
Adaptive Polydisperse Sphere Packings for High
Accuracy Computations of the Gravitational Field

Hermann Meißenhelter
Institute for Computer Graphics and Virtual Reality

University of Bremen
Bibliothekstraße 5, 28359 Bremen, Germany

meissenhelter@cs.uni-bremen.de
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Abstract—Autonomous missions to small bodies are an essential
part of recent space exploration. This increasing interest in
asteroids and moons leads to an increased need for high-fidelity
trajectory simulations to guarantee mission success. Although
their shape might vary greatly, most of those small bodies we
know have an irregular shape, thus, a gravity field that is
challenging to compute.

We present a new method to model the mass of celestial bodies
based on adaptive polydisperse sphere packings. Using poly-
disperse spheres in the mascon model has shown to deliver a
very good approximation of the mass distribution of celestial
bodies while allowing fast computations of the gravitational
field. However, small voids between the spheres reduce the
accuracy especially close to the surface. Hence, the idea of
our adaptive sphere packing is to place more spheres close
to the surface instead of filling negligible small gaps deeper
inside the body. Although this reduces the packing density, we
achieve greater accuracy close to the surface. For the adaptive
sphere packing, we propose a mass assignment algorithm that
uniformly samples the volume of the body. Additionally, we
present a method to further optimize the mass distribution of
the spheres based on least squares optimization. The sphere
packing and the gravitational acceleration remain computable
entirely on the GPU (Graphics Processing Unit).

We have evaluated our method by comparing it to analytical
solutions (such as a cube) and detailed shape models of real
asteroids, for which we have used the traditional polyhedral
method as a reference. We compute the gravitational acceler-
ation on the surface since the most significant relative error lies
there, which is also crucial for landing maneuvers. Our adaptive
sphere packing approach produces reliable gravitation data for
physically-based simulation of space missions and shows more
accurate results than previous similar methods.
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1. INTRODUCTION
The exploration of small solar system bodies such as asteroids
and comets is still of very high interest. For example, the
European HERA mission [1] is expected to visit the binary
asteroid Didymos and its moon Dimorphos in 2026. In
addition, NASA’s Lucy mission [2], already launched in
October 2021, will rendezvous with seven Trojans and one
main-belt asteroid. Also, other missions to small celestial
bodies are planned. For instance, we are part of KaNaRiA
(cognition-based autonomous navigation using the example
of resource mining in space) [3], for which the reference
scenario is an ”asteroid mining mission” in the main asteroid
belt between Mars and Jupiter. One key scientific objective of
these missions is the detailed characterization of the physical
properties of the mission targets. The mass and gravity
field of the scientific target is determined by the gravitational
acceleration acting on the spacecraft. The mass combined
with the volume estimate is inferred to give the total mass. A
measure of the density distribution is the principal moments
of inertia, which are related to the gravity field. An improved
method with higher accuracy for the acceleration computa-
tion, therefore, helps to constrain the internal structure better,
which can give clues to the origin and dynamic evolution of
the target body.

This study compares the polyhedral and the mascon models’
accuracy. We contrast our mascon models’ computational
effectiveness and do an error analysis. A metric for measuring
accuracy is the gravitational acceleration error. Triangular
surface meshes are used to calculate a solution with the
polyhedral method. Mascon distributions are generated from
meshes using a polydisperse sphere packing. A cube with
homogenous density is used as a first test case to assess the
error of the mascon models to a known analytical result [4].
Then we apply our approach to the inner mars-moon Phobos
and the asteroid Bennu to evaluate their abilities to model
practical geometry.
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2. PREVIOUS WORK
The polyhedral method (PM) developed by [6] is a well-
established and globally used closed-form analytical method
to compute the gravitational field of any polyhedral shape
file. The evaluation of the gravitation can even be performed
on the surface of the polyhedron, yet not on the vertices and
edges of the shape [7]. One drawback of the PM in its original
form is that a constant density has to be assumed for the gravi-
tational evaluation throughout the assessed body. This can be
circumvented in different ways, e.g. by the sliver approach
developed by [8], where the difference of two different-sized
tetrahedra (spanned by three co-initial and collinear vectors)
describes the gravitational field of the sliver, i.e. the non-
mutual volume of the two tetrahedra. Another solution to
vary the density inside a body using the PM is to assign
differential densities to inhomogeneities (described with an-
other polyhedron shape) inside a celestial body and to sum
the gravitational fields [9]. On a local scale, the PM has
been implemented in the Wedge-Pentahedra Method (WPM),
where the local terrain is described by wedge-pentahedra,
which are individually evaluated using the PM, allowing to
vary the density per-wedge [10]. Regarding the computation
time, it was shown by [7] that the PM is computationally more
expensive compared to mascon approaches, while paralleliza-
tion of the PM for a large number of evaluation points might
improve the computation time.

Like the polyhedral model, spherical harmonics are helpful
in the representation of the gravity field of a small body. The
spherical harmonic coefficients can be estimated from mea-
surements or computed from a constant-density polyhedron
[11]. However, the classical application of this method has
significant weaknesses when applied to small celestial bod-
ies. The potential field diverges inside the body’s Brillouin
sphere, and for highly non-spherical bodies, the spherical
harmonic series representation demands an excessive number
of terms. In order to overcome the low accuracy for close-
proximity operations, some methods extend the spherical
harmonic methods. An example is the spherical harmonic ex-
pansion method [12][13], which works with bodies of varied
density and converges the model inside the Brillouin sphere.
Nevertheless, this model’s implementation is complex and
takes a long time to generate a configuration.

Mascon models are particularly well adapted to small bodies
since they can simulate irregular forms and density distri-
butions at any resolution. A summary of different mascon
approaches is given in [14]. The discretized mass distribution
causes potential evaluations close to the mascon elements to
degenerate even though the mascon approach better repre-
sents the distant environment. Regardless, its usual advantage
is the simple expression for gravitational potential. Voxels or
spheres are typical shapes for the masses. The drawbacks
of a constant density mascon model for a small body were
underlined in [15], and the accuracy of many different mas-
con packing strategies was investigated. A similar packing
strategy of non-uniform-sized spheres was given in [5] [7]. It
utilized the Protosphere algorithm [16] to generate a sphere
packing for triangular meshes. Better sphere filling efficiency
and mass distribution methods in terms of estimated errors
were shown compared to the similar method in [15]. Tetra-
hedra were used by [17], formed by the polyhedron facets
and the body’s center of mass. Mascons based on an octree
approach were applied [18], building mascons of uniform and
non-uniform voxel for a spatial data structure.

Internal density from shape and gravity information was esti-
mated in [19] by a least squares optimization with tetrahedral

shapes. Optimizing the mascons through non-linear regres-
sion was done by [20], noting that optimizing the location
gets insignificant for many mascons. Yet, a difficulty of
optimization is the large memory footprint, which was noted
as a limitation by [21] and suggested solving it by distributed
memory. To analyze our mascon model, we will compare it
to an optimized solution.

3. METHODS
This section presents a new sphere packing with a novel mass
assignment algorithm. Additionally, we describe how we
compute optimal masses for a deeper evaluation.

Adaptive Sphere Packing

Our approach is based on the mascon model. The mascon
model divides a body into simple and small elements known
as mascons (mass concentration). Mascons are typically
modeled as uniform homogeneous cubes or spheres. We
concentrate the mass of the elements in their center, so
the gravitational field is determined as a collection of point
sources. The resulting gravity is then obtained by integrating
the mass elements.

Similar to the work in [7], the primary principle of our
method is to employ a polydisperse sphere packing, where the
spheres are all contained within the shape but allowed to have
varying radii while not overlapping. Due to the greedy nature
of the Protosphere algorithm [16], it always places the largest
spheres first that fit into the largest voids, following the idea
of Apollonian sphere packings. This approach usually leads
to high packing densities (> 90%) for asteroid-like bodies.

Our key idea is based on the assumption that the smaller
spheres deeper inside the body are less critical for an accurate
gravitational field than small spheres close to the surface.
Also, the gravity field on the surface has the most significant
deviations. So our goal is to place more spheres close to the
surface (see Fig. 1) while we allow larger voids in the center
region of the body.

Therefore we have modified the Protosphere algorithm to
start classically with the greedy filling until a user-defined
packing density is reached. After this, we only place spheres
to represent the surface details close to the border of the
polygonal model.

Algorithm 1 Adaptive(PackingDensity ρ, Threshold λ)

if ρ < λ then
c← select a random cell

else
c← select randomly a cell at the border

end if
place the largest possible sphere in the cell c

In detail, we control our adaptive sphere packing with a
hyperparameter λ, which acts as a packing density threshold.
Achieving a good coverage of a body’s volume usually leads
to a more accurate gravity field. So we do not want to
withdraw that idea completely; this is why we let the standard
packing algorithm run till packing density reaches λ. Then
we place spheres near the border while preferring the largest
spheres as usual. In the end, the algorithm terminates if the
target number of spheres for the sphere packing is reached.

Overall, this adaptive sphere packing achieves less volume
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(a) First: Greedy packing
while below threshold (λ).
Largest spheres get placed.

(b) Second: Greedy packing
near the surface till the goal
number of spheres reached.

(c) Our algorithm applied on:
Adaptive sphere packing with
packing density of 88.2% and
20k spheres.

(d) Reasonable alternative:
Full greedy packing with
packing density of 89.24%
and 20k spheres.

Figure 1: Adaptive polydisperse sphere packing (20k spheres, λ = 85%) to model a more accurate gravity field of a
cube (1c). It allows us to reduce the error by 12%, with manageable computational time compared to similar method
(1d, [5]). Packing density threshold λ controls the number of spheres near the surface. Our algorithm (Section 3) assigns
additional mass to the spheres to match a body’s total mass.

coverage after λ is reached. A lower λ means less packing
density and vice versa because we start to prefer the location
of a sphere rather than filling globally large voids. To set
the parameter, we use the packing density of the standard
Protosphere algorithm as guidance. We usually set the hy-
perparameter around 1% till 5% below the reference.

Mass Assignment

If the body’s density is known, we can simply assign the
masses to the spheres in the body. Since the spheres do not
cover the whole volume of the body entirely due to the voids,
we would end up with a mass that is lower than the actual total
mass of the body. The packing density ρ accurately reflects
the mass we lose in percent (100% − ρ). The work in [5]
presented several heuristics that consider the empty volume
as a mass and assign spheres additional mass where the delta
percentage volume increase method (DPVI) performed best.
Smaller spheres tend to get more mass than larger spheres,
based on the assumption that the bulk density in regions with
smaller spheres is lower than in regions with larger spheres.

We have tried to use the heuristics for our new adaptive sphere
packings, but the error for the gravitational acceleration on
the surface generally increased. The reason for this is that
the voids are not evenly distributed anymore. We can get a
slight improvement with a very small λ. However, we can
even further reduce the error with a new approach.

Our new approach is based on sampling the voids. Our goal
is to associate the empty volume with the spheres to reduce
the error for the gravitational field. Therefore we sample the
empty volume and associate it with the closest spheres. Such
an approach has two challenges: performance or precision
and the metric used for association.

In order to obtain a good performance, we use uniform grids
as an acceleration data structure. This enables us to find the
closest sphere for each sampling point quickly.

In detail, we start with the initialization of the grid, which is
described in Algo. 2.

Actually, we use two uniform grids; one for the triangles and
one for the sphere packing, which we insert into the grid. The
memory limits the cell size for the triangles grid. Choosing

Algorithm 2 InitGrid(Triangles, Spheres)

g ← create uniform grid and inset triangles/spheres
for all triangles t do

mark cells of g intersected by t as border cells
end for
for all cells in g do

generate random ray and traverse grid along that ray
count intersections of ray with triangles c
if ray hits vertex or edge of a triangle: then

abandon ray and repeat with another (random) ray
end if
if c is even then

mark cell as outside
else

mark cell as inside
end if

end for

them as small as possible has led to the best performance.
However, this was not true for the spheres. Here we worked
with fewer cells per axis, achieving better performance. Cells
containing triangles are marked as border cells (Fig. 2a).
These cells catch the silhouette of the body and contain the
volume inside and outside the body. We also determine the
outside and inside cells, which definitely contain no triangles
and lie far outside or deeper inside the body. So these cells
contain either ultimately the body’s volume or no volume of
the body. To classify them, we shoot a random ray from the
cell center. Then we traverse the cells along the ray and
test for ray and triangle intersection. With the number of
intersections, we determine if the cell is completely inside
or outside the body (Fig. 2b). We can see an example of
marked cells in Fig. 2c. If a ray intersects a vertex or edge of
a triangle, it is unclear how to count this type of intersection.
There exist non-trivial methods to analyze such cases, yet it
is often easier to shoot another random ray.

After the grid initialization, we start with the actual sampling
of the empty volume (see. Algo. 3). We traverse the bounding
box of the body in regular steps (Fig. 4a). The point can lie
in three types of cells: outside, border, or inside. If the point
lies outside, it is discarded. We can be sure that inside points
lie inside the body. So we only need to check if a sphere
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(a) Creating a uniform grid and inserting triangles and spheres.
Also marking all cells containing triangles as border-type (light
purple).

Random Ray

Random Ray 1 
(vertex/edge hit)

Random Ray

Random Ray 2 

(b) Shooting random rays from non-border cell centers. Travers-
ing along the ray through cells and counting the ray and triangle
intersections. Even hits → cell is outside; Odd → cell is inside.
Random ray shooting is repeated for vertex or edge hits.

(c) Resulting segmentation of the body into cells. Cell are
marked as follow: Outside is royal blue, border is light purple
and inside cells are yellow.

Figure 2: Acceleration data structure to speed up the
sampling algorithm. It allows discarding many points
that are certainly inside or outside the body’s volume.

overlaps the point. If so, the point is discarded. However, for
the border cells, we need to check if the point is inside. We do
this by shooting a random ray, as before, for the cell centers
in the initialization step. If it results in the point being inside,
we must test for overlap with spheres.

For each sampling point, we search the closest sphere. As
a metric, we use the Euclidean distance to the surface. We
have tried different metrics, but this has delivered the best
results. For example, if we have used the distance to the
sphere centers, the larger spheres got less mass assigned,
which in the end led to a larger error for the gravity field
(Fig. 3a). We search the nearest sphere in the current cell
for the sampling point. If there are no spheres, we search in

(a) Voronoi Diagram with
point and circle set. Straight
dashed grey lines divide
space in the point set and
hyperbolic arcs in the circle
set. The larger spheres can get
more volume or mass around
assigned in the circle set.

(b) Sphere packings allow the
modeling of inhomogenous
density distributions. Cross-
section of Bennu test case
modeled with a regolith layer
(red spheres) and a core (gray
spheres) and a total of 800k
spheres.

Figure 3: Sphere packings only cover part of the volume,
which must match an asteroid’s total mass. Different
metrics for area (mass) assignment are shown in 3a for
a sphere packing (3b).

neighbor cells (blue cells, see Fig. 4b). If we find a minimal
distance to a sphere, we use this distance as a search circle to
ensure that no spheres are closer to the sampling point (purple
circles, see Fig. 4b). Each sampling point adds weight to the
sphere. We compute the volume that is not covered by the
triangle mesh and sphere packing. Knowing the density, we
can compute the mass for this volume. This mass is then
added to the sphere’s mass as a fraction of the weight and the
total sum of weights.

Algorithm 3 MassAssignment(Stepsize, Grid)

sample the bounding box with step size
for all sampling points p do

if p in outside cell then
continue

else if p in border cell then
test if p is inside with ray cast
if p is not inside then

continue
end if

end if
d← search in current cell nearest sphere distance
if no spheres in cell then

d← search min. d in neighbor cells
end if
search in radius d for possible closer spheres
add weight for nearest sphere

end for
for all spheres s do
s.mass← s.weight

sumWeights · uncoveredMass

end for

Mass Optimized Packings

If the gravitational field for a body is known (e.g., by mea-
surements or by using the polygonal method), we can even
further optimize the mass distribution to the spheres. This can
be formulated as an optimization problem. Since our spheres
have a fixed position in space, we only have the mass as an
unknown, which is a linear optimization. We can solve it with
the least squares method, which minimizes the error in Eq. 1.
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(a) Sample empty volume in the body in regular steps. Points
lying in outside marked cells are discarded. Inside points
(yellow) are checked with spheres and border points (purple)
need an additional inside test.

2
0

1

1

0

1

(b) Searching nearest sphere (distance to the surface) for a
sampling point. Search spheres in the current cell or neighbor
cells (purple cells). If the minimum distance is found, search in
this minimal distance circle (purple circle). Points add weights
to spheres.

Figure 4: The nearest sampling points add weight to a
sphere. At the end: The sum of weights adds a fraction of
mass to a sphere.

argmin
θ
∥Xθ − Y ∥22, X ∈ Rn×m, Y ∈ Rm (1)

We take the gravitational potential (Y ) as the target value.
In our examples, we compute the gravitational potential with
the polyhedral method, which results in a m-dimensional
vector. We have many masses and points where we compute
the gravitational potential. These inputs are represented
mathematically by an n × m matrix X . The rows are the
samples around the body, and the columns encode the masses
or unknowns (θ). It is possible to determine the solution
analytically through the normal equations:

θ =
(
XTX

)−1
XTY (2)

However, we would receive negative masses or densities.
Therefore we constrain θ to be non-negative. We used
a Python wrapper for the FORTRAN non-negative least
squares solver [22]. For our scenario, it performed better than
other solvers. We implemented a standard gradient descent
and coordinate descent algorithm and tried other solvers like
FNNLS [23]. To summarize: The solvers were faster but
delivered a significantly less accurate solution. Therefore we
kept using the Python wrapper [22].

4. RESULTS
We have used three test cases to evaluate our adaptive sphere
packing. In the first two cases, we assume a homogeneous
density, and in the last case an inhomogeneous density:

• Homogeneous Cube
• Homogeneous Phobos
• Inhomogeneous Bennu

We compare the gravitational acceleration g on the body’s
surface for each case. Since the error decreases with distance,
we measure the largest possible errors here, i.e. directly on
the surface. Actually, we placed our evaluation points at the
center of each triangle, representing the body’s surface.

We either compute the gravitational acceleration with the
polyhedral method or analytically (cube case). The error
is computed as the relative mean squared error for each
evaluation point on the surface:√√√√ 1

n

n∑
i=0

(
gmasconi

− gpmi

gpmi

· 100%
)2

(3)

For two reasons, the previously presented mascon sphere
packing is chosen as a second reference. First, it is the most
similar approach, and second, it delivers accurate results in
general and better results with fewer spheres if compared to
similar approaches. A relative error reduction is computed
between our new adaptive sphere packing method and the
similar method (standard packing and heuristic [7]):

RMSstandard −RMSadaptive

RMSadaptive
· 100% (4)

Our results were computed with double-precision floating-
point numbers with an Intel® Core™ i7-12700K with 32GB
RAM and a NVIDIA GeForce RTX™ 3080 Ti (CUDA) GPU.
The computation for the sampling algorithm (to assign the
masses in the voids to the spheres) was done in C++ in a
single thread. We note that our sampling algorithm could
be easily parallelized to further reduce computation time.
Gravitational acceleration was computed on the GPU as in
[7].

Homogeneous Model

Our first test case is a cube with an edge length of 2km. We
assume a homogeneous density of 1g/cm3. The cube model
consists of around 49k triangles, which corresponds to the
number of evaluation points. Different ranges of spheres were
targeted, from 2.5k to 80k, and for each, we have chosen four
packing density thresholds. The packing density thresholds
are a few percent below the packing density of the standard
packing. Fig. 5 shows that the largest improvement of around
12% is reached with 20k spheres and the threshold set to
85%. Other numbers of spheres that are below or higher tend
to decrease the improvement. For both homogeneous cases
we have used G = 6.674 · 10−11Nm2

kg2 as the gravitational
constant.

The second homogeneous case is the Phobos model. It
consists of around 274k triangles, and we assume a density of
1.86g/cm3 for our computations. We began again with a total
number of 2.5k spheres and increased it up to 1280k spheres
(see Fig. 6). We expected the improvement to decrease, with
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Figure 5: Homogeneous Cube. Relative error improve-
ment with an adaptive sphere packing. Different numbers
of spheres with different hyperparameters are compared.
The lowest computed RMS is shown.
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Figure 6: Homogeneous Phobos. Relative error im-
provement with an adaptive sphere packing. A different
number of spheres with different hyperparameters are
compared. The lowest computed RMS is shown.

a similar number of spheres, as in the cube model. However,
the improvement seems not to decrease with an increasing
number of spheres. We expect the deeper spheres to become
more critical with a high number of spheres since the packing
algorithm puts more spheres near the border. This hypothesis
might still be true, and maybe many more spheres are needed.
Another argument is that the surface is way more complex
than the cube. With that, we also have more evaluation points
on the surface. Hence, more spheres are needed near the
surface for our sampling algorithm. It could explain why we
receive a worse result with fewer spheres.

Model Packing Density [%] Error [%]
Core Regolith RMS Improvement

20k 49.32 91.08 0.54
A1 20k 51.00 88.38 0.46 14.891
A2 20k 51.20 88.94 0.45 16.023
A3 20k 50.67 90.65 0.46 14.890

40k 56.32 92.22 0.40
A1 40k 58.43 88.82 0.34 15.335
A2 40k 58.59 89.37 0.34 17.030
A3 40k 58.69 91.13 0.33 18.879

100k 64.19 93.56 0.25
A1 100k 65.38 89.33 0.25 0.713
A2 100k 65.60 89.88 0.23 7.250
A3 100k 66.03 91.66 0.21 14.264

800k 75.98 95.70 0.11
A1 800k 76.18 89.96 0.16 −42.460
A2 800k 76.27 90.52 0.13 −16.618
A3 800k 76.40 91.40 0.11 −2.343

Table 1: Error for inhomogenous Bennu modeled with a
regolith layer. The core and Regolith columns indicate
the packing density for the core and shell. Models with
standard greedy packing and our new adaptive packings
(A) are compared. The error is computed with RMS, and
the relative error reduction is shown for comparison.

Inhomogenous Model

Finally, we tested our algorithms with an inhomogeneous
density distribution. To do that, we used the Bennu model
and modeled a regolith layer with the 3D modeling software
Blender. A high-resolution mesh (inner core) was created,
with a constant distance of 10m below the surface. We sub-
tracted 0.250g/cm3 from the mean density, which resulted in
the a regolith density of 1.016g/cm3. Leftover mass resulted
in a density of 1.301g/cm3 for the core to keep the total mass
of the body constant. For the gravitational constant, we have
used G = 6.667 · 10−11Nm2

kg2 .

Different adaptive packings were created for the evaluation
and are shown in Table 1. We see that the best results were
achieved with 40k spheres of almost 20% improvement. Yet,
the improvement seems to have disappeared at 800k spheres.
With a complex surface, we expect the same behavior as
for Phobos. However, our regolith layer model is similar to
the adaptive sphere packing. It leads the standard packing
algorithm to cover much volume in the regolith layer, so we
also have a better approximation near the surface. We guess
this minimizes the effect of our adaptive sphere packing with
a high number of spheres.

Error Analysis and Performance

A visualization of the different sphere packings can help to
understand the results better: Fig. 7 shows the internal density
distribution. The methods are ordered by the columns. The
first method is the standard packing with the original heuristic
DPVI, and the second is our new method. The third column
shows the optimization method. The two rows represent the
different test cases: Cube and Bennu.

To highlight the difference better, the results for the cube
are in the same color range for the first two methods. Our
approach distributes the mass more equally in the volume,
leading to a more homogeneous image and better results.
However, it is noticeable that with our method, there is more
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(a) ρ∗ = 3;RMS =
0.43; t = 1m

(b) ρ∗ = 3;RMS =
0.38; t = 2m

(c) ρ = 5;RMS =
0.24; t = 68h

(d) ρ = 4;RMS =
0.54; t = 1m

(e) ρ = 4;RMS =
0.45; t = 6m

(f) ρ = 4;RMS =
0.2; t = 31h

Figure 7: Internal density distribution rendered with isosurfaces from a sampled 60x60x60 density grid. Spheres are
scaled up to match the mean density. Overlap areas result in higher density (red). Columns represent method: Standard
packing with heuristic[5], Adaptive packing with sampling, Optimizing standard packing. Rows represent cases: Cube-
40k and Bennu-20k. ρ is the max density, RMS is the error, and t is the time needed to assign masses. ρ∗ has adapted
color scale.

(a) 2.5k (b) x̄ = 100.1
σ = 1.19

(c) x̄ = 100.029
σ = 1.56

(d) x̄ = 100.0165
σ = 1.53

(e) x̄ = 100.0168
σ = 1.56

(f) 40k (g) x̄ = 100.017
σ = 0.37

(h) x̄ = 100.0
σ = 0.38

(i) x̄ = 100.001
σ = 0.36

(j) x̄ = 99.996
σ = 0.36

(k) 320k (l) x̄ = 100.01181
σ = 0.16

(m) x̄ = 100.00134
σ = 0.14

(n) x̄ = 100.00133
σ = 0.13

(o) x̄ = 100.00008
σ = 0.14

Figure 8: Relative error in percent on the Phobos surface is shown using the polyhedral method as a reference. Values
above 100% are overestimated (red), and values below are underestimated (blue). The second column shows the similar
method [5]. The third column starts with adaptive sphere packing with an increasing number of spheres at the surface
from left to right. The color range is row-wise equal.
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overshooting near the surface. This is visible by the high
density near the surface in Fig. 7b. Uncovered volume near
the surface does not mean we can just place more spheres
near the surface to solve this issue; however, it helps. There
seems to be an optimal threshold for our sampling algorithm
(see Figs. 5, 6). These observations are similar for the Bennu
case (see Figs. 7d, 7e) as well as for the Phobos case.

Mass Optimized Sphere Packing

Finally, we have computed optimized mass distributions ac-
cording to Section 3. Therefore we used a non-negative
least squares solver, and the results are visible in the last
column. For the cube, the error was reduced by 44%, and
similar high error reductions were reached for Phobos and
Bennu. A notable pattern of the solver is that it works with
high mass concentrations deeper inside the body. For the
cube, it seems to create a rounded cube composed of edges in
Fig. 7c. A thin and dense shell seems to appear for Bennu in
Fig. 7f. Very similar approaches are usually used for inverse
gravity modeling [19]. However, different mass distributions
can produce the same gravity field. Because of that, we
achieved relatively inhomogeneous mass distributions. We
think that the pattern the optimizer produces could be used
to develop a better metric or extension, i.e., depending on
the distance to the mesh surface. For now, we used the
distance from the sampling point to the sphere’s surface (see
the circle set in Fig. 3a), yet an extension could also include
the sphere’s distance from the body surface and try to assign
deeper spheres more mass.

Optimizing the mass distribution also has some drawbacks,
mainly the computation time and the extensive memory
usage. Fig. 7 shows the computation time for all cases.
The computation time to compute the actual gravitational
acceleration is running completely on a GPU, hence it is the
same order of magnitude as in [7]. As previously stated,
the mass assignment algorithm’s performance depends on
the number of sampling points. Only a negligible amount
depends on the number of spheres. There are fewer sampling
points inside the body if we have more spheres, thus shorter
run-time. We observed that the computation time does not
vary significantly between the heuristic and the sampling
(minutes). However, the optimization (hours and days) is a
massive difference. Nevertheless, less input gravity data or
fewer mascons to optimize can lead to better solutions with a
justifiable effort.

Because we see a noticeable overshoot near the surface,
we have visualized the gravitational acceleration error on
the surface for Phobos (viewing the front face, see Fig. 8).
Again, the error was computed as a relative error to the
polyhedral method. Overestimates are colored red, and the
underestimates are blue. Each row represents a total number
of spheres, whereas the second column shows the previous
approach [5]. Our approach starts from the third column,
where we increase the number of spheres near the surface.
For 2.5k spheres, we can see that our approach overshoots
generally and pretty heavily (Figs. 8c, 8d, 8e). The issue
seems to be that there is a lot of uncovered volume near the
surface that is assigned to the small surface spheres that then
stick out of the surface. These mascons are significant for
the error since they are near the surface and thus near our
evaluation points. The error x̄ is consistently over 100%,
and the standard deviation seems relatively high. With 40k
spheres, the smaller spheres start to cover the large sphere.
This is even more visible for our approach (Figs. 8h, 8i, 8j).
Here, the previous pattern is also visible on a smaller scale.
Smaller spheres around larger spheres near the surface get

more mass assigned. These are the small red circles, where in
the center, there is a larger sphere below the surface. Larger
spheres seem to get less mass assigned, compared to the
previous approach (compare Figs. 8l, 8m). The above obser-
vations also seem to be true for 320k, where we achieved a
smoother surface gravity. Overall our λ-parameter or number
of spheres near the surface can lead to an overall overshoot or
undershoot. There is more fluctuation with fewer spheres.
For all our test cases, we have reached errors close to or
below 1%, which is essential for practical applications. In
terms of mission planning and theoretical astrodynamics, any
adequate mathematical representation with accuracy near or
within 1% of the homogeneous polyhedron may be fully
considered, as emphasized by [15].

5. CONCLUSION AND FUTURE WORK
In this study, we have presented a new method to model the
mass of irregular-shaped and inhomogeneous bodies. First,
we pack non-uniform spheres inside the body and control the
number of spheres near the surface through a hyperparameter.
Second, we introduce a sampling algorithm, which distributes
the missing mass of the voids to the spheres. The goal is to
assign the empty volume around the spheres as a mass to the
spheres. Therefore we sample the uncovered volume, and
each sampling point adds weight to its nearest sphere. We
accelerate the computation through a uniform grid as a spatial
data structure.

We have used three test cases to evaluate our method: a
synthetic cube and polygonal models of Phobos and Bennu.
We computed the gravitational acceleration using the poly-
hedral method and measured the relative mean squared error.
Additionally, we have compared it to a similar state-of-the-art
approach. The strengths and weaknesses were analyzed. We
conclude that our method can reduce the error by almost 30%
if compared to a similar method and thus allow us to model
more accurate gravitational fields.

In the future, developing other metrics that do not lead to
local anomalies would be interesting (i.e., avoiding high-
density peaks). Another approach could be a filter that
dynamically smooths those regions. Optimizers show there
is still some room for reduction. Moreover, the general
approach of representing mascons as polydisperse sphere
packings can be used to also solve the inverse problem, i.e.
computing a mass distribution from a measured gravitational
field. Spheres could allow the modeling of different material
mixtures more elegantly, which could be an advantage over
the other methods.
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