

Silhouette Area Based Similarity Measure for Template Matching in Constant Time

Daniel Mohr Clausthal University, Germany dmoh@tu-clausthal.de

AMDO 2010, Andratx, Mallorca, Spain

Motivation: Camera Based Hand Tracking

- Given an image, estimate hand parameter
 - Global position (3 DOF)
 - Global orientation (3 DOF)
 - Joint angles (20 DOF)

global state

local state

- Sample hand parameter space $\theta_1, \cdots, \theta_N, \quad \theta_i \in \mathbb{R}^{26}$
- Project hand models onto 2D and compare with query image
- Estimate global position by position/scale of the hand in the query image and orientation/joint angles by different templates

Hand Tracking Pipeline

Template Matching

	Generate templates on-the-fly	Precompute templates
Number of templates	unlimited	limited to precom- puted poses
Storage space	constant	linear in #templates
Matching time	high	low
Additional structures (e.g. hierarchy)	almost impossible	possible
Appropriate for	local search	global search e.g. (re-)initialization

Related Work

- Binary-Binary matching: template and input image segmentation are binary
 - Direct comparison of foreground regions:
 - Intersection between template and input image segmentation [Lin et. Al AFGR2004][Kato et. al AFGR2006][Ouhaddi et. al 1999]
 - Extract higher level features
 - Compare difference vectors between gravity center and points at silhouette contour [Amai et. al AFGR2004][Shimada et. al ICCV2001]
- Binary-Scalar matching: binary template, scalar segmentation
 - Joint probability [Stenger et. al PAMI2006][Sudderth et. al CVPR2004]
 - Efficient computation through prefix sum for each line in segmentation [Stenger et. al PAMI2006]

Joint Probability

- Given
 - Input image
 - Position p
 - Template T
- Foreground segmentation S (we use skin color)
- Similarity measure given by joint probability between T and S(p)

$$P(S,\mathbf{p},T) = \prod_{\mathbf{x}\in fg(T)} S(\mathbf{p}+\mathbf{x}) \quad \cdot \prod_{\mathbf{x}\in bg(T)} \neg S(\mathbf{p}+\mathbf{x})$$

Fast Area Based Template Matching

- Preprocess input image Segmentation :
 - 1. Take logarithm of segmentation S
 - 2. Compute 2D summed area table IS of log-image
 - Use rectangular representation R of template T
 - Joint probability for a rectangle

 $h(R_i) = \sum_{\mathbf{x} \in R_i} \log S(\mathbf{x}) = IS(R_i.\text{lower.right}) + IS(R_i.\text{upper.left}) - IS(R_i.\text{lower.left}) - IS(R_i.\text{upper.right})$

rs(rthowerheit) rs(rthappennight

Computation cost per rectangle: 4 look-ups in IS

Joint probability

$$P(S,\mathbf{p},T) \approx P(IS,\mathbf{p},R^*) = \exp\left(\sum_{R_i \in R^*} h(R_i + \mathbf{p})\right)$$

Template Representation Computation

K.

- For all templates T
 - Approximate foreground/background area by a set R of axis-aligned rectangles
- Criteria for rectangle covering
 - 1. Cover as much area as possible (param au)
 - High matching accuracy
 - 2. Use as few rectangles as possible (param θ)
 - Faster matching
 - Less memory consumed by template
 - \rightarrow Trade-off between criteria
- Define benefit function

 $g(R_i) = -\theta + \sum_{(x,y) \in R_i} (T(x,y) - \tau), \quad R_i \in R$

Our Rectangle Covering Algorithm Computation

Optimization Function

$$R^* = rgmax_{R \subset \mathcal{R}} \sum_{R_i \in R} g(R_i)$$

- Solve our rectangle covering problem by dynamic-programming
 - Optimal substructure property:
 - Let R_1^* be the optimal solution for a rectangle $R_1 \subset R$
 - If R_1 or any subset is in the optimal solution R^* of R, then $R_1^* \subset R^*$
 - Overlapping subproblems
 - $R_3 = R_1 \cap R_2$ is needed to computing the optimal solution of R_1 and R_2

Template Representation Computation

Template Hierarchy

- Match a set of n templates at a large number of positions in the input image
- Hierarchical approach
 - Generate template hierarchy based on rectangular representation
 - Matching through traversal
 - Complexity reduced from O(n) to O(log n)

Hierarchy Generation

- Templates with similar shapes should end up in the same subtree
- Each node contains a set of axis-aligned rectangles that represent the foreground and background regions of templates
- Each leaf represents one template

Hierarchy Generation: Algorithm

K.

Hierarchical Matching

- 1. Start at root node
- 2. Compute joint probability of regions stored in current node
 - Areas in the template bounding box not yet matched are treated with probability 0.5 (i.e. foreground and background have same probability)
 - → Ensure non-decreasing probabilities while moving along a path to a well matching template
- 3. Compute joint probability at all child nodes
- 4. Visit child with highest matching probability
 - Multi-hypothesis tracking: follow n instead of 1 path during traversal
- 5. If "is inner node" Goto step 2 else finished

ŴØ Hierarchical Matching

Experimental Results

K.

- We use the templates itself as input images because
 - We compare distance measures and not full tracker approaches and thus disturbing factors like bad illumination, segmentation noise, varying hand shapes are undesired
 - Ground truth available
- Three datasets
 - Open hand (2 rotational DOF)
 - 1536 templates
 - Pointing hand (2 rotational DOF)
 - 1536 templates
 - Flexing fingers (flex fingers, 1 rotational DOF)
 - 1080 templates

Matching quality

S.

- The ranks 0-9 of the best matching template are recorded
- The plot shows the rank-histogram for a set of input image

- LBM: Stengers approach using prefix sum per lineRBM: Our approach with axis-aligned rectangles
- HRBM: RBM using our hierarchy

Computation time

Average computation time for each template set

- A resolution of 1024x1024 our approach (RBM) is about 25 times faster than Stengers method (LBM)
 - LBM: Stengers approach using prefix sum per line
 - **RBM**: Our approach with axis-aligned rectangles
 - HRBM: RBM using our hierarchy

Conclusions

- Novel template representation
 - Resolution-independent
 - Low memory cost (~0.6 KByte / template)
- Matching is fast and resolution-independent (0.7μs / template)
- Template hierarchy with hierarchical matching
 - Complexity O(log #templates) (28µs to traverse a tree with ~1500 templates)
 - Hierarchy offers time critical matching: accuracy can be chosen online; stop traversal at inner node still delivers usable result
- Approach is not limited to hand tracking

