
To be published in Computers & Graphics, vol. 28, no. 6, 2004.

Point Cloud Surfaces using Geometric Proximity Graphs

Jan Klein a and Gabriel Zachmann b

aHeinz Nixdorf Institute and Institute of Computer Science, University of Paderborn, Germany
bDepartment of Computer Science II, University of Bonn, Germany

Abstract

We present a new definition of an implicit surface over a noisy point cloud, based on the weighted least squares
approach. It can be evaluated very fast, but artifacts are significantly reduced.

We propose to use a different kernel function that approximates geodesic distances on the surface by utilizing a
geometric proximity graph. From a variety of possibilities, we have examined the Delaunay graph and the sphere-
of-influence graph (SIG), for which we propose several extensions.

The proximity graph also allows us to estimate the local sampling density, which we utilize to automatically
adapt the bandwidth of the kernel and to detect boundaries. Consequently, our method is able to handle point
clouds of varying sampling density without manual tuning.

Our method can be integrated into other surface definitions, such as moving least squares, so that these benefits
carry over.

Key words: Weighted least squares, moving least squares, proximity graphs, surface approximation, implicit surfaces,
local polynomial regression.

1. Introduction

In the past few years, point clouds have had a
renaissance caused by the wide-spread availability
of 3D scanning technology. In order to render [1–
4] and interact [5] with objects thus represented,
one must define an appropriate surface (even if it
is not explicitly reconstructed).

This definition should produce a surface as close
to the original surface as possible while being ro-
bust against noise (introduced by the scanning pro-
cess). At the same time, it should allow to render
and interact with the object as fast as possible.

Email addresses: janklein@uni-paderborn.de (Jan

Klein), zach@cs.uni-bonn.de (Gabriel Zachmann).

In this paper, we present a new definition of a
surface over a given point cloud. It builds on an im-
plicit function defined using weighted least squares
(WLS) regression. Our techniques can also be ap-
plied to other surface definitions, such as Levin’s
popular projection operator (which is based on
moving least squares approximation).

The simple WLS definition of point cloud sur-
faces is quite attractive and can be evaluated very
fast. However, it suffers from artifacts in the sur-
face. They are caused by a distance function that
is not adapted to the topology of the surface: the
Euclidean distance makes points “close” to x that
are really topologically far away. They may be also
be caused by an inappropriate kernel bandwidth,

Preprint submitted to Elsevier Science 21st September 2004

which should be based on the sampling density.
The idea of our method is to utilize (concep-

tually) a Voronoi diagram to find the nearest
neighbor of a query point x, and then traverse the
Voronoi diagram breadth-first to compute approx-
imate geodesic distances between the query point
and the cloud points. Since the Voronoi diagram,
in this context, basically provides just an adja-
cency relation based on some notion of proximity,
we can also use other proximity graphs. Here,
we investigate also the sphere-of-influence graph
with several extensions, which provides a natural
notion of proximity in our context. 1

In order to evaluate the quality of our surfaces,
we generate noisy point clouds from a given“exact”
surface. For these, we compute the deviation of
the zero sets of the different definitions from the
original exact surface. The results show that our
new definition produces much better surfaces. In
addition, our experiments show that our method
can be evaluated very fast.

Note that in this paper we are not concerned
with actually rendering the implicit surface. This
can be done with ray tracing [6], sphere tracing [7,
8], or tesselation [9].

2. Related Work

The representation of objects by point clouds is
based on some notion of surface that describes the
surface in-between the points, which are samples
taken from an original surface, usually with error.

One way is to extend the points to so-called sur-
fels yielding a piece-wise linear surface [1, 2]. Our
work does not deal with this kind of surface repre-
sentation.

Another way is to consider the problem of recon-
struction, where a continuous surface is explicitly
constructed from the set of points, usually in the
form of a polygonal mesh. Several methods can be
distinguished; particularly attractive are combina-
torial methods because they can guarantee the re-

1 Another way to encode approximate geodesic distances
is a triangle mesh. However, here we would have a “boot-
strapping” problem, because the mesh would have to be

created by some kind of tesselation, which would need to
evaluate the implicit function at many points in space.

constructed mesh to be homeomorphic to the orig-
inal surface under some reasonable assumptions
[10, 11]. Other methods are more cluster- or graph-
based [12, 13]. We are not concerned with this kind
of approach, because it does not stay within the
framework of point clouds.

An attractive way of handling point clouds is to
define the surface as the zero set of an implicit func-
tion that is constructed from the point cloud. Usu-
ally, this function is not analytically but“algorith-
mically” given. This is a general method that can
be used for reconstruction as well as ray-tracing or
collision detection.

An interesting method pursuing this approach
is the use of natural coordinates (which are based
on Voronoi diagrams) [14]. They are used to turn
Hoppe’s discontinuous definition [13] into a contin-
uous one (C∞ almost everywhere). However, com-
puting the natural coordinates is very expensive.

A very popular class of methods is to define the
surface as the set of fixed points of a projection map
based on local polynomial regression [15–18]. For
each evaluation of the function, an approximating
polynomial needs to be computed over a suitable
plane, both of which are found using moving least
squares. A simpler, and faster, method is to de-
fine the surface as the zero set of a function, which
is algorithmically constructed by local linear re-
gression (weighted least squares) [6, 19, 20]. These
methods are fairly easy to implement but difficult
to make robust. In particular, non-uniform point
clouds are difficult to handle generally, and there
can be extra zero sets.

Recent publications have, therefore, proposed
to partition the point set by an octree and fit
quadratic functions only to leaves that are occu-
pied by points [7].

As mentioned above, our method is based on
proximity graphs, which have been studied exten-
sively in the past decade. There is a broad spectrum
of them, including the Delaunay graph, nearest-
neighbor graph, γ-graph, α-shape, and the spheres-
of-influence graph, to name but a few; see [21] for a
good survey. They have been used for OCR [22, 23],
reconstruction [24], and many other applications.

In [25], a Euclidean minimum spanning tree is
used to perform thinning on a set of unorganized
points sampled from a curve.

2

Wendland

tricube

cubic

Gauss

h

1

0.8

0.6

0.4

0.2

0

Figure 1. Our method is independent of the mapping
from distances to weights, so different weight func-
tions can be used.

3. Implicit Surface Model

In this section, we will first give a quick recap
and then explain the problem of the conventional
WLS method. For sake of clarity, all illustrations
are in 2D, but the methods work, of course, in any
dimension.

3.1. Surface Definition

Let a point cloud P with N points pi ∈ R3 be
given. Then, an appealing definition of the surface
from P is the zero set S = {x|f(x) = 0} of an
implicit function [19]

f(x) = n(x) · (a(x)− x) (1)

where a(x) is the weighted average of all points P

a(x) =
∑N

i=1 θ(‖x− pi‖)pi∑N
i=1 θ(‖x− pi‖)

. (2)

Usually, a Gaussian kernel (weight function)

θ(d) = e−d2/h2
, d = ‖x− p‖, (3)

is used, but other kernels work as well (see below).
The bandwidth of the kernel, h, allows us to tune

the decay of the influence of the points. It should
be chosen such that no holes appear [5].

Theoretically, θ’s support is unbounded. How-
ever, it can be safely limited to the extent where
it falls below the machine’s precision, or some
other, suitably small threshold θε. Alternatively,
one could use the cubic polynomial [25]

θ(d) = 2
(d

h

)3

− 3
(d

h

)2

+ 1,

or the tricube weight function [26]

θ(d) =
(
1−

∣∣d
h

∣∣3)3

,

or the Wendland function [27]

θ(d) =
(
1− d

h

)4(
4
d

h
+ 1

)
,

all of which are set to 0 for d > h and, thus, have
compact support (see Figure 1 for a comparison).
However, the choice of kernel function is not critical
[28].

The normal n(x) is determined by weighted least
squares. It is defined as the direction of smallest
weighted covariance, i.e., it minimizes

N∑
i=1

(
n(x) · (a(x)− pi)

)2
θ(‖x− pi‖) (4)

for fixed x and under the constraint ‖n(x)‖ = 1.
Note that, unlike [19], we use a(x) as the center

of the PCA, which seems to make f(x) much more
well-behaved (see Figure 2). Also, we do not solve
a minimization problem like [15, 16], because we
are aiming at an extremely fast method.

The normal n(x) defined by (4) is the smallest
eigenvector of the centered covariance matrix B =
(bij) with

bij =
N∑

k=1

θ(‖x− pk‖)(pki − a(x)i)(pkj − a(x)j).

(5)
There are several variations of this simple defi-

nition, but for sake of clarity, we will stay with this
basic one. Our new method can be applied to more
elaborated ones as well.

3.2. Euclidean Kernel

The above definition can produce artifacts in the
surface S (see Figure 2); two typical cases are as
follows. First, assume x is halfway between two
(possibly unconnected) components of the point
cloud; then it is still influenced by both parts of the
point cloud, which have similar weights in Equ. 2
and 4. This can lead to an artificial zero subset⊂ S

3

 (a) (b) (c) (d)

Figure 2. Visualization of the implicit function f(x) over a 2D point cloud. Points x ∈ R2 with f(x) ≈ 0, i.e.,
points on or close to the surface, are shown magenta. Red denotes f(x) � 0 and blue denotes f(x) � 0. (a)
point cloud; (b) reconstructed surface using the definition of [19]; (c) utilizing the centered covariance matrix
produces a better surface, but it still has several artifacts; (d) surface and function f(x) based on our more
geodesic kernel using the sphere-of-influence graph.

where there are no points from P at all. Second,
let us assume that x is inside a cavity of the point
cloud. Then, a(x) gets “drawn” closer to x than if
the point cloud was flat. This makes the zero set
biased towards the “outside” of the cavity, away
from the true surface. In the extreme, this can lead
to cancellation near the center of a spherical point
cloud, where all points on the sphere have a similar
weight.

This thwarts algorithms based solely on the
point cloud representation, such as collision detec-
tion [5] or ray-tracing [6].

In all of these cases, the problem is caused by
the following deficiency in the kernel (3). The Eu-
clidean distance ‖x − p‖, p ∈ P, can be small,
while the distance from x to the closest point on
S and then along the shortest path to p on S (the
geodesic) is quite large.

The problems mentioned above could be allevi-
ated somewhat by restricting the surface to the re-
gion {x : ||x − a(x)|| < c} (since a(x) must stay
within the convex hull of P). However, this does
not help in many cases involving cavities.

4. Geodesic Distance Approximation

As mentioned above, the main problems are
caused by a distance function that does not take
the topology of S into account. We propose to
use a different distance function that is based on

geodesic distances on the surface S. Unfortunately,
we do not have an explicit reconstruction of S,
and in many applications, we do not even want to
construct one.

Therefore, we propose to utilize a geometric
proximity graph where the nodes are points ∈ P.
In such proximity graphs, nodes p and q are con-
nected by an edge if some geometric proximity
predicate holds. So, it is obvious that geodesic
distances between the points can be approximated
by shortest paths on the edges of the graph.

There is a whole spectrum of different proxim-
ity graphs over a set P, for instance the Delau-
nay graph DG(P), the Gabriel graph, the relative
nearest neighbor graph, and the nearest neighbor
graph [21]. These are all subgraphs of the DG, with
different densities, so we choose to investigate the
DG. Another interesting proximity graphs seems
to be the sphere-of-influence graph SIG(P), be-
cause it is not a subgraph of the DG, and because
it seems to capture the notion of sampling density
fairly well (see below).

In the following, the length of an edge is the
Euclidean distance ‖p− q‖ (or any other metric).

4.1. Geodesic Kernel

We define our new distance function dgeo(x,p)
as follows. Given some location x, we compute its
nearest neighbor p∗1 ∈ P. Then, we compute the

4

p

p̂

‖x− p‖x

p∗2
p∗1

‖x− p‖geo

p̂

p

p∗2
p∗1

x

Figure 3. Instead of the Euclidean distance, we use an approximate geodesic distance based on the close-pairs
shortest-paths matrix over a proximity graph.

closest point p̂ to x that lies on an edge adjacent
to p∗1. Now, conceptually, the distance from x to
any p ∈ P could be defined as

dgeo(x,p) = min
n∈{p∗1 ,p∗2}

{
d(n,p) + ‖p̂− n‖

}
,

where d(p∗,p) for any p ∈ P is the accumulated
length of the shortest path from p∗ to p, multi-
plied by the number of “hops” along the path (see
Figure 3 left). However, it is not obvious that this
is always the desired distance. In addition, it is de-
sirable to define the distance function with as few
discontinuities as possible. Therefore, we just take
the weighted average (see Figure 3 right)

dgeo(x,p) = (1− a)
(
d(p∗1, p) + ‖p̂− p∗1‖

)
+ a

(
d(p∗2, p) + ‖p̂− p∗2‖

) (6)

with the interpolation parameter a = ‖p̂− p∗1‖.
Note that we do not add ‖x − p̂‖. The effect is

that f(x) is non-zero everywhere far away from the
point cloud.

Of course, there are still discontinuities in dgeo

and thus in function f . These can occur at the
borders of the Voronoi regions of the cloud points,
in particular at borders where the Voronoi sites are
far apart from each other, such as the medial axis.

The rationale for multiplying the path length by
the number of hops is the following: if an (indi-
rect) neighbor p is reached by a shortest path with
many hops, then there are many points in P that
should be weighted much more than p, even if the
Euclidean distance ‖p∗−p‖ is small. This is inde-
pendent of the concrete proximity graph used for
computing the shortest paths.

Overall, when computing f by (1)–(5), we use
dgeo in (3). We call this modified kernel a geodesic
kernel.

p1

x
p2

shortcut
edge

p3

surface

Figure 4. Shortcuts across cavities lead to imprecise
approximate geodesic distances, especially if the path
length is multiplied by the number of hops along the
path.

Note that the proximity graph should not con-
tain edges which significantly “short-circuit” cavi-
ties. In that case, the shortcut would lead to much
higher weights for farther points than for some
points in-between. This problem is illustrated in
Figure 4. Assume, point p1 is the closest point to
some space point x. Then, p2 can have a higher ap-
proximate geodesic distance from p1 than p3 from
p1.

4.2. Proximity by Delaunay Graph

It is very intuitive to use the Delaunay graph
DG(P) for our problem, because [10] described an
intriguing algorithm for reconstructing a polygonal
surface over a point cloud without noise from its
Voronoi diagram (which is the dual of the Delau-
nay graph). Later, [29] extended this to provable
reconstruction from noisy models.

So we investigated the possible use of the DG(P)
as a proximity graph. Since it induces a neigh-
borhood relation that also includes“long distance”
neighborhoods, some shortest paths can “tunnel”

5

a b

c d e

Figure 5. Different proximity graphs. (a) DG(P),
(b) DG(P) where edges are pruned according to
Q3 + IQR, (c) 1 − SIG(P), (d) 3 − SIG(P), (e)
3− SIG(P) with pruning.

through space that should really be a gap in the
model (see Figure 5, left). Therefore, we prune
edges from DG(P) based on criteria that involve
an estimation of the local spatial density of the
point cloud (see below). However, this can make
the DG(P) too sparse, while at the same time it
does not always prune all “long” edges. This will
cause artifacts in the surface (see Figure 6, left).

If our point cloud is well-sampled in the sense
of [10], then we could prune all edges incident to a
point p ∈ P that are longer than the distance of p
from the medial axis of S — provided we knew that
distance for each p. This is, of course, not feasible.

Therefore, we propose to utilize a statistical out-
lier detection method to prune edges. This is moti-
vated by the observation that most of the unwanted
“long distance” edges are local outliers, or form a
cluster of outliers. In the following, we describe a
simple outlier detection algorithm that seems to
perform well in our case, but, of course, other out-
lier detection algorithms [30] should work as well.

In statistics, an outlier is a single observation
which is far away from the rest of the data. One
definition of “far away” in this context is “greater
than Q3+1.5 ·IQR”where Q3 is the third quartile,
and IQR is the interquartile range Q3 − Q1. Our
experiments showed that best results are achieved
by pruning edges with length of at least Q3 +IQR.

4.3. Proximity by Sphere-of-Influence Graph

The sphere-of-influence graph (SIG) is a fairly
little known proximity graph [22, 23]. The idea is

pruned DG SIG pruned 4-SIG

Figure 6. Surface induced by different proximity
graphs. Clearly, the pruned DG and the plain SIG in-
cur artifacts, due to sparsity and disconnected com-
ponents. In our experience, the 4- or 5-SIG, with prun-
ing, seems to work well in all cases.

to connect points if their “spheres of influence” in-
tersect. More precisely, for each point pi the dis-
tance di to its nearest neighbor is determined and
two points pi and pj are connected by an edge if
‖pi − pj‖ ≤ di + dj .

As a consequence, the SIG tends to connect
points that are“close” to each other relative to the
local point density. In contrast to the DG(P), no
“long distance” neighbor relations are created (see
Figure 5 c), except for some pathological cases
when the surface is very irregularly sampled.

4.4. Extensions of the SIG

In the following, we propose several extensions
to the plain SIG.

4.4.1. r-SIG

In noisy or irregularly sampled point clouds,
there can be several pairs of points that are
placed much farther apart from each other than

6

Figure 7. The sphere-of-influence graph can be ex-
tended to a sphere-of-influence complex in 3D,
which allows better geodesic approximations than the
sphere-of-influence graph (in 3D). Note that only a
few of all simplices of the complex for this point set
are shown.

their inter-pair separation. In such situations, the
SIG(P) would consist of a lot of isolated “mini-
clusters”, even though there are no holes in the
original surface (see Figure 6, middle). Conse-
quently, the corresponding surface could not be
reconstructed correctly, because the approximated
geodesic distances are too imprecise: on the one
hand, they are too large because points close to-
gether can only indirectly be accessed through the
graph by visiting other nodes; on the other hand
— in the case of unconnected components — for
some points in space, too few cloud points are
considered for the reconstruction.

To overcome this problem, we propose the r-th
order SIG: instead of computing the distance to
the nearest neighbor for each node, we compute
the distance to the r-nearest neighbor and then
proceed as in the case of r = 1. It is obvious that
the larger r, the more nodes are directly connected
by an edge, and that too large r can result in“long
distance” edges as in the case of the DG(P) (see
Figure 5 d).

In our experience, it seems best to choose r = 4
or r = 5, and then prune away all “long” edges by
the method described above (see Figure 5 e), which
yields almost always a nice surface (see Figure 6,
right).

Figure 8. We propose the anisotropic SIG to adapt
the“spheres”-of-influence better to the neighborhood
of the points, thus yielding a better proximity graph
for our purposes.

4.4.2. Sphere-of-Influence Complex

In 3D, we can either stay with the SIG pre-
sented so far, or we can extend the definition anal-
ogously to contain triangles as well. Thus, we ob-
tain a complex that consists of the vertices, the
edges as defined before, and triangles. The latter
are formed among all triples of points (p,q, r) that
are close to each other: p,q, r are considered close
iff Bp ∩Bq ∩Br 6= ∅, where Bx is the sphere of in-
fluence around x with radius rx. 2 Figure 7 shows
a few triangles and points from such a complex.

The advantage of such a complex is that we can
compute much better approximations to geodesic
paths than if the paths were restricted to edges
only [31, 32].

4.4.3. Anisotropic SIG

Sometimes, the “post-processing” of the r-SIG,
as described above, can prune away too many or
too few edges. In order to reduce the susceptibility
of the proximity graph to the pruning threshold,
and in order to adapt it better to our problem, we
propose the anisotropic SIG. The idea is use ellip-
soids instead of spheres around the points, where
the axes are the principal components of a suitable
number of neighboring points (see Figure 8).

For each point p ∈ P, we construct its “sphere”-
of-influence as follows. We start with its k nearest

2 This is somewhat related to the Czech complex. However,
in the Czech complex all spheres have the same radius.

7

neighbors, k being small (3 or 4). 3 Then, we com-
pute the principal axes of this set and determine
radii so that the ellipsoid contains the set. 4 Then
we (conceptually) scale the ellipsoid until it con-
tains one more point. 5 With this increased neigh-
borhood point set, we compute a new ellipsoid, as
before. We repeat this procedure, until the ellipsoid
contains r points, or until σ(p) = λ1

λ1+λ2+λ3
ex-

ceeds a predefined threshold. Here, λ1 is the small-
est eigenvector, so that σ(p) captures the surface
variation [18].

The advantage of this is, that in areas with
small variance, we can automatically choose large
spheres-of-influence, while in areas with high cur-
vature or close sheets these spheres are kept small.
Thus, the edges of the anisotropic SIG are less
prone to“short-circuit”sharp features (as depicted
in Figure 4).

Finally, for determining the edges of the
anisotropic SIG, we need to check intersections of
ellipsoid. This could be computed exactly by [34,
Ch. 3.3], for instance, but we have opted for a
simpler, approximate check: we just sample each
ellipsoid by a number of points and check whether
any of them is contained in the other one.

4.5. Automatic bandwidth computation

A critical parameter is the bandwidth h in (3).
On the one hand, if this is chosen too small, then
variance may be too large, i.e., noise, holes, or other
artifacts may appear in the surface. On the other
hand, if it is chosen too large, then bias may be
too large, i.e., small features in the surface will
be smoothed out. To overcome this problem, [18]
proposed to scale the parameter h adaptively.

Here, we can use the proximity graph (pruned
Delaunay, or r-SIG) to estimate the local sampling
density, r(x), and then determine h accordingly.
Thus, h itself is a function h = h(x).

3 Should these, including p, be (almost) coplanar, we take

more until we get a non-coplanar set.
4 Alternatively, we could have computed a smallest enclos-

ing ellipsoid by [33], but the benefit seemed questionable.
5 This can be done efficiently by transforming the points
in the coordinate system of the ellipsoid and then choosing
the closest one.

Assuming the terminology from Section 4.1 (see
Figure 3), let r1 and r2 be the lengths of the longest
edges incident to p∗1 and p∗2, resp. Then, we set

r(x) =
1
r
· ‖p̂− p∗2‖ · r1 + ‖p̂− p∗1‖ · r2

‖p∗2 − p∗1‖
(7)

h(x) =
η r(x)√
− log θε

(8)

where θε is a suitably small value (see Section 3.1),
and r is the number of nearest neighbors that deter-
mine the radius of each sphere-of-influence. (Note
that log θε < 0 for realistic values of θε.) Thus,
pi with distance η r(x) from p̂ will be assigned a
weight of θε (see Equ. 3).

We have now replaced the scale- and sampling-
dependent parameter h by another one, η, that is
independent of scale and sampling density. In our
experience, this can just be set to 1, or it can be
used to adjust the amount of “smoothing”. Note
that this automatic bandwidth detection works
similarly for many other kernels as well (see Sec-
tion 3.1).

Depending on the application, it might be de-
sirable to involve more and more points in (1), so
that n(x) becomes a least squares plane over the
complete point set P as x approaches infinity. In
that case, we can just add ‖x− p̂‖ to (7).

Figure 9 shows that the automatic bandwidth
determination allows the WLS approach to handle
point clouds with varying sampling densities with-
out any manual tuning. Notice that the smoothing
of the different sampling densities is very similar,
compared to the “scale” (i.e., density).

4.6. Automatic boundary detection

Another benefit of the automatic sampling den-
sity estimation is a very simple boundary detection
method. Our method builds on the one proposed
by [6].

The idea is simply to discard points x with
f(x) = 0, if they are“too far away”from a(x) rela-
tive to the sampling density in the vicinity of a(x).
More precisely, we define a new implicit function

f̂(x) =

{
f(x), if |f(x)| > ε ∨ ‖x− a(x)‖ < 2r(x)
‖x− a(x)‖, else

(9)

8

plain WLS, h = 22 2-SIG with pruning, η = 1.7 plus boundary detection

Figure 9. Our method offers automatic sampling density estimation individually for each point, which allows
to determine the bandwidth automatically and independently of scale and sampling-density (middle), and to
detect boundaries automatically (right).

Figure 9, right, shows that this simple method
is able to handle different sampling densities fairly
well.

5. Runtime and Complexity

This section gives an overview about the com-
plexity of our auxiliary data structures and the
time for evaluating f(x) in the 3D case.

5.1. Close-Pairs Shortest-Paths

Computing shortest paths on-the-fly during
the computations of our geodesic distances would
be, of course, prohibitively expensive, so we pre-
compute them. However, computing and storing
an all pairs shortest paths (APSP) matrix would
also be infeasible for larger point clouds. Since the
Gaussian (3) decays fairly quickly (for reasonable
choices of h), and other weight functions have
bounded support, we need to store only paths
up to some length; the contribution of nodes in
Equations 2 and 5 that are farther away can be
neglected. In Section 5.1, we show that the re-
sulting matrix can be computed and stored in
O(N) time and space using a simple lookup table.
Therefore, we denote it just as CPSP (close-pairs
shortest-paths) table.

In the following, we show that this table can be
computed and stored in O(N) with N = |P|.
Definition 1 (Sampling radius) Consider a
set of spheres, centered at points pi ∈ P, that cover
the surface defined by P, where all spheres have
equal radius. We define the sampling radius r(P)
as the minimal radius of such a sphere covering.

The bandwidth h should be chosen such that
points up to a distance of about m · r(P) around a
point pi ∈ P have an influence in Equ. 1 (m ≈ 5)
[5]. That means, a point pj is only used, if θ(‖pi−
pj‖) ≥ θ(m · r(P)).

As a consequence, for each point pi ∈ P we have
to run a SSSP algorithm for the source pi to points
pj where θ(dgeo(pi,pj)) < θ(m·r(P)). Such points
pj are obviously contained in a sphere Si with ra-
dius m ·r(P) centered at pi, and they can easily be
determined by a depth-first or breadth-first search
starting at pi.

The following lemma shows that only a constant
number of points is inside Si, if P is a uniform
(possibly noisy) sampling of a surface. As a conse-
quence, we have to start N times a SSSP algorithm
for a point set of constant size. Overall, our CPSP
table can be computed in time O(N).
Lemma 2 Let a point cloud P with uniformly dis-
tributed points pi ∈ Rd (d ∈ {2, 3}) and sampling
radius r(P) be given. Then, at most d

√
d · med

points ∈ P lie in a sphere with radius m · r(P).

9

m r(P)

r(P) m=4

Figure 10. Under reasonable assumptions, the
close-pairs shortest-paths matrix has size O(N). Left:
a sphere with radius m · r(P) can be covered by
O(m3) spheres with radius r(P). Right: d

√
2 ·me2

uniformly distributed points inside.

Proof: In the following, we consider only the 3D
case (d = 3), the 2D case can be shown analogously.

A sphere S1 with radius m · r(P) can be cov-
ered with at most c := d

√
3 ·me3 smaller spheres

of radius r(P). This has already been shown by
Rogers [35]: the sphere S1 can be covered by a
cube with side length 2mr(P) and the smaller
spheres with radius r(P) cover cubes with side
length

√
4/3 r(P) (see Fig. 10 left). As a con-

sequence, the larger cube can be covered by
d2mr(P)/

√
4/3 r(P)e3 = c smaller cubes and

therefore by the same number of spheres with
radius r(P).

That means, c uniformly distributed spheres of
radius r(P) with centers in S1 cover S1. Only if the
spheres are not uniformly distributed, more than
c spheres with sampling radius r(P) are necessary
to cover S1.

Note that in practice often much fewer points
than c lie inside S1, in most cases k·d

√
d− 1 ·med−1

are realistic (k is a small constant of about 2 or 3).
For memory efficiency reasons, we store the

CPSP matrix in a table of size O(N) instead of
using a N2 matrix.

5.2. Pre-computations of Proximity Graphs

Under reasonable assumptions, Attali and Bois-
sonnat showed recently that the complexity of the
Delaunay graph is linear in the number of points
[36]. Chan et al. proposed an output sensitive algo-
rithms to compute the Delaunay triangulation [37].

Their result says that one can construct the Delau-
nay triangulation in 3D in time O((n + F) log2 F)
where F is the number of faces in the Delaunay
triangulation. Applied with F = O(N) (which is
the result of Attali and Boissonnat) gives an upper
bound of O(N log2 N).

The r-th order SIG can be determined in time
O(N) on average for uniform point sampled models
with size N in any fixed dimension which is a direct
result from Dwyer [38]. Moreover, it consumes only
linear space for well-sampled surfaces.

5.3. Function Evaluation

Our geodesic kernel needs to determine the near-
est neighbor p∗ of a point x in space. Under mild
conditions, this can be done in O(log N) time by
utilizing a Delaunay hierarchy [39], but this may
not always be practical. Using a simple k-d tree,
an approximate nearest neighbor can be found in
O(log3 N) [40].

As shown in Section 5.1, all points pi influencing
x can be determined in constant time by a depth-
first or breadth-first search.

Overall, f(x) can be determined in O(log N) (or
O(log3 N) if using the simple k-d tree), which is the
same time as in the case of the Euclidean kernel if
we would also restrict the influence of points there.

In order to achieve also a fast practical function
evaluation, we have implemented the following al-
gorithm for computing the smallest eigenvector [5].
First, we compute the smallest eigenvalue λ1 by
determining the three roots of the cubic character-
istic polynomial of the covariance matrix B. Then,
we compute the associated eigenvector using the
Cholesky decomposition of B− λI.

In our experience, this method is faster than the
Jacobi method by a factor of 4, and it is faster than
singular value decomposition by a factor 8.

5.4. Dynamic Point Clouds

Because of their lack of inherent connectivity,
point-based models seem to be very suitable in dy-
namic settings. 6 In this section, we discuss the

6 Note that this advantage vanishes if, for instance, hierar-
chical data structures are used to accelerate the rendering.

10

computational overhead for point insertion, dele-
tion, and moving.

In the worst case, inserting, moving, or delet-
ing a point pi in the general Delaunay graph or
SIG can change Θ(N) edges. However, in practical
cases, we can bound that number by O(1) as we are
only interested in paths up to some length mr(P)
(see Section 5.1). As a consequence, the neighbor
relations have to be updated only for a constant
number of points, namely for the points inside the
sphere Si centered at pi and with radius mr(P).
Thereby, not only edges inside the sphere have to
be added or removed, also edges to points outside
the sphere can change. However, the number of
edges which have to modified remains constant.

In the case of inserting or moving a point, the
computation of the point set inside Si causes an
additional factor of O(log N) or O(log3 N) using a
Delaunay hierarchy or a k-d tree, respectively, as
we have to perform a nearest neighbor search in
the graph to find the starting point.

After updating the proximity graph, all affected
entries in our CPSP table have to be recomputed.
If inserting or deleting a point pi from the graph,
only the paths between points in the sphere Si with
radius mr(P) around pi have to be updated (more
precisely, only the paths between points pi and pj

where ‖pi − pj‖ ≤ mr(P)). In the case of moving
a point pi, the radius of Si has to be increased by
the distance between the new and the old position
of pi.

As a consequence, the paths in Si can easily be
updated by an APSP algorithm on the set P ∩ Si.
As already shown in Section 5.1, P ∩ Si (which
has constant size) can be determined by a sim-
ple depth-first or breadth-first search in time O(1),
and therefore, our CPSP table can be updated in
constant time.

Overall, inserting or moving a point can be done
in at most O(log3 N), while deleting can be per-
formed in constant time.

6. Results

We have implemented our new point cloud sur-
face definition in C++. It is easy to implement
and can be evaluated very fast: once the graphs

SIG, autom. h
SIG

Euclidean

h

ti
m

e
/

m
ic

ro
se

c

1009080706050403020100

25

20

15

10

5

0

Figure 11. Average evaluation time of f(x) depending
on the kernel bandwidth h. The timings for SIG(P)
and DG(P) are nearly identical (therefore, we omit
one of them). Please note that our implementation is
not yet fully optimized. Timing was done on a 1 GHz
Pentium 3.

are built, we can evaluate f(x) simply by finding a
nearest neighbor, traversing the graph, computing
a number of weights from the CPSP table, and fi-
nally one eigenvector by Cholesky decomposition.

First of all, Figure 11 shows the performance
that can be achieved using our new surface defi-
nition for a reasonable choice of h. Although our
implementation is not fully optimized, the perfor-
mance is of the same order as that of the Euclidean
kernel.

Figure 12 and 13 illustrate the quality depending
on the Euclidean kernel and our new geodesic one,
respectively. Moreover, in order to give a numerical
hint for the quality, we determined the root mean
square error (RMSE) for the deviation (i.e., dis-
tance) of the reconstructed surface from the origi-
nal surface. Obviously, our geodesic kernel approx-
imates the surface very well, while the Euclidean
kernel produces several artifacts. Even when the
bandwidth h (see Equation 3) is chosen optimally
with respect to the RMSE, the Euclidean kernel
produces severe artifacts (see Figure 13).

We also performed experiments to assess the sen-
sitivity of our surface definition with respect to the
kernel bandwidth h. The plots in Figure 14 (left
and center) show for two different example sur-
faces that our new kernel is less sensitive towards
the choice of h than the old one: for a large range
of the bandwidth, the RMSE using our new sur-

11

 WLS, h=5 WLS, h=10 WLS, h=14 SIG, autom. h

Figure 12. Reconstructed surface based on WLS and our new surface definition (rightmost) for a noisy point
cloud obtained from the 3D Max Planck model (leftmost). Notice how our new definition, including automatic
bandwidth detection, is able to handle fine detail as well as sparse sampling without manual tuning.

face definition is quite low. In contrast, only for a
small bandwidth the Euclidean kernel yields a rel-
atively low RMSE. Note that in almost every case
the RMSE of the Euclidean kernel is larger than
the RMSE of our new kernel. Note further, that
the minimal RMSE of our new definition is clearly
smaller than the minimal RMSE of the old one.

It might seem that there is still one parameter
in our new approach, which requires fine-tuning,
namely r, the radius for our modified sphere-of-in-
fluence graph r-SIG. However, numerous measure-
ments for different point clouds suggest that r ∈
[3 . . . 6] seems to be a good choice for all models.

7. Conclusion and Future Work

We have presented a new surface definition that
utilizes proximity graphs, k-d trees, and weighted
least squares to approximate geodesic distances.
We have also proposed several extensions to the
sphere-of-influence graph.

Overall, our new surface definition yields im-
plicit functions over point clouds, the zero sets
of which are much closer to the original surface

than the previous weighted least squares approach.
At the same time, our definition can be evaluated
quite fast. In addition, the auxiliary data struc-
tures can be constructed efficiently and incur only
little additional storage.

Our method can be utilized for other variants of
point cloud surfaces as well, such as local polyno-
mial approximations or the moving least squares
approach [16].

We believe that this work opens up a number of
further avenues for future work.

From a theoretical point of view, our implicit
function f(x) is discontinuous at more points
x ∈ R3 than the conventional WLS definition. Al-
though this does not seem to be a problem from a
practical point of view, it would be appealing to
find a remedy that offers the same performance.

In rare cases, our r-SIG tends to “short-circuit”
cavities, which can lead to inappropriate weights
for (geodetically) far points. This could be alle-
viated by also computing kind of longest paths
through the proximity graph.

Although the complexity for inserting or mov-
ing points is in O(log3 N), it should be possible
to devise more efficient algorithms when all points

12

plain WLS pruned DG pruned 4-SIG

Figure 13. Comparison of the Euclidean and our new geodesic kernel for a noisy point cloud. In each example,
the bandwidth was chosen so that the RMSE is minimal.

4-SIG
DG

Euclidean

h

R
M

S
E

1009080706050403020100

35

30

25

20

15

10

5

0

4-SIG
DG

Euclidean

h

R
M

S
E

1009080706050403020100

40

35

30

25

20

15

10

5

0

Figure 14. RMSE depending on the bandwidth, h, of the kernel. Our new kernel is less sensitive towards the
choice of h than the old one. Refer to Figure 12 and Figure 13 for the corresponding models.

are moving at once. We believe that we can exploit
temporal coherence in order to update the prox-
imity graph. Possibly, a kinetic data structure can
be devised to accelerate this in the average case.

Acknowledgements

This work was partially supported by DFG
grant DA155/29-1 “Benutzerunterstützte Anal-
yse von Materialflusssimulationen in virtuellen
Umgebungen” (BAMSI), and the DFG program
“Aktionsplan Informatik” by grant ZA292/1-1.

References

[1] H. Pfister, J. van Baar, M. Zwicker, M. Gross, Surfels:

Surface elements as rendering primitives, in: Proc. of
SIGGRAPH, 2000, pp. 335–342.

[2] S. Rusinkiewicz, M. Levoy, QSplat: A multiresolution

point rendering system for large meshes, in: Proc. of

SIGGRAPH, 2000, pp. 343–352.
[3] M. Zwicker, H. Pfister, J. van Baar, M. Gross, EWA

splatting, IEEE Trans. on Visualization and Com-
puter Graphics 8 (3) (2002) 223–238.

[4] K. Bala, B. Walter, D. P. Greenberg, Combining edges

and points for interactive high-quality rendering, in:
Proc. of SIGGRAPH, 2003, pp. 631–640.

[5] J. Klein, G. Zachmann, Point cloud collision detec-

tion, in: M.-P. Cani, M. Slater (Eds.), Computer
Graphics forum (Proc. EUROGRAPHICS), Vol. 23,

Grenoble, France, 2004, pp. 567–576.

[6] A. Adamson, M. Alexa, Approximating bounded,
non-orientable surfaces from points, in: Shape Mod-

eling International, 2004, pp. 243–252.
[7] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, H.-P. Sei-

del, Multi-level partition of unity implicits, in: Proc.

of SIGGRAPH, 2003, pp. 463–470.
[8] J. C. Hart, Sphere tracing: a geometric method for the

antialiased ray tracing of implicit surfaces, The Visual

Computer 12 (9) (1996) 527–545, iSSN 0178-2789.
[9] J. Bloomenthal, An implicit surface polygonizer, in:

P. Heckbert (Ed.), Graphics Gems IV, Academic

13

Press, Boston, 1994, pp. 324–349.
[10] N. Amenta, T. K. D. S. Choi, N. Leekha, A simple

algorithm for homeomorphic surface reconstruction,
Intl. Journal on Computational Geometry & Appli-

cations 12 (2002) 125–141.

[11] T. K. Dey, S. Goswami, Tight cocone: A water tight
surface reconstructor, in: Proc. 8th ACM Sympos.

Solid Modeling Appl., 2003, pp. 127–134.
[12] B. Heckel, A. E. Uva, B. Hamann, K. I. Joy, Surface

reconstruction using adaptive clustering methods, in:

G. Brunnett, H. Bieri, G. Farin (Eds.), Computing
Supplement, Vol. 14, 2001, pp. 199–218, dagstuhl

1999.
[13] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald,

W. Stuetzle, Surface reconstruction from unorganized

points, in: Proc. of SIGGRAPH, 1992, pp. 71–78.

[14] J.-D. Boissonnat, F. Cazals, Smooth surface recon-
struction via natural neighbour interpolation of dis-

tance functions, in: Proc. 16th Annual Symp. on Com-

putational Geometry, ACM Press, 2000, pp. 223–232.
[15] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman,

D. Levin, C. T. Silva, Computing and rendering point
set surfaces, IEEE Trans. on Visualization and Com-

puter Graphics 9 (1) (2003) 3–15.
[16] D. Levin, Mesh-independent surface interpolation, in:

H. Brunnett, Mueller (Eds.), Geometric Modeling for

Scientific Visualization, Springer, 2003.
[17] N. Amenta, Y. Kil, Defining point-set surfaces, in:

J. C. Hart (Ed.), ACM Trans. on Graphics (Proc. of

SIGGRAPH), Vol. 23, 2004, pp. 264–270.
[18] M. Pauly, M. H. Gross, L. Kobbelt, Efficient simplifi-

cation of point-sampled surfaces, in: IEEE Visualiza-

tion 2002, 2002, pp. 163–170.
[19] A. Adamson, M. Alexa, Approximating and inter-

secting surfaces from points, in: Proc. Eurographics

Symp. on Geometry Processing, 2003, pp. 230–239.
[20] A. Adamson, M. Alexa, On normals and projection

operators for surfaces defined by point sets, in: Euro-

graphics Symp. on Point-Based Graphics, 2004, pp.
149–155.

[21] J. W. Jaromczyk, G. T. Toussaint, Relative neigh-

borhood graphs and their relatives, in: Proc. of the
IEEE, Vol. 80, 1992, pp. 1502–1571.

[22] E. D. Boyer, L. Lister, B. Shader, Sphere-of-influence

graphs using the sup-norm, Mathematical and Com-
puter Modelling 32 (2000) 1071–1082.

[23] T. S. Michael, T. Quint, Sphere of influence graphs
and the l∞-metric, Discrete Applied Mathematics

127 (3) (2003) 447 – 460.
[24] R. C. Veltkamp, 3D computational morphology, Com-

puter Graphics Forum (Proc. EUROGRAPHICS)

(1993) 115–127.

[25] I.-K. Lee, Curve reconstruction from unorganized
points, Computer Aided Geometric Design 17 (2)
(2000) 161–177.

[26] W. S. Cleveland, C. L. Loader, Smoothing by local
regression: Principles and methods, in: W. Haerdle,

M. G. Schimek (Eds.), Statistical Theory and Compu-

tational Aspects of Smoothing, Springer, New York,

1995, pp. 10–49.
[27] H. Wendland, Piecewise polynomial, positive definite

and compactly supported radial basis functions of

minimal degree, Advances in Computational Mathe-
matics 4 (1995) 389–396.

[28] W. Härdle, Applied nonparametric regression, Vol. 19
of Econometric Society Monograph, Cambridge Uni-

versity Press, New York, 1990.

[29] T. K. Dey, S. Goswami, Provable surface reconstruc-
tion from noisy samples, in: Proc. Symp. on Compu-

tational Geometry, 2004, pp. 330–339.

[30] T. L. V. Barnett, Outliers in Statistical Data, John
Wiley and Sons, New York, 1994.

[31] T. Kanai, H. Suzuki, Approximate shortest path on

a polyhedral surface based on selective refinement of
the discrete graph and its applications, in: Proc. Ge-

ometric and Processing, 2000, pp. 241 – 250.
[32] J. Chen, Y. Han, Shortest paths on a polyhedron, in:

Proc. 6th ACM Symp. on Computatinal Geometry,

1990, pp. 360 – 369.
[33] E. Welzl, Smallest enclosing disks (balls and ellip-

soids), in: H. Maurer (Ed.), New Results and New

Trends in Computer Science, Vol. 555 of Lecture Notes
Comput. Sci., Springer-Verlag, 1991, pp. 359–370.

[34] S. Schönherr, Computation of smallest ellipsoids

around point sets, Diploma thesis, Freie Universität
Berlin, Berlin, Germany (Apr. 1994).

URL http://page.mi.fu-berlin.de/~sven/own_

work/diplom.abstract.html

[35] C. Rogers, Covering a sphere with spheres, Mathe-

matika 10 (1963) 157–164.
[36] D. Attali, J.-D. Boissonnat, A linear bound on the

complexity of the delaunay triangulation of points

on polyhedral surfaces, Discrete and Computational
Geometry 31 (3) (2004) 369–384.

[37] T. M. Chan, J. Snoeyink, C. K. Yap, Primal divid-

ing and dual pruning: Output-sensitive construction
of 4-d polytopes and 3-d Voronoi diagrams, Discrete

Comput. Geom. 18 (1997) 433–454.
[38] R. A. Dwyer, The expected size of the sphere-of-

influence graph, Computational Geometry: Theory

and Applications 5 (3) (1995) 155–164.
[39] O. Devillers, The Delaunay hierarchy, Internat. J.

Found. Comput. Sci. 13 (2) (2002) 163–180.

[40] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman,
A. Wu, An optimal algorithm for approximate nearest

neighbor searching in fixed dimensions, Journal of the
ACM 45 (1998) 891–923.

14

