the computation� like gathering
input data� simulating the environment� moving objects� etc� If the collision
detection module �sees� the environment only at these time steps without any
further information about the future� then it can only check whether there is
a collision or not�

If speeds �translational and rotational� and maybe acceleration are provided�
too� then the module can also compute the exact time of collision �or an

��� Classi�cation �

approximation thereof�� either by computing the next collision in the future�
or by back�tracking and recursive interval bisection �of the time interval��

Recursive interval bisection is in fact a sort of a root��nding algorithm� which
could fail if objects moved too fast� However� this is usually not a problem�
since dynamic systems always try to make time steps as small as possible�

� concave polyhedra� or� even worse� polyhedra which do not consist of convex
polygons and which are not closed�

There are many possible ways to tackle the collision detection problem with
convex polyhedra� for non�convex polyhedra� very few algorithms seem to
be known� For closed polyhedra� we can still resort to algorithms for convex
polyhedra only� by partitioning them into convex pieces� if they are not closed�
there is little we can do�

Classes of polyhedra

Here� we only consider the class of polyhedra which can be represented by b�reps�
i�e�� we do not consider curved surfaces �algebraic or parametric��

� a collection of polygons� in this class� we do not require anything but plane
polygons �objects don�t even have to be closed��

If we allowed polygons whose vertices do not necessarily lie in a plane� the class
would be even larger� Exact collision detection for this class would be very
hard� but then� the de�nition of a polygon with more than four non�coplanar
vertices is unclear� too�

� closed polyhedra� in this case� an �inside� and an �outside� can be de�ned and
exploited�

� polyhedra consisting of only convex polygons� these polyhedra may still be
non�convex�

� star�shaped polyhedra �Toussaint���� this class does not seem to yield any
advantage with respect to collision detection�

� convex polyhedra� this class is probably the smallest reasonable one� It seems
to provide the greatest advantage for incremental algorithms �LC�� LC��
LM���

General methods how to speed up collision detection

There are several features that can be exploited to speed up collision detection�
some of them at the pairwise collision detection level� some of them at the global
level� which is concerned with multiple moving objects�

� All kinds of bounding volumes� for objects �see Section �� as well as on the
polygonal level �see Section 	�� The most common bounding volumes are axis�
aligned boxes� others are bounding spheres and non�axis aligned bounding
boxes �see Section �����

� Space coherency uses the fact that usually large regions of the space are occu�
pied by only one object or none at all� This is the basis for speed�up on the
global� multiple�object level by space indexing methods�

�	 Introduction

� Time coherency exploits the fact that moving objects usually move on a �con�
ceptually� continuous path� Also� every interactive system will try to max�
imize the frame�rate� so that objects move rather slowly compared to the
frame�rate� If the path is even C� continuous and the acceleration can be
estimated in advance� this can be exploited by the use of space�time bounding
volumes �Hubbard	��

� Restrictions of the input class of polyhedra �see paragraph above��

� Pre�processing� by augmenting geometry data with additional data structures�
faster algorithms are made possible� The major drawback with this approach
is that any algorithm based on pre�processing cannot be used whenever ge�
ometry changes often during run�time�

� Introducing bias� which is usually caused by the use of a probabilistic algo�
rithm �see Section 	�
��� Section 	���� It could also be created by approximate
representations�

� Approximate representations of the object geometry� Thus� collision detection
algorithms have to deal only with very special �geometries�� which make them
very fast� Depending on the approximation� the algorithm is usually biased
either towards the �no collision� side or towards the �collision� side�

The approximate representation might be explicit� Stopping after a certain
number of pre�check stages implies an implicit approximation of geometry �see
Sections 	����� 	������ Using only parts of the accurate object representation
is another kind of implicit approximate representation �see Section 	�
����

� Parallelization� there are several possibilities� parallelization on the pairwise
edge�face intersection level ��ne�grain�� parallelization on the global� multiple
collisions level �coarse�grain�� concurrent run of two dual algorithms� one being
generally fast if no collision occurs� the other being fast if collision does occur�
and concurrent run of the application and the collision detection module�

� Adaptive collision detection� if the overall frame rate decreases below a �tol�
erable� threshold� then the collision detection module could switch over to
non�exact algorithms�

� Time�stamps help to avoid looping over all faces or objects in order to mark
some data invalid�

Requirements of collision detection

In general� it is highly desirable that collision detection have the following qualities�
It should be�

� fast �if possible� real�time��

� suitable for a class of polyhedra as large as possible�

� exact �i�e�� the module reports a collision if and only if there is an intersection
of surfaces��

� able to report a witness� i�e�� an edge and�or polygon� where the two objects
collide �if possible� report all collision points��

� able to handle many moving objects�

��� Outline of the Thesis ��

Denition

For a de�nition of the term �collision� see Section 	���

��� Outline of the Thesis

This thesis� goal is to investigate collision detection in virtual reality systems� which
impose real�time requirements� Precise and high�speed collision detection algo�
rithms are developed and elaborated� Several aspects of collision detection are
considered� namely object topologies� dynamic environments� and parallelization�
A module for collision detection has been implemented and integrated in both a
new renderer and an existing input�output�toolkit for virtual environments� All
algorithms have been built on top of the new data structure speci�ed within the
framework of the Fraunhofer demonstration center for virtual reality� An applica�
tion has been developed using the new collision detection module�

The remainder of this thesis is structured as follows�

Section � reviews previous work done in this area� but with widely varying back�
grounds �computational geometry� CAD� robotics� modeling� virtual reality��

Section 	 discusses and develops various algorithms which detect a collision of
a pair of objects� Algorithms are developed for arbitrary and convex topologies�
A new algorithm for arbitrary objects is developed which improves previous algo�
rithms by pre�processing� New probabilistic algorithms are developed for convex
and closed objects� these are further enhanced to exploit temporal coherency� All
of the algorithms just mentioned have been implemented� Two more algorithms are
elaborated� which have not been implemented� yet�

Section
 introduces and discusses a data structure which allows objects to be
classi�ed with respect to their topology and geometry� This data structure has been
incorporated into the collision detection module as well as a full object classi�cation�

Section � develops and discusses data structures and algorithms to solve the
n��problem on the object level� All of them exploit spatial coherency� Two data
structures have been implemented and thoroughly tested� namely octrees and grids�

Section � describes how to parallelize all algorithms presented so far� Four dif�
ferent parallelization schemes have been implemented and tested�

Section � gives an overview of the collision detection module which has been
implemented� documents the interface� and gives some implementation details� in
particular� the time�stamp technique is described� which has been made heavy use
of in the module�

Section � presents the application using collision detection and discusses some
problems with modeling in a virtual environment� This application bene�ts greatly
from the data structure developed in Section
�

Section �� draws conclusions and elaborates on directions for further research�

All implementationwas done in the framework of the new version of IGD�sVirtual
Design� internally called the Y system�

��� Preliminaries

A few remarks on notation� which will be used throughout this document�

�� Introduction

v vector or point� almost always v � R�

P polyhedron� or just a graphical object
VP � EP � FP the set of vertices� edges� and polygons of P � resp�

i� � if and only if

A few algorithms will be presented also in some pseudo�code notation� which uses
the following conventions�

� � � � � a loop over all elements of a set
i � x� � �y � a loop� too

condition �� � � � if condition is true� then � � �
� expression return expression

Chapter �

Previous Work

Collision detection seems to have attracted much attention for the past �� years�
The �rst researchers came from the area of robotics and computational geometry�
Despite its comparatively long history� real�time exact collision detection has not
been tackled except for the past one or two years�

Later on� physically based modeling and animation had a special need for exact
collision detection� Also� modellers and CAD systems in general usually provide a
means of calculating the intersection of objects�

��� Computational Geometry

When computational geometry directed its attention to the problem� the goal at
�rst was to construct the intersection of two polyhedra� Only later on� researchers
realized that the detection problem is interesting by itself and can be solved in fact
more e�ciently than the construction problem�

Being interested in theoretical results� the main goal of research in this area has
been to �nd algorithms with optimal asymptotical worst�case complexity�

All results apply only to the strictly static case� i�e�� all geometrical features of an
object are given in world coordinates� and its orientation�location may be assumed
to be in some special position without loss of generality�

Furthermore� almost all algorithms consider only convex polyhedra�

Construction algorithms

The �rst to present an algorithm which has an asymptotical complexity below the
trivial O�n�� were �MP��a��

Like many linear programming algorithms� the algorithm consists of two phases�
the �rst one searches for a point in the intersection of the two polyhedra� the second
phase then constructs the actual intersection �if any� by taking the dual of the two
polyhedra� forming the union of these duals� and �nally computing the dual of the
result again� which yields the intersection�

The really involved part is the �rst phase� First� the border of each polyhedron
is projected onto the xy�plane �see Figure ����� by walking along these meshes thus
generated and exploiting the fact that the polyhedra are assumed to be convex� the
intersection can be constructed�

The overall complexity is O�n logn� �including transformation in this case��

�� Previous Work

Figure ���� The projection of polyhedra onto a plane can be used to solve the intersection
construction problem�

Another approach uses the notion of distance of polyhedra �see Section 	���
�DK���� In order to compute this distance e�ciently� a hierarchical b�rep repre�
sentation of convex polyhedra is devised �see Figure ����� It is de�ned as follows�
Let P be a polyhedron with vertices V � a sequence P�� � � � � Ph is a hierarchical
representation of P i�

�� P� is a tetrahedron and Ph � P �

�� Pi � Pi���

	� VPi � VPi���

The last condition ensures that the transformation of the hierarchical representation
of a polyhedron takes as much time as transforming the polyhedron itself�

A hierarchical representation can be obtained by the following simple algorithm�
start with the polyhedron� �nd an independent set of vertices� remove these� and
build the convex hull of the remaining ones� The new polyhedron is the next
�lower� element in the sequence� In two and three dimensions� there is always such
a hierarchy �not so in higher dimensions��

The following lemma is the heart of the iterative algorithm� Given two hierar�
chical representations P�� � � � � Ph and Q�� � � � � Qk� let H be a plane supporting Pi�
then either

�� H supports Pi��� or

�� Pi �H
� is a pyramid whose apex has degree at most d�

where d is the degree of the hierarchical representation �it is somewhat similar to
the degree of a graph��

The basic idea of the algorithm for �nding the distance is to �nd the separating
slab� Given two hierarchical representations� we start with a slab separating the
two tetrahedra at the bottom of the hierarchies� resp�� �this can be found trivially
in O����� Then we proceed to the next polyhedra in the hierarchy� we check if the
slab still separates these two� Otherwise we can quickly compute a new separating
slab �by the preceeding lemma��

��� Computational Geometry ��

Figure ���� A hierarchical representation of b�reps can be utilized to calculate the distance of
polyhedra e�ciently�

P Pr

Figure ���� Decomposition of a convex poly�
gon into two monotone polygonal sectors �here
only the left one is shown��

P Ql r

Figure ���� One �possible� phase of the in�
tersection detection algorithm for two convex
polygons� We can discard the lower half of Pr�

The only reference I found in the area of computational geometry which can han�
dle a broader input class is �MS��b�� They give an algorithm which does construct
the intersection of two polyhedra one of which can be non�convex� They use also
the hierarchical representation of polyhedra and achieve the same upper bound�

Detection algorithms

There are also a few works on the detection problem itself �DK�	� CD��� Reichling����
The best upper bound for the detection problem �to my knowledge� is given by
�DK�	�� The algorithm has worst�case complexity of O�log� n�� n � jV j�

However� the algorithm seems to be very involved� and no implementation is
known to me� Also� it assumes the polyhedra to be pre�processed in a certain way
�see below� which does not lend itself directly to moving objects�

A basic step of the algorithm is the intersection of two convex polygons in ��space�
This can be detected with O�logn� time�

The algorithm for this problem decomposes the two polygons P and Q into two
monotone polygonal sectors Pl� Pr and Ql� Qr� resp� �see Figure ��	�� such that
P � Pl � Pr� and Q � Ql � Qr� resp� Then� P and Q intersect if and only if
Pl �Qr �� � and Pr �Ql �� ��

The remaining problem is to �nd out whether or not two monotone polygonal
sectors intersect� This is done by a divide���conquer algorithm� We start with an
edge of P and an edge of Q in the middle of the sectors� resp� If the two edges
intersect� we�re �nished� If they don�t� we can determine one half of the set of
edges of one of the two polygons which we don�t have to consider any further for
intersection �see Figure ��
��

The next tool of the algorithm is a pre�processing which decomposes polyhedra
into drums �see Figure ����� They do not necessarily have to be parallel to any
of the coordinate planes� Given a drum D and a polygon P � O�logn� operations
su�ce to detect whether or not they intersect� The algorithm for this �sub��task is
quite the same as the one above for two polygons� Conceptually� the intersection
of the drum D and the supporting plane of P is needed �which yields a polygon Q
in the same plane as P �� However� in order to achieve the complexity mentioned

�� Previous Work

Figure ��	� Decomposition of a convex polyhedron into drums�

above� the vertices of Q are not stored explicitly �that would introduce O�n� time��
Instead� whenever the algorithm would need a vertex of Q� this is computed on�
the��y� Since the edges of D can be stored in a circular enumeration� this is indeed
possible in time O����

The next sub�task is the intersection of two drums� This is done by a similar
algorithm as in the two�dimensional case for two polygons� Drums are decomposed
into two �in�nite� half�drums� This can be done in time O�logn��

Finally� the polyhedron intersection detection is reduced to �nding two drums
which intersect� By an algorithm very similar to the one given for two polygons�
we can detect an intersection with time O�logn��� n � jEP j� jEQj� We check the
two middle drums of each polyhedron for intersection� If they do intersect� we�re
�nished� If they don�t� the sub�algorithm gives a separating plane� With the help
of this plane and the two drums� we can determine which half of the drums of one
of the polyhedra we can safely discard�

A related issue is �nding intersections between two sets of spheres� This is
treated by �HSS�	�� who give a plane sweep algorithm for an e�cient solution�

��� Con�guration Space

In the �eld of robotics� a completely di�erent approach has been pursued� collisions
are detected in con�guration space �see �ELP���� for example�� The approach seems
to be well suited for path�planning where only one object moves �e�g�� a robot
manipulator��

The basic idea is to represent the moving object M as a point in a so�called con�
�guration space� In con�guration space� all obstacles Oi are usually still represented
as �other� polyhedra� however� depending on the accuracy needed� they might even
become curved surfaces� Con�guration space will be constructed such that it has
the following property� a collision of the M with an obstacle Oi in �real� space is
equivalent to the situation where the moving �point� �representing M � is inside an
obstacle O�

i in con�guration space�

Let�s assume� for the time being� that �real� space is ��dimensional� If M is only
allowed to translate� then the con�guration space can be obtained by calculating
the Minkowsky sum of the obstacles and the M �see Figure ����� This con�guration
space is still ��dimensional�

If M is also allowed to rotate� then for every possible rotation of M there will be
a ��dimensional slice of the ��dimensional con�guration space� This slice in turn is
the Minkowsky sum of all obstacles with M in that particular orientation�

Moving obstacles can be incorporated in this method by computing a con�gura�
tion space�time� which is usually a sequence of con�guration spaces at certain time
steps� where the position and orientation of all obstacles is known�

��� Non B�Rep Approaches ��

M

O

M M
OO

Figure ��
� A moving object M and an obstacle O �left�� and two con�guration space slices
corresponding to two dierent orientations of M �

Using this representation� path planning is solved by �nding a curve �piecewise
linear or smooth� through con�guration space� that does not intersect any of the
con�guration obstacles� Additional constraints can be applied� too� like maximizing
the minimum distance to any obstacle thus path planning is an optimization
problem�

��� Non B�Rep Approaches

As stated earlier �GASF
�� the representation of objects has big impact on collision
detection algorithms� Other representations� e�g�� octree� BSP� CSG� etc�� need quite
di�erent approaches�

Octree� Using plain octrees� any boolean operation becomes trivial �NAB����
In particular� an intersection algorithm can be described as follows� start with the

bounding box of the two objects� Given two octree��subtrees� A�B for intersection�
check if the root boxes overlap� If they don�t� the intersection is empty� If they do�
check for three cases�

�� the root of A is black� the intersection of A and B is B clipped by the root
box of A�

�� the root of A is white� the intersection is a white box bbox�A� � bbox�B��

	� both the root of A and B are black� intersect each son of A with each son of
B�

More elaborate octree schemes can represent b�reps exactly �CCV���� The basic
intersection algorithm is the same� the di�erence is the treatment of some leaf types�
if they are black or white� they will be treated the same way as with ordinary octrees�
However� if both of them are non�homogeneous� the result has to be computed by a
simple intersection algorithm which is capable of intersecting two planes� or a plane
and an edge� etc�

BSPs� BSPs have been used for CAD systems as well� where boolean set opera�
tions have to be performed quite often �NAT�� TN����

An intersection computation of two BSP trees is done by merging the two trees�
Graphically� this operation is equivalent to overlaying the two trees �see Figure �����

Given two BSP trees Q and B for intersection� the algorithm does a traversal of
the BSP tree of object A� At every node of A� the tree of B is partitioned by the
plane at that node� The two halves are then �inserted� at both children�

�� Previous Work

Figure ���� Graphical demonstration of the intersection of two BSP trees�

��� Approximate Algorithms

For collision avoidance systems� an approximate collision detection is quite appro�
priate� �CAS�� use an octree to represent all the objects of a tele�operation system�
In order to be able to update this octree quickly� objects are approximated by prim�
itives� they use �cylspheres�� cylinders with spheres on each end�

The octree is constructed and maintained dynamically� nodes of the tree are split
only when necessary� i�e�� if it contains too many objects� and nodes are merged into
one larger node� if the total number of objects inside them drops below a certain
threshold�

A rather appealing approach to solve the collision avoidance problem quickly is
done by �YK��� through table look�up� If there is only one moving robot manipu�
lator with not too many joints� this approach seems to be fast�

The idea is to consider the position�orientation of the whole robot arm as a single
point in con�guration space �i�e�� every joint adds one dimension�� Conceptually�
a collision detection is done for every possible joint con�guration at initialization
time of the collision table� Later on� a collision detection query would just take
the current joint con�guration as index into this table and thus get the result
immediately�

Since the table is� of course� discrete� the robot has to be enlarged by the �reso�
lution� of the table� in order to have still reliable collision avoidance� Furthermore�
this works only for a static environment�

The hierarchical� approximate representation developed by �Hubbard	� is some�
what similar to the box�tree hierarchy �see Section 	��� and also Section ������ He
uses spheres instead of boxes� and the tree is constructed from bottom to top� First
an octree is constructed for an object� for which a sphere tree is to be built� The
leaves of this octree are enclosed in spheres which will become the leaves of the
sphere tree� These leaves are then enclosed in larger spheres which contain their
children completely�

��	 Distance Based Algorithms

A few algorithms use the notion of distance between polyhedra �see Section 	����
Clearly� two polyhedra do not intersect each other if their distance is greater than
zero� All of the algorithms presented in the literature can handle only convex
polyhedra�

�GJK��� present an algorithm to compute the distance between convex polyhedra
with approximately linear complexity� The algorithm is also suitable for computing
the distance of the spherical extension of convex objects�

The basic idea is to compute a sequence of polyhedra for every given polyhedron�
This sequence is chosen such that the distance of a point to the original polyhedron

��� Object Hierarchies ��

f
e

vb

a
a

A

B

Figure ���� An example of the Voronoi pre�processing for a convex polyhedron� vb is not
in the Voronoi region of fa� so �vb� fa� are not realizing features� In fact� the algorithm will
replace fa by ea�

can be obtained by an iteration over all polyhedra in its associated sequence� With
each step the distance of the point to the particular polyhedron is calculated using
results from the previous step� This sequence of distances will converge to the
distance of the point from the original polyhedron�

�LC�� LM�� elaborate further on this idea by building an incremental algorithm�
It does not need an associated sequence of polyhedra� The idea is to maintain
a pair of closest features �vertex� edge� or polygon� with every pair of objects�
Since� in general� objects move slowly compared to the frame�rate� these features
are probably still the closest ones the next frame� or� if not� the closest features are
in the neighborhood of the old ones�

The polyhedra have to be pre�processed in order to be able to maintain the closest
features quickly� To this end� the Voronoi region to each feature is constructed� The
Voronoi region of a feature is the set of points which are closest to this feature �PS���
�see Figure �����

Let �a� b� be a pair of features of polyhedra A and B� resp�� and �pa� pb� two
points� with pa � a� pb � b� Then �a� b� together with �pa� pb� realize the distance of
A and B� 	 pa is in the Voronoi region of b and pb is in the Voronoi region of a�

If two features �a� b� are given� we can easily check whether or not they do realize
the distance of A�B� If they don�t� we trivially know another feature �either of A
or B� whichever feature fails the test� which is closer to the other one� This is
a by�product of the test� This �closer� feature is incident to the one which was
discarded� We iterate this until we �nd a feature which is closest� Because the
object is convex� this will be the global optimum �not just a local one��

��
 Object Hierarchies

Bounding volume hierarchy� If objects actually consist of several parts which
are organized in a tree� we can try to maintain the corresponding bounding box

�	 Previous Work

t

y

x

t=0

t=1

Figure ���� A space�time bounding parabolic horn �solid line� when an upper bound on accel�
eration is known� shown here only for ������dimensional space� The horn is further bounded
by a �D trapezoid �dashed line��

hierarchy and intersect those �rst in order to determine the parts which have to be
considered further �YW	��

The algorithm for simultaneous traversal of two bounding volume hierarchies is
quite similar to a box�tree traversal �see Section 	������

a�b leaves �� check the parts inside
a�b disjoint �� �
a leaf ��

i � �� � �n�
check a and b�i

b leaf ��
i � �� � �n�

check b and a�i

a�b not leaves ��
i � �� � �n�

a�i intersects b ��
i � �� � �n�

check a�i � b�i

Object subdivision� Galonzo�s

��� Space�Time Approach

The idea with this approach is to consider a dynamic environment in
 dimensions�
space and time �Hubbard	�� Thus we can bound objects not just by volumes in
space but also in time if their velocity is known� If we also know an upper bound
on the acceleration� i�e�� j!x�t�j
 M� �
 t
 "t� then we can bound objects by a
parabolic horn in space time �see Figure ����

These horns are further bounded by axis�aligned
�dimensional trapezoids�
If also the direction of the acceleration is known� then these space�time bounding

volumes can be further bounded �or� cut� by hyper�planes given by !x�t� � d
 ��
With these space�time bounding volumes we can compute for any given pair of

objects the earliest time where they might collide� because they can�t collide as long
as their bounding volumes do not collide� Thus the algorithm �rst calculates the
earliest possible time of collision for each pair of objects� Whenever the application
issues a collision query for the collision module� the module checks the time and

��� Flexible Objects ��

computes only exact collisions for pairs if their earliest possible time is past �the
current time has to be announced to the collision module by the application��

��� Flexible Objects

Collision detection for �exible objects is needed for physically based simulation and
for animation� Typical objects are �soft� objects like clouds� clothes� drops� etc�

Flexible objects are treated by �MW���� They assume an object to be triangu�
lated� Again� the basic algorithm is a pairwise test of all vertices versus all polygons�

More precisely� each vertex of the moving �deforming� object follows a certain
trajectory� these trajectories have to be tested whether or not they intersect with
a triangle of the other object� A correct test would have to test also the surfaces
generated by moving edges against the triangles of the obstacle� However� �MW���
claims that testing only vertices is precise enough for his purposes �physically based
simulation��

Let�s assume the moving objectM is given at two time steps t and t�� furthermore�
let the trajectory of each vertex be linear between t and t�� First� we�ll consider
the case where the obstacle O is stationary� A vertex P went through a triangle
R�� R�� R� i�

P �t� � �P �t��� P �t��t� � R� � �R� �R��u� �R� � R��v

has a solution �t�� u� v� with t� � ��� ��� u � �� v � �� and u� v
 �� This is a 	

linear equation system which can be solved by the usual techniques �e�g�� Cramer�
Gauss� Gauss�Seidel��

The hard case �where the obstacle O moves� too� can be tackled by solving the
equation

P � V t � R� � V�t � ��R� � V�t�� �R� � V�t��u� ��R� � V�t�� �R� � V�t��v

for t� This equation can be expanded to a ��th degree polynomial in t� which can
be solved by standard numerical root �nding techniques �Newton� better� binary
search� because more robust��

A signi�cant speed up can be obtained by some trivial pre�checks�

� if a point lies on the same side of a polygon at both time steps� then it cannot
have gone through that polygon�

� at least one of the end point or start point of a vertex trajectory must lie
inside the bounding box of a triangle

� for a given vertex� we want to know quickly all triangles of the obstacle whose
bounding box contains� say� the start point� This is a range searching problem�
which can be solved quickly by using a point octree �PS����

An entirely di�erent approach is pursued by �Gascuel	�� He uses a di�erent
model for representing �exible objects� they are modeled by a skeleton and certain
�eld functions fi� then� the object is de�ned by

P � R� for which f�P � �
nX
i��

fi�P � � �

�� Previous Work

Thus� a point P can be de�ned �inside� or �outside� i� f�P � � �� or f�P � � ��
resp�

Testing for collisions is done by choosing a certain amount of sampling points on
the surface of every object� �These points stay the same during the whole animation
� they are just moved as the surface is deformed�� Then� the inside�outside�
function of an object A is evaluated for all sampling points of object B� If any of
these is �inside�� a collision has occurred�

This scheme can be sped up quite a bit by evaluating �rst those points which
have been deepest inside the other object last time� To save some memory� we could
just cache that deepest point with each object pair� for the next frame� we would
test this point �rst� then test points in the neighborhood �this is another example
of utilization of temporal coherence��

�SWF�	� use conventional parametric or implicit curved surfaces and an interval
Newton method to �nd the minimum of a certain function� which describes the
conditions for a collision �see below��

Let the two objects be given by parametric surfaces S��u�� v�� t� and S��u�� v�� t�
� In order to be able to simulate collisions accurately� �Gascuel	� establishes three
conditions for a incoming contact collision �see Section 	�� for an illustration�� First�
the two surfaces should have some points in common�

S��u�� v�� t�� S��u�� v�� t� � �

Second� the normal of S� has to be perpendicular to S� at those collision points�
and vice versa� �

�S�
�u�

�u�� v�� t� �N��u�� v�� t�
�S�
�v�

�u�� v�� t� �N��u�� v�� t�

�
� �

Finally� an incoming collision satis�es the constraint that the relative velocities of
the collision point are directed in the same way as the surface normals at that point�

Altogether� an incoming contact collision can be formulated as a constrained
minimization problem

minf t j C�u�� v�� u�� v�� t� � � � D�u�� v�� u�� v�� t� � � g

A similar formulation can be found for implicit surfaces�
An interval Newton method is used to �nd �several� solutions of the above min�

imization problem�
In order to reduce the time interval over which solutions are searched� objects are

enclosed in spheres big enough to contain the object at all times� The minimization
algorithm is used only for the time interval where the two spheres overlap�

For �nding self�intersections of a polygonal representation of cloth� �VMT
�
exploit spatial coherency of the polygon mesh� which is usually a �ne discretization
of the actual �soft� object�

Two properties are established� The �rst gives a criterion for non�self�intersection
of a contiguous area of the model� if we can �nd a �normal� such that

�� all dot products of that �normal� with every polygon�s normal in that area
are positive� and

�� the �D projection along the �normal� of the border of that area does not
intersect itself�

��	 Computing the Exact Time of Collision ��

Figure ����� A condition establishing non�
self�intersection within an contiguous area of
a polygonal object�

Figure ����� A condition establishing non�
intersection between two areas of a polygonal
object�

then this area is free of self�intersections �see Figure ������
Secondly� a condition for non�collision between two adjacent surface areas �at

least one vertex in common� is established� if there is a �normal� such that

�� all dot products of that �normal� with every polygon�s normal of both areas
are positive� and

�� the �D projection along the �normal� of the border of the two areas do not
intersect each other�

then the two areas do not intersect each other �see Figure ������

�� Computing the Exact Time of Collision

An approach which computes the exact time of collision was given by �Canny����
The method described there can deal with any object topology� the motion of the
moving object can be simultaneous translation and rotation� It is convenient that
the motion be linear� Obstacles must be stationary�

The main idea which lead to the solution of the problem is to use quaternions to
represent orientation� Then� the problem can be formulated in ��space�

A rotation of a point about the axis n through an angle of � can be expressed by
the quaternion q � cos �

� � sin �
�n� The rotated point is given by v� � qvq�� where

q� is the multiplicative inverse of q�
A certain position and orientation is a point in con�guration space� All obsta�

cles can be �conceptually� mapped to con�guration obstacles �in general curved
surfaces�� which the object point should not inter�penetrate�

Given two objects A and B� there are three types of contact collisions� �� a
vertex of A touches a face of B� a vertex of B touches a face of A� and an edge of
A touches an edge of B �see Figure ������

For every pair of features �of A and B� that can possibly come into contact there
will be a constraint� All constraints will de�ne an implicit surface in ��space which
the object point must not penetrate on its path�

The constraint for type � � � is�

�� �qfaq��pb � x�� � �� i�e�� the vertex pb of B must lie in the rotated plane of A�

�� �fb�qpaq
� � x� pb�� � � �

�� Previous Work

A A
B

A

B
B

Figure ����� The three dierent types of collision� �a� vertex of A touches face of B� �b�
vertex of B touches face of A� �c� edge of A touches edge of B�

	� two edges ea�eb of A�B� resp�� are in contact� i� �qpaq� � pb� � qeaq� � eb � �

where x and q represent the con�guration of the moving object �i�e�� its con�gura�
tion��

All equations above are polynomials in x and q� If a path is given over time�
then all constraints together are a univariate polynomial� If� in addition� the path
is piecewise linear� then these constraints will become univariate cubics which can
be solved by numerical root �nding algorithms�

As a by�product� �MW��� get the exact time of collision if it is within the next
time step� provided the motion of vertices between two time steps is linear�

���� Discussion

As this section shows� considerable e�ort has been put into research on collision
detection� To my knowledge� however� most of the algorithms presented so far
are meant to be used with animation �in particular� physically based modeling��
path planning for robotics� and computational geometry� Only very few of them
�e�g�� �LC�� Hubbard	� are really concerned about algorithms allowing interactive
collision detection�

Most of the algorithms presented for physically based simulation are too slow
for interactive visualization systems� in my opinion� The few results which are
presented in the literature seem to con�rm that�

Approximate algorithms �e�g�� �YK���� don�t seem to be su�cient in the long
term� because whenever any kind of realistic object �behavior� is desired� the appli�
cation probably needs better information than just �two objects do almost collide��

Algorithms presented in the area of computational geometry are rather e�cient
asymptotically� however� I doubt that they are e�cient for complexities currently
dealt with in interactive visualization systems ���������� polygons��

Interesting approaches are those which cache some information obtained at the
frame before �e�g�� �LC�� Gascuel	�� to be used for the next frame� thus exploiting
temporal coherency which is usually given with interactive visualization systems�

The idea of using sphere trees does not appeal too much to me� The problem
with spheres is that they usually have to overlap very much in order to cover all
polygons� Consequently� if a sphere tree is used as an approximate representation
of polyhedra� it is either very coarse� or there are very many spheres� Furthermore�
if the sphere tree is a divide���conquer data structure for an exact representation�
then many polygons are in several spheres at the same time� which causes many
polygons being tested more often than necessary� For further discussion of this
issue� see Section 	�����

���
 Discussion ��

For collision avoidance systems� the approach of �YK��� seems the fastest to me�
if the environment is otherwise static� But since we are neither interested in collision
avoidance alone� nor in almost completely static environments� this approach has
not been pursued any further�

Alternate representations like octrees and BSPs seem to allow e�cient algo�
rithms for the intersection construction problem� However� the detection problem
is as fast�slow as the construction problem� This renders them less attractive for
interactive systems since we are only interested in the detection� and maybe in a
witness thereof�

For a discussion of bounding volume hierarchies� see Section ����

�� Previous Work

Chapter �

Pairwise Collision Detection

��� Introduction

This chapter will describe several algorithms for pairwise collision detection� i�e��
they solve the following decision problem� given two polyhedra P and Q � do P
and Q intersect� They do not try to solve the construction problem of actually
generating another polyhedron which is the intersection of P and Q�

Di�erent restrictions on the input objects actually imply �or allow� di�erent
de�nitions of the term collision� for example�

� arbitrary objects� � edge e � polygon p � e � p � x � R�

� closed objects�

�x � R� � x � P � x � Q

or�

d�P�Q� �� minf jp� qj � p � P� q � Q g � �

i�e�� their distance does not vanish�

� convex objects�

� edge e � e � P �� �

or�

� plane w � R� � � v � P � v left of w � � v � Q � v right of w

�there are other de�nitions possible�

�a� con�
tact colli�
sion

�b�
proper
collision

Figure ���� For physically based modeling� we are interested only in contact collisions� because
at that particular time new constraints have to be added to the system of constraints�

�� Pairwise Collision Detection

�a� incoming colli�
sion

�b� outgoing
collision

Figure ���� For physically based modeling� we are interested only in incoming collisions�

In the area of physically based modeling� di�erent types of collisions have to be
distinguished �see Figures 	�� and 	���� We distinguish between contact or tangent
collisions and proper collisions� the former being the ones which we are actually
interested in� Furthermore� we distinguish between incoming and outgoing collisions�
doing physically based simulation� we are interested only in the former type� because
this is the case where new constraints have to be created�

Algorithms presented in Sections 	��� 	�
� 	��� 	�� have been implemented and
evaluated�

��� Arbitrary Objects

Every algorithm in this section takes a pair of arbitrary polyhedra as input� which
means in this context just a collection of plane polygons� With this class of polyhe�
dra� collision cannot be de�ned anything else than �two polygons intersect�� �Two
polygons intersect if and only if an edge of one of them intersects with the other��

Polygons must not be twisted� which is trivially true for triangles� If polygons are
not plane� the notion of a polygon normal becomes theoretically void� The Y system
still computes it by using Euler�s formula �Kirk�a� p� �	��� Let n � �nx� ny� nz�
be a polygon normal� For triangles� nx is exactly the signed area of the triangle
projected onto the y�z coordinate plane� Analogous assertions hold for ny and nz�
If we compute the normal of a non�planar polygon by

nx �
�

�

k��X
i��

�yi�� � yi��zi � zi���

ny �
�

�

k��X
i��

�xi�� � xi��zi � zi���

nz �
�

�

k��X
i��

�xi�� � xi��yi � yi���

where � denotes �addition modulo k�� then n � �nx� ny� nz� is the normal of a
�best��t� plane which goes through

P �
�

n

k��X
�

vi

where vi are the vertices of the non�planar polygon� �Sketch of proof� �yi�� �
yi��zi� zi��� is the signed area of the trapezoid below the edge �vi� vi���� projected
onto the y�z plane��

��� Arbitrary Objects ��

P

Q

Figure ���� A counter�example showing that
it is not su�cient to check only edges of P
against faces of Q� also� it wouldn�t be su��
cient to check only vertices of Q for contain�
ment in P �

v

line of edge
supporting

plane of facet
supporting

n

outside

edge

inside

t

u

x

Figure ���� Intersection of edge and polygon

Even with non�planar polygons� most of the algorithms in this section can be used
�as�is� for an approximate collision detection �depending on the accuracy needed��
because they work implicitly with a plane approximation of the polygons� usually
represented by a vertex and the plane normal�

The algorithm in this section can handle the largest class of polyhedra� objects
which are just a collection of plane polygons� These polyhedra are not really polyhe�
dra in the mathematical sense� An object in this class may even be self�overlapping�
and its polygons just should be plane and simple� i�e�� the polygons should not be
self�overlapping� and the boundary must be one connected path of line segments �
they may have holes� though� Thus� an interior can be de�ned for polygons�

It is highly desirable that a collision detection algorithm can handle this class of
polyhedra� since most geometry data� coming from CAD systems� are usually not
well�formed objects� there might be gaps between polygons belonging to the same
object� polygons could overlap� it might even be unclear which polygons belong to
which object#

The basic algorithm presented in this section is �so trivial that it is not even
worth a literature reference� �MP��b�� It goes as follows� Check every edge of
polyhedron P if it intersects any of the polygons of polyhedron Q� and vice versa�
It is not su�cient to check only the edges of P against polygons of Q� besides� it is
not su�cient to check whether there are some vertices inside the other polyhedron
�if they are closed� see Figure 	�	��

Let P�Q be the two polyhedra to be checked for collision� and let EP � FP be the
set of edges and polygons� resp� For the time being� we assume that P and Q are
given in the same coordinate system �not necessarily the world coordinate system��
Let p be an arbitrary vertex of a polygon f with normal n� and let e � �v� u� � E�

be an edge� Then� the pseudo�code of the algorithm will be as follows�

�	 Pairwise Collision Detection

Arbitrary collision check

�e � EP �f � FQ�
n � �v � u� � � �� � ��no collision��

n � �v � u� �� � ��

t �� n��p�u�
n��v�u� fsee Figure ��� g

t �� ��� �� �� � ��no collision��

t � ��� �� ��
x �� u� t�v � u�
x in polygon f �� � ��collision��

x not in polygon f �� � ��no collision��

�e � EQ �f � FP� � � �

Of course� one should not implement this algorithm straight�forward� for details�
see Section ��	�	�

Pre�checks� The algorithm above can be improved by utilizing all kinds of pre�
checks�

We observe� that an edge of P can intersect a polygon f only if f is in the
bounding volume of P � So� before we check edges of P against polygons of Q�
we collect� in a pre�phase� all polygons of Q which are in the bounding volume
of P � Then� edges of P are checked only against those polygons of Q which have
�survived� this pre�phase�

In order to gain some speed� pre�checks must not be expensive� In this case
of collecting polygons� this means� that we can�t do an exact check �polygon in
bounding volume��

In the following� let�s assume that the bounding volumes are boxes �which are
the only bounding volumes implemented� for the time being�� These considerations
apply very similarly to other bounding volumes� too�

This collecting of polygons of Q which are also in the bounding box of P is done
by one pass over all polygons of Q� The bounding box is computed for each polygon
f by a pass over all its vertices� Then� the bounding box Bf of the f is checked for
intersection with the bounding box BQ of Q� The face will be stored in a list if the
two bounding boxes BQ and Bf overlap�

At �rst glance� it might seem very ine�cient to compute the face bounding boxes
from scratch every time the object has moved� One might think that it would be
much faster to pre�compute the face bounding boxes and transform those later on�
However� in all practical cases� polygons have only 	� � �� vertices� and a bounding
box can be found by merely comparing points� while transforming a box costs at
least �� multiplications �see Section �������

Another very simple pre�check is to test whether the edges e of P are in the
bounding box of Q� only in that case� e can intersect with a polygon of Q� There is
no need to do this in a pre�phase� since every edge is considered exactly once� this
pre�check can be done inside the loop over all edges�

Of course� an e�cient implementation does not compute the whole edge bounding
box and then check that against the object�s bounding box �see Section ��	����

An outline of the algorithm including pre�checks is now as follows�

Arbitrary collision check with pre�checks

bounding box of P�Q not yet valid

��� Arbitrary Objects ��

�� calculate bounding boxes of P�Q
collect faces of Q whose bbox overlaps bbox of P �
and store them in C
there is no face of Q whose bbox overlaps bbox of P
�� � no collision
�e � EP �

e not in bbox of Q
�� next edge
�f � C �

e not in bbox of f
�� next edge
� � �

����� Speed�up by Relaxation of Accuracy

As usual� by weakening demands� faster algorithms can be found� There are several
ways to reduce these demands in the case of collision detection� either by doing
only approximate collision detection� or by allowing the algorithm to overlook some
collisions�

Both methods should be available to an interactive system so that the system
has the option of choosing less accuracy when the work load becomes too heavy to
maintain both� accuracy and interactive frame�rates�

Returning after pre�checks� This is a general technique� which yields approx�
imate collision detection algorithms� Most of them are �collision biased�� if they
return with �collision�� there might still be a chance that there is in fact none� if
they return with �no collision�� there is none for sure�

The idea is to skip the point�in�polygon test� i�e�� when an edge bounding volume
overlaps with a polygon�s bounding volume� we assume that the edge will intersect
with the polygon itself�

This relaxation scheme has not been implemented� yet� The method described
next is available�

Allowing the algorithm to miss a collision� If polyhedra are manifold and
closed� we can speed up the pre�phase� which collects all polygonsQ whose bounding
box overlaps with the bounding box P �

The idea is� we don�t want to compute face bounding boxes which we discard right
after we have computed them� Instead� we want to compute only those polygon
bounding boxes which are actually needed� the only problem is� how can we �nd
out whether a polygon�s bounding box is needed without actually calculating it�

In order to achieve that� we use the further approximation that a polygon is
�partially� inside a given box if one of its vertices is inside this box� This assumption
works well for objects which are composed of many small polygons �see� for example�
the Y�Potter� Section ��� it fails badly for objects which consist of only a few
polygons �like a cube��

The collect phase is a loop over all vertices of object Q� each vertex is tested for
containment in P �s bounding box� If a vertex v is inside this box� then we will loop
over all incident polygons �see Section
����� and put them in the list �we will call
this the relaxed collect phase��

Why is the object required to be manifold and closed� Because only in this case�
a complete and consistent DCEL can be constructed �see Section
���	�� If the

�� Pairwise Collision Detection

object is not manifold� i�e�� there are more than two polygons incident to the same
edge� then a loop over all polygons incident to one of the edge�s end vertices cannot
�nd all polygons� If the object is not closed� then such a loop can�t �nish at all�

A collision detection algorithm with such a polygon collect phase is biased to�
wards �no collision�� i�e�� it could miss a collision when in fact there has been one�
On the other hand� the answer �collision� is always correct�

Results� The scenario for the timing tests below is the following� all tests were
done on an SGI Onyx �� R

�� ��� MHz�� rendering was switched o�� so al�
most the whole time was spent for collision detection� which includes calculation of
transformation matrices� transformation of vertices and normals� and the like� The
simple simulation involved ten objects �ying around in a cage made up of six boxes
��walls��� whenever two objects collided �or an object with a wall�� their rotational
and translational speed was reversed� The objects consisted of ���� � ��
�� polygons
�apart from the wall boxes� each consisting of � polygons�� altogether
��� poly�
gons� Every frame� ��
 collision tests were made�

algorithm coll� det� time � frame �msec� avg� speed�up
�pre�checks accumulated� average shortest longest

without any pre�check many seconds per frame
with edge vs� object bbox ���� ��� �	��� ���
with edge vs� face bbox

 ��� ���� ���	
with face collect phase
�
 ��� 	��� ���	
with relaxed collect phase
�� ��� ���� ����

I suspect that the relaxed collecting phase doesn�t speed up things� because all
objects are close to each other� So� eventually� the bounding boxes of all faces have
to be computed� anyway� However� it will speed up collision detection a lot with
the potter application �see Section ����� For a pot of

 polygons� and with
collision detection with the full hand ��� hand objects�� we will get a frame�rate of
� � frames�sec when using the relaxed collect phase� On the other hand� if we use
the exacter face collect phase� the frame�rate will go down to only 	
 frames�sec�
i�e�� in this particular case� the relaxed collect phase yields a speed�up of about ��

Whether the exact face collecting phase speeds up the overall performance or
not seems to depend on the architecture� timing tests showed that it does help on
SGI�s Skywriter �� R	����
� MHz�� but not on Onyx and Indigos�

The pre�check �object bounding box vs� object bounding box� is not taken into
consideration here� because this is something which will be done on the global
collision detection level� above the pairwise object level presented in this chapter�

����� Point�in�Polygon Test

At the heart of the algorithm sits the test whether a given point p is inside a
given polygon f � both in R�� The polygon may be non�convex �it must be plane�
though�� We will assume in this section that the point p is located somewhere in
the supporting plane of the polygon f �

Since this problem is two�dimensional in nature� we will reduce the input data
onto ��space� We will do this by projecting both point and polygon onto one of the
coordinate planes� by throwing away one coordinate� We cannot� however� project
the data always onto the same plane� because this could produce numerically bad
conditioned data �theoretically� the polygon might even degenerate�# To avoid that�

��� Arbitrary Objects ��

q

�a� sum of angles is ��

q

�b� sum of angles is �

Figure ��	� Point�in�polygon test by the sum of angles method

we �rst �nd that coordinate plane among x�y� x�z� and y�z plane� which is �most
parallel� to the polygon� This plane can be identi�ed easily by just �nding that
element of the polygon�s normal n � �nx� ny� nz� which is largest by absolute value�
i�e�� if nx is the largest component of n� then the y�z plane will be �most parallel�
to the polygon�

It is obvious that p � f 	 ��p� � ��f�� where ��x� is the projection of x onto
the coordinate plane�

A real implementation� of course� would not really perform the projection �that
would involve copying the data�# Instead� only two variables are determined� which
are used later on as indices into the three�dimensional data�

Henceforth� we will consider all data to be given in the x�y plane� without loss
of generality� We will denote the vertices of the polygon P by pi� i � ��� n� ��� and
the query point by q�

There are many algorithms to determine the containment of a point in a polygon
�Glassner�a� PS��� Glassner�� Hay�� �

Sum of angles� Let di � pi � q� ��di� di��� � arccos di�di��
jdij�jdi�� j

� dn � d�� Then

q � f ��
n��X
i��

��di� di��� � ��

otherwise�
P

� � �see Figure 	���� The arccos can be used� actually� since angles
can�t get larger than ����� Of course� a real implementation would have to test forP

� �� because of ubiquitous round�o� errors�
For a fast implementation� the arccos should be calculated by look�up tables�

on the other hand� the more vertices a polygon consists of� the more accurate this
look�up table has to be�

One�shot� The idea is to shoot a ray emanating from q in an arbitrary direction
and to count the number of intersections of the ray with the edges of the polygon�
If the number of intersections is odd� then q is inside the polygon� Since the ray
can be any one� it is most e�cient to choose a special one� say� along the �x axis�

It turns out that most of the intersections actually don�t have to be computed
at all� but can be decided by simple coordinate comparisons� Let pi � �xi� yi� be
the vertices of the polygon� and q � �"x� "y� the query point� Then the algorithm is
as follows�

�� Pairwise Collision Detection

q

y

x

y

x

(2)

(1)

(3)

(4)

(5)

(6)

q

Figure ��
� The six possible pre�checks with the one�shot method for the point in polygon
test�

Point�in�polygon test

i � � � � �n � ��
xi
 "x � xi��
 "x
�� no intersection fFig� ���� case �� g

yi � "y � yi�� � "y
�� no intersection fFig� ���� case �� g

yi
 "y � yi��
 "y
�� no intersection fFig� ���� case �� g

xi � "x � xi�� � "x
�� intersection fFig� ���� case �� g

�yi � "y� � �xi � "x� � �yi�� � "y� � �xi�� � "x�
�� no intersection fFig� ���� case �� g
��yi � "y� � �xi � "x� � ��yi�� � "y� � �xi�� � "x�
�� no intersection fFig� ���� case �� g

t � �yi�yi����xi�	x���xi�xi����yi�	y�
yi�yi��

fdon�t calculate the division� g

t � � �� intersection

Why did we use �
� and not ���� Normally� we would have to deal with the
special case that a vertex lies exactly on the ray�� If that happened� we could always
�nd an � � � and U��q� such that U��q� would be completely inside or outside the
polygon �depending on q�� and such that the ray �"x � �� "y� � t��� �� would not hit
any vertex of the polygon anymore� �Because there are only �nitely many vertices��
This o�setting of q by � is implicitly done by the use of �
� and ��� instead of
���� ���� and ����

The test for the sign of t cannot be simpli�ed anymore� because �yi � yi��� �
�	 �yi � "y� � � �and analogously for x��

Of course� an e�cient coding re�uses terms like �yi�� � "y� in the next loop iter�
ation�

Results� Almost all of the ray�edge intersection tests can be decided by the pre�
checks ���� � � ����

�In �D we could resolve this case by taking edge normals into account�

��� Objects Consisting of Convex Polygons ��

p

p

p

0

1

n-1

q

Figure ���� A convex polygon can be partitioned into wedges

pre�check positive

� ��$
� ��$
	 ��$

 �$
� ������	$
� �������$

remaining �$

�Based on about 	 million ray�edge intersection tests�� This shows that for only �$
of all ray�edge intersection tests the line parameter t has really to be computed�

Box�tree for point�in�polygon test� The one�shot algorithm above can be im�
proved by using the box�tree data structure of Section 	��� That data structure
would allow to discard many polygons trivially� not only one at a time as with the
pre�checks from above�

��� Objects Consisting of Convex Polygons

The algorithm above for testing whether a point is inside a polygon still has asymp�
totical complexity O�n� �n � % vertices�� If the objects to be tested for collision
are made of convex polygons� then we can use an asymptotically more e�cient al�
gorithm for the point�in�polygon test� thus the overall collision algorithm will be
asymptotically more e�cient�

Binary search� Let f be a polygon in the plane� p� � �x�� y��� � � � � pn�� �
�xn��� yn��� be its vertices �for convenience� we identify pn with p��� Since the
polygon f is convex� we can partition it into wedges� Each wedge wi is the triangle
formed by the barycenter of the polygon and vertices pi and pi�� �PS��� �see Fig�
ure 	���� Each vertex pi can be represented in polar coordinates ��i� ri�� with the
barycenter being the origin� here� we are interested only in �� Likewise� the query
point q � �"x� "y� can be represented by �"�� "r�� When we have found two vertices
pi� pi�� with angles �i and �i�� such that �i
 "�
 �i��� then we have to check only

whether

�
yi�� � yi
xi � xi��

�
�q � pi� � �� in order to �nd out if q inside f � �This last

check takes O��� time��
Given a query point q� we can �nd the wedge wi� in which it is located� by binary

search in the polar angles of the vertices of f �
Actually� this method works for the larger class of star�shaped polygons� too�

�� Pairwise Collision Detection

q

p

p

p

0

1

n-1

Figure ���� The one�shot method for convex
polygons� exactly two edges are hit by the line�
or none at all�

y

y0 n-1

Figure ���� A bitonic sequence� if cyclically
continued�

The application to moving objects �and hence� moving polygons� in 	D adds a
little problem� In the �D case above� we assumed that the vertices are stored sorted
by angle� This sorting order gets disturbed a little bit when the polygon is moved�
So� we have to transform the query point q back into the coordinate system in which
the vertices have been sorted�

We do not necessarily have to store the angles together with the vertices� we can
as well compute them �on�the��y��

We can do better� however� by combining binary search with the one�shot method�

Binary search and one�shot� Since the polygon f is assumed to be convex� a
horizontal line through a query point q will hit the border of f exactly twice or not
at all �see Figure 	���� If the line doesn�t hit the border at all� q is outside� if it
intersects with two edges �and we know them�� we just have to check whether the
two intersection points are on opposite sides of q or on the same side�

The idea is to �nd the two edges �if at all� by a search similar to binary search�
called Fibonacci search �see �PFTV����� This technique is suitable for searching
a bitonic sequence for a global minimum� A bitonic sequence has exactly one
range where it is monotonically increasing� and one range where it is monotonically
decreasing� We consider the sequence of y�coordinates of the vertices of f � if we
consider them cyclically� they will form a bitonic sequence �see Figure 	���

First� we�ll solve a little sub�task� given vertices pi and pj �i �� j� with yi � "y
and yj � "y� thus� there is exactly one edge �pk� pk���� i
 k � j� which intersects
the line y � "y� �Still� we assume� without loss of generality� that the line y � "y
doesn�t contain any vertex of f � see Section 	������ The algorithm is quite simple�

while ji� jj � � fnot necessarily i
 j g

k �� i�j
�

yk � "y �� i �� k
yk
 "y �� j �� k

Afterwards� �pi� pj� will be the edge which intersects the line y � "y�
Now we can tackle the task of �nding the two edges which intersect y � "y� or

�nding out that the entire polygon is above or below this line�

One�shot with Fibonacci search

i �� �� j �� n� �
w�l�o�g� yi � yj felse swap i� j g

��� Objects Consisting of Convex Polygons ��

p

p

0

n-1

y

i

�a�

y

p
p

p

i j

k
(1)

(2)

(3)

(4)

index

�b�

Figure ����� The possible cases with the Fibonacci search in the one�shot point�in�polygon
test

�yi � "y � yj � "y� � �yi � "y � yj � "y�
�� fFig� ���
�a g

edge �pj� pi� intersects with the line y � "y�
there is exactly one other edge which does so� too�
�nd that one with the sub�program above

yi � "y � yj � "y
�� fFig� ���
�b g

try to �nd k so that yk � "y or yk � minfylg
while ji� jj � �

k �� i�j
�

yk
 "y
�� fFig� ���
�b� case �� g

�nd the two intersecting edges between pi and pk�
and between pj and pk using the sub�program above�
then exit

yk � yi fyk � yi � yk � yj g
�� fFig� ���
�b� case �� g

j �� i� i �� k
yi � yk � yk � yj
�� fFig� ���
�b� case �� g

j �� k
yj � yk fyj � yk � yi � yk g
j �� k

if while runs through �� f completely above y � "y
yi � "y � yj � "y
�� � � �

The loop invariant is f yi � yj g� the loop variant is f ji� jj searrow g�
Precisely� ji��j�j
 �

� ji�jj with every loop iteration� Thus� the overall complexity
is O�logn�� n �%vertices� Plus� no pre�computation is necessary�

The algorithm above has not been implemented� though� because I don�t think
that practical applications of any collision detection will involve objects containing
many polygons with more than a few �	 ���vertices� even if it contained a few
polygons with some �� to ��� vertices� we still think that the hidden constant
within the above algorithm would o�set the gain�

�� Pairwise Collision Detection

��� Convex Objects

The restriction of a geometric problem to convex polyhedra quite often results in
more e�cient algorithms� The same e�ect could be expected with collision detec�
tion�

Convex polyhedra also give rise to several di�erent ways to regard the problem
than arbitrary polyhedra could o�er� one can consider a convex polyhedron not
only as a collection of polygons� edges� and vertices with certain properties � but
also as the intersection of half spaces� or as the convex hull of its vertices� All of
these representations are� in fact� merely di�erent ways to look at the data� because
with each way� all the data �and maybe more� are already there within a b�rep�

These di�erent representations lead to di�erent approaches�
In this section� whenever the term polyhedron is used� we actually mean convex

polyhedron�

����� A Modi�ed Cyrus�Beck Algorithm

Given two convex polyhedra P and Q� the idea is to clip P by Q and vice versa�
�As in Section 	��� it is not su�cient to clip only P by Q� see Figure 	�	�� Since
both of them are convex� the Cyrus�Beck algorithm can be used �FvDFH��� which
will be modi�ed to take advantage of the special situation�

The Cyrus�Beck algorithm works as follows� The polyhedron is represented by
the intersection of half spaces� which are de�ned by the polygons of the object� An
edge is represented by its parametric form�

H � �x� p�n
 �

e � x � u� t�v � u�

where n is the normal of the polygon� pointing to the �outside�� p is an arbitrary
point on the supporting plane of the polygon �e�g�� the �rst vertex�� u and v are the
vertices of the edge� t � ��� ���

By clipping the edge e at H� the permissible interval of t is restricted� we never
have to compute any points� If e is completely inside H� the interval for t will stay
the same �it cannot get larger�� Whenever the permissible interval for t becomes
�� the edge is completely outside the polyhedron�

In the following� we need the notion of entering or leaving edges� An edge e �
�u� v� enters a half space if �v�u� �n � � �this means that we go from �outside� to
�inside� with increasing values of t�� in this case� the permissible interval ��� �� for
t would be restricted from above� if at all� i�e�� � would be replaced by �� � �� The
edge leaves if �v� u� �n � �� and if t got restricted� � would be replaced by �� � ��

The supporting line of the edge e intersects with the boundary of H at

t� �
n � �p � u�

n � �v � u�

if n � �v � u� �� ��
With clipping� the special case where e is parallel to the boundary of H� i�e��

n ��v�u� � �� has to be taken care of� With collision detection of convex polyhedra�
we don�t have to do that� instead� we can just ignore this case and proceed to the
next half space� The reason is� if the two polyhedra do intersect� then there will be
another edge �either of P or Q�� which actually does intersect a polygon� if the two
do not intersect� no harm is done by ignoring the parallel cases�

��� Convex Objects ��

A simple coding of the algorithm would look like�

Cyrus�Beck collision detection

�e � �u� v� � EP

��� �� �� ��� ��
�f � FQ �

t� � n��p�u�
n��v�u�

n � �v � u� � �
�� f���� t���segment of line is outside g

� �� maxf�� t�g
n � �v � u� � �
�� f�t�����segment of line is outside g

� �� minf�� t�g
n � �v � u� � �
�� do nothing
� � � fedge completely outside g
�� next edge

�
 � fedge �partially inside g
�� � P and Q do intersect

do the same again with P and Q swapped

Complexity� Euler�s formula for convex polyhedra tells us� thatO�jV j� � O�jEj� �
O�jF j�� The clipping of an edge by one polygon takes O��� time� thus� the above
algorithm takes O�n�� time� where n � jVP j �we assume jVP j � jVQj��

Reducing the number of edge clippings� As with arbitrary polyhedra� we
can reduce the computational work by a pre�phase� Of course� we can check an
edge against the other object�s bounding box� Also� we can use the face�collecting
pre�phase� which collects all those polygons of Q being �partially� in P �s bounding
box� we will call this set of polygons C� Then� we need to clip edges of P only by
polygons in C�

Why are we allowed to �forget� about certain polygons when clipping edges�
When an edge e of P is clipped by the polygons in C� three cases can occur� First� C
is empty� then e is outside Q� Second� e is completely clipped away by the polygons
in C� then e is completely outside Q �it cannot be �partially� inside Q n bbox�P ���
Third� e is not completely clipped away by the polygons in C� then e is �partially�
inside Q� It cannot be clipped away any further by the �forgotten� polygons outside
the bounding box of P � because Q is convex�

Unfortunately� we cannot trivially abort a clipping operation if the edge is not
�partially� inside the face�s bbox� since we clip edges always by whole half�spaces�

Results� A few timings were done to evaluate the e�ciency of restricting the class
of polyhedra to convex ones� The following table shows the improvements of the
various pre�checks�

pre�check speed�up

none ���
edge vs� obj� bbox ��	
edge vs� face bbox ���

Pre�checks are accumulative� and speed�up is with respect to the run�time of the
algorithm using one pre�check less�

�	 Pairwise Collision Detection

Figure ����� Pulling a plane� supported by three vertices of the polyhedron� towards the point�
skipping many vertices every step might yield an e�cient algorithm to compute the distance
between a point and a polyhedron�

A comparison with the arbitrary algorithm was carried out on an Onyx ����
MHz� and a VGX �
� MHz�� Only two objects moved in a cage of size ��� the
objects having a size of ��� so� almost every frame a collision occurred� The following
table shows the results for the Onyx� each �gure is the average frames�sec on ������
frames� no rendering was done�

algorithm frames�sec per complexity obj��type
� ��� � ��� � ��

arbitrary ��� ��
 ���
convex ��
 ��� ���

spheres

arbitrary ��
 ��� ���
convex ��� ��	 ���

cones

Tests on the VGX showed similar results �just scaled by the clock frequency��
These results astonished me� one would think� that the convex algorithm is much

faster� because the computation for one edge �tested�clipped against all polygons
of Q� seems to be much less# The reason might be� that the arbitrary algorithm
can discard much more computation by simple pre�checks� �I am still somewhat
suspicious� especially because at a �rather early� though� time the convex algorithm
indeed seemed to be faster� � � �

Future directions� Inspired by �GJK���� �LC�� the algorithm sketched in the
following might yield signi�cant speed�up� since it is a divide���conquer method�

Goal� compute the distance of a point to a convex polyhedron� Transform the
point into the coordinate system of the polyhedron� Start with an arbitrary plane
through three vertices of the polyhedron� Pull the plane towards the point by
replacing one of the three supporting vertices with one which is nearer to the plane
�see Figure 	�����

If there is no nearer plane such that the point stays on the same side as before�
then the point is inside the polyhedron�

If there is no nearer plane� then the point is outside� the closest feature of the
polyhedron could be the supporting polygon of the plane� an edge� ora vertex of it�

The vertex replacing step could be done by a divide���conquer method� the
vertices of the polyhedron had to be stored sorted by x�coordinate �and by y�
coordinate and z�coordinate in separate lists��

Beware of cycles� Can�t happen if the distance is strictly smaller with every step�

����� Separating Planes

If we consider a convex polyhedron to be the convex hull of its vertices� we can re�
formulate the condition for collision detection as follows� P and Q do not intersect
if and only if there is a plane h such that all vertices of P are on one side� and all

��� Convex Objects ��

P

Q

plane
separating

Figure ����� Two convex polyhedra can al�
ways be separated by a plane�

P

Q

separating

line through

plane

barycenters

Figure ����� The separating plane is not nec�
essarily perpendicular to the line through the
two barycenters�

vertices of Q are on the other side �see Figure 	����� Such a plane will be called a
separating plane� and P and Q will be called linearly separable�

Let P � fp�� � � � � png� Q � fq�� � � � � qmg � R�� Then

P�Q are linearly separable �	

�w � R�� w� � R �i � p
i �w �w� � � � qj �w �w� � �

We translate the above condition into projective space and get

P�Q linearly separable 	

�pi���� � �w�w�� � � � �qj���� � �w�w�� � �	

�pi���� � �w�w�� � � � ��qj � �� � �w�w�� � �

This means that we can always assume� without loss of generality� that the sepa�
rating plane �if any� goes through the origin�

One might be tempted to think that it would su�ce to compute the barycenter
of the vertices of P and Q� resp�� and then check whether there is a separating
plane perpendicular to the line through these two points� A counter�example can
be found in Figure 	��	�

The algorithm for �nding a separating plane chosen here is inspired by neural
networks� strictly speaking� by perceptrons �also called �feed�forward networks��
�HKP���� There exists a very simple algorithm to compute w for perceptrons�
which is a kind of a probabilistic algorithm �see 	���� but could be turned into a
deterministic algorithm�

Perceptron learning rule

input� Z � fzkg �� f�pi����� ��qj� ��g
guess an arbitrary start vector w�� say� ��� �� �� ��
loop

�z � z �wl � �
�� wl�� �� wl � 	 � z
�z � z �wl � �
�� � w is separating plane

The idea of this algorithm is to �turn� the separating plane a little bit whenever
we �nd a point z which is still on the �wrong� side of it �see Figure 	��
��

�� Pairwise Collision Detection

0 21

2

1
0

Figure ����� Each point found on the �wrong� side pulls the plane normals towards itself�

Termination� If P and Q actually intersect� the algorithm presented above won�t
terminate# This can be �xed in two possible ways� One way would be to stop the
loop after a certain amount of iterations �say ������ and if it had not found a
separating plane� we would just assume that P and Q are not linearly separable�
This would turn the algorithm into a probabilistic one �see also Section 	���� if it
returned with �not linearly separable�� there would be a small chance that the
answer is wrong� On the other hand� if it returned with �linearly separable�� the
answer would always be correct� Thus� the algorithm would be biased towards �not
linearly separable��

There is another possibility to make the algorithm terminate always� we can try
to establish an upper bound on lmax� the maximum number of loop iterations needed
to �nd a separating plane for two linearly separable polyhedra� Let�s assume P and
Q are linearly separable� Given a separating plane w� let D�w� � �

jwj
minfwzig be

the distance of the point z which is closest to the plane w� D�w� is the �goodness� of
w� D�w� � � means w is not a separating plane� Let w� be the �optimal� separating
plane �w�l�o�g�� jw�j � ��� in the sense that Dmax �� D�w�� � maxfD�w�jw �
R
�� jwj � �g� Dmax � � means that P and Q are linearly separable�
As long as the algorithm has not found a separating plane� wl will be updated

by 	 � z �because z �wl � ��� After lmax iterations� wlmax � 	
P

i kiz
i� where ki is

the number of times w has been updated by 	zi� and
P

ki � lmax�
First� we�ll show a lower bound on jwlj�

wlw� � 	
X

kiz
iw� � 	

X
kiD�w�� � 	Dmax

X
ki �

jwlj� � jwlj� � jw�j� � jwlw�j� � 	�D�
maxl

� �

jwlj� � 	�D�
maxl

� �	���

Without loss of generality� we can assume that �i � jzij � �� Otherwise� we could
scale all points zi such that they are mapped on points inside the unit circle� this
would not change the property of linear separability� With this assumption� we can
also show an upper bound for jwlj�

jwl��j� � jwlj�

� �wl � 	zil�� � jwlj�

� jwlj� � 	wlzil � �	zil�� � jwlj�

� 	wlzil � �	zil�� � � � 	� � � �

jwlj� � jw�j� � l	� �	���

Equations 	�� and 	�� yield the desired upper bound on lmax�

	�D�
maxlmax
 jw

lmax j� � lmax	
� �

lmax �
�

D�
max

�	�	�

��� Convex Objects ��

This upper bound is independent of the number of vertices� it depends only on the
�distance� �given by D� between P and Q�

We could use this upper bound in order to determine when the algorithm should
terminate� to do that� we would need to estimate Dmax� probably on�the��y� i�e��
we could improve an estimate of Dmax after each complete pass over all points�

The separating plane algorithm presented so far has several advantages� it does
not depend on the volume of the intersection of the two bounding boxes of P and
Q� because there is no pre�check �yet� depending on that� The greatest advantage is
that a non�collision can be recognized very quickly �non�collision is the worst case for
all other algorithm presented here�� depending on the initial �guessed� separating
plane� non�collision could be established by a single pass over all points� In any
case� non�collision is recognized the faster the further P and Q are apart from each
other�

But there are also some disadvantages� it is probabilistic� and it does not provide
a witness of intersection �i�e�� a polygon and an edge�� On the other hand� when
P and Q do intersect� it can �nd the two vertices which are furthest �inside� the
other object� if we modify the algorithm to weigh 	 by the �badness� with which a
point is on the wrong side�

This algorithm can be used for an approximate collision check with non�convex
objects� This is an example of an implicit alternative representation of non�convex
objects� we approximate them by their convex hull� which is the better the more
�convex� these objects are�

The algorithm is biased� as the result �not colliding� is always correct� even for
non�convex objects�

Because non�collision is the quicker case with this algorithm� whereas collision is
the quicker for most of the other algorithms� it could be used as a concurrent dual
in a parallelization of the collision detection task �see Section �����

Relaxation of �� The algorithm above is a kind of an optimization algorithm�
The goal is to �nd the global maximumDmax� Step by step� the algorithm tries to
move further into the direction of that maximum� However� unlike other optimiza�
tion algorithms� it does not yet reduce the step width 	� the further it moves�

There are �at least� two ways to incorporate that reduction of the step width�
constant and adaptive� The constant reduction just reduces 	 by a constant factor
with every update of the separating plane� This has been implemented� a factor of
��� turns out to be optimal�

The other way would be to base 	 itself on the �badness� of the current separating
plane with respect to the current point which is on the wrong side� Then� an update

would be computed by wl�� �� wl � wlz
jwljjzj

� z� However� it is not clear without

actually trying that this approach is really faster� since the update equation is
computationally much more expensive than the original one� Which one is the best
can only be evaluated by experiments�

Bounding box pre�check� As with previous algorithms� a simple bounding box
pre�phase could be added to the algorithm� let B be the intersection of the bounding
box of P with the one of Q� then� for all points outside B� a separating plane can
be given trivially� On the other hand� if there is a separating plane for the points
in B� then this plane is also a separating plane for all the points in P and Q �this is
true only for convex polyhedra�� Thus� P and Q are linearly separable if and only
if the points in B are linearly separable�

�� Pairwise Collision Detection

0

5

10

15

20

25

30

0.003 0.01 0.1 1

er
ro

r/
%

eta

max. 10 iterations
max. 100 iterations
max. 300 iterations

max. 1000 iterations

Figure ���	� Impact of � and the max� number of iterations on the correctness of the separat�
ing planes algorithm� The error is the number of times where the separating planes algorithm
returned with �collision�� but there was none� in fact�

Incremental collision detection� The separating planes algorithm can be easily
extended to an incremental method �which has been implemented�� for each pair
of objects we store the plane which the algorithm ended up with� When the same
pair of objects is checked for collision the next time� we use this plane for the initial
guess� If objects have not moved very much since the last collision query� this initial
guess will probably be a good guess� If the two objects didn�t collide the last time�
and they don�t collide this time� chances are good that one pass over all points will
su�ce to establish non�collision�

Results� Several tests were carried out to evaluate the feasibility of the approach�
Two convex objects ���� polygons in total� were �ying in a cage of � boxes� two
cones were chosen� because these are convex� but can be arranged in a way like
in Figure 	��	� which is a hard case for this algorithm� Whenever the two objects
collided� they bounced o� each other� no collision detection with walls was done�
Rendering was switched o�� Each �gure is an average over ������ frames�

The �rst test was designed to �nd out the impact of two parameters� the max�
imum number of iterations� and the update parameter 	 �no relaxation of 	�� see
Figure 	�����

With the second test� I tried to measure the e�ect of the method how the initial
plane is computed�� Three methods were taken into consideration� �rst� the trivial
one �w � ��� �� �� ���� Second� an initial plane which goes through the midpoint
between the two barycenters of P and Q� the normal of the plane is the line which
goes through the two barycenters� The third method of calculating the initial plane
is like the second� but using the barycenters of the bounding boxes of P and Q
instead of their true barycenters�

�Invocation� movem �x �� �t ���� co �e ��� �p �eta� �max�iter���
else part in movemCB in movem should be commented in�

�Invocation� movem �x �� �t ���� coordinate �e ��� �p ���� ��� 	 ��� 	 ����
� with
di�erent methods compiled in�

��� Convex Objects ��

2

4

6

8

10

12

14

16

18

20

0.2 0.4 0.6 0.8 1 1.2 1.4

er
ro

r/
%

relax. factor

max. 10 iterations
max. 20 iterations
max. 50 iterations

max. 100 iterations

Figure ���
� Optimum relaxation factor for � with various maximum iterations� the initial �
is always the one which proved to be optimal when doing no relaxation� A relaxation factor of
��� means no relaxation at all�

initial plane error�$ �max� num� iter�� improvement
iter�
 �� iter�
 ��� iter�
 ����
	 � ���� 	 � ���	 	 � �����

trivial �
 	�� ��� ��� ��� ���
barycenters �� ��� ��	� ��� ���� ��	�
bbox barycenters �� ��� ��	� ��� ���� ��	�

This shows that it doesn�t matter very much which initial separating planes we use�
thus� we could as well use the one that is most inexpensive to calculate �which is
w � ��� �� �� ����

The last test�s purpose was to �nd out the optimum factor for the relaxation of
	� Again� the test was done for various maximum numbers of iterations� for each
of those� the optimum initial 	 was chosen� The initial guess for the separating
plane was done with the third method� i�e�� the plane between the barycenters of
the bounding boxes� See Figure 	��� for the results� It is not clear to me why a
relaxation factor helps only in the cases where �� or �� iterations are the maximum�

Future directions� The algorithm presented above seems to o�er further im�
provements� some of them will be summarized brie�y�

� Try the bounding box pre�phase described above�

� Use w � z for a measure of how much w should be updated�

� An improvement �hopefully� of the incremental method� Store also those
points � which are closest to the separating plane� For convex objects� we
can �nd two points which are closest to the sep� plane by just doing a local
minimization� The new closest points should be the stored ones or some in the
vicinity# Actually� �closest� means wz is minimum�maximum for z � P
Q�
resp� If these new two �closest� points are still on the �right� sides �i�e��

�� Pairwise Collision Detection

wz� � � for optimum z� � P � wz� � � for optimum z� � Q�� then P and Q
are still linearly separable�

The veri�cation that a certain point is indeed closest to the separating plane
can be done quickly by observing the following� if all neighbor vertices are fur�
ther away from the plane� then this point is the closest point �the polyhedron
is assumed to be convex��

If a certain point is not the closest point� we can just move towards the one
which is closer� Since the polyhedron is convex� this will eventually terminate
with the closest point�

��	 Closed Objects

For closed polyhedra� we can de�ne an interior and an exterior of the object� Col�
lision of two closed polyhedra can be de�ned as�

P�Q collide �	

�p � p � P � p � Q

If we �nd such a point p� we�re done� The problem with this approach is to prove
that there is not such a point for given P and Q�

This suggests another probabilistic approach� generate a certain amount of ran�
dom points and check if one of them is in P as well as in Q� If we �nd one� return
�collision�� if we don�t� return �no collision�� In contrast to the separating planes
algorithm �see Section 	�
���� this algorithm is biased towards �no collision��

An advantage of this algorithm� compared with the separating planes algorithm�
is that it can be applied to a much larger class of polyhedra�

In order to decrease the error probability� we don�t want to generate random
points for which we know trivially that they are not in P � Q� this is the case for
points which are not in bbox�P � � bbox�Q��

Since the test points are randomly chosen� we could also choose a few special
points� If P and Q intersect� then it is very probable that a vertex of P is inside Q
or vice versa� Thus� we could �rst test the vertices of P �or just some of them� for
containment in Q and vice versa� then� if none of them is contained� we try some
other random points� In order to reduce the probability of �worst�case constella�
tions�� one should not make a contiguous pass over all vertices� because they tend
to be close to each other �i�e�� if a vertex is not in Q� then the succeeding vertex
probably isn�t either�� instead� vertices should be chosen in a randomly fashion �this
is called stochastic pre�conditioning��

A short excursion on probabilistic algorithms� A quick tour through Monte�
Carlo algorithms will set the algorithm outlined above into the context of probabilis�
tic algorithms �Reischuk��� BB��� BDG��� I will do that by example of polyhedra
and points�

Monte�Carlo algorithms are the class of probabilistic algorithms which always
terminate� but which are occasionally wrong� Other classes are Las�Vegas� Sher�
wood� and approximation algorithms� The algorithm developed in this section is a
Monte�Carlo algorithm�

We need to identify the language� which is in this particular case all pairs of
polyhedra �together with their transformation�� i�e��
L � f�P�Q� j P�Q polyhedra in R�� P �Q �� �g � f�P�Q� j polyhedrag � &��

��� Closed Objects ��

Now we need to choose the set of witnesses W which tell us� whether a pair
�P�Q� is in L� Here� W � fw � R�g� A witnessing system is a set of witnesses plus
a predicate � such that

�x � & �w � W � ��x�w� � true � x � L

We will call such a w a witness� However� there might be false witnesses� for which
��x�w� � false � x � L#

With the algorithm considered here� false witnesses are those test points which
are not in P �Q� even though P �Q �� �� The predicate � is a point�in�polyhedron
test �see Section 	������

Error estimation� The average error of a witness w is the probability that w is
a false witness� A Monte�Carlo algorithm is called p�correct if we can establish a
lower bound on the �credibility� of all witnesses� i�e�� if

P �arbitrary� random w � W is witness for x� � p � �

Unfortunately� it is not clear to me whether there is such a lower bound for the
algorithm above� i�e�� whether there is a q � � such that

P �w � bbox�p� � bbox�Q� is witness jP �Q �� �� �
vol�p �Q�

vol�bbox�P � � bbox�Q��
� q

����� Point�in�Polyhedron Test

The heart of the algorithm is the test whether a query point p is inside a polyhedron
P or not� The algorithm chosen here is the one�shot method again� because it works
for non�convex polyhedra� too� also� it proved to be very fast� because most of the
work can be done by simple coordinate comparisons �see Section 	������

In contrast to the �D case� the 	D case bears some intricacies� it is not trivial
at all to resolve the singular cases where the ray emanating from the query point
p hits an edge� a vertex� or lies in the plane of a polygon �see Figure 	����# In the
�D case� these can be solved by choosing the right comparisons� In the 	D case�
several authors have tackled the problem �CT��� Kalay��� Linhart���

The case �ray hits edge� can be decided by the two normals of the incident faces�
if the two dot products of the ray and the normals have the same sign� then the ray
will enter or leave the polyhedron� if the signs are opposite to each other� then the
ray will stay inside or outside�

Kalay tries to resolve the case where the ray hits a vertex in the following way
�Kalay��� Section ��	�� project the normals of all faces incident to the vertex onto
the ray� if all of them point in the same direction� then the ray will change sides�
However� I think this is wrong� Figure 	����b� shows a simple counter�example�

Linhart �Linhart�� o�ers a solution by summing certain angles which are ob�
tained by projecting all incident faces onto a plane normal to the ray� Then� the
sign of the sum of angles determines whether to increment the �inside�outside��
counter or not�

However� with our special application in mind� we don�t need to bother about
these singular cases� if one should occur� we would just dismiss that query point
and try another one�

�� Pairwise Collision Detection

q

q

�a� ray hits edge

q

�b� ray hits vertex

�c� ray in plane of
polygon

Figure ����� Singularities with point�in�polyhedron test

Results� Test runs �with 	 objects� ��� polygons in total� �ying around in a
cage of � boxes� showed the following results�

��� random points �� frames�sec
test vertices �rst� then ��� random points �� frames�sec
���� random points � frames�sec

When all the vertices were tested �rst� it turned out that a collision was found by
a random test point but not by a vertex in less than �$ of all collision detection
requests� even with ���� random test points�

��
 Divide and Conquer

Although the exact algorithms presented in previous sections o�er some possibilities
for speed�up� pro�lings have shown that most of the time is spent in the inner loop
over all polygons �which is inside the loop over all edges��
�$ are spent in the
single line which checks for an overlap of the edge bbox and another
�$ are spent
in the loop construct which loops over all faces#

So� the only way to speed up this sort of algorithms would have to be some
method which allows us to skip many edges or faces at the same time� i�e�� we have
to eliminate the pairwise weakness �see Section ������ page ��� The idea is to use a
divide���conquer approach� It was inspired by BSP trees� k�d trees� and balanced
bipartitions �known in the area of VLSI layout algorithms� see �Lengauer���� Of
course� this involves a pre�processing step� and as such� this algorithm cannot be
used whenever geometry changes during run�time�

The basic outline of the algorithm is �conceptually� as follows �see Figure 	�����
we divide the bounding boxes of P and Q into two halves �we call them �left� and
�right� sub�box�� we partition the set of edges of P into two sets depending whether

��� Divide and Conquer ��

a.l.l

a.l.r

a
b

a.l

a.r

b.r

b.l
Q

P

Figure ����� Only faces and edges of overlapping boxes have to be checked for intersection�
For example� edges of a�l don�t have to checked with polygons of b�l �

they are in the left or the right sub�box� in the same manner� we partition the set
of polygons of Q� When checking edges of P and faces of Q for intersection� we �rst
check whether bbox�P � intersects bbox�Q� �the non�aligned ones#�� if they don�t�
we�re �nished� If they do� we check all
 pairs of sub�boxes of P and Q� resp�� for
intersection� Obviously� we don�t have to check edges against polygons� for which
their boxes don�t intersect�

Of course� the sub�box pre�processing is done recursively� which is why I will call
the whole data structure a box�tree�

The intersection test of two boxes will be done by a variant of the Cyrus�Beck
algorithm� For line clipping� there is a specialized version called Liang�Barsky
algorithm �LB�
�� �We assume that the reader be familiar with both algorithms��
We can do even better by exploiting the very special geometry of boxes and by
clipping all box�edges parallel to each other at the same time� this will enable us
to re�use many results during one step� and� even better� to re�use most of the
intersection computations when descending down one level in the box�tree� Special
features of boxes are�

 the faces form three sets of two parallel faces each�

 the edges form three sets of four parallel edges each�

 when a box is divided by a plane perpendicular to an edge� all edges retain
their entering�leaving status�

����� Simultaneous Recursive Traversal of Box�Trees

The algorithm to be developed in this section has the following pseudo�code outline�

Simultaneous traversal of box�trees

a � box in P �s box�tree� b � box in Q�s box�tree
a�l� a�r are left and right sub�boxes of a

a� b don�t intersect �� exit

b leaf
��

a leaf

�	 Pairwise Collision Detection

��
elementary operation on box�tree leaves
return

a not leaf
��

a�l�b intersect �� traverse �a�l�b	

a�r�b intersect �� traverse �a�r�b	

b not leaf
��

a leaf
��

a�b�l intersect �� traverse �a�b�l	

a�b�r intersect �� traverse �a�b�r	

a not leaf
��

a�l�b intersect
��

a�l�b�l intersect �� traverse �a�l�b�l	

a�l�b�r intersect �� traverse �a�l�b�r	

a�r�b intersect
��

a�r�b�l intersect �� traverse �a�r�b�l	

a�r�b�r intersect �� traverse �a�r�b�r	

In this sub�section� we are not concerned with the �elementary operation on box�
tree leaves�� In fact� the simultaneous traversal of box�trees could be used for other
operations� too� the only part that would have to be re�de�ned is that �elementary
operation� which provides the �semantics� of the overall operation �see �NAT��
for a similar point of view regarding BSP trees��

We are also not concerned with constructing the box�tree � this will be taken
care of in Section 	���	�

Box�box intersection test� When we start descending two box�trees simulta�
neously� we initially have to check if bbox�P � and bbox�Q� intersect� This is done
by clipping the edges of bbox�P � with bbox�Q� and vice versa �in fact� the method
developed here is a special adaption of the algorithm of Section 	�
����

When clipping edges by a box� we will do this in the local coordinate system of
the box �i�e�� the box is axis�aligned with respect to this coordinate system��

We will consistently maintain two representations of each box� one in its own�
local coordinate system �which is very simple�� and one in the the local coordinate
system of the other box�

Terms and notations� We have to de�ne a few terms and notations� In the
following� a box A will be represented by a point p� three unit vectors bx� by� bz� and
'P
x �'

P
y �'

P
z �see Figure 	���� The point p will be called the origin of the box A�

it will be maintained in the coordinate system of A and in the coordinate system
of B�

The two planes which are perpendicular to the local x�axis bx will be called
x�planes� in particular� the x�plane which contains q will be called xl�plane� the
x�plane which goes through q � �'Q

x � �� �� will be called xh�plane� Similarly� we
de�ne y� and z�planes�

��� Divide and Conquer ��

b

b

b
x

y

z

x2

x0

x3

y1

y2 y3

z1

z2 z3

y0

x1

z0

∆

∆

∆

p

A

A

A
y

z

x

Figure ����� Designations of certain box features�

Edges are grouped into three families� Each family consists of the four edges of
the box which are parallel to each other� They will be called x�� y�� and z�edges�

Given two boxes A and B� we will check if they intersect each other by calculating
a parameter interval of every edge of A corresponding to that part of the edge which
is inside B� and vice versa� Line parameters of edges of A will be denoted by t�s�
those of B by s�s� The line interval of a clipped edge will be called t�interval� The
line interval of edge x� of A will be denoted by T x� �

�
T x�
min� T

x�
max

�
� Line parameters

are always with respect to p or q� resp�� i�e�� t�� � � is the point p for � � fx� y� zg�

tx�xl denotes that line parameter where edge x� of A intersects with the xl�plane
of B� all other t� and s�parameters are de�ned analogously�

First intersection test� This paragraph describes the procedure of the �rst in�
tersection test of the roots of two boxtrees�

First� we compute the line intervals of the x�edges of A clipped at B �see Fig�
ure 	����� To do that� we need to calculate the line intervals txi�� of all edges inter�
sected with all planes of B� Simple calculus yields tx�xl �

qx�px
bxx

� Similarly�

tx�xh �
qx � px �'B

x

bxx
� tx�xl �

'B
x

bxx

which exploits the fact that the faces xl and xh are parallel� We can also use the
fact that all x�edges are parallel�

tx�xl �
�q � �p �'A

y b
y�� � ���� �� ��

bx � ���� �� ��
� tx�xl �'A

y

byx
bxx

Analogously� we can calculate all the other line parameters� which can be summa�
rized in the following table�

�� Pairwise Collision Detection

xh’-plane
xl’’-plane

x

y

z

p

q

b

b
b

A

x

y
z

q’’

left sub-box B.l

B

right sub-box B.r

cB
x

Figure ����� Splitting boxB yields new line parameters for edges ofA� cut�plane perpendicular
to x�edges of B�

t�����
�

x� x� x� x	

xl qx�px
bxx

tx�xl �'A
y
byx
bxx

tx�xl �'A
z
bzx
bxx

tx�xl �'A
z
bzx
bxx

xh tx�xl �'A
y
byx
bxx

tx�xh �'A
y
byx
bxx

tx�xh �'A
z
bzx
bxx

tx�xh �'A
z
bzx
bxx

yl
qy�py
bxy

tx�yl �'A
y

byy
bxy

tx�yl �'A
z

bzy
bxy

tx�yl �'A
z

bzy
bxy

yh tx�yl �'A
y

byy
bxy

tx�yh �'A
y

byy
bxy

tx�yh �'A
z

bzy
bxy

tx�yh �'A
z

bzy
bxy

zl qz�pz
bxz

tx�zl �'A
y
byz
bxz

tx�zl �'A
z
bzz
bxz

tx�zl �'A
z
bzz
bxz

zh tx�zl �'A
y
byz
bxz

tx�zh �'A
y
byz
bxz

tx�zh �'A
z
bzz
bxz

tx�zh �'A
z
bzz
bxz

We will call this table a t�table for the x�edges of A� We need three t�tables for the
three sets of x�� y�� and z�edges of A� There will be similar tables for the edges of
B� which we will call s�tables�

Note that most of the terms in the table can be re�used� for example� the term

'A
z
bzx
bxx

has to be computed only once per table� i�e�� we can get tx�xl and tx�xh by one

multiplication and two additions�

Each quotient
bij

bk
l

is needed exactly once for the calculation of all initial t� and s�

tables� but we will need them later with the box�splitting step� so we will store them
in a table� Most of the entries in a t�table can be computed by one multiplication
and one addition�

In order to compute the t�intervals� we have to calculate the minimum and the
maximumof the columns� there will be one minimumand one maximumper column�
each on three values� The special geometry helps here� too�

�i � txi�� entering �	 tx��� entering �

t���l entering �	 t���h leaving�

This eliminates �
� of all entering�leaving tests� Furthermore� the status of edges will

be the same during the whole traversal down the box�tree� again� we can keep this
information in an array of �ags which has to be set up only once in the beginning
of the traversal �tx��l entering �	 bx� � ���

��� Divide and Conquer ��

Descending the box�tree� For a given pair �a� b� of boxes� all the information
on their intersection status is given by a set of � 	
 line parameter intervals�
The basic step of the traversal is the test �a�b�l intersect� and �a�b�r intersect��
We will do this by bisecting the box b into its left and right sub�box� which is
equivalent to computing two new sets of � 	
 line parameter intervals� one
describing �a� b�l�� the other describing �a� b�r�� In this sub�section we will describe
the splitting of the box b� splitting a is quite analogous�

Splitting seems like a lot of computational work� however� half of the information
stored in a set of line parameter intervals for �a� b� can be re�used for �a� b�l�� the
other half for �a� b�r��

New line parameters are always computed in the other box�s local coordinate
system� We will denote the new t�values �where a line intersects with a face� by �t����
for edges of a clipped at b�l� and by ��t���� for edges of A clipped at b�r� resp�

Splitting B at cBx � All �t�values equal t�values except for �t��xh and ��t��xl �see
Figure 	����� Fortunately� �t��xh ��� t��xl� So we have to compute the following values
�t�ixh�

�ni � � � 	

x
q��x�px
bxx

�tx�xh �'A
y
byx
bxx

�tx�xh �'A
z
bzx
bxx

�tx�xh �'A
z
bzx
bxx

y
q��x�px
b
y
x

�ty�xh �'A
x
bxx
b
y
x

�ty�xh �'A
z
bzx
b
y
x

�ty�xh �'A
z
bzx
b
y
x

z
q��x�px
bzx

�tz�xh �'A
x
bxx
bzx

�tz�xh �'A
y
byx
bzx

�tz�xh �'A
y
byx
bzx

Again� �� of all entering�leaving tests can be eliminated by noticing that �t��xh entering 	
��t��xl leaving 	 t��xh entering �

These new �t� and ��t�values are consistent with the old t�values in the sense that
�t � � and ��t � � describe the same point�

The new line parameter intervals of the clipped x�edges of A are�

t��xh entering f 	 t��xl leaving g
��

�T�i ��
�
maxfT�i

min�
� t�ixhg � T

�i
max

�
��T�i ��

�
T�i
min � minfT�i

max�
� t�ixhg

�
t��xh leaving f	 t��xl entering g
��

�T�i ��
�
T�i
min � minfT�i

max�
� t�ixhg

�
��T�i ��

�
maxfT�i

min�
� t�ixhg � T

�i
max

�

The new origins of the left and right sub�boxes of B in B�s own coordinate system
are

q� �� q

q�� �� q � �cBx � �� ��

In a similar manner� we have to split the s�tables of box B by using most of the
values of the old s�values and computing the following new ones �see Figure 	�����

�� Pairwise Collision Detection

b
x

x

y

z

A

b by z

p
q

q’’

left sub-box B.l

right sub-box B.r

B2 new y-edges

Figure ����� Splitting boxB yields new line parameters for edges of B� cut�plane perpendicular
to x�edges of B�

�s�����
�

y� y	 z� z	

xl
px�q

��
x

b
y
x

�sy�xl �'B
z
bzx
b
y
x

px�q
��
x

bzx

�sz�xl �'B
y
byx
bzx

xh �sy�xl �

A
x

b
y
x

�sy�xh �'B
z
bzx
b
y
x

�sz�xl �

A
x

bzx

�sz�xh �'B
y
byx
bzx

yl
py�q

��
y

b
y
y

�sy�yl �'B
z

bzy
b
y
y

py�q
��
y

bzy

�sz�yl �'B
y

byy
bzy

yh �sy�yl �

A
y

b
y
y

�sy�yh �'B
z

bzy
b
y
y

�sz�yl �

A
y

bzy

�sz�yh �'B
y

byy
bzy

zl
pz�q

��
z

b
y
z

�sy�zl �'B
z
bzz
b
y
z

pz�q
��
z

bzz

�sz�zl �'B
y
byz
bzz

zh �sy�zl �

A
z

b
y
z

�sy�zh �'B
z
bzz
b
y
z

�sz�zl �

A
z

bzz

�sz�zh �'B
y
byz
bzz

One can see� that only half of the terms 'B
�
b��
b��

in the second and fourth column

have to be computed�
The new �S� and ��S�intervals are obtained from the old S�intervals by computing

�Sy� � ��S
y� �Sy� � ��S

y�

�Sz� � ��Sz� �Sz� � ��Sz�

from scratch from the �s�values above� by shifting some S�intervals�

��Sxi ��
�
maxf�� Sximin � cBx g� S

xi
max � cBx

�
�Sxi ��

�
Sximin�minfSximax� c

B
x g
�

and by copying some�

�Sy� �� Sy� �Sy� �� Sy� �Sz� �� Sz� �Sz� �� Sz�
��Sy� �� Sy� ��Sy� �� Sy� ��Sz� �� Sz� ��Sz� �� Sz�

That is�
 intervals �out of ��� have really to be computed�
The new origins of the left and right sub�boxes of B in A�s local coordinate

system are

q� �� q

q�� �� q � cBx b
x

��� Divide and Conquer ��

x

y

z

p

q

b

b
b

B

A

x

y
z

q’’
yh’-plane
yl’’-plane

right sub-box B.r

left sub-box B.l

Figure ����� Splitting boxB yields new line parameters for edges ofA� cut�plane perpendicular
to y�edges of B�

Splitting B at cBy � This is quite similar to splitting it at cBx � we include cal�

culations here just for sake of completeness� We have to compute values �t�iyh �see
Figure 	�����

�ni � � � 	

x
q��y�py
bxy

�tx�yh �'A
y

byy
bxy

�tx�yh �'A
z

bzy
bxy

�tx�yh �'A
z

bzy
bxy

y
q��y�py

b
y
y

�ty�yh �'A
x

bxy
b
y
y

�ty�yh �'A
z

bzy
b
y
y

�ty�yh �'A
z

bzy
b
y
y

z
q��y�py
bzy

�tz�yh �'A
x

bxy
bzy

�tz�yh �'A
y

byy
bzy

�tz�yh �'A
y

byy
bzy

The new �T � and ��T �intervals are obtained like above�
The new �s�values to be computed are �see Figure 	��	��

�s�����
�

x� x	 z� z	

xl
px�q

��
x

bxx

�sx�xl �'B
z
bzx
bxx

px�q
��
x

bzx

�sz�xl �'B
x
bxx
bzx

xh �sx�xl �

A
x

bxx

�sx�xh �'B
z
bzx
bxx

�sz�xl �

A
x

bzx

�sz�xh �'B
x
bxx
bzx

yl
py�q

��
y

bxy

�sx�yl �'B
z

bzy
bxy

py�q
��
y

bzy

�sz�yl �'B
x

bxy
bzy

yh �sx�yl �

A
y

bxy

�sx�yh �'B
z

bzy
bxy

�sz�yl �

A
y

bzy

�sz�yh �'B
x

bxy
bzy

zl
pz�q

��
z

bxz

�sx�zl �'B
z
bzz
bxz

pz�q
��
z

bzz

�sz�zl �'B
x
bxz
bzz

zh �sx�zl �

A
z

bxz

�sx�zh �'B
z
bzz
bxz

�sz�zl �

A
z

bzz

�sz�zh �'B
x
bxz
bzz

From this table we compute

�Sx� � ��S
x� �Sx� � ��S

x�

�Sz� � ��S
z� �Sz� � ��S

z�

We copy

Sx�� Sx�� Sz�� Sz� �� �S

Sx�� Sx�� Sz�� Sz� �� ��S

�� Pairwise Collision Detection

x

y

z

A
B

b

b b

x

y z

p

Figure ����� Splitting boxB yields new line parameters for edges of B� cut�plane perpendicular
to y�edges of B�

We shift�clip

��Syi ��
h
maxf�� Syimin � cBy g� S

yi
max � cBy

i
�Syi ��

h
Syimin �minfSyimax� c

B
y g
i

The new origins of the left and right sub�boxes of B in B�s own coordinate system
are

q� �� q

q�� �� q � ��� cBy � ��

and in A�s local coordinate system they are

q�� �� q � cBy b
y

q� �� q

Splitting B at cBz � We have to compute values �t�izh �see Figure 	��
��

x

y

z

p

q
q’’

b

b
b

A

zh’-plane

zl’’-plane

xh-planexl-plane

x

y
z

left sub-box B.l

right sub-box B.r
B

Figure ����� Splitting boxB yields new line parameters for edges ofA� cut�plane perpendicular
to z�edges of B�

��� Divide and Conquer ��

x

y

z

A
B

b

b b

x

y z

p
q

q’’

2 new x-edges

right sub-box B.r

left sub-box B.l

Figure ���	� Splitting boxB yields new line parameters for edges of B� cut�plane perpendicular
to z�edges of B�

�ni � � � 	

x
q��z �pz
bxz

�tx�zh �'A
y
byz
bxz

�tx�zh �'A
x
bzz
bxz

�tx�zh �'A
x
bzz
bxz

y
q��z �pz
b
y
z

�ty�zh �'A
z
bxz
b
y
z

�ty�zh �'A
z
bzz
b
y
z

�ty�zh �'A
y
bzz
b
y
z

z
q��z �pz
bzz

�tz�zh �'A
z
bxz
bzz

�tz�zh �'A
z
byz
bzz

�tz�zh �'A
y
byz
bzz

See Figure 	����

�s�����
�

x� x	 y� y	

xl
px�q

��
x

bxx

�sx�xl �'B
y
b
y
x

bxx

px�q
��
x

b
y
x

�sy�xl �'B
x
b
x
x

b
y
x

xh �sx�xl �

A
x

bxx

�sx�xh �'B
y
byx
bxx

�sy�xl �

A
x

b
y
x

�sy�xh �'B
x
bxx
b
y
x

yl
py�q

��
y

bxy

�sx�yl �'B
y

byy
bxy

py�q
��
y

b
y
y

�sy�yl �'B
x

bxy
b
y
y

yh �sx�yl �

A
y

bxy

�sx�yh �'B
y

byy
bxy

�sy�yl �

A
y

b
y
y

�sy�yh �'B
x

bxy
b
y
y

zl
pz�q

��
z

bxz

�sx�zl �'B
y
b
y
z

bxz

pz�q
��
z

b
y
z

�sy�zl �'B
x
bxz
b
y
z

zh �sx�zl �

A
z

bxz

�sx�zh �'B
y
byz
bxz

�sy�zl �

A
z

b
y
z

�sy�zh �'B
x
bxz
b
y
z

�Sx� � ��S
x� �Sx� � ��S

x�

�Sy� � ��S
y� �Sy� � ��S

y�

Sx�� Sy�� Sx�� Sy� �� �S

Sx�� Sx�� Sy�� Sy� �� ��S

�Szi and ��Szi are shifted�clipped like above�

����� Parallelism

This is an ubiquitous� annoying issue� with which we have to deal� too� Edges
won�t be parallel to faces too often� but it can happen in starting positions� where

�� Pairwise Collision Detection

objects tend to be aligned to each other and to the world coordinate system� �It
does happen at start�up of test programs � � � �

Like with many other properties or values� parallelism is preserved during si�
multaneous traversal through the box�tree� Again� the special geometry of boxes
reduces the number of signi�cant edge�face comparisons� if an edge is parallel to a
face� then all edges of the same family are parallel to all faces of the other family�
We can set up an array of �ags in the beginning� which describes these relations�

While bisecting a box� we have to compute four new T � or S�intervals� During
that computation� we might discover that an edge is parallel to a plane� at which we
were about to clip it� Two things could happen� either� the edge is on the �wrong�
side of the plane� in which case the interval will be empty and we�re �nished� or�
the edge is on the �right� side� in which case we just proceed to the next plane�

The procedure how to handle the �parallel� case will be illustrated with two
examples� First� we�ll consider the case where the x�edges of A are parallel to the
z�planes �zl and zh� of B �i�e�� bxz � ��� This implies that the T x��intervals will
be treated specially when splitting B across its z�edges� they will be left alone or
eliminated�

pz � q��z � �T x� �� � � ��T x� �� T x�

pz �'A
y b

y
z � q��z � �T x� �� � � ��T x� �� T x�

pz �'A
z b

z
z � q��z � �T x� �� � � ��T x� �� T x�

pz �'A
y b

y
z �'A

z b
z
z � q��z � �T x� �� � � ��T x� �� T x�

pz � q��z � �T x� �� T x� � ��T x� �� �

etc� � � �

The second example considers the y�edges of B being parallel to the x�planes of
A� Let d � p � q� then

�dx � � � �dx � 'A
x

�� �Sy� �� ��Sy� �� �
��d�'B

z � b
z�x � � � ��d�'B

z � b
z�x � 'A

x

�� �Sy� �� ��Sy� �� �

����� Constructing the Box�Tree

The box�trees being constructed here are inspired by k�d trees �see �BF��� and
balanced bipartitions from VLSI layout algorithms �see �Lengauer���� We do not
construct octrees because they seem to be too in�exible� for reasons which will be
clear in a moment� we don�t want to subdivide a box by three planes at the same
time and only in the middle �in fact� octrees are a special form of k�d trees��

The discussion will be restricted to the construction of boxtrees for a set polygons�
Everything carries over to boxtrees for edges quite analogously�

The goal is to partition recursively the set of polygons �and edges� resp�� in such
a way that the intersection test between two such partitions involves a minimum of
elementary �i�e�� edge�polygon� intersection tests� In the following� we will try to
derive some heuristics for an optimal partitioning�

Whenever the collision detection algorithm goes down one level� and it discards
one of the sub�boxes� we want as much polygons as possible to be discarded� This
leads to the heuristic that in each of the two sub�boxes of a box there should be
the same number of polygons� In general� there will be always polygons which are

��� Divide and Conquer ��

min max

c

min max

c

n n
n

r
c

l

copt

Figure ���
� The penalty function is monotonic when not taking crossing polygons into ac�
count� The graphs of nl and nr are not necessarily mirror images of each other� since crossing
polygons are not accounted for�

in both sub�boxes� though� When going down one level in the box�tree� we have
to deal with those twice� once in the left�sub�box and once in the right sub�box�
This leads to the heuristic that a bisection of a box should cut as few polygons as
possible�

We start with a set of n polygons which are all contained in a box of size
��x� y� z�min� �x� y� z�max�� Given a cut�plane c through that box� and perpendic�
ular to the x�axis �w�l�o�g��� we denote the number of polygons to the left� the right�
and crossing c by nl� nr � and nc� resp� According to the heuristic proposed above�
we de�ne a penalty function for c by

p�c� � jnl � nrj� �nc

where � is the factor by which a crossing polygon is worse than an unbalanced one�
�Note� in general� nl � nr � nc � n��

The basic step for building a boxtree is to �nd the cutplane c for a given set of
polygons such that c realizes the global minimum

min

��
�

minfp�c� j c � x � axis� cx � �xmin� xmax�g
minfp�c� j c � y � axis� cy � �ymin� ymax�g
minfp�c� j c � z � axis� cz � �zmin� zmax�g

	

�

If we had chosen the penalty function to be p�c� � jnl�nr j without taking crossing
polygons into account� then �nding the minimumwould be easy� because p�c� would
be monotonic �see Figure 	����� In that case we could simply use interval bisection�

We still use that method� and results have been satisfactory� i�e�� we use p��c� �
jnl � nrj to calculate a cut�plane along one axis� for choosing the �nal cut�plane
from one of the three� we use p�c��

To calculate a �local� minimum for� say� the x�axis� we start with l �� xmin�
r �� xmax� and c �� l � r�

nl � nr � l� ��
nl

nl � nr
l �

nr � nl
nl � nr

c

nl � nr � r� ��
nr

nl � nr
r �

nl � nr
nl � nr

c

�	 Pairwise Collision Detection

This is a little modi�cation of the simple interval bisection� we try to take into
account how far away we are from the optimum� so as to minimize the number of
iterations� The iteration stops� if

 p�c�
 pmax� �typ� pmax � ����� or

 % iterations � Max� �typ� Max � ���� or

 jl � rj � Min� �typ� Min � the machine resolution�

When we have found a cut�plane� we divide the input array of polygons into two�
the crossing polygons are copied into both �for reasons which will be made clear
below�� Then we start the process over for the two new arrays�

The box splitting recursion will stop when one of the following conditions holds�

 depth � dmax�

 % polygons in the box currently considered for splitting
 Min�

 one of the two sub�boxes wouldn�t contain any polygons�

 nl � �n or nr�n �it doesn�t make sense to split the box� if one of the sub�boxes
contains almost as much polygons as the father��

When the recursion stops� we attach the array of polygons to the corresponding leaf
of the box�tree�

Crossing polygons� What should we do with crossing polygons �polygons which
are on both sides of the cut plane�� If we stored them at inner nodes of the box�tree�
there would be two possibilities to deal with them during the traversal for collision
detection�

�� We check those against all the edges which are at or beneath the other box�
This can become ine�cient� because crossing polygons could be discarded any�
way on one of the next levels of the simultaneous traversal �see Figure 	�����

�� Otherwise� we have to provide another elementary operation �check polygon
with a box�tree�� This could become very expensive� since we have to do the
initial computations for every polygon# �see above� �First intersection test��

The approach we have taken is to store polygons only at leaves� So� crossing poly�
gons will be put in both sub�boxes� This avoids the disadvantages mentioned above�
Of course� polygons can be stored multiple times at leaves� this way� However� this
does not cause any memory problems� tests have shown that a box�tree contains
by about a factor of ��� � � ���� more pointers to edges�faces than there really are�

Geometrical robustness� Although this seems to be of minor importance� ex�
periments showed its necessity very early� This is especially true for objects which
are computer�generated and expose a very regular symmetry� like spheres� tori� reg�
ularly sub�divided quadrangles� extruded and revolved objects� etc� These objects
usually have very good cut�planes� but if the splitting algorithm is not robust� the
box�tree will be totally useless�

In general� geometrical robustness is an issue for all kinds of geometrically sub�
dividing or splitting algorithms �see �BD�a� for another example��

Here the problem is� when do we consider a polygon to be on the left� the right� or
crossing the cut�plane� Because of numerical inconsistencies� many polygons might
be classi�ed �crossing� even though they only touch the cut�plane �see Figure 	�����
The idea is simply to give the cut�plane a certain �thickness� �� Then� we�ll still
consider a polygon left of a cut�plane c� even if one of its edges is right of c� but left
of c� � All the possible cases are depicted in Figure 	����

��� Divide and Conquer ��

won’t be checked

checked
will be

Figure ����� If crossing polygons are stored
with the leaves of the box�tree� too� they can
be discarded during the simultaneous traversal
like �non�crossing� polygons�

δc+δc- c

left
right

crossing

x

Figure ����� For splitting a set of polygons
by a plane� geometrical robustness can be
achieved by giving the cut�plane a certain
�thickness��

Complexity� The complexity of constructing box�trees will be shown to be in
O�n�� where n is the number of polygons� under certain assumptions� Quite simi�
larly� the memory complexity can be shown to be in O�n�� Both results have been
con�rmed experimentally�

We assume that cutting a box takes s passes over all polygons in that box� we
assume further that every cut will split the box�s polygons into 	 sets of equal size�
left� right� and crossing polygons� This means that a sub�box gets �

� of the box�s
polygons� Thus� the depth of a box�tree will be d � log�

�
�n��

Let T �n� be the time needed to build a box�tree for n polygons� Then�

T �	k� � cn� �T �k��

T �	� � c�

T �	d� � c	d � �
�
c	d�� � �

�
c	d���

� c	d

�
� �

�

	
�

	�
� � � �

�

 c	d�
d��X
�

�i

	i

 	d��c

� O�n�

Other criteria for box�splitting� It is not clear� yet� which heuristic for building
box�trees would be the best� If we allowed empty leaves in the tree� then we might be
able to quit the collision detection traversal very early� because there is no collision
with empty boxes� It is not necessarily best to try to keep the boxes as cubic as
possible �which could be achieved by just splitting boxes along the longest of their
edges�� Altogether� a new heuristic for the cut�plane could be�

�� try to �nd a cut�plane which is near the middle of the edge �say� within a
third� so that there are no polygons in one of the sub�boxes�

�� if there isn�t such a plane� use the old heuristic�

	� if all three potential cut�planes �see Equation 	���	 �along x�� y�� and z�axis�
have similar penalty values� choose the one which cuts the longest edge�

We could implement the �rst part of the heuristic by trying to push a plane from the
left towards the middle of the edge until the left sub�box would contain a polygon�

�� Pairwise Collision Detection

empty boxesold-style boxtree

Figure ����� It might be better to allow
empty boxes in a box�tree� too�

Figure ����� The simultaneous traversal of a
box�tree might be faster when computing axis�
aligned boxes on�the��y and checking those in�
stead of the original ones�

We would do likewise from the right� and choose that plane which got closer to the
middle of the edge� Of course� this had to be done for all three axes�

����� Conclusion

Future work� The algorithm presented above seems to o�er many more possibil�
ities for further speed�up�

� Try a simultaneous traversal with axis�aligned boxes �see Figure 	�	��� They
can be computed on�the��y from the ones on the level above together with the
information stored with each box�tree node �i�e�� the direction of the cut�plane
and the cut�coordinate�� Still� build the box�tree like we did so far�

� Allow empty boxes� Try other criteria for the computation of the �optimal�
cut�plane with box�trees� boxes should be as close to cubes as possible� large
empty boxes should be rewarded� too�

� Would it help� if we allowed boxes only to be split in the middle� I�e�� with
every recursion� one of the '�s would be divided by �� So� one could set up the
bij

bk
l

�tables in the beginning of the collision�check function� and also compute

the 'x�y�z
bij

bk
l

�tables for all recursion levels�

Implementation� The �elementary operation� �see Section 	������ which oper�
ates on two leaves of the box�tree� is the usual algorithm presented in Section 	�� �in
fact� much of the code developed there is re�used�� Of course� the same bounding
box pre�checks are done here� too� The function doing the recursive simultaneous
traversal through the box�tree can be written quite generic� so as to allow for dif�
ferent �semantics�� whenever it hits the bottom� i�e�� it is called with two leaves� it
will execute a callback� which provides the semantics�

For the time being� a complete boxtree for a polyhedron is constructed by
�rst building one for polygons� In a second phase� the edges are inserted in the
tree� As with the algorithms of Sections 	�� and 	�
��� there are two phases� check
edges of polyhedron P against faces of Q� and vice versa� this is easily accomplished
by calling the same function for simultaneous box�tree traversal twice �see next
paragraph for a little comment on that��

��� Divide and Conquer ��

The box�trees are generated at �announcement time� to the collision detection
module�

The initial t� and s�tables can be computed by the same functions which do
the box�splitting� we just call them once with q�� � q and p�� � p� and once with
q�� � q �'B

� and p�� � p�'A
� � resp�

The t� and s�values itself are only temporary� they don�t have to be kept after
the new �T � and ��T �intervals have been derived�

If a box�edge is completely outside the box� then it doesn�t have to be considered
any more with further box bisections� We can save a little work during the traversal
by keeping an �outside� �ag for every edge� and by decrementing a counter �which
is initialized to ��� with every edge which is found to be outside� Then we can
decide very quickly if two boxes do not intersect�

When computing �T�i and ��T�i� one should use the fact that T�i
min
 T�i

max

always� This saves ��� comparisons on average�

Of course� the function building the box�trees should be implemented in a
generic way� Actually� this is very easy� it su�ces to write a function� which takes
an array of boxes and splits those using the rules from above� Then� in order to build
the polygon box�tree and the edge box�tree� the only di�erence is the �front�end�
which sets up the initial array of boxes enclosing polygons or edges� resp�

Each node in the box�tree stores only�

 the name of the �local� axis which the box has to be divided along in order to
get its sub�boxes�

 the position where the plane cuts the axis�

 two pointers to the left and right sub�box�

 for leaves only� a pointer to the data which is attached to the leaf�

A test program has been implemented� too� it was great help with �nding bugs
in the implementation� Also� it can be of great help in �nding optimal box�splitting
heuristics� An example of the collision detection algorithm at work can be found in
Figure 	�	��

����� Results

The very �rst result was obtained on SGI�s Skywriter �VGX� � R	����
� MHz��
the box�tree algorithm was about � as slow as the general algorithm �Section 	���
for arbitrary polyhedra# �Which was pretty shocking� ��	 � However� on SGI�s Onyx
and Indigo� the box�tree algorithm is indeed much faster then the general one�

The maintaining of �ags for empty intervals� which afterwards never have to be
touched again� gives a speed�up of about �
$ in the worst�case�� It does not help
in the best�case� because the best�case does not traverse the box�tree at all�

Another speed�up was gained by implementing the collect phase within the ele�
mentary operation leaf�box vs� leaf�box �see Section 	������ which throws away all
polygons of a leaf�box that are not contained within the other object�s bounding
box� The speed�up gained by that phase is about a factor of ����

�movem �x �� �c �a bx �b �� �d ��� resp�� which is the zoo of � �	
� objects� altogether
�	� polygons �no rendering� runtime �h�

�� Pairwise Collision Detection

Figure ����� This visualization of the box�tree algorithm shows� how many and which polygons
are actually considered for intersection� The leaves of the boxtree are depicted graphically by
boxes� Boxes which intersect with any box of the other object�s box�tree are highlighted�

Optimal box�tree parameters� I also tried to �nd out the optimum param�
eters for a box�tree� namely the maximum depth and the minimum number of
polygons�edges within a box� To this end� I ran several tests with di�erent objects
and di�erent choices of the parameters�� I varied only one parameter at a time�
Each sample is the average over ���� frames� All these tests were run on an In�
digo with a �� MHz R
���� rendering was switched o�� Results are presented in
Figures 	�	��	�		�	�	
�

Comparison with conventional algorithms� Next� I compared the box�tree
algorithm �using optimum parameters during box�tree construction� to the conven�
tional algorithm� Timing was done for three di�erent objects� a sphere �which is
convex�� a torus� and a tetra��ake �a very �non�convex� object�� Again� two objects
of the same kind were bouncing o� each other in a cage� Each sample is the average
over ������ frames� The tests were run on an Onyx �� R

�� ���MHz�� rendering
was switched o���

As expected� box�trees are much faster above a certain object complexity� but
slower for small objects� The following table lists the thresholds above which the
box�tree algorithm is faster� and the speed�up factor �all values are estimates from
Figures 	�	�� 	�	�� and 	�	�� Tconventional�n�
Tboxtree�n� for n � ��� ���� ��������
polygons per object�

object type threshold Tconventional
Tboxtree
n��� n���� n���� n�����

sphere 	�� ��
� ��	� ���� ����
torus �� �� ����
�� ���
tetra��ake 	�� ��
 ��� ��� ���

�movem �t ���� �obj�type� �x �size� �d �maxdepth� �b �minperbox� �v bs �e ��� �a

bx �s n �
�Invocation� movem �x n �t ����� to �s n � �e ��� �a bx �v bs

��� Divide and Conquer ��

500100015002000250030003500

1

3

5

7

9

11

13

15

1

10

100

1000

10000

#polygons/object

depth of box-tree

avg. time (ms)

Figure ����� Search for the optimalmaximumdepth of a boxtree� Test objects are two spheres
of varying complexity� The minimum number of elements per box was �xed to �� Below a
complexity of 	� polygons per object� no signi�cant change could be measured�

500100015002000250030003500

1

3

5

7

9

11

13

1

10

100

1000

10000

#polygons/object

depth of box-tree

avg. time (ms)

Figure ����� Same as Figure ����� but with two tori�

�� Pairwise Collision Detection

10

100

1000

1

3

5

7

9

11

1

10

100

1000

10000

#polygons/object

depth of box-tree

avg. time (ms)

Figure ����� Same as Figure ����� but with two tetra��akes�

����� Other Intra�Object Hierarchies

Box�trees are one way of grouping polygons hierarchically according to closeness�
There are other possibilities� in fact� any bounding volume could be used instead
of boxes �see Section ����� One author tried sphere�trees �Hubbard	�� I think they
are not as well suited as boxes� since spheres usually have to overlap quite a bit
if they are to cover an object �see Figure 	�	��� The consequence is that many
polygons have to be stored many times with many spheres � I suspect many more
times than in box�trees� In contrast� a box�tree is a partitioning of the bounding
box� thus polygons are inserted in several boxes only if they are cut� Furthermore�
the algorithm which builds box�trees tries to minimize this number of cut polygons�
which is not possible the way �Hubbard	� builds the sphere trees�

Also� constructing a sphere�tree doesn�t seem to be as simple as constructing a
box�tree� �Hubbard	� �rst builds an octree of the object� then encloses voxels by
spheres� which will become the leaves of the sphere�tree� �OB�� constructs sphere
coverings for objects which are given by their vertices�

As with space partitioning �see Section ��	�� one can also use a regular grid to
partition an object�s bounding box �GASF
�� But usually� hierarchical schemes
outperform their regular �at counterpart� if they don�t have to be re�built dynami�
cally�

��� Other Approaches

This section describes some algorithmswhich have not been implemented� yet� Also�
they don�t seem to be as promising as the previous algorithms did� Still� I include
them in this section� because they show other interesting ways how to look at the

��� Other Approaches ��

0.1

1

10

100

10 100 1000

tim
e

(m
s)

#polygons/object

optimal boxtree
convex algorithm

Figure ���	� Comparison of the box�tree algorithmwith the best conventional algorithm� Two
spheres

0.1

1

10

100

10 100 1000

tim
e

(m
s)

#polygons/object

optimal boxtree
arbitrary algorithm

Figure ���
� Comparison of the box�tree algorithm with the best conventional algorithm� two
tori

�� Pairwise Collision Detection

0.1

1

10

100

1000

10 100 1000

av
g.

 ti
m

e
(m

s)

#polygons/object

optimal boxtree
arbitrary algorithm

Figure ����� Comparison of the box�tree algorithm with the best conventional algorithm� two
tetra��akes

Figure ����� A sphere tree contains many spheres which overlap each other�

��� Other Approaches ��

z-buffer

A

portion of A represented
by one pixel

Figure ����� Discretization of a polyhedron by drawing it in the z�buer�

problem from a di�erent side� and thus help understanding the problem better�
Unless these algorithms have not been implemented� one cannot be really sure� of
course� that they don�t o�er advantages or speed�up�

��	�� Using the Z�Bu
er

Using graphical hardware is always worth a try� since graphical hardware systems
have gained very good performance� So� if we can use graphical hardware �namely
the z�bu�er� for collision detection� we might outperform any pure software solution�

Let�s assume for a moment� that each pixel in the z�bu�er can hold two depth
values� zmin and zmax� Let�s further assume that polyhedra are convex�

Given two convex polyhedra A and B� we can discretize A �conceptually� by
projection onto the z � � plane� Every pixel will be �hit� exactly twice �A being
convex�� we will store the two depth values in the minimum and maximum depth
value for every pixel� Thus� the image of A in the two�valued z�bu�er represents
a discretization �see Figure 	�	� by a grid with cells of size �x� x� pxl� �y� y �
pxl � �z� z� z �� Here� pxl is the size of a pixel� and �z represents the resolution
of the z�bu�er along the z�axis� Depending on the application� we might want to
choose an orthogonal or a perspective projection� in the latter case� the grid will
not be regular� since the z�resolution changes with depth�

In order to check for a collision of A and B� we project all polygons of B onto
the z�bu�er� however� instead of drawing B� we just check for each pixel �hit� by
B whether the color is that of A� and � if so� whether zmin
 zB
 zmax� If we �nd
such a pixel� then A and B do collide� otherwise they don�t�

We can also �nd some measure of the depth of intersection� We just have to
project all polygons of B and look for the pixel realizing

maxfmaxf jzmin � zB j � jzmax � zB j g � pixel hit by B g

�	 Pairwise Collision Detection

A

B

A

A

B

B

z z z

Figure ����� All possible arrangements of two convex objects�

Conventional z�bu�ers do not provide two depth values per pixel� The algorithm
sketched above can still be implemented with a one�valued z�bu�er� if it provides
the following primitive drawing operations per pixel�

�� conventional �draw if depth of new pixel is less than the depth already stored��

�� draw only if depth of new pixel is less and color of new pixel is di�erent from
color already stored�

	� erase if color of new pixel is the same as the one already stored�

With these operations� we can simulate the algorithm above by � passes over all
polygons of objects A and B�

�� Clear the z�bu�er�

�� Draw all back�facing polygons of A conventionally �mode ��� ��

	� Draw back�faces of B conventionally�

� Draw front�faces of B using mode ����

�� Draw front�faces of A using mode �	��

This will handle all three cases of possible arrangements of A and B as depicted in
Figure 	�
��

Finally� the color bu�er has to be scanned for any remaining color �B�� if there
are pixels with that color� then a collision of �the discretized� objects A and B has
occurred�

Of course� this scan should be eliminated if the hardware solution was to be
really fast� This could be achieved very easily� since the only �feedback� from the
hardware would be a single bit� Even with many �ll processors this wouldn�t be a
problem� they just had to synchronize a write into this single bit� so as to prevent
a concurrent write�

The algorithm could be augmented to be able to handle the larger class of closed
polyhedra �not necessarily convex�� if pixels could hold an arbitrary number of
depth values�

The algorithm would work as follows� Project all polygons of A and store all
z�values with pixels� After that� sort the z�values for each pixel �this could be
done �on�the��y� by insertion sort�� Now� each pair of consecutive depth values
�one odd�numbered� the other even�numbered� stored at the same pixel represent a
portion of object A�

Then� project all polygons of B� If any depth value of B is between two consec�
utive depth values of A� then there is a collision�

��� Other Approaches ��

��	�� Using a Convex Algorithm for Non�Convex Objects

We could use one of the algorithms above for convex polyhedra to detect collisions
between non�convex polyhedra� too� To this end� we would have to partition each
non�convex polyhedron into c convex parts �CP�a� RS�a� BD�b� SN��a�� then
we would check all c� possible pairs of parts �without loss of generality� we assume
that both non�convex polyhedra consist of the same number c of convex parts��

The number c of convex parts can be quite high� at least theoretically� In practical
cases though� I suppose c � O�N �� Let N be the number of re�ex edges �simply
put� these introduce non�convexity� sometimes� they are also called notches�� Then
there are objects which cannot be decomposed into less than O�N�� convex pieces
�Chazelle�
a�� Actually� the problem of partitioning a polyhedron into a minimum
number of convex pieces is NP�hard�

First� let�s consider the average case� Let tc�n� denote the time used by an
algorithm for collision detection between two convex polyhedra� each with n edges�
If we assume that the non�convex object P can be partitioned intoN convex pieces��

and if we further assume that each convex piece consists of about jEP j
N

polygons� then

the collision detection between two such non�convex objects will take O�N�tc�
jEP j
N

��
time� Let�s assume that tc�n� � O�n�� Then the overall time for collision detection
of two non�convex polyhedra� will take O�N jEP j� time�

This means that this approach will be faster than using a non�convex algorithm�
if the time of the convex algorithm tc�n� �

�
N
ta�n�� where n is the complexity of

the polyhedra �in all practical cases n � O�jEj� � O�jF j� � O�jV j��� and ta�n� is
the time of the non�convex algorithm�

Drawbacks� This kind of approach has its drawbacks� Polyhedra need to be
closed so they can be partitioned� whereas many models output from CAD systems
do not meet this requirement� especially data coming from architecture systems�
because these systems group polygons according to quite di�erent criteria�

Also� partitioning polyhedra into convex pieces introduces an alternative repre�
sentation� at least at run�time� maybe even in external �les� Since this partitioning
is a pre�process� any application which needs to modify the geometry while still
doing collision detection among these objects cannot use this approach�

Algorithms for convex partitioning are non�trivial �to implement� �Chazelle�
b�
BD�a� SN��b�� Furthermore� the problem of �nding a minimumnumber of convex
pieces is NP�hard �RS�b�� although� there is an asymptotically optimal algorithm
for polyhedra with zero genus �CP�b��

�The arm of a chair is a non�convex object� for which this assumption holds�

�� Pairwise Collision Detection

Chapter �

B�Rep Data Structures

In most cases� the very simple b�rep data structure� namely vertex and polygon lists�
will su�ce for simple algorithms� But as soon as we want to improve algorithms�
classify topology� exploit vicinity� or modify the b�rep� we are very likely to wish for
a richer data structure� This happened to be the case with certain optimizations
�see Section 	��� page 	�� for example� and for the �rst �real� application� the
Y�Potter �see Section ���

As usual in computer science� data structures and algorithms depend on each
other �sometimes they are� in fact� just di�erent ways to look at a problem�� Richer
data structures provide greater opportunities for more e�cient algorithms�

��� Data Structures for B�Reps

The �rst additional list usually wanted is an edge list� Many algorithms presented
in this thesis �on the pairwise level� use edges and polygons as basic features of a
polyhedron�

Adding an edge list provides a big opportunity to build a data structure which
contains information about adjacency and incidence� There are many ways to store
adjacency and incidence �Woo���� �Weiler���� a few of them will be reviewed brie�y�

Following �Weiler���� we will refer to adjacency information as the topology of
the polyhedron� whereas actual point locations� normals� etc� will be called the
geometry�

All of the following data structures assume the polyhedron to be manifold and
closed �see Section
������ This is because an edge always stores exactly two vertices
and two polygons� If we would allow an edge to store k vertices and k polygons� we
could probably represent k�manifold polyhedra��

The data structures to be presented below will be illustrated by Figures
�� and

��� The convention used there is that solid features �vertex� edge� polygon� are
actually stored� whereas dotted features are just drawn to remind the reader that
there are more of them in the polyhedron� The dashed arrows indicate circulation
direction �conventionally counter�clockwise��

Winged�edge� This structure has been developed by Baumgart about �� years
ago� An edge stores its two vertices and the two incident polygons of which it is on
the boundary� Additionally� each edge stores references to four adjacent edges� when

�How would adjacency information have to be stored
 would we need to store neighbor edges
in a certain order
 if so� in which

�� B�Rep Data Structures

e

v

v

ff

1

12

2 ee

e e11

22

’

’

�a� winged�edge

f1
eer

v1

e

e1

2

�b� quad�edge

Figure ���� B�rep data structures� Solid items are stored with the edge e� dashed�dotted ones
are not�

e4 e3 e3

e4

e2
f

e
e1

5

v

e
e1

2

�a� complete vertex�edge lists

1f

e2

f 2

e1

v2

v1

�b� doubly�
connected edge list

Figure ���� B�rep data structures�

looking from �outside�� they are the next edges in counter�clockwise and clockwise
order around the vertices �see Figure
���a��� Each vertex and each polygon stores
an arbitrary pointer to one of its incident edges�

The winged�edge data structure needs � � jEj� jV j� jF j � �� � jEj memory�

Quad�edge� This data structure allows accessing the same information with the
same time complexity as the winged�edge structure� Instead of storing both �sides�
of an edge� edges are stored twice in both direction� each directions stores half of
the information �MS��b� �see Figure
���b���

It is not as memory e�cient as the winged edge structure� � �� � jEj� jV j� jF j �
��jEj� �MS��b� point out that this data structure allows for clockwise and counter�
clockwise loops around vertices or polygons �in contrast to the DCEL� below� �
however� this is also true for the winged�edge structure�

Complete edge lists� Each edge stores just its two vertices and its two incident
polygons� Each vertex and each polygon has a list of all edges which are incident
to it �see Figure
���a���

The disadvantage is that these individual edge lists can be of very di�erent length�
which causes potentially less simple code�

Like the DCEL �see below�� it uses least memory� �jEj�
jEj� �jEj � �jEj ��

In a real implementation� however� we would also have to store the number of
elements per edge�array with every vertex�face�

�each edge stores � pointers � �jEj� each vertex stores � pointer per edge� each edge�pointer
occurs exactly twice in the vertex list � �jEj� analogously for faces

��� Data Structures for B�Reps ��

V F

E

V F

E

V F

E

V F

E

4 23

1 11 1 1 1

(b) (d)(a) (c)

Figure ���� The winged�edge �a�� complete vertex and edge list �b�� quad�edge �c�� and
doubly�connected edge list �d�� depicted by the relations they store�

Doubly�connected edge list� This is the �poor man�s� version of the winged�
edge data structure� edges contain two edge pointers less �see Figure
���b��� which
makes this data structure as memory e�cient ��jEj� as the complete�edge�lists�
Plus� it provides much more uniform access to polyhedral features�

����� Classi�cation

The data structures given above can be classi�ed according a scheme of �Woo����
Let P � �V�E� F � be a polyhedron �graph�� and V � P�V �� E � P�E�� F �

P�F �� Then P induces relations out of V V� E E � F F �
We write X � Y if the relation induced by P is completely stored in a data

structure� If the structure contains only n y � Y related to every x � X� then we
will write X

n
� Y �

With this notation we can depict the data structures above as shown in Fig�
ure
�	�

����� The DCEL

In the current implementation� the doubly�connected edge list �DCEL� was chosen
to store topology� Actually� it does contain a little bit more than the pure doubly�
connected edge list� it contains also the full relation F � V � i�e�� each polygon has
got an array of all its incident vertices� This is needed by the renderer�

It is not quite as fast as the winged edge if there are many applications which
need to go from one edge to the next in clockwise and in counter�clockwise fashion�
Yet� this seems to be rarely needed �it was not needed up to now� � and the
doubly�connected edge list is more memory e�cient�

This data structure allows �as do the others above� to enumerate all incident
edges of a vertex in linear time �which is optimal��

Loop around vertex

input� v

e
 �� arbitrary incident edge incident to v fstored with v g
output e

e
�v� �� v �� e �� e
�e�

e
�v� �� v �� e �� e
�e�

while e �� e

output e

e�v� �� v �� e �� e�e�

e�v� �� v �� e �� e�e�

Quite similar� we can loop over all edges on the border of a certain polygon �note
that a loop around a vertex is in counter�clockwise order� whereas a loop around a

�� B�Rep Data Structures

polygon is in clockwise order�� Furthermore� we can loop over all neighbor vertices
of a certain vertex or over all neighbor polygons of a certain polygon � simply by
adding one line to the above function�

����� Building the DCEL from the Input File

At start�up time� we are given only the relation F � V � i�e�� a bunch of polygons�
each consisting of a list of vertex numbers� We want to construct from this rather
meagre data structure the richer doubly�connected edge list�

There are a few things which complicate this task� but which we have to deal
with� the polyhedron might not be ��manifold� it might contain polygons which are
oriented wrong �inside out�� it might not be closed� or it might contain degenerate
polygons�

The very basic idea for the construction of the DCEL is simply to loop over all
polygons and over all their vertices� and check if the current edge is already in the
edge�list� If it is� we add a few pointers to this edge entry� if it is not� we create
the edge entry and stick in half of the pointers� The code itself is a little bit more
complicated because we have to be able to detect all of the above mentioned �ugly�
possible inputs � and then deal reasonably with them�

One step of the algorithm is the check whether an edge has already been created
in the edge list� The naive approach is to search the edge list built so far� This
introduces� of course� quadratic complexity�

A better solution is to keep temporary lists of neighbor vertices with each vertex�
So� when we want to check if an edge �v�� v�� has already been created� we just have
to scan the edge lists of the two vertices v�� v�� Whenever a new edge is added to
the edge list� we add each of the two vertices to the neighbor list of the other vertex�

This decreases run�time tremendously� at least for polyhedra with bounded
vertex�degree it is now linear in jEj� Timing of the building of the DCEL for a
polyhedron with ���� edges showed the following result� the naive algorithm took
��� sec� the linear algorithm took only
� msec �on an R

��� �� MHz��

Additional memory requirements are only temporary� and they are as low as �jEj
�for the vertex neighbor lists��

��� Topological�Geometrical Properties

If we want to exploit topological and geometrical properties of polyhedra for collision
detection� we �rst have to determine them� Topological properties we will consider
are

� closedness �we can de�ne �interior� and �exterior���

� manifoldness �each edge is on the boundary of exactly two polygons��

� orientedness �all polygons �face� in the same direction��

whereas geometrical properties are

� all polygons are planar�

� all polygons are convex�

� the polyhedron is convex�

��� Topological�Geometrical Properties ��

Some of them were mentioned in Section ������ page � All of them can be deter�
mined by functions within the Y system�

Some of the algorithms of Section 	 require certain properties� for example�
closedness is a prerequisite of the algorithm of section 	��� convexity is a prerequisite
of many algorithms� like the one in Section 	�
� manifoldness is needed by the relaxed
polygon collecting phase �see Section 	��� page 	���

����� Topological Properties

Manifoldness� The manifoldness �strictly speaking� ��manifoldness� of a poly�
hedron P is de�ned as follows�

P manifold �	

�p � �P � � � U��p� � P topologically equivalent to a disc 	

� bijection between U��p� � P and fx � R� j kxk
 �g

Fortunately� for polyhedra given as B�reps� the condition for being manifold is
much simpler� the only places which could introduce non�manifoldness are edges�
So� we �just� have to scan all edges and see if one of them exists more than two
times in the vertex lists of all polygons�

This� of course� is way too expensive � the complexity is at least quadratic�
The doubly�connected edge list helps here� while building it� we get the property
�manifold� as a by�product# Each time we process an edge of a polygon �which was
derived from the vertex list of the polygon�� we either add it to the edge list� or we
add some pointers to the already existing entry in the edge list� It is during this
pointer�adding step� where we can detect non�manifoldness very easily� if all the
pointers in an edge record have been �lled in already� then that polyhedron can�t
be ��manifold �because we are processing the �	rd occurrence of that edge right
now��

Closedness� The test for closedness is as easy as the one for manifoldness� The
only di�erence is that we have to build the DCEL �rst� before we can do the check�
A polyhedron is not closed if it contains an edge which is on only one polygon�s
border� We can test for that by simply scanning all edges in the DCEL� an edge
with less than two incident polygons can be recognized by an incomplete pointer
record�

Non�closedness and non�manifoldness are not mutually exclusive� of course�

Orientedness� We can detect whether there is a polygon which has the wrong
orientation while building the DCEL� we cannot exactly determine which one� but
we can determine two polygons� one of which is wrong�

If there is a polygon within the polyhedron oriented the wrong way� then we
will detect this because of certain pointers having wrong values assigned to them�
Figure
�
 depicts the two possible wrong pointer assignments� Case �a� is produced
when the edge is created while processing the wrong oriented polygon� case �b� is
produced if the wrong oriented polygon is processed second� Both of them can be
detected if we consider the face� and the vertex�pointers of the edge�

The advantage of the topological approach is that it works just as well for non�
closed polyhedra� whereas a geometrical approach would depend on the notion
of some �interior� �probably determined by the barycenter�� So� the topological
approach can be applied to a much larger class of polyhedra� Of course� when all

�� B�Rep Data Structures

correct (b)(a)

Figure ���� The function building the DCEL will produce wrong pointering if a polygon of
the input polyhedron is oriented the wrong way�

n

v

�a� comparing normals

n

d

v

�b� distance from plane

Figure ��	� Two methods to test �atness of a polygon�

polygons are oriented wrong� it doesn�t �nd anything� also� it cannot decide which
polygon is wrong � that must be based on some �majority� decision�

����� Geometrical Properties

These properties can be determined by just considering the location of vertices in
space� Convexity� however� is much easier to determine� if we are given a complete
DCEL �see below��

Flatness� All vertices of a polygon have to be in the same plane �coplanar�� There
are a few� rather similar ways� how to determine this� two of them are sketched
below�

The �rst method �see Figure
���a�� calculates at each vertex a local normal
�based on the vertex itself and a �few� others�� Then it compares this normal to a
reference normal� either the pre�computed face normal or the �rst vertex normal�
The comparison can be a cross product� or a �distance� between the two normals�

The second one �see Figure
���b�� computes the distance of each vertex from
the plane which is given by the face normal and a point on the polygon �e�g�� one
of its vertices��

The only di�erence seems to be a slightly better numerical condition with method
�b� of Figure
��� because it doesn�t need to compute a cross product at each vertex�
A dot product �used for the distance computation� is usually faster� too� Therefore�
I implemented the second algorithm in the Y system�

Convex polygons� We could test for this property by considering vertex normals
�computed �locally��� too� However� this approach has some disadvantages� com�
putation of those local normals is prone to numerical errors� even more so� because
there might be polygons with very small angles or angles close to ����� Furthermore�
we have to know the proper orientation so we can compare these vertex normals to
some reference normal �see Figure
����

Altogether� this doesn�t seem to be too appealing� because convexity doesn�t have
anything to do with orientation of polygons� �Besides� the cross product is slow��

��� Topological�Geometrical Properties ��

Figure ��
� An expensive� less robust method
to test polygons for convexity�

Figure ���� The robust method can also dis�
cover non�convexity of self�overlapping poly�
gons�

The approach taken here is solely based on the fact that the sequence of y�
coordinates and the sequence of x�coordinates of a convex polygon have got exactly
two extrema� This holds for �D polygons as well as for 	D polygons�

This approach has two advantages�

� it uses only simple �oating point comparisons� and doesn�t depend on the
ordering of vertices ��clockwise or counter�clockwise����

� it is a global test� i�e�� it can detect non�convexity of polygons with self�overlaps
�see Figure
����

However� both methods cannot deal with degenerate polygons� i�e�� polygons which
do not have any interior �they should be classi�ed non�convex��

Convexity� Convexity of polyhedra is also a property which does not bear any
connection with ordering of vertices� We could determine convexity by construct�
ing the convex hull of the polyhedron and comparing that with the original one�
However� this approach seems to be too involved in order to be implemented in a
day�

Another approach is to use the information obtained so far� and then check that
every dihedral angle is smaller than ����� i�e�� that the edge is not a re�ex edge�
Angles are measured along the inside of the polyhedron� so we need to know all face
normals� which should have the same orientation �we assume here that they point
outward��

The dihedral angle at an edge e � �v�� v�� between two polygons f�� f� can be
computed by �see Figure
���

�

�
cos���f�� f��� � n � n�� � where

n � �v� � v�� �n� � n��

Checking only dihedral angles is su�cient if the following prerequisites hold�

� the polyhedron is manifold and closed �it doesn�t make any sense to de�ne
convexity for non�manifold� or non�closed polyhedra��

� all polygons are planar� checking only dihedral angles would classify �Sch!onhardt�s
prism� �Sch!onhardt���� shown in Figure
�� as convex�

� all polygons are convex� this is not a necessary prerequisite� because the above
algorithm would �nd out anyway� but it�s a trivial pre�check �the current
implementation does a full classi�cation� anyway��

�	 B�Rep Data Structures

n + n

n
n

n

1
2

21
v

1
2

v

Figure ���� The dihedral angle can be com�
puted by cutting it in half�

Figure ���� All dihedral angles are convex�
no matter which de�nition of face normal we
use� �Triangulating the quadrilaterals along
the dotted lines would introduce notches��

Chapter �

Space Partitioning Methods

	�� Need for Space Partitioning

Highly dynamic environments �e�g�� virtual environments�� where many objects
should be checked against each other for collision� pose the all�pairs problem �see
Section ������ on the global level � just like the all�pairs problem on the edge�face
level� Even if only a few objects are to be checked against many other static ones�
we don�t want to check all possible pairs� Of course� before doing any collision
check between two objects� we �rst check their bounding volumes for intersection�

Still� the complexity is quadratic� i�e�� with n moving objects we have to do � n�

�
bounding volume checks�

The basic idea with all space partitioning methods is to exploit space coherency�
most regions of the �universe� are occupied by only one object or empty� Conse�
quently� each object has a very small number of �neighbors�� only these neighbors
have to be tested for collision with the object itself� The di�erence among ap�
proaches is the data structure� which is maintained during run�time�

The serious constraint is the dynamic quality of the environment� While the
only criterion with static environments is fast retrievability or fast neighbor��nding�
the criterion with dynamic environments is� in addition� fast updating for moved
objects�

For reasons made clear in the next section� we will deal only with bounding
volumes throughout this whole chapter� So� whenever we use the term �object� in
this chapter� we mean its bounding volume�

When is space partitioning worth the e�ort� One might ask� what condi�
tions must be met so that any kind of method which tries to avoid testing all n�

object pairs is worth the overhead�

Let Ts�n� be the time spent to update n objects in the global data structure plus
the time to �nd all object pairs which have to be tested further for exact collision�
Let Tp�n� be the time spent for one exact collision test of one pair �we assume all
times to be averages�� Then a global phase will be e�cient if the following relation
holds for the average number p�n� of object pairs tested further for exact collision�

p�n�Tp�n� � Ts�n� �
n�

�
Tp�n�

�� Space Partitioning Methods

So the average number of exact collision tests per frame should be

p�n� �
n�

�
�
Ts�n�

Tp�n�

	�� Bounding Volumes

Bounding volumes are used in almost every area of computer graphics to speed up
computations by not doing them at all if the result can be obtained easily by a
pre�check�

So� even without any space partitioning method� one does want to do a bound�
ing volume pre�check before doing any further collision detection� In the context
of space partitioning� we want to deal only with bounding volumes� too� because
dealing with the objects themselves is usually way too expensive�

In order to gain any speed� the bounding volume must be much simpler an object
than the object it bounds� At the same time� this is the general disadvantage of
bounding volumes� depending on the geometry of the object �inside�� they could
contain very much �empty� space�

There are a few very simple� commonly used bounding volumes�

� Simplest of all is the axis�aligned bounding box� Its faces are always par�
allel�perpendicular to the world coordinate system� Many pre�checks using
axis�aligned bounding boxes are just comparisons of coordinates� which make
them very fast�

They have some disadvantages� however� The �rst one depends on the method
how they are computed� either they are computed from scratch every time the
object has rotated �i�e�� do a whole pass over all vertices in world coordinates��
or we transform �conceptually� all eight vertices of the box� and then put an
axis�aligned box around those� The problemwith the �rst approach is that it is
very expensive� the second one is fast� but unfortunately� the boxes generated
by it are up to � times as large in volume as the original bounding boxes �see
Figure ����a���

The second disadvantage depends on the geometry of the object �inside�� the
more �spherical� the object is the less tight the bounding box can be �see
Figure ����b��� A box around a sphere is �
� � � times larger in volume
than the sphere�

� Spheres are second in popularity� The geometry of spheres is the simplest one�
which makes them attractive� The transformation of spheres is very simple�
too� since we only have to transform one point� there is no problem with
axis�alignment�

An overlap test between two spheres is not quite as inexpensive as an overlap
test between two axis�aligned boxes�� but it is cheaper than a test between
two arbitrarily oriented boxes� Overlap tests between spheres and axis�aligned
boxes are fairly cheap� too �Kirk�a��

Computing the optimal bounding sphere is not nearly as easy as computing
a bounding box � the brute force method takes way too long for more than
�� points# The algorithm usually chosen is linear or quadratic programming
�Megiddo��� EH���� Computing an almost�optimal solution seems to be more
feasible �Welzl�� Glassner�b� Kirk�b��

�especially if we bear in mind that most box�overlap tests are �nished after one or two �oat
comparisons

��� Bounding Volumes ��

3

3

1

2/

�a� aligned box around bounding box can be �
times larger

�b� lots of empty space
inside box around spher�
ical objects

Figure 	��� Disadvantages of boxes as bounding volumes�

� Slabs have gained quite some popularity with ray tracers �KK���� in fact� they
are a generalization of bounding boxes� A slab is de�ned as the �in�nite�
space between two planes� the conventional bounding box is then just the
intersection of three slabs� Consequently� the idea is to enclose an object not
only by three slabs� but by �potentially� arbitrarily many �see Figure �����

If we use the same set of slabs for every bounding volume� then a lot of com�
putational work can be saved� because with many tests �like ray�bounding�
volume intersection� we can pre�compute and store in tables many intermedi�
ate results�

Like with bounding boxes� two �oats are su�cient to store one slab�

However� it is not clear �to me� how an e�cient transformation of slab vol�
umes would work� since the vertices of the volume are not stored� calculating
them for each transformation would be way too expensive� too� This explains
probably� why they have not been used �yet� in dynamic environments� but
only for ray tracing�

� Cylinders seem to be simple� too� however� they don�t seem to be too use�
ful� even with static scenes� probably because their geometry is already too
complicated �WHG�
��

Summarizing� some of the desirable characteristics of bounding volumes are�

 easy to compute�

 little memory requirements�

 fast transformable�

 simple overlap check�

 tight �tting�

Bearing in mind the above discussion of bounding volumes� I decided to use axis�
aligned bounding boxes �rst �although� an experiment with non�aligned boxes was
realized� too�� Since testing for an overlap between an axis�aligned box and a sphere
is fairly inexpensive� too� it should be easy to carry over all algorithms developed
for axis�aligned boxes in the current chapter�

�� Space Partitioning Methods

slab
one

Figure 	��� Bounding volume consisting of slabs �pairs of parallel planes��

����� E�cient Transformation of Boxes

There are essentially two ways to represent an axis�aligned box�

� by specifying two diagonally opposite corners� which is commonly stored as
�xmin� xmax� �ymin� ymax� �zmin� zmax��

� by specifying a �low� corner and the vector to the diagonally opposite corner�

Of course� both forms are trivially transformable into each other� In di�erent situ�
ations they provide di�erent possibilities for an e�cient implementation�

The very naive transformation of axis�aligned bounding boxes would transform
all � vertices� and then determine for every axis which of them has got the maxi�
mum�minimum coordinate�

The more e�cient approach takes advantage of the special situation �Glassner�a��
We will consider the calculation of x�max� the maximum x�coordinate of the trans�
formed bounding box� given by the �rst representation �two corners�� Let�s call
the transformation matrix M � let j���jx be the x�component of the vector ���� We
will give the derivation here only for two�dimensional boxes � an extension to
higher�dimensional ones is straight�forward� x�max can be computed by

x�max � maxf j�xmax� ymax�M jx� j�xmax� ymin�M jx�

j�xmin� ymax�M jx� j�xmin� ymin�M jx g

� maxf xmaxM�� � ymaxM��� xmaxM�� � yminM���

xminM�� � ymaxM��� xminM�� � yminM�� g

� maxf xmaxM��� xminM��g� maxfymaxM��� yminM�� g

by just applying the law maxfa � b� a � cg � a � maxfb� cg twice� The other
components of the transformed box can be computed quite similar� For the second
representation of boxes �corner and diagonal�� a similar calculation can be found�

The algorithm would be something like�

Fast aligned bounding box transformation

input� amin� amax fthe two corner points g
output� bmin� bmax

��� Classi�cation ��

i � � � � �	�
bmin
i � M�� fassumes

 matrix g
bmax
i �M�� fand �v M� g
j � � � � �	�

x �� amin
j Mji

y �� amax
j Mji

bmin �� bmin �min�x� y� fmin and max g
bmax �� bmax �max�x� y� f cost only � comparison g

This algorithm needs only �� multiplications� �� additions� and comparisons�
which is much more e�cient in comparison to the �� multiplications� �� additions�
and
� comparisons of the naive algorithm�

	�� Classi�cation

Several data structures have been developed in the past �� years �see �BF�� for an
early paper�� most of them were designed to represent single objects� but they can
also be used for space partitioning�

BSP� Binary space partitioning was developed to partition a whole scene �a bunch
of polygons�� so as to solve the hidden surface problem �FKN����

The idea is to cut space recursively into two halves by a plane� we start with the
whole �universe�� cut it in half� and continue with each of the halves �see Figure ��	��
For visibility pre�processing� each plane is chosen to be the supporting plane of a
polygon of the scene� Then� for any given point p� we can traverse the tree in an
in�order manner� thereby processing polygons back to front�

For visualization of dynamic scenes� the data structure has been augmented by
so�called �auxiliary planes� �Torres��� These try to divide space without cutting
objects �see Figure ��
��

Despite the simplicity of the basic idea� there is the annoying problem of cut
objects and�or polygons� In general� this cannot be avoided� and the size of a BSP
tree can get rather large � the lower bound is (�n�� for n facets� Only recently an
algorithm has been presented which can construct the optimal BSP �see �PY����

It seems to me that in the recent past� BSPs have been mainly used for solid
modeling� where objects can be represented and operated on by using BSPs �TN���
NAT���

Cell subdivisions

There are two basic classes of cell decompositions of space�

� uniform� associated algorithms are very simple and as such pretty fast� How�
ever� these data structures cannot adapt to large� entirely occupied or empty
regions of space�

� hierarchical� advantages and disadvantages compared to the uniform struc�
tures are just swapped� In addition� they usually use less memory�

In contrast to BSPs� cell subdivisions are not �object oriented� but space ori�
ented� i�e�� the data structure itself does not depend on the arrangement of objects�
�With BSPs� the choice of partitioning planes depends heavily on the current ar�
rangement of objects�� Instead� this data structure is built once at start�up time�
later on� cells are just ��lled� with the objects they contain�

�� Space Partitioning Methods

b

c e

1

3

d

4 5

6

a

2

1

4

a

b

d

e

c
2

5

6

3

Figure 	��� A BSP tree of set of polygons�

A

B

C

DE

Figure 	��� BSP trees with auxiliary planes
for dynamic scenes�

Grids� Almost always regular grids are used� i�e�� the cells are rectangular boxes
�this is probably the simplest space partitioning structure�� This makes them in�
triguing simple� hence� algorithms operating on regular grids are very simple� too�

For ray tracing� regular grids have proved to be the second best data structure
�MSH����

Octrees� Octrees can be considered a multi�resolution grid� usually� only certain
cells of each layer will be actually allocated memory for �see Figure ����� Some
algorithms nevertheless refer to all cells on all layers implicitly by a certain labeling
scheme �Sung���

A thorough survey about octrees can be found in �Samet�b� Samet�a�� How�
ever� the description is restricted to static representations�

Octrees have been heavily used for ray�tracing to speed up the ray�object inter�
section test �GA	� MSH��� Sung��� Solid modeling is another area� where they
are used for representation of objects �TKM�
� FK��� NAB���� Lately� the octree
representation has been combined with the b�rep in order to combine the bene�ts
of both� fast algorithms for boolean operations using the octree� and exact object
representation �see also �CCV����� Also� the two�dimensional brother �quadtrees�
has been used for image compression �Samet�b� Samet�a��

In computational geometry� octrees and quadtrees have been investigated for
solving the point�location and the range�query problem e�ciently �PS��� BF��
YDEP��

It has often been brought forward that octrees are very memory expensive� This
might be true if several hundreds of thousands of polygons were to be stored in an
octree� however� �Dyer��� shows that a quadtrees is a space e�cient representation
of boxes� precisely� that the average and worst case numbers of nodes in the quadtree
are both in the order of the box� perimeter plus the logarithm of the box� diameter
�see Figure �����

Certain properties of objects can be computed quite easily by approximating
them with octrees� e�g�� the volume and the inertia tensor can be computed very
simply with help of octrees� These properties are approximated the better the
higher the resolution of the octree is� however� this is not necessarily true for all
features of an object� surface normals and surface area stay the same no matter
how �nely resolved the octree is�

��� Classi�cation ��

Figure 	�	� An octree can be regarded as
a data structure for e�ciently storing multi�
resolution regular grids�

best worst

Figure 	�
� Best and worst case positions of
a box with respect to memory usage�

Non�conventional space partitionings

Just to remind us that there are many other �maybe clever� algorithms� here are
some less well�known�

Macro�regions� These are based on a ��xed� grid and� like octrees� the method
tries to group large areas of contiguous empty voxels �Devillers���� They are more
�exible� though� because they do not superimpose other grid layers� Instead� these
areas of empty voxels �called �macro�regions�� are rectangular� and as large as
possible� They may �and usually will� overlap �see Figure �����

Sphere grids� Conventionally� grids are made of cubes� However� they could
quite analogously be made out of any other bounding volume� too� for example� of
spheres �see Figure ����� Inserting an object is exactly the same algorithm� except
that the underlying overlap test of the bounding volume with a cell is di�erent�

Exactly like an octree is built from a grid by superimposing coarser grids� an
octree can be built with spheres �or other bounding volumes�� too�

macro regions

objects

Figure 	��� Macro�regions designate voxel
rectangles which are empty�

Figure 	��� Instead of boxes� spheres could
be used to build grids�

�� Space Partitioning Methods

Figure 	��� Objects might occupy several cells together� which could cause the same object
pair to be generated more than once�

Octrees and grids have been implemented in the collision detection module�
the module can be con�gured at run�time during initialization to use either of the
two�

The bounding box hierarchy is �not yet� exploited� Two reasons led to this deci�
sion� the correlation between geometrical vicinity and vicinity within the hierarchy
is probably very low in a highly dynamic environment �which is the interesting case
for collision detection�� in order to yield any signi�cant improvements compared to
the quadratic all�pairs case� the hierarchy must be well modeled and fairly deep �
which does not seem to be the case with too many models �unless it can be done
automatically��

Since ray tracing literature suggested octrees in favor over grids� I implemented
them �rst� then grids for comparison�

	�� Octrees

The basic idea with any cell decomposition in the context of collision detection is�
whenever we want to know which other objects a given object could collide with�
we don�t have to consider object pairs which do not share a cell� i�e�� there is no cell
which does not overlap �partially� with the two objects� bounding box at the same
time�

In order to �nd all object pairs which might intersect� we make a pass over all
objects� for each object we look at all the cells it occupies� Then we have to do an
exact collision detection only with those objects which are in one of these cells� too�

However� there is a little problem �which is similar to a problemwith ray�tracing��
two objects might occupy several cells at the same time �see Figure ���� With
the naive approach� the same object pair would be handed to the exact collision
detection several times in one frame� However� we can get over this problem very
easily with the time�stamp technique �see Section ��	����

Before we can look up object pairs in the space indexing data structure� we have
to insert the objects� Then� a very simple enumeration of cells occupied by an
object would be just to execute the insertion algorithm once more� but instead of
inserting the object� we would just add all those objects which are already there to
some list �conceptually��

When objects move in�between frames� the data structure has to be updated�
This can be done again naively by just using the insertion algorithm once more� we
make one pass with the old position to remove any reference to the object to be
moved� then we make a second pass with the new position to insert it again�

��� Octrees ��

����� Basic Insertion Algorithm

The basic algorithm for inserting an object �that is� in this chapter� a box� b is
quite simple�

Octree insertion

input� box b� octant o
o is leaf� i�e�� level�o � max ��

add b to o�s list
return

o completely inside b ��
add b to o�s list

return

i � � � � ���
b intersects with sub�octant oi
�� insert b in oi

See Section ��	�
 for some remarks on an e�cient implementation�

Since an octree is �conceptually� a multi�layer uniform grid� we can use integer
coordinates for doing the box�octant comparisons� We convert world coordinates
into integer coordinates� based on the �nest grid� with the following formula �the
octree has depth n�� �

x� omin

omax � omin
�n
�

Note that this de�nes a voxel to be a �half�open� cube �vx� vx� x� �vy� vy � y�
�vz� vz�z �� Of course� the factor �n

omax�omin should be pre�computed at initialization
time�

�A little excursion� using integer coordinates gives rise to a simple access scheme
when inserting points into the octree� if a point x has integer coordinates �x� y� z��
then the bits xi� yi� zi� read as a 	�bit number� are the number of the octant on level
i which the point is in� In other words� the string �xn� yn� zn�� � � � � �x�� y�� z�� is the
path from the root to the leaf which contains the point �GA	���

����� Finding �Nearby Objects

After all objects have been inserted in the octree� the next step of the overall
collision detection is to �nd all �nearby� objects to a given one� In this section �and
Section ���� we will consider two objects neighbors if they occupy some elementary
cell �voxel� together�

This can be done very simply by just using the insertion algorithm once more�
except inserting the object� we just scan the list of �attached� objects� The list of
�attached� objects is an object array at every octant node� which stores pointers to
all objects which �partially� occupy the octant �see Figure ������ �See Section ��	�

for an e�cient implementation of these arrays��

The only di�erence to the insertion algorithm is the case when an octant is
completely inside the box� with insertion� we�re �nished with recursion at this
point� for �nding neighbors� however� we have to descend further down the whole
sub�tree rooted at this octant� since there might be objects which are attached
only to some octant at a deeper level� Nevertheless� the two boxes are neighbors
according to the de�nition�

�	 Space Partitioning Methods

octant
node

object data base

object array

Figure 	���� Octree data structure with object arrays at each node�

Octant arrays� We can do a little better by enhancing the data structure by
�octant arrays�� every object will be given its own octant array� This array contains
references to every octant whose object array has got a reference to the object in
question �see Figure ������ When �nding neighbors of an object� we don�t have to
traverse the octree from the top� Instead� we can start traversal at those nodes
which are referenced by the object�s octant array� �Most of them will be leaves� see
Section ��
�
��

However� this data structure needs more memory � not only for the octant
arrays� but also for � integers with each cell� which hold the cell�s extent� That is
about ��$ increase in memory usage�

����� Moving an Object

When an object has been moved by the application� the octree has to be updated
accordingly� The naive way to do this is �rst to remove all references to this object

octant
node

object data base

object array

Figure 	���� Octree data structure enhanced with octant arrays�

��� Octrees ��

newly occupiedold boxold box newly occupied

Figure 	���� Symmetric set dierence of �new� and �old� bounding boxes� The �new� part
is partitioned into rectangular boxes� When moving an object� an octree traversal has to be
done for only those cells which are in the box�dierence�

from any octree cell� then to insert it again� This could be done by two traversals
through the octree� With octant arrays used for neighbor��nding �see Section ��
��
and Figure ������ we can remove object references faster� but the insertion phase
remains�

In most applications� however� objects move only a small distance �and rotate
probably a little bit�� This implies that their new bounding box is �almost� the
same as of one frame before �time coherence�� With two traversals for updating the
octree� most of the references to an object would be removed only to be inserted
immediately again with the next traversal�

Box di�erence� We cannot speed up the object removal phase very much �see
below �Overkill��� all we can do is to scan the object�s octant array and remove the
object from all those cells which are no longer in the new bounding box�

Now we only have to insert the object in those cells which have not been occupied
before� Given the �new� box bnew and the �old� box bold� we partition the di�erence
bnewnbold into �at most� six boxes �we will call them entering boxes��

E� � �bnewxlow� b
old
xlow � �� �bnewylow� b

new
yhigh � �bnewzlow� b

new
zhigh�

E� � �max�boldxlow� b
new
xlow�� b

new
high� �boldyhigh � �� bnewyhigh� �bnewzlow� b

new
zhigh�

E� � �max�boldxlow� b
new
xlow�� b

new
high� �bnewylow� b

old
ylow � �� �bnewzlow� b

new
zhigh�

E� � �max�boldxlow� b
new
xlow�� b

new
high� �max�boldylow� b

new
ylow��min�boldyhigh � b

new
yhigh��

�bnewzlow� b
old
zlow � ��

E� � �max�boldxlow� b
new
xlow�� b

new
high� �max�boldylow� b

new
ylow��min�boldyhigh � b

new
yhigh��

�boldzhigh � �� bnewzhigh�

E� � �boldxhigh � �� bnewxhigh� �max�boldylow� b
new
ylow��min�boldyhigh� b

new
yhigh��

�max�boldzlow� b
new
zlow��min�boldzhigh� b

new
zhigh��

Of course� these calculations are done using integer coordinates� that�s okay� because
min�max and ��� are commutative� Most of the time� 	 of the entering�boxes Ei

are empty� all six are non�empty only if the box has grown but little moved�

Then we do an insertion traversal with each non�empty of the entering boxes Ei

�see Figure ������ This should result in much fewer cells being visited�

�� Space Partitioning Methods

����� Results

Some experiments were realized by which I tried to �nd out where octree algorithms
could be improved�

Memory usage� The �rst test was designed to measure the pointer distribution
with respect to octree depth� The octree comprised a ����cube� containing ���
objects� each of size �� �in local coordinate system�� Each �gure is an average of
���� frames�

octree %object pointers at depth �$�
depth � � 	
 �

� � ���
	 � � ���

 � � ��� �

� � � ���	 	�� ��

This means that with an octree of depth �� say� �$ of all object pointers of the
whole octree are stored in cells on level �� �A depth 	 octree has got � � �
voxels�� It seems that an octree is an e�cient space subdivision only if objects are
large in comparison to the voxel size�

The same set�up was used to measure memory usage and actions� The octant
and object arrays were implemented as growing�shrinking ones with hysteresis �see
Section ��	�
��

octree usage %mem� actions�frame
depth �kBytes� malloc realloc free

� � �
 ���� �

	 �� ��	�� ���� ��	��

 ��
 �	 �� �	
� ���

��� �

���

Memory usage includes the octree backbone plus all object arrays �not octant ar�
rays�� Variance seems to be very small ��
 kBytes��

Timing� Figure ���	 and Figure ���
 show the results of some of the improvements
over the naive algorithm� proposed in this section� Obviously� the algorithm which
visits only those nodes it really has to is the fastest �as expected�� All timings were
done without rendering� only object movement� octree updating� and neighbor�
�nding �as a potential global stage of the overall collision module�� The hardware
was an SGI Onyx �
 R

��� ��� MHz��

Several other things have been tried to speed up the octree stage� a supposedly
faster malloc routine was used� object arrays were not freed when they were empty�
All of them did not yield any signi�cant speed�up� if at all�

Performance of even the best algorithm presented here still seems to be rather
slow �intuitively�� this is odd� in comparison to the great success of octrees with
ray�tracers�

The extensive performance measurements carried out suggest that that octrees
�and maybe grids� too� are not the most appropriate data structure for solving
the O�n�� problem on the global level� There is very little literature so far on
space indexing data structures for highly dynamic environments� Octrees and grids

��� Octrees ��

2

10

100

200

2 3 4 5

tim
e

(m
s)

depth

floats
integers

Figure 	���� Both timings use the naive algorithm� A depth of � corresponds to the root only�
�Unfortunately� the test program was not compiled with �O� so results here are not directly
comparable to the ones of Figure 	�����

2

10

100

300

2 3 4 5 6

tim
e

(m
s)

depth

object+octant arrays
box difference

Figure 	���� The �rst one uses octant arrays� The second algorithmuses the further optimized
algorithm which visits only cells which are in the box dierence� �Here� the test program was
compiled with optimizer��

�� Space Partitioning Methods

have been used haevily in the area of ray�tracing and radiosity� however� these
applications are of very static a nature �currently�� So� for dynamic environments�
other algorithms and data structures should be investigated�

����� Future directions

There are a few options� which could be tried further�
Pondering the �rst test in every recursion �octant completely inside box�� one

can see that all tests to decide it have already been made in �probably di�erent�
levels above the current recursion� These comparisons should be re�usable� �I didn�t
succeed in �nding a coding which could decide the octant�in�box test without any
further comparisons��

Another idea ��Dai
�� is the following� when an object is inserted into the
octree� we �attach� it to all those octants which are visited during the traversal
�these are all octants where it is attached to with the current algorithm� plus all
octants on the path towards the root�� When moving an object� we now don�t have
to compare boxes� but instead can simply follow those paths which have the object
attached to them� The disadvantage with this approach is� all objects are stored in
exponentially many nodes �the estimation of �Dyer��� is no longer valid�� Also� in
order to �nd out if an object is attached to an octant node� it has to be searched
for in the object array� which might take some time�

	�	 Grids

Most basic algorithms for grids are so simple� they hardly need to be mentioned�
The general idea with grids is extremely simple� every cell which is �partially�
occupied by an object will get a pointer to this object� A cell can� of course� hold
many pointers�

The data structure of the grid is very simple� every cell has a list of objects at�
tached to it� like with octrees� Objects do not need a cell array� which would contain
pointers to all those cells which an object occupies� because we can enumerate those
cells equally quickly by using the object�s bounding box �see Figure ������

When trying to �nd neighbors of an object� we just enumerate all cells by looping
over the integer coordinates of its bounding box� and by looping over all object
arrays of those cells�

When moving an object in the grid� we can use the same box�di�erence technique
of Section ��
�	 to change only those cells which have to be really altered�

Overkill� There is only one part of the algorithm left which looks at too many
data items� the removal phase� When removing P � it does have to scan every object
array of all those octant nodes where P is no longer contained in� in order to remove
the pointer to P �

The idea was to add an index to every cell reference which tells where in the
cell�s object array the reference to P is stored �see Figure ������ This allows to
remove any reference to P from the grid without searching any object arrays� At
�rst glance� the advantage is o�set just a little bit� because whenever we remove an
entry in a cell array or in an object array� we have to adjust all indices into these
arrays which point behind the entry being removed� This can be avoided� though�
by moving the last entry to the place of the entry being removed �thus overwriting
it��

��� Grids ��

grid
cell

object data base

object array

cell array

Figure 	��	� The simple data structure of
grids�

grid
cell

object data base

object array

cell array

Figure 	��
� The grid data structure further
augmented to allow for �supposedly� quick re�
moval of object references from grid cells�

Unfortunately� this data structure performed worse than the simpler one �see
Section ������#

����� Non�axis�aligned Bounding Boxes

In the context of collision detection� it might be more e�cient to add objects to
cells according to their non�axis�aligned bounding box� even though the time spent
with updating the grid will be much more� If axis�aligned bounding boxes in world
coordinates are computed from the bounding box given in object coordinates� then
an object will be attached to many more cells than are really occupied �see Fig�
ure ������ Using the tight bounding box� the number of neighbors in the grid might
be much less and thus the number of object pairs which are tested for exact col�
lision� So� altogether the overall time needed for a global collision check might be
less�

Several methods were considered to do insertion of a non�axis�aligned bounding
box into a grid�

The �rst one is to loop over all cells which are inside the aligned bounding box
and check with Cyrus�Beck for intersection� Similarly to the box�tree algorithm�
we can re�use many terms from previous iterations and from previous expressions�
A little complication arises here� because we also have to deal with the case that a
cell is completely inside the bounding box� or that the bounding box is completely
inside a cell�

Another idea is to �chop� the box along the z�axis into drums� each one cell wide
along the z�axis� These drums can have 	�� vertices� Then we convert these drums
to cell coverings� At �rst glance� one might think that this �D problem is similar
to the scan conversion of polygons � but it is not� with scan conversion� we are
looking for the best approximation on a grid� here we want a covering�

As with scan line conversion� we can have very nasty problems� like many vertices
falling into one z�slice �scan line�� or very small angles at vertices�

In any case� this approach seems to be too expensive�

Stabbing the grid� The algorithm �nally chosen is the stabbing idea� we shoot
a ray along the z�axis through every integer vertex i� j on the xy�plane� considering
all
 rays at the corners of every �z�column� of cells �i�e�� � � n�box�� we can
enclose the box by a collection of �z�sticks� �i�e�� � � k�boxes�� Once we�ve got

�� Space Partitioning Methods

Figure 	���� An object might be �attached� to many more cells of a grid than are actually
occupied� if its axis�aligned bounding box is used� This test program colors cells which are
occupied by any object� un�occupied ones are white�

those z�sticks� we can loop over all of them and add the object to all cells covered
by them �see Figure ������

We will stab the grid only by rays which pass through the axis�aligned box� also�
stabbing it at the border of the axis�aligned box is not needed� since those rays can
penetrate the non�axis�aligned box if it is actually parallel to the z�axis�

In the description of this algorithm we�ll assume that we use z�rays� in order to
minimize the number of stabbing rays� an implementation will choose that side of
the axis�aligned box which is smallest�

Again� a box B is given by a point p and three spanning vectors bx� by� bz� The six
faces of the box will be called x�� y�� and z�planes� A ray through grid coordinates
i� j will hit� say� the two x�planes of B at line parameter txij and �txij�

txij �
bx�p� q�

bxzdz
� i

bxx'x

bxzdz
� j

bxy'y

bxzdz

�txij � txij �
�

bxzdz

As we can see� when varying i and j� all txij can be calculated by two �oat additions�
and �txij by just one more� All other terms can be pre�calculated�

Analogously� we compute the ty� and tz values for the other two slabs of the box�
this can be done in one loop� After having computed all t�values� we compute the
line parameter intervals Tij of that part of each z�ray which is inside the box B�

Then� we compute the z�range of all z�sticks by just taking the min and max
of the four T �ranges Tij� Ti���j� Ti�j��� Ti���j�� �depending on which side the rays
enter�leave��

Again� because we know several things about the geometry� for example� z�rays
always go from � towards �� entering�leaving status stays the same over all z�rays

��� Grids ��

z-column

B

x

y

z

z-stick

Figure 	���� Enter a non�axis�aligned box by
stabbing the box at integer coordinates and
enclosing it in �� �� x axis�aligned boxes�

x

x

x

y∆

z

∆x

z
p -b

b

d

q

Figure 	���� Most of the terms from a previ�
ous iteration can be re�used�

for a certain plane pair� Tmin � Tmax cannot happen� etc� � because of that we
can optimize the code considerably�

As with the box�tree algorithm� we have to take care of the special case that
some �at most
� planes of the box are parallel to the z�axis�

Actually� this method might miss a cell which is occupied by the box� if none of
the z�rays through its corners penetrate the box� This might become a problem if
the boxes are very small in comparison to the cell size� To reduce this e�ect� we
additionally occupy all those cells which contain one of the � box vertices�

����� Results

The �rst test was carried out to compare the �simple� algorithm with the �im�
proved� algorithm� by �simple� I mean the one using object and cell arrays� which
also uses the box�di�erence technique of Section ��
�	� by �improved� I mean the
one which uses the doubly�pointered object and cell arrays which mutually contain
also indices into the other array� Results can be seen in Figure �����

The test was done� as usual� without any rendering� it did take into account
transformation matrix� bounding box calculations� grid updates� and generation of
all object pairs which would have been handed to some exact collision detection
algorithm� The scenario was the usual cage of size ��� with ��� objects of size ��

�ying around� each �gure is the average on ���� frames�

A big shock was the result of the �improved� data structure described in �Overkill�
�which maintained array indices� too�� With a grid size of 	��� this data structure
performed by a factor of 	
� slower than the algorithm which searched for object
pointers in the cells� The object arrays stored at each cell are quite small still�
this cannot explain why the augmented data structure is actually slower# I could
only come up with the following explanation� with every pointer de�referencing�
a part of the memory is addressed which is far away from where the pointer was
stored� There are � pointer de�referencings per removal from one cell� My guess is
that each de�referencing caused a cache miss� which would cause the CPU to swap
the cache in and out � times per loop iteration�

Comparing memory requirements is as frustrating as comparing their time char�
acteristics�

�� Space Partitioning Methods

3

10

100

200

0 10 20 30 40 50 60 70

tim
e/

fr
am

e
(m

s)

size (#cells per axis)

simple
doubly pointered

w/ bbox pre-check

Figure 	���� Comparison of the �simple� and the doubly�pointered grid data structure� �A
size of n corresponds to an octree�s depth of log� n��

grid memory �kBytes�
size simple w�indices

 �� �

� ��
�
�� ��� �

	� ����� ��	�
�
 �
����

The third curve in Figure ���� is the simple algorithm with the additional pre�
check whether the new and the old bounding boxes �in integer coordinates� are the
same �if so� the function is �nished��

Figure ���� shows a comparison of the simple algorithm �including bounding box
pre�check� and the one which takes non�axis�aligned bounding boxes�

Finally� some tests were made with exact collision detection after the grid
phase� The goal was to �nd out at what scene complexity a grid pre�stage actually
payed o��

The scenario of Figure ����� a certain number of tetrahedra �bbox�size ��� moving
in a cage of size ��� each �gure is the average of ���� frames�� Obviously� even
����
� bounding box checks are very cheap compared to some super�uous exact
collision detections� Hardware� ��� MHz R

���

Another scenario with exact collision detection is� 	� moving objects �spheres�
tori� cube arrays� tetra��akes� plus the � wall boxes� in a cage of size ��� each with
�� ��� polygons� together
��� polygons�� Rendering was switched o�� each �gure

�Invocation� movem �m num�tetras �s g size �a cx �e � �t ���� sh�
�Invocation� movem �m ��� �x �s g � �a bx �e � �t ���� sh

��� Grids ��

3

10

100

200

0 10 20 30 40 50 60 70

tim
e/

fr
am

e
(m

s)

size (#cells/axis, 0 = one cell)

simple w/ bbox pre-check
non-axis-aligned bboxes

Figure 	���� Comparison of grid space subdivision� using axis�aligned boxes and non�axis�
aligned boxes� Grid�phase only �no exact collision detection afterwards��

0

20

40

60

80

100

120

140

160

1 5 9 17 33

tim
e/

fr
am

e
(m

s)

size (#cells per axis)

50 tetrahedra
100 tetrahedra
200 tetrahedra
400 tetrahedra

Figure 	���� The grid pre�phase combined with exact collision detection among tetrahedra�

�		 Space Partitioning Methods

�a� Bounding volumes
made of more than �
slabs �here �D�

�b� Corresponding oc�
tree

Figure 	���� Generalization from the conventional ��slab bounding volumes�

is the average of ���� frames� The test was run on SGI with a
� MHz R	��� �VGX��

method time�frame % obj��pairs
�msec� after grid

no grid� no box�trees ��� ���
no grid� with box�trees �	
 ���
with grid� with box�trees �� ���

The last one considered the special case where only one object moves among
many stationary objects� The scenario here was� one moving object ��� polygons�
among ��� �xed polyhedra �tetra��akes�� each with �� polygons� altogether ������
polygons�� Rendering was switched o�� exact collision detection was done�

without grid ��� msec�frame
with �� grid ��� msec�frame

	�
 Generalized Octrees

What is the connection between space�subdivision schemes and bounding volume
types� With conventional octrees the correspondence is as follows� given two cubes
in world coordinates by their enclosing slabs

si � nix� di � � � �nix� d�i � �� i � �� �� 	

we can check for overlap by simply comparing their di�s and d�is� We can do that
with n slabs� too �KK��� �n � 	� see Figure ���	�a� ��

Correspondingly� an octree is recursively constructed by taking a large bounding
volume which encloses the whole �world�� This volume is then divided at its center
by all n planes which slabs are made of �see Figure ���	�b��� When inserting an
object� we recursively compare corresponding d�values of the object�s slabs and the
cell�s dividing slab�planes�

A little problem seems to arise here� I suspect that an arbitrary bounding volume
made of slabs will not yield similar bounding volumes when divided by slab planes
at its center� But I do not think that that would be a problem� we could just use
the center of the conventional octree�s cubes�

This method has not been implemented� yet� It seems to me that it o�ers ad�
vantages in comparison to conventional octrees� because the depth can be much
less while still achieving the same �resolution�� more important� I think that this
�octree� scheme combines naturally with the generalized slab bounding volumes�
which are on average much tighter than boxes or spheres can be#

�Invocation� movit �m ��� sh �t ����� sh �e �� �x � �s n � �a ar�

��� Without Space Subdivisions �	�

Generalized grids� It is not clear to me whether this scheme would also work
for uniform grids� The problem I see there is� given a slab bounding volume� how
could we enumerate all cells of the slab grid which are occupied by the volume�

	�� Without Space Subdivisions

There are other methods to solve the all�pairs problem apart from space subdividing�
They have not �yet� been implemented� though�

Bounding box hierarchies� These try to exploit the fact that users tend to
model hierarchical scenes by grouping those objects in the same sub�tree which are
geometrically close �YW	�� However� if the scene is highly dynamic� this relation
could get spoiled very soon� i�e�� the bounding boxes of assemblies could get very
large� because their children have moved far apart�

For ray�tracing they seem to work very well �KK���� because the scene is entirely
static� so� the hierarchy can be built once at start�up time� In dynamic environ�
ments� the hierarchy would have to be rebuilt every n�th frame in order to maintain
a fairly optimal correlation between spatial vicinity and vicinity within the tree�
Since ray�tracers have to build the hierarchy only at start�up time� they can create
a much �ner and better optimized hierarchy on polygon level�

Another problem is the following� In a given application� there might be many ob�
jects which we are not interested in any collision detection at all �see Section �������
When looking for collisions with a given object A� there is no way to avoid looking
at those other objects� We might keep a counter at every assembly node whether
there are any �collidable� objects underneath it but that would not help in general�
since there might be just one object at some leaf way down in a deep sub�tree�

If the hierarchy is very �at �i�e�� just the root and almost all other nodes are
leaves� which can happen if the data originate from CAD systems�� then we will be
back to the n��case#

Sorting� Here� we�re given just a collection of axis�aligned boxes which might
change size and move around�

The basic idea is to sweep a plane along the x�axis �see Figure ���
�� whenever
this plane intersects more than two boxes at a time� we check all these rectangles�
obtained by the actual intersection of the sweep plane at the current position with
those boxes �Edelsbrunner
� BF�� PS���� This is now a similar test in two dimen�
sions� which can be performed by the same method� now with a sweep line instead
of a plane�

Since there are only �nitely many boxes� we can �rst sort the set of x�values of
all boxes �xmin and xmax�� Then� the sweep of a plane along the x�axis can be done
by �hopping� from one x�value to the next in the sorted list� During the sweep� we
maintain a list of y�values and z�values� At each x�value found in the list we either
enter� or leave a box� correspondingly� we add or remove its y� and z�values from
the y� and z�value arrays� Since the sweep along the y�plane will need the y�array
to be sorted� too� we will add and remove y� and z�values by insertion sort �which
involves at most one pass over the two lists��

This method is very suitable for exploiting time coherence� since objects won�t
move very far between two frames� the list of x�values of a certain frame will be
�almost sorted� with the next frame� too� This suggests to keep this array and
update it by a few bubble�sort passes�

�	� Space Partitioning Methods

x

y

x x0 n

Figure 	���� The sweep�plane algorithm considers only x�coordinates where the
intersection�non�intersection status of any two boxes might change�

In my opinion� this seems to be the most promising algorithm to solve the all�
pairs problem on the global level� However� there have been practically no results
on octree�grid performance for dynamic environments �as yet�� The limited time
frame for this thesis did not allow to investigate this direction any further�

Also� the CPU time spent by one of the methods presented above is neglectable
compared to any pairwise collision detection algorithm�

Chapter �

Parallelization

With today�s trend towards multi�processor architectures� any problem should be
considered for parallelization� In particular� the collision detection problem seems
to be easily and e�ciently parallelizable�

There are basically three levels to characterize parallelizations�

 concurrent�

 coarse grain�

 �ne grain

and two load balancing schemes�

 static work load balancing� every process is assigned a certain portion of the
total work at start�up time� when it is �nished� the process waits for the others
to �nish� too�

 dynamic work load balancing� every process retrieves a small portion of the
total work� when it is �nished� the process tries to retrieve another portion
until there is nothing left�

The classi�cation is somewhat fuzzy� i�e�� there are no clear border lines�
Dynamic work load balancing burdens each process with a little bit more syn�

chronization overhead� but it is highly recommended� So� I decided to implement
it in all parallelized algorithms� even more so� since the overhead does not seem to
be very high in the context of collision detection�

There are many possibilities to distribute the algorithms presented so far on
several processors� especially because on each of the levels mentioned above we
have almost complete data independence�

� There are at least two di�erent concurrent approaches�

 The whole collision detection module runs concurrently to application
and�or renderer� �

 When testing an object pair for exact collision� we start di�erent algo�
rithms in parallel with the same pair for input��

We could choose three complementary algorithms� one which is fast when
objects do not collide� the other which is fast when objects do collide�
and a conventional one� Then� if either of the three has found a solution�
all three of them terminate�

�items marked have been implemented

�	� Parallelization

� On the global level �this corresponds to the coarse grain level��

 Updating the spatial data structure �grid or octree� can be done by
�conceptually� one processor per moved object�

There is probably a substantial overhead with this approach� every access
to a cell�s object array must be exclusive� i�e�� guarded by semaphores
�or locks�� An access collision will occur the more often the more pro�
cessors are applied to update the grid�octree� We would need either one
semaphore for every cell individually� or� if we use only one semaphore
for any access to any cell�s object array� the collision probability would
be intolerably high�

But the overall gain of parallel grid�octree updating would not be sub�
stantial� probably� because this task is a minor part of detecting all col�
lisions in a highly dynamic environment�

 If we assume that we are given a list of object pairs to be tested further
for exact collision� we can process every pair in parallel without any
further overhead� even if the same object is part of several pairs��

Of course� a real implementation has only a limited number of processors�
so there will be a little overhead for guarding that region of the code
which takes the next pair out of the list�

� On the edge�polygon level �this is the �ne grain level��

 The algorithms of Sections 	�� and 	�
 can be distributed on two proces�
sors while still having very little overhead�� given an object pair �P�Q��
one processor can test edges of P against Q� the other can test edges of
Q against P �

This is sort of a medium grain parallelization�

 Testing a set of edges against a set of polygons �or clipping them against
a convex volume� can be distributed on as many processors as there are
edges� This is parallelization on �almost� the �nest level possible�

With less processors than edges� the overhead can probably become very
high� because retrieving the next un�tested edge has to be exclusive�
thus guarded by a semaphore� Since a single edge�polygon test is very
quick� processors will spend a lot of their time waiting in the queue of
the semaphore�

This could be improved a little by retrieving not just single edges but
chunks of un�tested edges� Static work balancing is probably not an
option� because edges tend to be grouped by vicinity in the edge array�
which means that most edge�polygon tests will be �nished with the edge�
bbox test� which is very soon�

����� Parallel Computation of Bounding Boxes and Trans�
formation Matrices

Geometry nodes in the object hierarchy contain some information which is needed
by all collision detection algorithms �like transformation matrices�� but which� un�
fortunately� depends on information which is stored at other nodes �see Figure ���
for a depiction of the dependences��

Each node holds several local transformations and a matrix describing its trans�
formation to world coordinates �this will be called its to�world transformation��

Parallelization �	�

B

B B

B

T

T

T

T

T

B

0

1

2 barrier

barrier

barrier

visit
sequence

level

P Q

R

Figure
��� Some dependences of information in the object hierarchy� Visit sequence of
multiple processes� between each two barriers� processes are data�independent�

When an application changes a local transformation of a node� its to�world matrix
becomes invalid� and the to�world matrices of all its direct and indirect children
become invalid� Whenever the application calls a function to calculate a to�world
transformation matrix� the object handler has to make sure that the to�world ma�
trix of the parent node is valid� This could eventually cause the object handler to
calculate the root�s transformation matrix�

Bounding boxes exhibit a similar dependence scheme� except that it is turned
�upside down�� Thus� when the object handler is requested to compute the root�s
bounding box� this could eventually lead to the calculation of all nodes� bounding
boxes�

In the context of parallel collision detection� this data dependence looks like a
serious problem at �rst glance� since several processes might compute the same
transformation matrix or bounding box at the same time� A few things can be
done about that�

� Calculate all bounding boxes and to�world transformation matrices sequen�
tially before any collision detection algorithm will need them�

� First� calculate all to�world transformation matrices of all moved objects in
parallel� This might cause two or more processes calculate the same transfor�
mation matrix at the same time� however� input and output of the responsible
function are completely independent� so that two or more processes would just
overwrite each other�s results with the same data �see Section ��� for a full
explanation��

Second� calculate all moved objects� bounding boxes� Since all moved objects
are leaves� no bounding box will be computed by more than one process�

This is the approach taken here� for the time being�

� Use a parallel algorithm as depicted in Figure ��� �I will call it the jo�jo
method�� several processors compute on the same level� when they�re all �n�
ished with that level� they all shift from one level to the next synchronously
�barrier�synchr���

First� they would all proceed from top to bottom computing transformation
matrices� then back up again� computing bounding boxes �just following the
data dependences��

�	� Parallelization

�� Terminology and Limits

When parallelizing algorithms� we usually want to know how they compare to their
sequential counterparts� To that end� we need to de�ne a few terms� Let T� be
the time of a certain algorithm A on a ��processor machine� let Tp be the time of
a parallel algorithm B� solving the same problem as A� on a p�processor machine�
Then we say that B gives a speed�up of

Sp ��
T�
Tp

by using p processors� It is necessary to mention A and B� since we are talking of
algorithms� not of problems� Of course� Sp has signi�cance only when A and B are
�in some sense� �good� algorithms #

The e�ciency

Ep ��
Sp
p

�
T�
pTp

tries to provide a measure for the quality of the parallelization� of B� It is also sort
of a measure whether it is worth parallelizing A� because it is clear that p processors
can solve most problems faster than � processor can� on the other hand� p processors
are� at least� p times as expensive as �� so� to be really cost�e�ective� they should
be p times as fast�

The goal is always to get Ep � � � unfortunately� almost always Ep � � for
p��#

A few hypotheses� There are a few statements on what might be realistic when
parallelizing code�

Minskys Hypothesis says that

� p � Sp
 � � logp

which is an empirical observation� If this is true� then it does not make sense to use
massively parallel systems� because Ep

log p
p

� � for p��#
Amdahls Thesis presumes that every algorithm has an inherently sequential part

�� �
 �
 �� which cannot be parallelized� Then this algorithm can have a maximal
speed�up�

Sp

�

�

This would imply� that it would not make sense to increase p � �
�
� However� this

thesis is correct only if we take a sequential algorithm and parallelize that �for
example� by an automatically vectorizing compiler�� if we invent an entirely new
algorithm specially suited for the parallel architecture� then the speed�up can be
much better�

The Law of Gustafson seems to claim quite the opposite of Amdahl�s thesis��

Sp � � � ��� ��p

The outcome of all this is just� Amdahl�s law says that for a given problem we
cannot reduce the computation time arbitrarily by just applying more processors to
it� whereas Gustafson�s law says� that parallelization can help tackle problem sizes
which we otherwise would not be able to solve at all�

�Tp � �T� � ��� ��T�
p
� Sp � T�

�T������	
T�
p

� �

�� ���
p

� �
�

�Since Sp � p� choose p � Sp � p � �
�

�this follows from the assumption that T� � ��� ��pTp � �Tp

��� Detecting Multiple Collisions in Parallel �	�

�� Detecting Multiple Collisions in Parallel

This section will deal with conventional coarse grain parallelization� i�e�� the same
function is executed on several processors at the same time to solve di�erent in�
stances of the same problem�

This algorithm tries to do as much as possible in parallel on the global object
level� except for updating any space indexing data structure� because� as was said
above� I suspect this would have too much synchronization overhead�

The basic idea is� given the list M of objects which have moved since the last
frame� take objects out of this list in parallel and update their bounding box and
to�world matrix� If all are updated� update the grid�octree sequentially� Then� �nd
sequentially all object pairs which are �close� to each other and store these pairs in
a list P � After that� process the list P in parallel�

Pseudo�code for this scheme follows�

Global parallelization

exec parallel�

���������������������������take next object o out of list M
calculate to�world matrix and bbox of o

� o �M�update o in grid�octree
� o �M�

put all objects pairs �o� o�� in list P �
if o and o� occupy a common cell�
and if it is not yet there

exec parallel�

����������������������������������take next object pair �o� o�� out of list P
check �o� o�� for exact collision

Only those parts of the function which are marked by dots are ��������������������������exclusive regions�
These regions are guarded by a lock� which keeps the process spinning �i�e�� busy
waiting�� so as to minimize synchronization overhead�

As mentioned above� we are allowed to do the matrix and bounding box up�
dating in parallel without guards� in this particular case� Let�s assume that two
processes are about to calculate the to�world matrices of object P and Q� resp� �see
Figure ����� Then� both realize that they need the to�world matrix of the common
father R� So they both start to calculate R�s matrix at the same time� which results
in multiple writes to the same memory locations�

However� this is not a problem� First� the bus architecture does not really allow
concurrent writes � there are only exclusive writes� so results are not unde�ned
with these conceptually concurrent writes� Second� the matrix calculation function
is coded such that input data �i�e�� the local transformations� and output data �i�e��
the to�world matrix� are independent� And third� both processes write exactly the
same data� so they do not destroy each other�s results� If matrices further up the
object hierarchy had to be computed� too� the same arguments would apply again�

This method is not the most e�cient way to compute several transformation
matrices and bounding boxes in parallel� especially if there are many objects and
if the tree is deep� In that case� the �jo�jo� method might be more e�cient �see
Figure �����

�	� Parallelization

�� Parallelizing a Single Object�Pair Request

This section describes two methods how to parallelize a single request whether or
not a pair of objects collide�

����� Fine�Grain Parallelization

As mentioned above� the arbitrary and convex algorithm can be parallelized on an
edge�polygon level� because each edge�polygon test is entirely independent of all
other tests� The whole collision check can be distributed on many processes by
assigning each of them a certain portion of the edge array �or even a portion of the
polygon array� too�� For dynamic work�load balancing� each process can take out a
portion of the arrays itself�

We can parallelize even more� the calculation of world coordinates of vertices and
normals can be distributed in a similar fashion� Between each stage �vertices� nor�
mals� edge�polygon tests�� we could use barrier synchronization� We can probably
even do without such a synchronization� when a process cannot take out another
portion of� say� the normal array� it starts to take out the �rst portion of the edge
array and check them or clip them�

The box�tree algorithm could be parallelized in two ways� One could do the
simultaneous box�tree traversal with one process and collect all intersecting ele�
mentary boxes in an array� Then this array could be processed in parallel� Or� we
could try to parallelize even the box�tree traversal� however� this would imply that
a process is spawned with every recursion� which might be very expensive�

The separating planes �see Section 	�
��� algorithm can be parallelized� too� how�
ever� the synchronization overhead might be higher than that of all other algorithms�
Every plane wi �which is checked whether or not it is a separating plane� depends
on wi�� of the iteration before and some point zji � i�e�� wi � f�wi��� zji�� This is
the worst data dependence one can have � usually� it means that the algorithm is
not parallelizable� In this particular case� we can distribute the check whether or
not wi is a separating plane �barrier synchronization�� Experience seems to indicate
that barrier synchronization usually incurs a very bad overhead�

The probabilistic algorithm for closed polyhedra �see Section 	��� is as easy
to parallelize as the arbitrary or convex algorithms� After all normals have been
transformed �maybe in parallel� too�� each process tests random points for �inside�
in both of the polyhedra� If one of them �nds a point to be inside� all processes are
�nished�

����� Medium Grain

If there�s only one object pair to be tested for a certain frame �which could happen
fairly often if there�s only one moving object�� then we can use two processors to
parallelize collision detection�

If we had very many processors� we could combine medium grain with coarse
grain parallelization�

The algorithms presented in Sections 	��� 	�
� 	�� consist of two phases� check
edges of P against polygons of Q� and edges of Q against polygons of P � The worst
case with these algorithms is an �almost� collision� in that case� both phases have
to be run� and many edges and polygons have to be tested�

The idea is simply to run the two phases of the algorithms in parallel� If one of
the processes �nds a collision� it sets a �ag so that the other process terminates�

��� Concurrent Collision Detection �	�

too� if neither of them �nds a collision� then the overall run time will be about half
of the sequential time�

There�s also the case that one of the processes �nds an early �non�collision��
which can also be signaled to the other process by the same �ag�

The outline of the parallel code is

Two phases parallel

input� polyhedra P�Q
result �� �none� f�ag to tell other process if sth� found g
exec � parallel� fprocess
 is called with A � P�B � Q g

collect polygons of B fprocess � is called with A � Q�B � P g
which are in A�s bbox�
there are none
��

result �� �no collision�

� result

� e � A�
result set �� return

e intersects polygon of B
��

result �� �collision�

� result

Theoretically� we would have to guard the regions which set or test the �ag result�
however� since the bus prohibits concurrent writes� the worst thing that could hap�
pen is that the other process iterates the edge loop once too often�

�� Concurrent Collision Detection

The one expectation that a virtual environment necessarily has to meet is im�
mersion� The most important human factor to achieve immersion is a constantly
interactive frame�rate� To this end� all parts of a virtual reality system must be
able to adapt to an increase of the work�load� i�e�� they must provide some way to
reduce their share of CPU time � maybe even at the expense of reduced accuracy�

One method to attain constantly interactive frame�rate is to decouple all those
parts from the VR system which are not directly involved in feeding input data to
the renderer�

Such a decoupling could be done by unsynchronized concurrent loops with some
kind of communication in�between� The model chosen here is the classic producer�
consumer model� maybe with the exception that the bu�er in�between is not� as
usually� a FIFO but just two swapped bu�ers� �A few other deviations are discussed
below��

Two reasons led to the decision not to use FIFOs�

� �Back�� and �front��bu�ers are needed anyway �see Section �������

� When a collision is detected� the collision detection module executes a callback
to the application� This callback can change transformations of the colliding
objects �in fact� all my test programs do so�� This transformation change
would make it necessary to enter the object immediately again into the bu�er
� which could cause never ending loops or the bu�er to get clogged�

��	 Parallelization

The advantage of a FIFO is that it does not need any lock� With two bu�ers we
need to guard every write �not the reads� though� by a lock� but since a bu�er swap
occurs relatively rarely �see below�� the application will very seldom have to wait
when writing an object into the front�bu�er�

Concurrency in the context of collision detection poses other potential prob�
lems which are non�trivial to solve�

� Before an object is tested for collision with other objects� its vertices and
normals have to be transformed to world coordinates� After the matrix has
been calculated� all vertices are transformed� For the time being� the collision
detection module can�t make sure that this matrix stays the same during
transformation of all vertices�

Theoretically� another process �even the application itself� might change the
transformation and the to�world matrix while the collision detection module
is still transforming vertices�

However� this did not happen so far� because currently� there is no other
process which changes transformations and needs the to�world matrix�

This problem is not trivial to solve� the naive solution� which would just lock
access to the transformation matrix of the object while the collision detection
module is transforming vertices� does not seem to be satisfactory�

� The callback �which is a function within the application� cannot know as of
which time �frame� the collision has occurred�

What happens with my test programs regularly is that objects always move
a little further before their collision is detected�

In order to overcome this problem� the collision detection module would have
to tag objects with some time information� or� better yet� it should keep the
current transformation as of the time when an object is entered in the bu�er
for later use by the application�

The conventional producer�consumer model has to be modi�ed a little to suit
the needs of collision detection in virtual environments�

� Usually� the overall program �producer plus consumer� is not allowed to loose
any data on its way from producer to consumer� This means that if the bu�er
in�between �FIFO or swapped bu�ers� is full� the producer has to wait�

Not so in the applications intended to use collision detection� the producer
must never be kept waiting� The only solution to that problem is to throw
away objects which cannot be processed quickly enough�

� Every object is entered at most once in any bu�er� �In contrast� usually each
data item is entered in the bu�er as it is generated by the producer��

Although an object is entered only once in the bu�er� its transformation can
still be changed� even after front� and back�bu�er have been swapped�

� The collision detection module has to make two passes over all objects which
have been moved since the last frame�

� In a conventional implementation using two bu�ers� when the consumer has
emptied the back�bu�er it waits for the producer to �ll the front�bu�er � then

��� Dual Concurrent Algorithms ���

front

back

callback

col.det. module

application

Figure
��� Flow of data and control of concurrent collision detection and application�

the bu�ers are swapped� This technique allows to implement the swapping
operation safely without locks�

But� in the current context� it does not make sense for the collision detection
module to wait until the application has �lled the front�bu�er � we want
any collision to be detected as soon as possible� So� whenever the collision
detection module is �nished with the back�bu�er� they are swapped�

� The distinction between producer and consumer is somewhat arbitrary here�
because the consumer �the collision detection module� also gives some input
back to the application� i�e�� collision detection events� Of course� these have
been requested by the application�

Because of the deviations mentioned above� the swap of the two bu�ers and the
entering of an object in the front bu�er have to be exclusive� First� I tried to get
away without a lock� since the swap operation itself takes only about 	 assignments�
However� the�very rare� case actually happened� so I had to add the lock� The
overhead is barely measurable� anyway� because a swap does not happen too often
�less than once per frame��

Figure ��� depicts the �ow of data and control� the following is pseudo�code for
the concurrent collision detection loop�

Concurrent collision detection

loop forever�

front bu�er empty ��
sleep

something in front bu�er ��
swap front� and back�bu�er
process back�bu�er

�	 Dual Concurrent Algorithms

The basic idea here is to exploit certain algorithm �behavior�� some algorithms
�nd� on average�#�� a collision rather early� some �nd a non�collision relatively early�
compared to their worst�case� resp� For example� both� the arbitrary and the convex
collision algorithms� will detect a collision earlier �on average� than a non�collision�
On the other hand� the separating planes algorithmwill detect a non�collision earlier
than a collision�

The idea is to tie these two together and thus get a better overall performance�
For implementation reasons �and in order to keep the sequential code fast�� the

��� Parallelization

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

1 2 4

sp
ee

d-
up

processors

arbitrary (VGX)
convex (VGX)

boxtrees (Onyx)
100 tetrahedra (Onyx)

�a� Speed�up

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4

ef
fic

ie
nc

y

processors

arbitrary (VGX)
convex (VGX)

boxtrees (Onyx)
100 tetrahedra (Onyx)

�b� E�ciency

Figure
��� Performance of global parallelization�

original functions have to be duplicated and slightly modi�ed� The di�erence� in
the edge�face loops� is that each function has to �listen� if the other function has
found a result� and if so� terminate� additionally� each function has to �tell� the
other one if it has found a result�

An implementation was done for the arbitrary and the box�tree algorithm to�
gether with the separating planes�

In Section 	�
�� we introduced an incremental version of the separating planes
algorithm� It keeps the plane for every object pair which has been calculated the
last time� This method can be still used here� it is perfectly compatible with the
idea of dual concurrent algorithms� �The implementation does keep and update
these planes��

�
 Results

Coarse grain� The �rst tests were made to �nd out the e�ciency of the global
parallelization �see Figure ��	�� Tests were carried out on various architectures
and with various pairwise algorithms�� In any case� only up to four processors
were available� The VGX is an SGI Skywriter VGX with four R	��� processors �
�
MHz�� the Onyx has got four R

�� processors ���� MHz�� Rendering was switched
o��

The speed�up for the extreme case with ��� tetrahedra is smallest� I suppose�
the reason for this is that the collision check for two tetrahedra is very quickly done�
the time spent with collision checking �even with ��� tetrahedra� is probably short
compared to the grid updating phase which is sequential�

Medium grain� The following table presents the performance of the medium
grain parallelization� i�e�� two processes check the same object pair� The test was
done with only two objects� no rendering� average on ���� frames�� The arbitrary
and box�tree algorithm were tested�

�Invocation�
movem �x � �m ��� �s n � �a ar �t ����� sh �l procs

movem �x �� �m ��� �c �s g � �a cx �t ���� sh �l procs

movem �x �� �m ��� �a bx �s g � �t ���� sh �l procs

movem �x � �m ��� �a ar �s g � �t ���� sh �l procs
�Invocation� movem �x �� �a ar �s n � �t ���� sh �e ��� ��l �

��� Results ���

polygons speed�up
arbitrary box�trees

�
� ����
��	� ���	
�

� ���� ���	

Concurrent algorithms� I tested the combination of the arbitrary algorithm
tied together with the separating planes algorithm� The separating planes algo�
rithm keeps and updates the planes for every object pair� Results have been very
contradictory#

The �rst test involved only two objects� once with � ���� once with � ����
polygons� it was carried out on an Onyx with � R

�� ���� MHz���

obj�types speed�up
�x��� �x����

Tori ��� 	��
Hys � ��
Spheres ���� ���

This is about what we would expect�
But when I tested many objects in the well�known cage� results were completely

reverse# The set�up involved �� objects� once with about
��� polygons� once with
��� polygons altogether�� No rendering was done� architecture� Onyx with � R

��
���� MHz��

complexity frames�sec
with without

��� ��� ���
��� �� �	

This is even stranger� since further tests showed that with this set�up about ��$ of
all collision queries were determined by the separating planes algorithm before the
arbitrary algorithm� i�e�� the concurrent algorithms should be de�nitely faster �on
average� than just the arbitrary one alone�

More tests were done to �nd out what happened here� one of them tried to mea�
sure the time taken from the point where one of the algorithms found a solution
until both algorithms returned� One side seems to be a problem� whenever the sep�
arating planes algorithm found a solution �i�e�� �no collision��� a timer was started�
and stopped when the convex algorithm returned �i�e�� this is the time the convex
algorithm did not �listen� to the other algorithm�� This time seems to be way too
long� ��� msec on average� But then� pro�ling should have shown that quite some
time was spent in the barrier� but it didn�t� � �

�Invocation� movem �x �� �t ����� hy �a ar �s g � �e � �n

or movem �x �� �t ���� sh �a ar �s g � �e � �n� rsp�
�Invocation� movem �x �� �m ��� �a ar �s g � �n� and

movem �x � �m ��� �a ar �s g � �n� press the F��key immediately after start�

��� Parallelization

Chapter �

Implementation and

Interface

Before we will present the overall outline of the collision detection module� we �rst
need a few other pieces of the puzzle in order to provide a full functionality needed
by real applications�

	���� The Collision Interest Matrix

An application might be �and usually is� only interested in the collision of some
objects �CAS�� GASF
�� For example� if a virtual reality application implements
object manipulation by detecting collisions between a virtual hand and the objects
of the scene� then this application will be interested only in collisions of the virtual
hand �with other objects��

Furthermore� it is usually only interested in collisions between certain pairs of
objects� For example� it is probably not interested in collisions between the �ngers
of a virtual hand� or� it is not interested in the collision between two adjacent links
of a robot arm� because they do �collide� all the time�

Finally� an application has additional information about the objects of the scene�
in particular� it is very likely to �know� that certain pairs of objects cannot collide
at all �because the application sets their positions�� For example� objects which are
always �xed relative to each other cannot collide� however� only the application can
have that knowledge� Letting the collision detection module know these facts can
save time� especially if the objects are constantly very close to each other�

Altogether� we need some data structure to hold the relation which objects are
�collidable�� The easiest �and fastest� one is a matrix� it will be called the collision
interest matrix or short collision matrix� One could use other data structures� like
an individual list of �collidable� objects attached to each object� One could try to
improve this method a little bit by providing di�erent types of lists� a �collidable�
or a �non�collidable� one� This could save quite some memory and time� if objects
are �collidable� with all others�

However� we implemented the matrix method� because it is fastest and gives
greatest �exibility� For example� it can hold certain data with every individual pair
of objects� a callback function� the plane of the latest call to the separating planes
algorithm �see Section 	�
����

Of course� we have to store only one half of the matrix� since it is symmetrical�
We can do that� because we can sort the two indices � � object pointers�� then we

��� Implementation and Interface

access an element of the matrix always with the smaller index for rows� and with
the higher one for columns�

Memory doesn�t seem to be a problem� in the current implementation� the matrix
of ��� objects would need about ��� kBytes�

The collision matrix will be evaluated after the space indexing stage �see Sec�
tion ����� This will �lter out any pairs� which don�t have to be checked for collision
because the application is not interested� but which are close enough to each other�
such that they are considered �potentially colliding��

	���� Bu
ers Between Application and Collision Module

We have� of course� an array which contains all objects whose collision the appli�
cation is interested in� This is the array holding all collidable objects� But not
all of them will move every frame� it would be unnecessary work to process even
those objects which haven�t moved� So it is necessary to keep another array� which
will hold all moved objects �we�ll call it �moved�array� occasionally�� i�e�� whose
transformation has changed since the last frame� Of course� the process of entering
objects into this moved array is hidden from the application� it is hooked into the
macros through which the application sets transformations�

We don�t want an object to be inserted in the moved�array more than once� if
the user happens to change the transformation several times between frames �which
is usually the case�� We also don�t want to search the whole array before entering
it� So we use another �ag� this �ag can be easily reset while taking objects out of
the moved�array one by one and checking them for collisions�

Whenever a collision is detected� a callback is executed �this provides greater
convenience for the application�� However� the application might set new transfor�
mations in the callback� which would lead to an immediate re�insertion of the two
objects into the moved�array� This could result in loss of the object or never�ending
loops �depending on the implementation�� In order to prevent these unpleasant
e�ects� we need two moved�arrays� acting very similar to front� and back�bu�er of
the frame bu�er� while the collision detection module removes one object at a time
from the front moved�array� the application inserts new objects in the back array
through setting their new transformations�

Concurrent mode

With serial execution of application and collision detection� the callback� processing
pairs of objects which collide� could process these objects immediately� or it could
just store them in a list� so that the application can process them later�

If the collision module runs concurrently to the application� and the callback
processes objects immediately� then everything is just as with the serial case �
the application doesn�t have to bother whether the collision module is running
concurrently or not�

If� on the other hand� the callback� stores objects just in a list� then we need
to protect access to this list by another lock� Otherwise� their would have to be
some synchronization mechanism �e�g�� a barrier� which would tie the two loops
�application and collision module� together� and which would inevitably slow down
performance considerably� Of course� this bu�er should be implemented by back�
and front�bu�er� The coupling is shown in Figure ����

�remember that the callback is part of the application�s code� but part of the collision�s process�

��� Overview of the Module ���

collision
detection

collision
response

in

out

out

in

callback

col.det. module

application

simulation

Figure ���� The coupling between concurrent application and collision detection module for
the special case where the collision response callback stores colliding objects in a list to be
processed later by the application�

��� Overview of the Module

All parts presented so far are integrated in the collision detection module� Most
of them are hidden from the application� all of them are accessible only through
functions �see Section �����

The front end handles all requests� keeps track of �collidable� objects� and han�
dles all underlying sub�modules �see Figure �����

During the application loop� objects are being moved or their geometry changes�
Whenever this happens� the object handler will hand this object to the collision
detection module� which in turn adds it to an internal list of objects which have
moved since the last frame� Of course� an application may move an object several
times during the same frame � the object will be added to the list only once� The
same will happen if the geometry �� the bounding box� of an object has changed�
This is all hidden from the application by object handling macros�functions which
have to be used in order to move or change an object�

At some point� the application will be �nished moving all objects� it has to inform
the collision detection module about this� At this point� the collision detection
module will report all �new� collisions which have occurred since the last frame�
By a new collision we understand a collision between objects which have moved or
between a stationary object and a moving object�

The collision module front will �rst process all moved objects and update the
space indexing data structure� It will use that space indexing structure which the
application has chosen at initialization time �or none� if the application has chosen
to do so��

After that� the front end will process the list of moved objects once more and�
additionally� the list of all �collidable� objects� in order to �nd all potential colli�
sions�

These will be �ltered by the collision interest matrix� Only those pairs which the
application is interested in will then be handed to one of the pairwise exact collision
detection algorithms�

Currently� the pairwise algorithm employed is determined by the application
at initialization time� i�e�� it is the same for all pairs� With the topological type
of objects� which is already available� and their complexity� it is easy �and will be
implemented soon� to choose the optimal �i�e�� fastest� algorithm for a given objects
pair�

��� Implementation and Interface

box-tree
algorithm

collision
interest
matrix

application

object- collision

front-end

convex

collidables
octree

callbacks

application

lin. separable closedarbitrary

bufferhandler

loop

grid

Figure ���� Integration of all parts of the collision detection module� Flow of control �serial
execution��

��� Functional Interface ���

If the pairwise exact algorithm �nds a collision� it will execute an individual
callback for each pair of objects�

The �ow of data described above constitutes �conceptually� a pipeline� which
is sketched by the following enumeration for the box�tree algorithm�

�� array of moved objects�

�� pairs of objects which occupy the same cell�

	� pairs of objects which the application is interested in�

� pairs of overlapping sub�boxes �� subsets of the set of edges�faces� resp��

�� pairs of intersecting edges and faces�

��� Functional Interface

The interface is entirely provided by the module�s front end� If you�re using the Y
system� the interface consists of three functions �plus two more to set callbacks�� an
initialization function� a function to make objects �collidable�� a start�up function�
and a request function �during the loop��

An outline of the application will look like

Application outline

yuInitY� con�guration 	 fcalls colInit g
yuExitCallback� your�exit�fct 	

create object hierarchy
colMakeCollidable� objects which application is interested in 	

colStart�	

loop�

move objects
colCheck�	 fwill eventually call app� callbacks g

yuExitY�	

In the case of concurrent collision� colCheck�	 doesn�t do anything� since a never�
ending collision detection loop is run by another process� The collision module will
make sure� that an interrupt gets caught and will execute yuExitY� which in turn
will execute your�exit�fct� Most applications will use yuInitY� con�guration 	 and
yuExitY�	 instead of the corresponding col� � � �counterparts�

See Section for an outline of an application that also uses Into for input�

Description of functions

The following function is not provided by the collision detection module� but by
the overall Y system� It is the initialization front�end� only parameters concerned
with collision detection are discussed here� Below you�ll �nd a full description of
the colInit�function�

yuInitY

int yuInitY

� char windowname� int argc� char argv��� int winoptions�

vmmPointT universemin� vmmPointT universemax�

��	 Implementation and Interface

colConfigE config� int maxnumcollidables� 	

Parameters�

config sets the con�guration mode� can be or�ed of the following�

 colOctreeIndex� colGridIndex� colNoSpaceIndex select space subdivision�
octree� regular grid� or none at all

 colNonAlignedBBox use non�axis�aligned bounding boxes for determining oc�
cupied cells of the space subdivision

 colMethodArbitrary� colMethodConvex� colMethodNone select exact colli�
sion detection method� for arbitrary polyhedra� for convex polyhedra only� or
no exact collision detection at all

 colMethodBoxtree use an additional box�tree structure� can be combined
with colMethodArbitrary or colMethodConvex �currently� however� only
with colMethodArbitrary�

 colParallel� colConcurrent determines mode of parallel execution� parallel
check of several pairs of objects� or concurrent collision detection loop

 colParallSepPlane run two algorithms in parallel for each object pair� one
of the exact ones �speci�ed above� and the separating plane algorithm�

maxnumcollidables the max� number of objects of which the application is inter�
ested in collisions� � � default �some large number�� �With a much higher imple�
mentation e�ort I could have done without this parameter��
universemin�universemax the extent of the universe�
Description� Initialize all data structures� in particular those needed for colli�
sion detection� The space indexing sub�module is initialized to work inside the box
universemin� universemax�

This function sets the number of processes �if any parallel execution is wanted�
and the resolution of the space indexing method �if any� to defaults� The default
for the %processes is %processors�

The following functions are provided by the collision module itself� Any appli�
cation needs them probably�

colMakeCollidable

int colMakeCollidable� objPolyhedronP obj� void clientcolldata 	

Parameters�

obj the polyhedron which the application is interested in any collisions of�
clientcolldata this pointer will be passed on to the callback in case of a collision�
Description� Make obj known to the collision detection module� i�e�� make it
�collidable�� Only allowed after colInit but before colStart� Checks if the obj

can be used for collision detection�
Does not create an edge list and doesn�t classify objects# �This is done by col�

Start��

colStart

int colStart� void 	

Description� Start collision detection� Call this function after all objects have
been made known to the module�

Classify topological type of objects� Insert them into the space indexing data
structure�

��� Functional Interface ���

If colParallel or colConcurrent are set� fork appropriate number of processes
and have them idle wait� The interrupt signal handler is set to yuExitY �so� hook
your own exit routine in by yuExitCallback�own�exit�fct	��

colSetCallback

void colSetCallback� objPolyhedronP obj�� objPolyhedronP obj��

colCollisionCallbackT cb 	

Parameters�

obj�� obj�� pair of objects whose callback is to be set
cb their going to be callback
Description� Sets the individual callback of the object pair �obj��obj�� to be cb�
This callback will be executed whenever obj� and obj� collide with each other�

In case of a collision between objects P and Q� the callback callbackPQ associ�
ated to �P�Q� will be called by

callbackPQ� P� Q� clientdataP� clientdataQ 	

or

callbackPQ� Q� P� clientdataQ� clientdataP 	

colSetGeneralCallback

void colSetGeneralCallback� colCollisionCallbackT cb 	

Parameters� cb the callback for all objects pairs�
Description� Sets the callback for all object pairs who do not have a callback yet�

If there will be many objects who will have the same callback� but a few who
will have a di�erent one� it�s best to use colSetGeneralCallback �rst� then use
colSetCallback for the few di�erent ones�

colCheck

void colCheck�	

Description� Detect all new collisions among �collidable� objects� A collision is
�new� if at least one of the two objects has moved� �Actually� this is a macro� which
doesn�t do anything if the collision module runs in concurrent mode��

The following functions are only needed if the application doesn�t use the
standard init� end exit�functions of the Y system �which is highly recommended��

colInit

int colInit

� colConfigE config� int resolution� int processes�

int maxnumcollidables�

float minx� float miny� float minz�

float maxx� float maxy� float maxz 	

Parameters�

config sets the con�guration mode� can be or�ed of the following�

 colOctreeIndex� colGridIndex� colNoSpaceIndex select space subdivision�
octree� regular grid� or none at all

 colNonAlignedBBox use non�axis�aligned bounding boxes for determining oc�
cupied cells of the space subdivision

��� Implementation and Interface

 colMethodArbitrary� colMethodConvex� colMethodNone select exact colli�
sion detection method� for arbitrary polyhedra� for convex polyhedra only� or
no exact collision detection at all

 colMethodBoxtree use an additional box�tree structure� can be combined
with colMethodArbitrary or colMethodConvex �currently� however� only
with colMethodArbitrary�

 colParallel� colConcurrent determines mode of parallel execution� parallel
check of several pairs of objects� or concurrent collision detection loop

 colParallSepPlane run two algorithms in parallel for each object pair� one
of the exact ones �speci�ed above� and the separating plane algorithm�

resolution resolution of the space subdivision� � is a default� n corresponds to n�

cells� for octrees� n will be rounded to the next lower power of two�
processes is the number of processes the module can use �with parallel execution��
� � default � % processors�
maxnumcollidables the max� number of objects of which the application is inter�
ested in collisions� � � default �some large number�� �With a much higher imple�
mentation e�ort i could have done without this parameter��
minx�� � � �maxz the extent of the universe�
Description� Initialize all data structures needed for collision detection� The space
indexing sub�module is initialized to work inside the box minx�� � � �maxz�

colExit

void colExit� void 	

Description� Clean everything up� free everything� If the whole collision detection
module has been compiled with STATS ON� then also some statistics will be printed�

Exported variables

colCollisionEdge� colEdgePolyhedron�
colCollisionFace� colFacePolyhedron

Whenever a collision is found� these variables will hold a witness� i�e�� an edge of
polyhedron colEdgePolyhedron and a polygon of polyhedron colFacePolyhedron

which do intersect each other�
These variables are not �yet� reliably valid when parallel collision detection is on�

colArena

An arena out of which locks �and other stu�� can be allocated� this is exported just
for convenience �an application using the concurrent collision detection mode might
need a lock��

The module in parallel mode

A few things are di�erent �still� if the module uses parallel collision detection� some
should be kept in mind in order to avoid confusion later�

All callbacks are executed strictly sequential� This may or may not be desirable�
depending on the application� In the future� this can be switched on�o� by the
application�

The variables colCollisionEdge�colCollisionFace� colEdgePolyhedron� col�
FacePolyhedron are not valid# �This is due to the fact that they�re global� However�
this will be mended in the future�

��� Implementation Details of Selected Algorithms ���

Concurrent mode

In this mode� everything is quite the same as in serial mode from the application
point of view� except if the application�s collision response callback just inserts
colliding objects into a list� which is to be dealt with later by the application process
�keep in mind that the callback is part of the collision process�� In that case� the
application has to establish a bu�er as proposed in Section ������ page ����

The swapping of the �in�� and �out��bu�ers has to be done by the application�
This needs to be protected by a lock �or similar�� For convenience� the collision
detection module provides an arena colArena �type usptr t � out of which this
lock can be allocated�

For an example� see the Y�Potter yp�c� In fact� this is also an example that it�s
not necessarily the objects which are bu�ered� Still� the bu�ers holding the items
derived from colliding objects have to be swapped and access has to be exclusive�

A general outline of an application using this special arrangement of code would
look like the following�

Application with concurrent collision module

AND separate collision response

in � bu�er �lled by callback
out � bu�er where response function takes items out
L � access lock to bu�ers in�out

callback� a� b 	� fadd objects to list g
acquire L

add a� b to in

release L

loop�

move objects
acquire L fcollision response g
swap in and out fout is empty g
release L

process objects in out

��� ImplementationDetails of Selected Algorithms

	���� Time�Stamps

Very often� a speedup can be gained simply by keeping some �ags with certain
entities� which mark their validity� so as not to calculate things more often than
necessary�

These �ags have to be reset �to �invalid��� whenever the corresponding entity
is rendered invalid� With reference to collision detection� in almost all cases this
happens when an object has been moved� or �even worse� when it changes geometry�

However� it is way to expensive to loop over all those entities of an object which
have become invalid� Instead� we introduce a counter for each class of �ags �e�g��
one counter for all face normals of an object�� Then� when all of the entities of an
object have become invalid� we simply increment that counter� when we make one
of them valid again� we copy the value of that counter to the �ag of the entity� A
few examples are given below�

��� Implementation and Interface

World face normals� For collision detection� face normals of objects have to be
transformed into world coordinates�� This should be done only once after the object
has moved� even though this object is handed very often to the collision detection
routine�

The naive approach� without the time�stamp technique� spent 	�$ of the total
CPU time with clearing all the �ags for face normals in world coordinates� With
the time stamp technique� this part of the collision detection module didn�t show
up any more in pro�lings�

Generating object pairs� When using some sort of space partitioning �like grid
or octree�� the same pairwise collision query could be generated several times� be�
cause both of the two objects share several cells� To prevent this from happening�
we need to mark them somehow�

So we introduce a new time�stamp �let�s call it query time�stamp� which will be
incremented each time a collision query for any object O is done �so� it�s basically a
collision query counter�� The value of this time�stamp will be attached to O� When
looking for all object pairs �O�X� which might collide� we attach the same value
to X whenever �O�X� is handed to some exact collision detection function� If X
has this value already� we know that we checked �O�X� already during the current
collision query with object O�

So far� the query time�stamp prevents only generating the same pair more than
once during one collision query with a certain object O� Still the same pair �P�Q�
could be generated twice during one whole collision detection phase� one time when
checking for collisions with P � the other time when checking for collisions with Q�

So we need another time�stamp �let�s call it frame time�stamp�� which will be
incremented with every frame� Whenever an object has been processed completely�
we know there can�t be any more collisions �for the current frame�� So� we give it
the value of the frame time�stamp� If we are about to check for collision of the pair
�P�Q� and Q has got the value of this time�stamp already� we know that we don�t
have to look for a collision� because we have found all possible collision of Q with
any other object�

	���� E�cient Coding

All algorithms have been coded as e�cient as possible� This includes

� loop unrolling for small ranges� the compiler can do loop unrolling only if the
loop range is known at compile time�

Examples are the test whether a point is in a polygon� the calculation of a
polygon�s bounding box� the calculation of a polygon�s normal� etc�

� statistics gathering� this can degrade performance signi�cantly if it is done in
inner loops� even if it is only a simple counter incremement �in one case� this
made up ��$ of the total CPU time�� Therefore� all statistics gathering code
has been put inside ifdef�s� so that the optimized library doesn�t contain any
statistics code�

� �oating point arithmetic� this is considerable faster than using doubles� How�
ever� care must be taken� the compiler must be told to not convert interme�
diate results to double format� and �oating point constants must be given in
a format� so the compiler does actually store them in single precision format�

�Of course� if there are only two objects which could possibly collide� then it�s more e�cient to
transform the smaller set of face normals into the coordinate system of the other object

��� Implementation Details of Selected Algorithms ���

� interval computations �see Sections 	�� and 	������ the most often executed
expression there would be

if x � xmin then x � xmin�

if x � xmax then x � xmax�

However� if we exploit the fact that xmin � xmax is always valid� we can code
the same like

if � x � xmin 	

x � xmin�

else

if � x � xmax 	

x � xmax�

which uses ��	 comparisons less on average�

When computing the minimummin�a� b� and maximummax�a� b� of two val�
ues simultaneously� we can save one comparison� by coding this like

if � a � b 	

min � a� max � b�

else

min � b� max � a�

It is usually not worth to extract common expression �arithmetic or pointer�� be�
cause the compiler seems to be pretty good at that�

	���� Collision Detection Among Arbitrary Polyhedra

The test whether an edge intersects a polygon �see Section 	��� should be imple�
mented as lazy as possible� i�e�� computations are done only when needed and results
should be re�used as much as possible� Thus� the part which tests whether an edge
e � �u� v� intersects a polygon f with normal n would look like�

w �� v � u

a �� w �n
a � � �� � ��no collision��

b �� n � �p� u�
a � � � �b � � � b � a� �
a � � � �b � � � b � a�
�� � ��no collision��

t �� a
b

x �� u � t�v � u�
check if x inside the polygon f

By �rst calculating the nominator a and denominator b of
n��p�u�
n��v�u� and then testing

for

a � � � �b � � � b � a� �

a � � � �b � � � b � a�

��� Implementation and Interface

Figure ���� For the case where all sub�octants have to be visited� this traversal scheme
minimizes assignments of octant bounds� Similar traversal schemes are used for the cases
where less �at least � �

� sub�octants have to be visited�

we can save a �oating point division in the many cases where t � a
b
�� ��� ��� For

calculating the point of intersection of edge e and polygon f � we can re�use the
vector subtraction v � u�

Because this test is not called too often by the collision detection function of
Section 	��� it is not worthwhile to make it an in�line function �a macro in C��

Pre�check �edge bounding box intersects object bounding box��

	���� Octree Algorithms

An e�cient implementation of the basic insertion algorithm for octrees has to take
advantage of the following simple conditions�

bmin
x � omid

x � don�t consider the � left sub�octants at all

bmax
x � omax

x � don�t consider the � right sub�octants at all

where bmin� bmax is the object�s bounding box� and omid is the center of the current
octant� Similar tests with y and z yield a decision tree of depth 	� By explicitly
implementing every case individually� we can take advantage of these conditions�
for each leaf of the decision tree we can use a di�erent sub�octant traversal scheme
which minimizes assignments �see Figure ��	�� On some architectures� this gave a
speed�up of ��$�

I tried to include an octant�s bounds and its midpoint in the node structure� but
that didn�t help� not even when coordinates were still �oats� So we can as well
compute the bounds of sub�octants at recursion time� which saves about half of the
memory required by the octree back�bone �the back�bone of a complete octree of
depth � needs about ��� MBytes�#

The octree backbone� i�e�� all octant nodes� are created at initialization time�
they remain throughout the whole run time� This is done to minimize mallocs
and frees� Object arrays are also created at init��time� but only very small ones�
their size can grow and shrink �which is done by realloc�� depending on how many
objects are in an octant� However� this growing�shrinking is controlled by some
hysteresis� so the number of calls to realloc is kept low� Tests showed that by
increasing this Hysteresis from � to ��� the number of reallocs was decreased by
a factor 	� however� the overall running time did not decrease signi�cantly� because
reallocs seem to be fast compared to an octree traversal�

��� Lessons learnt

I learnt doing timing tests and optimization the hard way� � �Some of the lessons I
learnt I would like to summarize here� of course� in retrospective most of them are
quite obvious� � �

��� Lessons learnt ���

Timing�

� Make tests immediately before you modify the implementation� afterwards� do
the same tests again�

You have to know in advance how you�re going to evaluate the improvements�
so you can do the tests with which you have to compare the tests afterwards �if
you don�t exactly know� what�how to time� keep the old source code�� Keep
at least the old executable�

� Do the whole experiments on di�erent architectures# �see �Optimization��

� ���� frames are not enough# �Even if they take hours� � � � Especially when
randomness is involved �like random starting positions�� If possible� remove
any randomness when comparing timings�

� Make sure that there are exactly the same conditions with all tests# Of course�
it�s best to compare results obtained on the same machine at he same time�

This includes�

 same compiler options� like �O� �float� etc�

 same CPU� same architecture� same clock rate� same OS�

 check system performance meter �like gr osview� top� during the test�
check CPU� memory usage� swap waits� ethernet activity� interrupts�
and graphics� make sure the performance meters don�t gobble system
resources� ps locks memory for quite some time� gr osview and xclock

can use huge amount of graphics and CPU resources on some machines#

 make sure the load is the same�

 make sure the machine is not an NIS server� or something similar

� Don�t do any graphics� this causes lots of waits�

� Remove any statistics gathering code� a simple counter in an inner loop �like
one of mine in the edge�polygon�intersection test� could easily cost ��$ of the
time�

Optimization�

� Always make timing tests to evaluate your �improvements�# Check the opti�
mization on di�erent architectures# There are quite some surprises in stock� � �

For example� the � � pointer scheme with grids would have accelerated the
algorithm a lot� if they hadn�t caused a tremendous amount of cache misses#
Another example� the box�tree algorithm ran twice as slow as the arbitrary
collision algorithm on the VGX� but twice as fast on Onyx and Indigo#

� The �O compiler option helps only on some architectures# On others it might
even slow things down�

� Pro�le the code� before optimizing# Most of the time� I was astonished�

Unfortunately� pro�ling helps only identifying hot spots� but not �nding bad
algorithms� Also� pro�ling results are very di�erent on di�erent architectures�

� Some hints�

��� Implementation and Interface

 don�t try to be too clever� a�i��� � �� i��� o�ers the compiler more
opportunities than a�i����� � ���

 don�t memcpy�	 for less than �� bytes� a�
��b�
�� a����b���� a����b����

is better than memcpy�a�b���	�

 don�t use large ��������s� local static arrays� make them global static
instead� �I�m not sure of this� but my notes say that some piece of code
was slowed down by a factor of �� with declaring an array local static
instead of global static� � � �

 for ultimate optimization� look at the assembly code �rst� Sometimes
the compiler�s better than you are� sometimes not�

Parallelization�

� Do not use any global variables�

� The only debugger for parallel code is printf�

� If you think that you don�t have to guard an exclusive region because it is
very unlikely to happen � be sure it will happen#

�For example� swapping the two moving�object bu�ers between producer �ap�
plication� and consumer �concurrent collision detection module� is done with
	 pointer assignments� when there were only a few objects� nothing happened�
but with ��� moving objects� all of a sudden some of them escaped the cage#�

Chapter �

The Potter � an Application

One of the �rst applications using the exact collision detection module is a rewriting
of an existing experimental application� the Potter� The basic idea of this applica�
tion is to be able to modify the geometry of an object using a virtual input device
like data glove� space mouse� or other� Up to now� the main focus has been on
determining collisions fast enough� In the future� I hope to be able to improve
modeling algorithms�

The tool is a virtual hand� right now� it could be any other tool either� The
Potter can be con�gured at start�up time �by command line option� to use either
a single �nger tip� all �nger tips� the index �nger� or the whole hand for modeling�
Figure ��� shows a torus after being modeled�

Currently� polygons are moved always �inside�� which is determined by their
normal� Of course� better modeling modes would be very desirable � like dragging�

Figure ���� A torus having been modeled by a virtual hand�

��	 The Potter � an Application

applying weigh�functions to the surrounding polygons �Bryson��� or even splitting
objects into two�

The Potter �called �Y�Potter� in contrast to the old one� takes full advantage
of all collision detection module options� It can be run in plain serial mode� in
concurrent mode� or using parallel collision detection of multiple collisions� Since
geometry changes� and since the �pot� is not convex most of the time� it has to
use the arbitrary algorithm �see Section 	���� But it does o�er to use additional
algorithms� the concurrent separating planes algorithm �see Section 	�
��� and the
relaxed polygon collecting phase �see Section 	������

The initial �pot� can be chosen from a variety of shapes� sphere� torus� cylinder�
tetra��ake� hyperboloid� The resolution of them can be chosen to be anything from
�� polygons up to ������ polygons� The geometry is originally mostly quadrangles
�except for the tetra��ake� � but it can be triangulated�

��� A Simple Modeling Algorithm

The approach taken here to modify the surface of the pot is to move polygons
which are hit by a part of the hand �inside�� which is opposite the direction of their
normal�

The collision detection module reports edges and polygons if there is a collision�
However� it could be either the polygon or the edge which belongs to the pot�
So� the potter �rst collects all polygons and all edges which are reported by the
module� Furthermore� the same edge�polygon could be reported several times�
This could happen if there are several �active� parts of the hand� or if the collision
detection runs concurrently and the detection loop is faster than the response loop
�see Figure ����� So� before we add an edge�polygon to the bu�er �the �in��bu�er
in Figure ����� we check that it is not yet in there�

After all colliding edges�polygons have been collected� the edges are �translated�
into polygons� i�e�� the two incident polygons of a colliding edge are added to the
�hit polygon� array�

Then� all polygons colliding with some part of the hand are processed� Each of
them is moved a �xed fraction of the �normalized� normal in the opposite direction
of it� In consequence� normals of adjacent polygons have to be re�computed� too�

After a polygon has been moved� and all normals of adjacent polygons have been
made valid again� we have to re�compute vertex normals� since the pot is rendered
with Gouraud�shading� All those vertex normals have become invalid which are
incident to a polygon whose normal has changed�

Figure ��� shows which entities have to re�computed for a single colliding polygon�
Currently� we do not take care of the case when polygons are indirectly modi�ed
several times� This could happen if there are several �active� parts of the hand�
which hit polygons which are just one polygon apart from each other� However�
this shouldn�t be a problem �see below� �Avoiding cancer���

One reason for this new Potter version being much more e�cient is �I believe�
that the DCEL data structure enables us to �nd very quickly adjacent polygons
and vertices �see Section
������ With a very simple loop we can enumerate all
edges or vertices incident to a polygon� with another simple loop� we can �nd all
polygons incident to a vertex� Thus we can �nd by two or three simple loops all
polygons adjacent to the one being moved and all vertices whose normal has to be
re�computed� resp�

��� A Simple Modeling Algorithm ���

plus new normals
new coordinates

new vertex normals

polygon being moved

new polygon normals

Figure ���� Geometrical features which have to be �re��computed when a polygon is being
moved

There are several ways to get at the vertices which are adjacent to the vertices
of the polygon being moved� If we choose the right one� we can avoid computing
vertex normals more than once� we simply have to loop over all vertices of the
moved polygon� then loop over all edges incident to the current vertex� and pick
the �other� vertex of the edges�

Special case� still pot� If the pot doesn�t move� we can restore all informa�
tion which is relevant to the collision detection algorithm� With a moving pot� the
algorithm has to compute all vertices� normals� and bounding boxes in world coor�
dinates� If the pot does not move� we can restore the world coordinates of those
items during the modi�cation ourselves�

This is much more e�cient� since we know exactly� which normals� bounding
boxes� etc� have become invalid� Thus� we save the collision detection module a lot
of work�

If the pot does move� though� we need not bother restoring anything� because
the collision detection has to compute everything anyway�

Avoiding cancer� A problem with the current approach to modify geometry is
that the pot �breaks� pretty easily� after a while� some polygons might actually
be pushed �apparently� �outwards�� They are not really pushed outwards� instead�
during the modeling process they got turned so much that their normals are actually
facing to what the users thinks to be �inside��

I tried to avoid this by preventing any dihedral angle to get out of a certain
range around ����� say ����� ����� So after a polygon has been moved� all dihedral
angles which have changed are stored in an array I� All edges in I are then checked
if they�re still in range � if they�re not� their vertices are moved a little to the
�inside� or the �outside� depending on whether the edge is �convex� or �concave��
resp� Then all those face normals are re�computed which have changed by this
correction� Also� the dihedral angle of some edges have changed� these edges are
added to the array I again �if they�re not yet there��

This array of edges� I� is scanned a certain maximum number of times for �bad�
edges�

��� The Potter � an Application

The method described above did improve the �cancer� e�ect a little bit� How�
ever� it could not completely alleviate the e�ect� It is not really clear to me why
it does not� However� it might not be worth the e�ort� because entirely di�erent
methods how to modify geometry might be much more intuitive and user�friendly�
apart from being more robust�

Other modelingmethods� Further development of this application should focus
more on the modeling part� Modeling methods should be intuitively clear and
natural� apart from being robust� Some methods which seem to be promising are�

� Take the path of the point of collision on the hand into account� i�e�� apply
the displacement of this point to the polygons being hit� Maybe� the motion
of the point of collision on the pot should be taken into account� too�

� Apply translational o�set also to polygons in the vicinity of the colliding
polygon weighed by some function�

Take care that polygons do not �crumpled up�� which might happen if they
are pushed perpendicular to their normal and some vertices are moved further
than others�

Use tools with adjustable size� so as to provide for coarse and �ne modeling�
Make the �vicinity� the larger the bigger the modeling tool is�

� Preserve the volume of the pot�

��� Results

A few timings are presented here�
With concurrent collision detection the �frame rate� which the user perceives is

only the time taken by application and renderer� Currently� this is �	��� frames�sec
with a pot of ������ polygons �not meshed��

The plain algorithm shows the following performance �incl� rendering and appli�
cation��

%polygons frames�sec
full hand fore�nger
��� obj�s� �	 obj�s�

 	�
 ����

��� ����	 ��

The relaxed polygon collecting phase together with the improved method for the
still pot case gives quite some speed�up�

%polygons frames�sec
full hand fore�nger
��� obj�s� �	 obj�s�

 ��� �����

��� ����� �	���

Chapter �

Collision Detection for

Virtual Buttons

The collision detection module has been integrated with an already existing toolkit
�called Into� providing logical input devices �FSZ
�� which is used in an in�house
virtual reality system �AFM	� Felger���

Logical input devices�

Logical input devices are abstractions of physical input devices� Analogously to
GKS� logical input devices provide device�independent input� There are several
classes of logical devices�

� buttons produce binary input�

� choices have a discrete ��out�of�n value�

� values produce a continuous scalar�

� both locations and orientations are �conceptually� 	�dimensional� with di�er�
ent representations�

� spaces consist of one location and one orientation� thus they are ��dimensional�

� a hand is a ���dimensional device� meant to be used for controlling virtual
hands�

All of them can be used in event or in poll mode�
Logical devices are mapped on physical input devices by the application� usually

one logical class can be mapped onto several di�erent physical classes �e�g�� a value
can be mapped onto a physical mouse� a tracking sensor� a joint of a data glove�
etc���

Physical devices are handled by servers which Into communicates with via sock�
ets� thus physical devices can be connected to any machine�

An overview of Into is shown in Figure ���

Virtual input devices

A signi�cant enhancement compared to conventional device abstraction is the in�
troduction of virtual input devices� In general� virtual devices are logical devices
which are mapped on other logical input devices� �Of course� eventually the chain
will end at some physical devices��

��� Collision Detection for Virtual Buttons

log
dev

log
dev

log
dev

log
dev

physical

Server A

Server B

sensors

RS232

device
physical

(normalize,filter)

(normalize,filter)

physbuf[]
inputCB

INTOrecvData

socket
connection

Motif

Keyboard

Mouse

Dials

Tracker

Glove

INTOpollDevice

Cricket

1

2

3

4

Figure ���� Overview of the input�output toolkit Into�

Of special interest in this context are virtual buttons� These are graphical objects�
the button object� which can be �pressed� by another object� the �nger object� The
�nger object in turn is controlled by a logical input device� A virtual button is
considered �pressed� when the �nger object and the button object collide�

Implementation

So� whenever Into has to determine the status of a virtual button� a collision check
is done with the button and the �nger object �conceptually�� Consequently� there
has to be a link between Into and the collision detection module� A monolithic
integration does not seem to be worthwhile� First� the two modules are fairly
independent by their mere concept and tasks� second� the Into module must be
compilable for di�erent renderers �currently� two are supported��

Essentially� there are two ways to link the two modules together� Either� the
collision detection module provides a way to inquire about a collision between two
particular objects� or� the Into module gets called back the collision module�

I chose to implement the second scheme� because this didn�t require the interface
to be changed� Furthermore� it doesn�t matter where the collision status of button
and �nger object is stored� Certainly� we don�t want to store the status of every
object pair� because most applications won�t be interested at all in that kind of
collision inquiry�

Into�s internal data structures have been extended� in order to hold the collision
status of a �nger�button pair� This status is stored with internal data for the virtual
button �currently� a virtual button can be pressed by only one �nger object��

So� collisions of a virtual button and its �nger object are detected when the ap�
plication queries the collision detection module for all collisions which have occurred
since the last time� At this time� the collision module will execute a callback of the
Into module which stores the event with the virtual button�s internal data� When�
ever the application polls the status of a virtual button� this data is just reported
to the application�

Of course� the Into module will announce the �nger and button objects to the
collision module� so the application doesn�t have to take care about that�

Collision Detection for Virtual Buttons ���

Application outline including Into

The outline of an application which also uses Into for input will have the following
outline �for more details see Section �����

Application with Into

yuInitY

yuExitCallback� � � �	
create object hierarchy
INTOinit�� � �	
colMakeCollidable� objects which application is interested in 	

fvirtual button objects will be taken care of by Into g
create logical input devices
colStart�	

loop�

move objects
colCheck�	 fwill call application and Into callbacks g
INTOevents�	

yuExitY�	

��� Collision Detection for Virtual Buttons

Chapter �	

Conclusion and Future Work

���� Conclusion

Several algorithms have been implemented for fast� exact collision detection on the
level of object pairs� By utilizingmany di�erent pre�checks� conventional algorithms
have gained considerable speed� Further speed�up has been gained by pre�phases
which collect relevant polygons� and by lazy evaluation which avoids calculating
normals or bounding boxes which are not needed�

Probabilistic algorithms have been developed to be tied together with conven�
tional algorithms� thus yielding speed�up in cases where conventional algorithms
are rather slow�

A new algorithm has been developed to solve the O�n���problem on the edge�
polygon level� It uses a hierarchical� adaptive data structure �the �box�tree�� to
discard quickly �un�interesting� polygons�

Few approaches so far have attempted to provide an integrated solution which
addresses fast exact pairwise collision detection as well as fast retrieval of poten�
tially colliding objects� In order to overcome the n��problem on the global level�
algorithms for octree and grid have been developed� these have been designed with
special regard to highly dynamic scenes� Several variants of both of them have been
evaluated�

To my knowledge� no one so far addressed the issue of parallelizing collision detec�
tion� Three di�erent parallelization schemes have been developed and implemented�
A fourth one ��ne grain� is described�

A simple� easy�to�use interface has been implemented which incorporates all al�
gorithms developed with this thesis� Several levels can be con�gured at run�time�
the pairwise algorithm to use� the space partitioning data structure �if at all�� the
collision interest matrix� and the mode of parallelization �if at all��

���� Future work

We will give here just a summary of all the directions and further improvements
that could be taken in order to improve collision detection in highly dynamic en�
vironments� They have been presented in more detail in previous sections in the
context to which they belong�

Pairwise algorithms� The algorithm for the most general polyhedra and the
Cyrus�Beck algorithm for convex polyhedra seem to have reached their limits�

��� Conclusion and Future Work

However� by applying caching techniques� storing results of previous detection
queries� they seem to o�er quite promising opportunities for further speed�up in
environments where objects move slowly compared to the frame�rate �which is the
main aim of every interactive visualization system��

Convexity should o�er greater possibilities for speed�up than algorithms exposed
so far� It might be that more e�cient pre�checks can to be developed� In any
case� I think that convexity o�ers big advantages for incremental techniques �see
Sections 	�
��� and 	�
����

The probabilistic algorithms of Sections 	�
�� and 	�
 �using separating planes
and the point�in�polygon test� seem to o�er further improvements� Certain compu�
tations could be eliminated or arranged more e�ciently with the separating planes
algorithm� The box�tree data structure �see Section 	��� could be used to speed
up the point�in�polygon test �used by the second prob� algorithm�� Both of the
two algorithms should be tied together for a concurrent early decision whether two
objects collide or not�

The box�tree algorithm seems to o�er manymore opportunities� among others are
an �on�the��y� axis�aligned traversal� empty sub�boxes within the tree� combined
box�trees for edges and faces� further specialization of the cut�plane� and an adaption
to convex objects�

It seems to me that parallelization could still yield greater speed�up �although it
is already linear�� With only very few processors available� there aren�t too many
further opportunities� except for reducing synchronization overhead and parallel
updating of the space partitioning data structure� With more processors �some
ten�� there seem to be further possibilities� the parallel schemes developed so far
can be applied at the same time� �ne grain parallelization might be worthwhile�
too�

Bounding volumes should be investigated further� There are several options
which might lead to signi�cant speed�up� Maximalboxes� which contain an object at
any orientation� the advantage is that these boxes are very inexpensive to transform�
and they need to be calculated only at start�up time� Also� tight bounding boxes
might reduce the number of pairwise collision detection queries� they can be updated
from previous frames e�ciently if the object �inside� is convex�

Chapter ��

Acknowledgements

There are so many people which I have to thank so much� it is just impossible to do
so� In fact� a complete list would contain almost all people I have ever really met�

So� instead of writing the longest section of this thesis� I will thank just those
who have� in some way or other� participated in making this thesis�

I am grateful to Prof� Encarna)c*ao and Dr� Martin G!obel for making possible
and organizing the great experience of staying half a year in the US�

I would like to thank my advisor Wolfgang Felger� with whom to work was my
pleasure for four years� who put in very much time and e�ort to get me to the US�
and who �nally made possible my stay at the National Center for Supercomputing
Applications in Urbana� Thanks also to Stefan M!uller� who had quite some trouble�
too�

I would like to thank also the many more people in Urbana� who made it possible
that I did �most of� my thesis there� Donna Cox who was the �rst to give her
consent� Melanie Loots� Shirley Shore� Jeanne Soliday� and quite a few others� who
had quite a bit of administrative and organizational work�

Bill Sherman gets lots of thanks for willing to be my local advisor� giving im�
mediate technical support whenever I needed it� and for generously lending me a
TV�

Bettina and George Francis have been very kind by providing a regular event
�the �Tuesday dinner�� where I could meet people� In fact� in the beginning� this
Tuesday dinner was the only event of the whole week where I actually did meet
people� Also� it was the only meal of the week which was really substantial and it
tasted just delicious#

I would also like to thank all folks at Beckman Institute for quite a few nice�
casual talks �in random order�� George Baxter� Ulrike� Kelly� Rachel� Robin� Milana�
Thanks to you� Doug� for lots of distraction you caused by improving my �movie�
education and playing Battlezone with me ���	��

While I stayed at CRCG in Providence� all people in the o�ce created a friendly
atmosphere which was nice to work in �again in random order�� Elaine and Peter
Bono� Rajeev� Satish� Robin� Winfried� Jens� Brian� Eddie � Jutta� and Stefan�

My parents gave me very helpful day�to�day support during my stay abroad�
which is not to be under�valued#

Many thanks go to Birgit� my soon�to�be wife� for her patience� and for proof�
reading this text in many many hours �which must have been sort of a pain�� Of
course� I am responsible for any errors still remaining�

V

��	 Acknowledgements

Bibliography

�ADG�
� Peter Astheimer� Fan Dai� Martin G!obel� Rolf Kruse� and Stefan
M!uller� and Gabriel Zachmann� Realism in Virtual Reality� pages
�� ���� Wiley � Sons� �
�

�AFM	� Peter Astheimer� and Wolfgang Felger� and Stefan M!uller� Virtual
Design� A Generic VR System for Industrial Applications� Com�
puters � Graphics� ��������� ���� �	�

�Arvo�� James R� Arvo� editor� Graphics Gems II� Academic Press� San
Diego� ���

�AS�� P� K� Agarwal and M� Sharir� Red�blue intersection detection al�
gorithms� with applications to motion planning and collision detec�
tion� SIAM J
 Comput
� ���� 	��� ���

�BB��� Gilles Brassard and Paul Bratley� Algorithmics� Theory and Prac�
tice� Prentice Hall� ����

�BD�a� C� Bajaj and T� K� Dey� Convex decomposition of polyhedra and
robustness� SIAM J
 Comput
� ���		 	�
� ���

�BD�b� C� Bajaj and T� K� Dey� Convex decomposition of polyhedra and
robustness� SIAM J
 Comput
� ���		 	�
� ���

�BDG�� Jos��e Luis Balcazar� and Josep Diaz� and Joaquin Gabarr��o�
Strucutral Complexity I
 ATCS Monographs on Theor
 Computer
Science
 Springer� ���

�BF�� J� L� Bentley and J� H� Friedman� Data structures for range search�
ing� ACM Computing Surveys� ���
��	�
�� December ���

�BJ�� W� Bouma and G� Vanecek Jr� Collision Detection and Analy�
sis in a Physical Based Simulation� In Eurographics Workshop on
Animation and Simulation� pages �� ��	� ���

�Bryson�� Steve Bryson� Paradigms for the Shaping of Surfaces in a Virtual
Environment� In Siggraph ��� 	�th International Conference On
Computer Graphics and Interaction Techniques� Course Notes ��
pages �	�� �	���� ���

�Canny��� John Canny� Collision Detection for Moving Polyhedra� IEEE
Transactions an Pattern Analysis and Machine Intelligence� PAMI�
�������� ��� March ����

��� BIBLIOGRAPHY

�CAS�� Gregory M� Herb Cli�ord A� Sha�er� A Real�Time Robot Arm
collision Avoidance System� IEEE Transactions on Robotics and
Automation� ����� April ���

�CCV��� I� Carlbom� and I� Chakravarty� and D� Vanderschel� A Hierarchical
Data Structure for Representing the Spatial Decomposition of 	�D
Objects� IEEE Computer Graphics and Applications� ��
���
 	��
April ����

�CD��� B� Chazelle and D� P� Dobkin� Intersection of convex objects in
two and three dimensions� J
 ACM� 	
�� ��� ����

�Chazelle�
a� B� Chazelle� Convex partitions of polyhedra� a lower bound and
worst�case optimal algorithm� SIAM J
 Comput
� �	�
�� ���� ��
�

�Chazelle�
b� B� Chazelle� Convex partitions of polyhedra� a lower bound and
worst�case optimal algorithm� SIAM J
 Comput
� �	�
�� ���� ��
�

�CM��� Yong C� Chen and Catherine M� Murphy� H�P Model � A hi�
erarchical space decomposition in a polar coordinate system� In
Tsiyasu L� Kunii� editor� Computer Graphics 	��� �Proceedings of
CG International ���� pages

	
�� Springer�Verlag� ����

�CP�a� B� Chazelle and L� Palios� Triangulating a non�convex polytope�
Discrete Comput
 Geom
� ����� ���� ���

�CP�b� B� Chazelle and L� Palios� Triangulating a non�convex polytope�
Discrete Comput
 Geom
� ����� ���� ���

�CT��� Min Chen and Peter Townsend� E�cient and consistent algorithms
for determining the containment of points in polygons and poly�
hedra� In G� Marechal� editor� Eurographics ��� pages
�	
	��
North�Holland� August ����

�Dai
� Fan Dai� Private communication� �
�

�Devillers��� Olivier Devillers� The Macro�Regions� an E�cient Space Subdivi�
sion Structure for Ray Tracing� Technical Report �� �	� Labora�
toire d�Informatique de l�Ecole Normale Superieure� Paris� France�
November ����

�DK�	� D� P� Dobkin and D� G� Kirkpatrick� Fast detection of polyhedral
intersection� Theoret
 Comput
 Sci
� ����
� ��	� ��	�

�DK��� D� P� Dobkin and D� G� Kirkpatrick� A linear algorithm for deter�
mining the separation of convex polyhedra� J
 Algorithms� ��	��
	�� ����

�Dyer��� C� R� Dyer� The Space E�ciency of Quadtrees� Comput
 Graphics
and Image Process
 �USA�� ��		� 	
�� August ����

�Edelsbrunner
� Herbert Edelsbrunner� Private communication� �
�

�EH��� D� J� Elzinga and D� W� Hearn� The Minimum Covering Sphere
Problem� Management Science� ������ ��
� September ����

�ELP��� M� Erdmann and T� Lozano�P+erez� On multiple moving objects�
Algorithmica� ��
�� ���� ����

BIBLIOGRAPHY ���

�ES��� Jos+e L� Encarna)c*ao and Wolfgang Stra,er� Computer Graphics�
Oldenbourg Verlag� 	 edition� ����

�FA��� W� R� Franklin and V� Akman� Building an Octree from a Set
of Parallelepipeds� In M� Wein and E� M� Kidd� editors� Graphics
Interface �� Proceedings� pages 	�	 	�� Canadian Inf� Process�
Soc�� ����

�Felger�� Wolfgang Felger� How interactive visualization can bene�t from
multidimensional input devices� In J� R� Alexander� editor� Visual
Data Interpretation Proc
� SPIE 	���� ���

�FK��� Kikuo Fujimura and Tosiyasu L� Kunii� A Hierarchical space index�
ing method� In Tsiyasu L� Kunii� editor� Computer Graphics Visual
Technology and Art �Proceedings of Computer Graphics Tokyo ����
pages �� 		� Springer�Verlag� ����

�FKN��� H� Fuchs� and Z� M� Kedem� and B� F� Naylor� On Visible Sur�
face Generation by a Priori Tree Structures� In Computer Graph�
ics �SIGGRAPH �� Proceedings�� volume �
� pages ��
 �		� July
����

�FSZ
� Wolfgang Felger� and Reiner Sch!afer� and Gabriel Zachmann�
Interaktions�Toolkit� Technical Report FIGD�
i���� Fraunhofer
Institute for Computer Graphics� Darmstadt� January �
�

�FvDFH�� J� D� Foley� A� van Dam� and Steven K� Feiner� and John F� Hughes�
Fundamentals of Interactive Computer Graphics� Addison�Wesley
Publishing Company� second edition� ���

�GA	� I� Gargantini and H� H� Atkinson� Ray Tracing an Octree� Numer�
ical Evaluation of the �rst Intersection� Computer Graphics forum�
���
��� ���� �	�

�Gascuel	� Marie�Paule Gascuel� An Implicit Formulation for Precise Con�
tact Modeling Between Flexible Solids� In James T� Kajiya� edi�
tor� Computer Graphics �SIGGRAPH �� Proceedings�� volume ���
pages 	�	 	��� August �	�

�GASF
� Alejandro Garc+ia�Alonso� and Nicol+as Serrano� and Juan Flaquer�
Solving the Collision Detection Problem� IEEE Computer Graphics
and Applications� �����	�
	� May �
�

�GJK��� Elmer G� Gilbert� and Daniel W� Johnson� and S� Sathiya Keerthi�
A Fast Procedure for Computing the Distance Between Complex
Objects in Three�Dimensional Space� IEEE Journal of Robotics
and Automation�
�����	 ��	� ����

�Glassner�� A� Glassner� editor� An Introduction to Ray Tracing� Academic
Press� ���

�Glassner�a� Andrew S� Glassner� editor� Graphics Gems� Academic Press� San
Diego� CA� ���

�Glassner�b� Andrew S� Glassner� editor� Graphics Gems� chapter An e�cient
bounding sphere� page 	�� �� In Glassner �Glassner�a�� ���

��� BIBLIOGRAPHY

�Glassner�c� Andrew S� Glassner� editor� Graphics Gems� Academic Press� ���

�Hahn��� James K� Hahn� Realistic Animation of Rigid Bodies� Computers
� Graphics� ���
��� 	��� August ����

�Hay�� Ray
Tracing News� URL� ftp���princeton�edu��pub�Graphics�RTNews�
September ��� electronic material�

�HKP�� John Hertz� and Anders Krogh� and Richard G� Palmer� Introduc�
tion to the Theory of Neural Computing� Addison�Wesley� ���

�HL�� Josef Hoschek and Dieter Lasser� Grundlagen der geometrischen
Datenverarbeitung� B�G� Teubner� Stuttgart� � edition� ���

�HSS�	� J� E� Hopcroft� and J� T� Schwartz� and M� Sharir� E�cient de�
tection of intersections among spheres� Internat
 J
 Robot
 Res
�
��
���� ��� ��	�

�Hubbard	� Philip M� Hubbard� Interactive Collision Detection� In IEEE Sym�
posium on Research Frontiers in VR� San Jos�e� California� pages
�
 	�� October �� �� �	�

�Kalay��� Y� E� Kalay� Determining the Spatial Containment of a Point in
General Polyhedra� Comput
 Graphics and Image Process
 �USA��
��	�	 		
� August ����

�Kirk�a� David Kirk� editor� Graphics Gems III� Academic Press� Inc�� San
Diego� CA� ���

�Kirk�b� David Kirk� editor� Graphics Gems III� chapter A linear time sim�
ple bounding volume algorithm� page 	�� �� Volume � of Kirk
�Kirk�a�� ���

�KK��� Timothy L� Kay and James T� Kajiya� Ray Tracing Complex
Scenes� In David C� Evans and Rusell J� Athay� editors� Com�
puter Graphics �SIGGRAPH �� Proceedings�� volume ��� pages
�� ���� August ����

�LB�
� Y��D� Liang and B� A� Barsky� A New Concept and Method for
Line Clipping� ACM Trans
 Graphics �USA�� 	�� ��� January ��
�

�LC�� Ming C� Lin and John F� Canny� A Fast Algorithm for Incremental
Distance Calculation� In Proc
 of the 	��	 IEEE International
Conference onRobotics and Automation� pages ���� ���
� April
���

�LC�� Ming C� Lin and John F� Canny� E�cient Collision Detection for
Animation� September ���

�Lengauer�� Thomas Lengauer� Combinatorial Algorithms for Integrated Circuit
Layout� Wiley� Teubner� ���

�Linhart�� Johann Linhart� A quick point�in�polyhedron test� Computers and
Graphics� �
�	�
��

�

�� ���

BIBLIOGRAPHY ���

�LM�� Ming C� Lin and Dinesh Manocha� E�cient Contact Determi�
nation Between Geometric Models� PhD dissertation� University
of California� University of North Carolina Chapel Hill� URL�
ftp���ftp�cs�unc�edu�pub�techreports�
���
�ps�Z� ������

�LR��� Y� T� Lee and A� A� G� Requicha� Algorithms for Computing the
Volume and Other Integral Properties of Solids� II� a Family of
Algorithms Based on Representation Conversion and Cellular Ap�
proximation� Commun
 ACM �USA�� ����
� ���� September ����

�Megiddo��� N� Megiddo� Linear�time algorithms for linear programming in R�

and related problems� In Proc
 ��rd Annu
 IEEE Sympos
 Found

Comput
 Sci
� pages 	� 		�� ����

�MMZ
� Jai Menon� and Richard J� Marisa� and Jovan Zagajac� More Pow�
erful Solid Modeling through RayRepresentations� IEEE Computer
Graphics and Applications� pages �� 	�� May �
�

�MP��a� D� E� Muller and F� P� Preparata� Finding the intersection of two
convex polyhedra� Theoret
 Comput
 Sci
� ����� �	�� ����

�MP��b� D� E� Muller and F� P� Preparata� Finding the intersection of two
convex polyhedra� Theoret
 Comput
 Sci
� ����� �	�� ����

�MS��a� K� Mehlhorn and K� Simon� Intersecting two polyhedra one of
which is convex� In L� Budach� editor� Proc
 Found
 Comput
 The�
ory� volume � of Lecture Notes in Computer Science� pages �	

�
�� Springer�Verlag� ����

�MS��b� K� Mehlhorn and K� Simon� Intersecting two polyhedra one of
which is convex� In L� Budach� editor� Proc
 Found
 Comput
 The�
ory� volume � of Lecture Notes in Computer Science� pages �	

�
�� Springer�Verlag� ����

�MSH��� M� D� J� McNeill� B� C� Shah� M��P� H+ebert� and P� F� Lister� and
R� L� Grimsdale� Performance of Space Subdivision Techniques in
Ray Tracing� Computer Graphics forum� ���
����	 ���� ���

�MT� Martin Mellado and Josep Tornero� On the Spherical Splines for
Robot Modeling�

�MW��� Matthew Moore and Jane Wilhelms� Collision Detection and Re�
sponse for Computer Animation� In John Dill� editor� Computer
Graphics �SIGGRAPH �� Proceedings�� volume ��� pages �� ���
August ����

�NAB��� I� Navazo� and D� Ayala� and P� Brunet� A Geometric Modeller
based on the Exact Octree Representation of Polyhedra� Computer
Graphics Forum� ������ ��
� June ����

�NAT�� Bruce Naylor� and John Amanatides� and WilliamThibault� Merg�
ing BSP Trees Yields Polyhedral Set Operations� In Forest Bas�
kett� editor� Computer Graphics �SIGGRAPH �� Proceedings��
volume �
� pages ��� ��
� August ���

��� BIBLIOGRAPHY

�OB�� J� O�Rourke and N� Badler� Decomposition of Three�Dimensional
Objects Into Spheres� IEEE Trans
 On Pattern Analysis and Ma�
chine Intelligence� PAMI���	���� 	���
��� July ���

�PFTV��� William H� Press� Brian P� Flannery� and Saul A� Teukolsky� and
William T� Vetterling� Numerical Recipes in C� Cambridge Uni�
versity Press� ����

�PS��� F� P� Preparata and M� I� Shamos� Computational Geometry� an
Introduction� Springer�Verlag� New York� NY� ����

�PY�� M� S� Paterson and F� F� Yao� E�cient binary space partitions
for hidden�surface removal and solid modeling� Discrete Comput

Geom
� ��
�� ��	� ���

�Reichling��� M� Reichling� On the detection of a common intersection of k con�
vex polyhedra� In Computational Geometry and its Applications�
volume 			 of Lecture Notes in Computer Science� pages ��� ����
Springer�Verlag� ����

�Reischuk��� R!udiger Reischuk� Eeinf�uhrung in die Komplexit�atestheorie� B�G�
Teubner� Stuttgart� ����

�RS�a� J� Ruppert and R� Seidel� On the di�culty of triangulating
three�dimensional non�convex polyhedra� Discrete Comput
 Geom
�
����� ��	� ���

�RS�b� J� Ruppert and R� Seidel� On the di�culty of triangulating
three�dimensional non�convex polyhedra� Discrete Comput
 Geom
�
����� ��	� ���

�Samet�a� H� Samet� The Design and Analysis of Spatial Data Structures�
Addison�Wesley� Reading� MA� ���

�Samet�b� Hanan Samet� Applications of Spatial Data Structures� Addison�
Wesley� Reading� Massachusetts� ���

�Sch!onhardt��� E� Sch!onhardt� !Uber die Zerlegung von Dreieckspolyedern in Te�
traeder� Mathematische Annalen� ��	� 	��� ����

�SN��a� M� Szilv+asi�Nagy� Two Algorithms for Decomposing a Polyhe�
dron into Convex Parts� Computer Graphics Forum� ��	���� ����
September ����

�SN��b� M� Szilv+asi�Nagy� Two Algorithms for Decomposing a Polyhe�
dron into Convex Parts� Computer Graphics Forum� ��	���� ����
September ����

�Sung�� K� Sung� A DDA Octree Traversal Algorithm for Ray Tracing� In
Werner Purgathofer� editor� Eurographics �	� pages �	 ��� North�
Holland� September ���

�SWF�	� John M� Snyder� Adam R� Woodbury� Kurt Fleischer� and Bena
Currin� and Alan H� Barr� Interval Method for Multi�point Col�
lision Between Time�dependent Curved Surfaces� In James T�
Kajiya� editor� Computer Graphics �SIGGRAPH �� Proceedings��
volume ��� pages 	�� 		
� August �	�

BIBLIOGRAPHY ���

�TKM�
� M� Tamminen� and O� Karonen� and M� M!antyl!a� Ray�Casting and
Block Model Conversion Using a Spatial Index� Computer Aided
Design� �����	 ���� July ��
�

�TN��� William C� Thibault and Bruce F� Naylor� Set Operations on
Polyhedra Using Binary Space Partitioning Trees� In Maureen C�
Stone� editor� Computer Graphics �SIGGRAPH �� Proceedings��
volume ��� pages ��	 ���� July ����

�Torres�� Enric Torres� Optimization of the Binary Space Partition Algo�
rithm �BSP� for the Visualization of Dynamic Scenes� In C� E�
Vandoni and D� A� Duce� editors� Eurographics ��� pages ��� ����
North�Holland� September ���

�Toussaint��� Godfried T� Toussaint� Some collision avoidance problems in the
plane� In R� A� Earnshaw� editor� Theoretical Foundations of Com�
puter Graphics and CAD� volume F
� of NATO ASI� pages �	
���� Springer�Verlag� ����

�TS�
� M� Tamminen and H� Samet� E�cient octree conversion by con�
nectivity labeling� In Computer Graphics �SIGGRAPH �� Pro�
ceedings�� volume ��� pages
	 ��� July ��
�

�Vanecek Jr��� G� Vanecek Jr� Brep�index� a multidimensional space partitioning
tree� Internat
 J
 Comput
 Geom
 Appl
� ��	���
	 ���� ���

�VMT
� Pascal Volino and Nadia Magnenat�Thalmann� E�cient self�
collision detection on smoothly discretized surface animations us�
ing geometrical shape regularity� In M� Daehlen and L� Kjelldahl�
editors� Eurographics 	���� number 	� pages C ��� C ���� Oslo�
September �
� Eurographics Association� Blackwell Publishers�

�Weiler��� K� Weiler� Edge�Based Data Structures for Solid Modeling in
Curved�Surface Environments� IEEE Computer Graphics and Ap�
plications� �������
�� January ����

�Welzl�� E� Welzl� Smallest enclosing disks� balls and ellipsoids� Report B
���� Fachbereich Mathematik� Freie Universit!at Berlin� Berlin�
Germany� ���

�WHG�
� Hank Weghorst� and Gary Hooper� and Donald P� Greenberg� Im�
proved Computational Methods for Ray Tracing� ACM Transac�
tions on Graphics� 	������ �� January ��
�

�Woo��� T� C� Woo� A Combinatorial Analysis of Boundary Data Struc�
ture Schemata� IEEE Comput
 Graphics and Applications �USA��
��	��� ��� March ����

�YDEP�� F� F� Yao� D� P� Dobkin� and H� Edelsbrunner� and M� S� Paterson�
Partitioning space for range queries� SIAM J
 Comput
� ���	�� 	�
�
���

�YK��� Z� Yu and W� Khalil� Table Look�Up for Collision Detection and
Safe Operation of Robots� pages 	
	 	
�� Pergamon Press� Vienna�
Austria� December ����

��� BIBLIOGRAPHY

�YKFT�
� K� Yamaguchi� T� L� Kunii� and K� Fujimura� and H� Toriya�
Octree�Related Data Structures and Algorithms� IEEE Comput

Graphics and Appl
 �USA�� 	��	 �� January ��
�

�YW	� Ji�Hoon Youn and K� Wohn� Realtime Collision Detection for Vir�
tual Reality Applications� In IEEE Virtual Reality Annual Inter�
national Symposium� pages
��
��� September �� �� �	�

