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Abstract

This thesis describes two possibilities for object tracking on medical ultra-
sonic image data, which was provided by the CLUST2015 challenge. The
first method classifies with a Random Forest arbitrary pixel, whether they
are part of the object or not. By calculating the center of the retrieved object
pixel mass, the actual location is estimated. Therefore, the algorithm gen-
erates autonomous datasets and labels. The latter method’s design consists
of two main parts that together estimate coordinates of a selected tissue in
each frame. The first is a rough tracker to approximate the vicinity of the
object. The subsequent fine tracker improves this first guess, by searching
for the exact location within this constricted area. The rough prediction
is based on Random Forests that estimate the current sector of a learned
trajectory, which is retrieved during a few breathing cycles from the start,
without supervision. To capture variations in the object’s movement, the
algorithm adaptively learns new possible locations and shifts the learned po-
sitions whenever the trajectory drifts and also artificially interpolates non-
ultrasonic data to increase algorithm’s robustness. The thesis concludes with
an evaluation and the results of the CLUST challenge.
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CPU Central processing unit

CNN Convolutional neural network

FP false positive

FN false negative

GPU Graphics processing unit

GT ground truth

ML machine learning
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ROI region of interest

ROC receiver operating characteristics
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1
Introduction



Medical engineering has reached a level of advance, that nowadays machines and robots
have established themselves in this area as useful tools, besides the usual computers.
For quite some time, many utilities are used for surveillance and diagnosis, starting
from small devices like electrical pulse monitors to large apparatuses for the magnetic
resonance tomography. In the meantime, there are already first machines to support
surgical operations for very fine and fragile areas, that shall apply the incision on human
organs instead of the doctor himself. They stand out, especially for smaller wounds and
a quicker operation time compared to a human’s performance. The application of such
instruments is intended, because it is desired to increase the operational precision and
quality, as well as to filter out disturbances, which are caused for instance by a trem-
bling hand from the surgeon [1][2]. Therefore, it is appropriate to transfer the incision’s
execution to a machine. Such a machine is required to withstand any disturbances in
order to set the surgical cut at the correct position. This is the reason why it needs
to recognize and adapt itself to the patient’s body movements. Prominent examples of
such robot-based medical systems are:

Cyberknife - a robot with six degrees of freedom for local precision radiation [3].
Robodoc - for applications in the area of hip replacement surgery [4].
da Vinci - its usage primarily is dedicated to the gynecologic, as well as the

urologic area [5].

Admittedly, both the doctor and the machine underly external influences. Neverthe-
less at the current state of the art, a machine is able to respond faster to any of such
occurrences. With the ability to control incoming disturbances, the impact is reduced
and thus the operational quality improved. For this reason, the device depends espe-
cially on up-to-date information about the patient’s status. This includes in particular,
the current movement of affected inner body parts and the point of the breathing cycle
currently reached by the patient (this helps to prepare for a forthcoming change of di-
rection of organ’s movements).

Ultrasonic scanners in the medical field are commonly utilized for diagnosis. Due to
their nature of operating without surgical cuts or other invasive actions, portability and
their comparably low costs, made the ultrasonic imaging attractive for tissue motion
analysis or tracking. The difficulty lies in the image processing, where a general vague,
noisy and sometimes smooth appearance of the field of view impedes algorithms to au-
tomatically follow a region of interest (ROI).

Since it is applied especially in the medical field, algorithm failures are to avoid in
any case. Therefore, not only a precise localization of the object is important, but also
the machine security is required as one of the main aspects, which makes working with
such tools feasible in first place. Because otherwise, an unsteady signal could cause the
robot to malfunction.
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1.1 Motivation

In order to perform reliably, it is necessary for these medical support robots, to receive
a robust signal, that makes it possible for them to adjust to the current circumstances.
An ideal signal is defined by a high resolution and also an uninterrupted, steady data
output. The higher the precision is demanded for an operation, the higher the related
resolution needs to be, since it is the basis for further processing. Because the robot
depends on this kind of information in the end, an interruption would cause the machine
to work blindly. This is why the need to focus on providing a robust signal is crucial.

Controller

Measuring 
unit

w(t) y(t)

y
M
(t)

Control route

Figure 1: Schematic construction of the control
loop, as part of a medical support robot.
The application of the presented algo-
rithm shall be used as measuring unit.

To give a better impression, this
sensor element could represent a
measuring unit in the control loop
of the medical robot. Schemat-
ically this is shown in figure
1.

The aim of this thesis is therefore
developing a tissue-tracking algo-
rithm on image recordings of an
ultrasound scanner in general. In
particular this shall be achieved
with the help of a machine learn-
ing method called Random For-
est, which is based on Decision
Trees.

For the usage of this algorithm be-
yond laboratory conditions, it is needed to optimize the processing speed, because a high
update rate promotes the precision maximization of the controller.

Many approaches have been published in [6] describing already precise methods, but
their robustness usually relies on the consecutiveness of frames. If the algorithm de-
pends for instance on the vicinity of the last ROI estimate and a bigger jump in position
occurred (e.g. by a system freeze), then this search area is left out automatically and it
might be possible to lose the object, which aborts the tracking in general.

Smaller regions of interest (ROI) with the size of a fraction from a whole image could
serve as a tracking object. These have the advantage that one is able to obtain a more
rapid processing time, because of their minimal size and the possibility that comes with
it, to leave out the other parts of the image. Figure 2 illustrates such an image record
with a region that (or a similar region) could be processed and tracked.
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Figure 2: Example of an ultrasound image, which is used in this thesis. Encircled is a
possible region, traceable in a consecutive image sequence.

1.2 State of the art

For this special kind of image analysis a research competition has been established known
by the name MICCAI CLUST2015 [6]. In this challenge multiple approaches that solve
the issue differently, are compared to each other. Below a few with excellent results are
briefly summarized.

Optical Flow is applied on two consecutive ultrasonic images, which have been bina-
rized beforehand and processed with a median-filter. Then key points are generated in
both of the pictures and the distance is calculated, how far two corresponding points are
drifted apart. On the one hand, this is achieved with a comparison of the previous frame,
and on the other hand this matching was also done with a reference frame, to increase
robustness. Mean tracking error ≈ 1.05 mm, takes around 20-70 ms per image record [7].

With the help of a kernelized correlation filter with multiple small image cutouts along
the object’s trajectory. The cutouts are created during an initial run. For distinguishing
fore- and background a discrete Fourier transform is applied. Mean tracking error ≈
1.09 mm, takes ≈ 223-155 ms per image record [8].

4



A convolutional neural network is utilized to determine the motion vector and to recog-
nize the current position in multiple smaller image cutouts, along the objects trajectory.
The position statement is selected between these two points whose distance of the re-
cently calculated annotation and the ones, who have been captured initially are the
shortest. Mean tracking error ≈ 2.83 mm, takes ≈ 200 ms per image record [9].

Another approach is based on a common tracking method, that iteratively estimates
the next position in three steps. At first, a smaller image section around the ROI is
generated, subsequently this section should be rediscovered with SIFT, where its new
center is then defined as the current one. For verification purposes, this center is com-
pared with the initial position from step one. Mean tracking error ≈ 0.92 mm, takes ≈
0.2 s per image record [10].

Besides this challenge, there are alternatives even to optical methods. One approach
addresses an electromagnetic tracking, where a coil is generating a magnetic field. On
the receiver sided antenna varies depended from its position the frequency, phase and
amplitude of the current [11].

1.3 Goals of this work

Concluding the following points can be determined as key points of this thesis:

• Object tracking with tissues on ultrasonic images.

• Evaluation of the algorithm’s parameters.

• Minimal processing time per image, to ensure a possibility for a real-time scenario.

• Minimal user effort (i.e.: as algorithm input only a few sample ROI).

• Output: current position specification for a given frame.
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2
General fundamentals



This chapter will outline the theoretical foundations of the thesis, such as the data that
is to be processed, as well as the machine learning (ML) basics and concludes with a
discussion about the chosen method.

2.1 Ultrasonic image records

As well known, ultrasonic signals are used by animals for instance bats, it is used for
underwater range finding and needless to say for the well known foetal imaging dur-
ing pregnancies. Furthermore, a bit less known examples can be found in engineering
(e.g.: welding of plastic and metallic materials), biology (rupturing cell walls to release
contents), dentistry (cleaning and drilling) or geology (localization of oil and mineral
deposits) [12, p.1,5].

Medical sonography applications, as it is used in this thesis, is based on high-frequency
acoustic pulses of a short duration. Theses signals are emitted from a transceiver, situ-
ated on the patients outer skin. This device is sender and receiver of the signal at the
same time. When ultrasound is propagated through the body, it encounters different
physical boundaries, from where the pulse is then reflected (or back-scattered) at var-
ious body elements in different directions. This yields in a series of echoes, which in
turn are detected again by the transceiver. The time difference between emitting and
receiving holds the information about how deep the signal could enter the body. Specific
features of the reflecting structures (e.g.: composition, compressibility and density) have
influence on the signals strength or amplitude. Basically ultrasound images represent a
record from an echo of the emitted signal, assembled line by line, where each line stands
for an individual emitted pulse. The signals amplitude is converted into a gray scale
intensity response that together build up the desired image. Where a very high intensity
(displayed as bright) corresponds to a strong reflection, whereas a low intensity comes
from an absence of the signal [12, p.10]. A higher frequency results in a better image
but goes by the flaw of a belittled depth of penetration [13].

2.1.1 Traceable regions and difficulties

The algorithm is developed on basis of the training section of the CLUST2015 dataset.
To give an insight a summary of traceable ROIs are shown in figure 3 with representative
examples.

Because of their different appearances, shapes and orientation it does not come in easy
to define a general behavior to distinguish between object and its environment. Moreover
there is a variety of difficulties that could or could not occur along the tracking process.
A good algorithm not only is able to minimize the distance of the estimated and actual
position, it also comes along with an user-friendly interface. Ideally, the human interac-
tion is reduced to start the program with the localization of the desired object, which is
used to autonomously process the ultrasonic image data (i.e. the user is prevented from
custom settings). For developing of such a generic but robust approach, an overview is
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desired including all possible ROI, even if they were considered as rarity.

Hence, below in figure 3 a summary is given about possible appearances of the ROIs,
which the algorithm needs to be capable to handle. In the figure, the captions contain
the sequence name and their landmark ID, separated by a comma respectively.

(a) CIL01, 1 (b) ICR04, 2 (c) ICR02, 2 (d) ETH03-1, 1)

(e) ICR04, 1 (f) MED03-2, 3 (g) ETH01-1, 2 (h) ETH05-1, 2

Figure 3: Examples from the training dataset that was used to develop the algorithm.

Besides the impressions about the traceable objects from above, there are further at-
tributes, specifically for the ROI itself:

• Variation in orientation.

• Variation in intensities.

• Variation in shape.

• Variation in size.

• Occlusion / ROI is barely recognizable.

• Fast and slow movement.

• Trajectory might drift, thus leaving its path.

• Periodic behavior cannot be guaranteed.
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Other considerable issues for the tracking system:

• Speckles that blur the vision.

• Unusual jumps (or jerks) along the trajectory.

• Temporary change of full image brightness.

• Image disturbances generated by the system.

• Processing of non-ultrasonic data, when the ROI reached the image margin.

• Back- and foreground of the ROI could be more or less the same.

2.1.2 Image granulation

Capturing the ultrasound signal also underlies a result-distorting noise. Certainly there
is the usual quantification noise, derived from converting analog to digital units. But
this technology additionally has to deal with a special kind of noise that is known by
the name speckle.

coherent light 
(laser)

rough surface (e.g.: wall)

camera

Figure 4: Speckle pattern generation with laser.
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This specific effect is generated when ultrasound waves are reflected differently and sev-
eral entities intersect at one point. In other words the amplitudes of the signals are
added at a particular location, which yields into constructive or destructive interference
and because of the amount of involved elements, a barely predictable pattern is gener-
ated [14]. This behavior is well known in other disciplines as well, for example in the
laser technology. Coherent emitted light is reflected by a surface (e.g. a wall) whose
different reflection interfere with each other [15, p. 131]. To give a vivid example, the
speckle patterns are schematically represented for the laser granulation in figure 4. This
can easily be observed when emitting a common laser pointer onto a wall, the granular
spots depict the mentioned interference.

Depending on its application it is either a disturbance or can be used constructively
as gauging tool. For instance in communication engineering, speckle patterns are con-
sidered as complication for the transmission as it causes fluctuations in a received signal.
Also laser speckle working with is a tool can retrieve the information about materials
unevenness [16, p.39 f.] and is used for shape measurements [17, p.18 ff.]. One construc-
tive application of this phenomenon on ultrasonic image data is tissue characterization
[18].

It appears as a granular pattern on ultrasonic image data, corresponding to homoge-
neous tissues. Fully developed speckle patterns arise when a critical scatter concentra-
tion exceeds [19]. Scattering can be subdivided into three groups: specular, diffusive
and diffractive. Specular scattering is generated when the object is big compared to
the wavelength, whereas diffusive scattering is the opposite, when the object compared
to the wavelength is small. Diffractive scattering occurs when the size of the object is
in between the two types described above. Usually a tissue is aggregated of small sub
wavelength point scatters, a sum of many small reflections with uniformly distributed
phases. It is important not to confuse speckle with random noise, it is rather a repro-
ducible pattern, if it is captured under similar conditions [20, p. 6].

However it takes influence on the image precision, since its appearance blurs the im-
age data. For a better imagination speckle on ultrasonic images resemble the salt and
pepper noise. In the end this disturbance generates a yielding border between object
and background, that makes it harder to define the target as a whole.

Additionally because the speckle pattern vary even on bare motions, thus a image sub-
traction of two consecutive records is highly impeded, which is a known technique for
detecting moving parts in the area of image processing. If y and x stand for the coordi-
nates, P1 and P2 of two consecutive images, then a resulting image Q can be calculated
by

heigth∑
y=0

width∑
x=0

Q(y, x) = P1(y, x)− P2(y, x) (1)
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What happens in equation 1 is very simple. If a pixel at one position has the same
intensity level in P1 and P2 the value will be subtracted to zero. However if an inves-
tigated part of the image has moved in one of the pictures the intensity level usually
changes as well, this yields a result other than zero. So every pixel in the subtracted
image has a different value than zero, it could be considered as a moving part between
the two frames. This technique is useful in robot vision, where the machine has to detect
moving parts in a static area.

However, applied on ultrasonic image data the results are not promising, an example is
shown in the figures 5. One problem unfortunately is, the movement of the background
is detected too, which makes it hard to determine the object’s movement by machine,
since the back- and foreground can have a different velocity. Another issue is the differ-
ent look and feel of the resulting pattern. Where in (f), for a human hardly the margin
of a ROI could be perceived, (c) in turn is showing a totally different behavior. So in
conclusion, simple approaches for this tracking purpose are likely to fail.

(a) 1st image of MED-14 (b) 2nd image of MED-14 (c) subtraction of (a) and (b)

(d) 1st image of MED-02 (e) 2nd image of MED-02 (f) subtraction of (c) and (d)

Figure 5: The result of a image subtraction of consecutive image data.

Fig. 6 shows an example of an ultra sonic image with speckles, with the look-and-feel
of salt and pepper noise to the left, whereas on the right speckles of a coherent light is
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displayed: a laser granulation.

(a) Speckles on a ultra sonic image.
(Excerpt from sequence ICR-01 )

(b) Speckle spots of a laser on white paper [21].

Figure 6: Different appearances of speckle pattern.

2.2 Machine learning

The following pages contain a basic overview about machine learning. Besides the nam-
ing and common methods, also a few utilities will be handled, that will be used later
on.

2.2.1 Terminology

First of all a basic terminology is introduced, which is common in the machine learning
community.

Classification and Regression

In classification, a sample is analyzed and distinguished what fits the most, of a given
amount of classes (e.g.: whether a client is credit worthy or not). Whereas regression
retrieves numerical values of a wide range (e.g.: for calculating a price of a car, when
input parameters are brand, construction year, power, mileage etc.) [22, p. 4f, 9]. In
case of tissue tracking a classifier could identify pixels, if they belong either to the object
or not, while in regression a trajectory could be learned and their x- and y coordinates
with two regressors predicted respectively, independent from each other.

Features

An issue that shall be analyzed can be described with different properties, in this field
of technology these are known by the name features. They appear in different types of
values, either deterministic (for instance using color with n-possible states, as there are n
colors one likes to take into account), or as continuous number where there is theoretically
an infinite amount of states (e.g.: population or temperature) [23, p. 2]. For instance
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when analyzing the meteorology, practical features are humidity, temperature and air
pressure, whereas shadiness, soil type and frequency of irrigation constitute indicators
for agriculture.

Feature-vector and dataset

As mentioned above features are used to describe an issue one likes to inspect. The com-
bination of multiple features for a particular situation is called a feature-vector. This
combination solely describes just one case of the whole problem, linking many vectors
of the same structure but with individual states (i.e.: the same kind of features but
with different values) lead to a dataset. A dataset may or may not contain a label per
feature-vector, depending on the desired algorithm (e.g.: labels are mandatory for clas-
sification, whereas they are not in clustering). The dataset is then used to fit the chosen
algorithm to the present case. It doesn’t necessarily need to be big, it crucially depends
on the variety of samples it has to deal with in future. However a sparse dataset, with
only a part of the possible occurring cases will probably retrieve poor outcomes (where
of course some methods in the same situation return better and others worse results).
Good feature-vectors help to separate the classes, but the question remains about how to
deal with vectors, that are identical except of the attached label. This may be handled
individually when for instance all concerning vectors get discarded or an additional class
unknown is introduced that prevents making false predictions.

Generally speaking a dataset could be composed for instance of audio signals, analog or
digital sensor values, weather states, image data, stock prices, etc. Basically any kind
of data can be processed, as long it is representable in a computer (i.e. reassembled in
numbers). For instance, this thesis is working with gray scale ultrasonic images. Such a
picture could be described as an array of intensity levels, where each cell stands for one
pixel. These intensity levels then again are saved in a value of a specific data type. When
this data type reserves e.g. 8 bits per pixel (implies that there are 28 = 256 possible
states), each image point could be set in a range of 254 different shades of gray, as one
full black and one full white tone.

Training- and testing phase

An algorithm is required to obtain sufficient information before the testing phase, which
is gathered in the dataset. During the training phase the algorithm is adjusting itself to
a given situation. The actual application of a method takes place in the testing phase.
A well prepared training phase is crucial for the success of a desired accurate prediction.
However there are cases where the training is continued when testing has already begun,
thus continuously optimizing the algorithm.

Over- and underfitting

One of the main ideas of machine learning is to inductively adjust the computer to
predict unseen or untrained data correctly. But there is the overfitting that lowers the
prediction quality in the testing phase. If this occurs, then the chosen method will learn
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noise, extracted from the provided dataset, instead of the actual significant parts of the
issue. On the contrary when a dataset consists too less samples, at least for one of
the issue’s particular behaviors, then it might learn with insufficient information and a
different situation will be trained. This is known by the name underfitting resulting like-
wise in a lower prediction quality. Generalization is the term when it comes to describe
how good a method handles the unseen data.

Figure 7: Visualization of general over- and underfitting in machine learning.

Figure 7 (cv. [24]) gives a graphical representation of the problem. During training (blue
line) the classifier gets adjusted step by step, as its goal is to lower the error predictions.
The difficulty is, the training- and testdataset are different from each other, and if the
method’s settings were adjusted on another set, the amount of false predictions may
increase (as indicated by the red line). Therefore, it is desired to find the best position
between the algorithm has learned too less examples and the algorithm is training noise.

2.2.2 Methodes

The foundation of the pursued Random Forest (RF) in this thesis is based on the Deci-
sion Tree technique. Both count to machine learning algorithms. In most of the times,
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these methods consist of a training and a testing phase, in other words a particular prob-
lem first needs to be learned, before it can be analyzed to estimate arbitrary samples in
th end. ML methods are often used, if a simple approach is failing, for instance because
of ambiguous signal meaning in specific situations. As a solution a more intelligent con-
cept is desired in order to remove the ambiguity .

Various approaches have been established in the area of ML. Choosing an appropri-
ate method for a given problem, is often a compromise between prediction accuracy,
processing time and hardware requirements. For example a lightweight Bayesian classi-
fier’s advantages are amongst others the simplicity, the learning and classification speed
[25]. Where neural networks are more complex to develop and also the training time is
comparably higher, but with a better accuracy on non-trivial problems in most of the
cases.

Prominent machine learning examples are:

• support vector machine (SVM) - try to define a function, that ignores cases
if there are error estimates below a certain tolerance boundary but doesn’t accept
samples if this limit was exceeded, thus adjust its function appropriately [26].

• Neural networks - the idea is to reproduce a human or animal brain on a
computer, to utilize its decision ability. It is basically trained with punishment
and rewards [27, p. 483, 487].

• Reinforcement learning - similar to neural networks, it is based on punishment
and rewards but performs without any examples. Instead, based on the current
situation, different possible solutions are calculated and e.g. the one that promises
the highest reward is chosen [28, p. 7].

• Decision trees / random forest - as explained in the chapters 2.3 and 2.4.

All these examples have in common that they depend on a dataset, where the meaning of
each excerpt (sample) carries a description (usually designated as label). Such a dataset
sometimes needs to be setup and arranged by a human, which may become a very time
consuming procedure. This could be one reason, why not for every situation a labeled
dataset can be provided. For this case, or if such a set simply isn’t available when there
is no history for a given problem, there is a subsection of ML, that performs with raw,
unlabeled data. It is called clustering and well-known examples are:

• K-nearest neighbors - k-vectors have a certain localization, then iteratively
the training samples are added to whose distance to these containers is the short-
est. Repeatedly the samples swap from one position to another, as their vector
localizations vary according to their contained data [29, p. 554 f.].

• Hierarchical clustering - create groups where its instances are more similar
to each other than in other groups, this is repeated with assembling similar groups
layer by layer until a desired amount of groups is reached [22, p. 153 f.].
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• DBSCAN - is a density based method to detect clusters of arbitrary shape and
the noise [30].

Due to the chosen method is RF, a labeled dataset needs to be provided as input con-
dition.

2.2.3 Utilities

For developing a robust machine learning algorithm it is important to have an insight on
the impact if a certain parameter, the training data, or anything else is adjusted. There
are a lot of different possibilities to measure whether the system has changed to a better
level or not, tools especially for classification, regression and others. But not only when
it comes to fine tuning the parameter settings, but to also extract a rough impression if
a certain approach comes in handy or not. To give an overview, a few are be explained
below, since they are being utilized in the algorithm’s development.

2.2.3.1 Error measurement for deterministic cases

Many measuring tools for the classification are derived from a class-confusion matrix.
Its structure is displayed in table 1 with TP = true positive, TN = true negative, FP =
false positive, FN = false negative.

Table 1: Structure of the confusion matrix.

Classified as
positive negative

Labeled as
positive TP FN
negative FP TN

Once a classifier (e.g.: a decision tree) is trained, it is verified with samples where the
respective label is retained. For each sample, four cases could occur, separated in: right
prediction (TP, TN) and false prediction (FP, FN). The following equations represent
a selection of derived measurement units for an arbitrary classifier.

accuracy(TP,TN,FP,FN) =
TP + TN

TP + TN + FP + FN
(2a)

specificity(TN,FP) =
TN

FP + TN
(2b)

true positive rate /sensitivity(TP,FN) =
TP

TP + FN
(2c)
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false positive rate(TN,FP) =
FP

FP + TN
(2d)

A more vivid measurement is given with the receiver operating characteristics (ROC).
Where a graph is visualized with the true-positive and the false-positive rate (as shown
in equation 2c and 2d respectively). This shall help to design the classifier and find a
good balance between two cases. Either a classifier is designed, where one can assume
that each prediction is always correct but with the cost to retrieve rather less results. Or
to receive as many results where a class could be predicted, with the drawback that not
each result will be correct [31]. As an example, an artificial ROC is shown in fig 8, where
each orange cross is the result of the same algorithm with different parameter settings,
in this case 17 settings are evaluated. A cross in the very top-left corner means, the clas-
sifier was always correct, down-left: classifier predicts always true, up-right: classifier
predicts always false.
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Figure 8: A sample ROC curve to adjust the parameter settings of a classifier.
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2.2.3.2 Error measurements for continuous numeric cases

Scoring the precision of a continuous, numerical value needs special tools, compared
to classification. It can be applied for regression tasks or for instance in coordinates
estimation. Quite often only the distance between the predicted and actual result is
compared. This yields two possible adjustments for this rating, independent from each
other: metric and distance.

On a more distant view, in metrics all intermediate results are utilized for rating a
given dataset (e.g. the position estimates from a sequence of ultrasonic images). It
might be appropriate to normalize such results before checking between datasets that
deal with another range of values, in order to create a validity for inter-comparison. For
instance an (for error measurement) ideal, small ROI, with a size of 1x1 pixel has a very
clear and unambiguous defined center for calculating a certain distance. Though, when
its dimensions increase and the shape varies, it is not that easy to determine the exact
coordinate anymore (e.g. it could be the pixel’s centroid or just their averaged position).
Subsequently three methods are briefly explained, which will be used in chapter 4 for
evaluation, with n as the amount of comparable spots, d(a, b) as the actual distance
(positively a similarity or negatively the error) of two information containers a and b for
a certain instance (e.g. the position of on a frame).

mean error : d̄(a, b) =
1

n

n∑
i=1

di(a, b) (3a)

standard deviation : s =

√√√√ 1

n− 1

n∑
i=1

(di(a, b)− d̄(a, b))2 (3b)

Equation 3a is focused on displaying the center of the error distribution, which is often
not enough to have a profound insight of the current measurement. Therefore additional
information can be extracted with 3b, since it provides the information how heavily the
information was distributed around its center (3a). In other words the standard de-
viation equals 0, if the error was always the same and gets higher if variations occur
[32, p. 108 f.]. But as [33] pointing out, both methods in combination are not always
the perfect tool to receive a good impression, when for instance on a small amount of
samples, extreme outliers take a high influence on the result. Less sensitive for outliers
is scoring with percentiles, since it shows the border below which point a certain amount
of the data has scored. Primarily all results need to be ordered ascending and first then,
the information can be extracted at which point a particular percentage of the data is
situated [34].

Also for the distance, there are many implementations with different meanings for var-
ious purposes. Below, three exemplary variants are listed, to give an insight about the
sense of this part, where a and b are two vectors with D dimensions (e.g. D = 2 for the
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two dimensional image coordinates).

euclidean distance : d(a, b) =

√√√√ D∑
j=1

(aj − bj)2 (4a)

canberra distance : d(a, b) =

D∑
j=1

|aj − bj |
|aj |+ |bj |

(4b)

cosine distance : d(a, b) = 1−
∑D

j=1 aj · bj√∑D
j=1 a

2
j

√∑D
j=1 b

2
j

(4c)

Equation 4a represents the direct distance from a geometrical point of view and is proba-
bly the most easiest to imagine. In turn, 4b is a bit more complex, as it is more sensitive
for measures distributed in the origin’s vicinity. Whereas an approach from another
perspective in 4c, the angular distance without the scale of the two vectors is compared.
Another notable, yet simple variant is the hamming distance that displays the number
of different entries from the two containers, which has because of its simplicity (more
precisely ambiguity) a minor significance in numerical areas [35].

2.2.3.3 Feature space

A feature space, is a solution for the graphical representation when it comes to eval-
uating arbitrary features. It is designed as a special kind of a scatter plot, meaning
when a particular amount of features are compared, each of them is marked on an own
coordinate axis of the plot. Theoretically a feature space could handle infinite features,
a limit is only given by the lack of displaying higher dimensions [36].

As an example in table 2 an artificial, sparse dataset without labels is given and its
corresponding feature space is observable in fig. 9. From this point there are multiple
ways to move on. One could start with clustering algorithms and find out how many
groups are present or if it is just a homogeneous point cloud. And if such groups are
retrieved further investigations could be initiated about determining the specific special
meaning of them, whose information perhaps improve the further algorithm develop-
ment. Or the features are solely observed to see, if and how much they correlate with
each other, which is a sign that a feature adds no additional value to the dataset. This
would be the case, if the points form a diagonal line. A good example would be vari-
ance and standard deviation, as both carry the same information but one is the squared
result. Especially for classification, this utility can be used to analyze the current state
of overfitting, which will be handled in chapter 2.3.4.

19



Table 2: An artificial dataset for a fea-
ture space.

Feature 1 Feature 2

6 3

5 2
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5 1

1 3

2 4
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Figure 9: The feature space of table 2.

2.2.4 Validation of learning algorithms

The preceding sub chapter describes the error measurement for classification and regres-
sion. Their results usually stand for a very direct assessment of specific (not generic)
circumstances. For instance, these error scores may be low, but it isn’t clear if the param-
eters were already adjusted to the noise (i.e. overfitting) and thus fail on forthcoming
unseen data. Then again, to retrieve a more robust representation of the algorithm
properties a more general view on the problem is required. For this there are additional
techniques, which are described below.

2.2.4.1 Cross-Validation

If the provided dataset consists of k samples to train a model, then this set is split
up with one part to commonly continue with the training, where the other part simply
is used for verification. The decision about how much data is used for training is not
easily answered, as too less results in a poor adaption of the model whereas too less
verification data lowers the score’s validity. There are many different implementation
and briefly explained in the following. In holdout validation usually 2/3 of the data is
used for training, it is less suitable for small datasets due to its single and thus biased
estimate. In k-fold cross validation the split is random and creates k equally sized sub-
samples. As k-1 instances are used for training, where the remaining sample’s intention
is the validation. This procedure is repeated k-times to ensure each subset was used for
validation once, the total score is calculated by the average of all subset results. Similar
to this is the Leave-one-out cross validation, the difference is that k-1 samples are used

20



for training so only one can be utilized for verification. Jackknife also just leaves out
one sample like before but additionally per each fold further comparable values (such
as means, variances) are calculated. The average of these statistic is then compared
with the ones, when the algorithm was trained with the whole dataset to figure out a
potential bias. Another option is Bootstrap, where a sample is randomly selected and
but does not get removed from the selection space. In other words one sample can be
chosen multiple times, where others won’t get touched at all. The selected ones are used
for training and the evaluation is processed with the rest [29, p. 539 ff.].

2.2.4.2 Hypothesis testing

Here a priori knowledge about the statistical distribution of the null and alternative
hypothesis (H0 and H1 respectively - e.g.: is it class Class A or Class B) is necessary
to minimize the probabilities of false decisions. Basically reject H0 if Λ(x) ≤ η, with

the likelihood ratio Λ(x) ≡ p(x|H0)
p(x|H1) , where p(x|H0), p(x|H1) are the density functions

of a sample x. There are plenty of methods in turn to define the threshold η, such as
a Bayesian Test where simply right hypothesis with the higher probability is chosen:
η = π1

π0
, with π0,1 as the prior probabilities of H0 and H1 respectively. If the parameters

are biased the threshold is extend in Risk-adjusted Bayesian test : η = π1C01
π0C10

where C10,01

are the weighs to level out the differences. [29, p. 541 ff.].

A special kind of this method is the significance testing, where H0 is inspected alone.
This for instance occurs, when in a scenario H0 predominantly is chosen, or only the
statistical distribution of H0 is known, but not not from the alternative hypothesis. In
other words this test states if a case is significant enough to reject H0 which here would
be the chosen one ordinarily [29, p. 542, 545 f.]

2.3 Decision trees

Ordinarily machine learning methods are delivered with many parameters that take
influence on the result differently. Often they seem to be of an abstract nature, hardly
to comprehend if one is not experienced in this area. For example the classifier from the
scikit-learn library of a SVM comes with 14 different parameters [37]. In comparison
to this, decision trees count to the fewer examples under these techniques that can be
explained very vividly.

2.3.1 An example

In the following, a basic artificial constructed example shall introduce the topic.

Table 3, is the training dataset that is used for the task to separate fruits from each
other. Starting very simple, a fruit could be separated by color. And because the
dataset is then separated, further sub-datasets are generated, with less entities.
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Table 3: Different properties of a fruit sample, for example 1

Label Freckled Shape Color

Apple no round red

Apple yes elongated green

Apple yes round yellow

Pear yes elongated green

Pear yes elongated yellow

Table 4: The sub datasets after it was split by the color-property

(a) dataset with red fruits

Label Freckled Shape Color

Apple no round red

(b) dataset with yellow fruits

Label Freckled Shape Color

Apple yes round yellow

Pear yes elongated yellow

(c) dataset with green fruits

Label Freckled Shape Color

Apple yes elongated green

Pear yes elongated green

In table 4 the generated subsets can be seen. According to this sparse dataset there
is already a first result: all red fruits can be identified as an apple. The others need to
be processed further. Where in (b) the fruits can luckily be separated by another split
concerning their shape, it is not clear how to handle the ones in (c) where the properties
are identical but with a different label. In this case there are two options: either there
will be an unidentified classification or further properties have to be investigated.

This is a simplified way to construct a decision tree. The elaborated solution for this
example can be seen in fig. 10. The question remains, what will happen if for instance
a red pear appears. This is one reason why it is useful, if not even required to provide
a huge dataset with as many different cases as possible.

2.3.2 Terminology and a brief overview

The probably most popular decision tree algorithm is called ID3 [38], which is also
used in this section to explain the behavior of these kind of ML-technique. Any tree is
constructed as a connection of many nodes, whose amount are likely to increase non-
linearly from layer to layer. In general there are only two types of nodes. An internal
node queries a given sample and sets the continuative path along the algorithm, they
occur from the initial stage until one step before the actual prediction. Internal nodes
usually have a preceding super node and subsequent sub nodes, also known as branches.
If a node has no subsequent branches it is called a leave (sometimes a terminal too).
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Figure 10: The decision tree as designed in the example.

However each tree starts with one initial (internal) node, known as the root. The depth
of a node is the amount of decisions instances laying in between the root and the current
one. Whenever a decision tree is splitting a node and forwards datasets into exactly
two subsets it’s called a binary tree, whereas trees with more than two branches are
handled by the C 4.5 algorithm. When constructing a decision tree, either the full
dataset is available from the very beginning, or is continually updated, which is called
an incremental tree design. More precisely, either the existing classifier gets discarded
and a new training from scratch with the updated dataset is required, or the current
structure gets adjusted. [39], [40], [41].

2.3.3 The mechanisms

Decision trees are similar to the famous game twenty questions, where the a group of
people have to ask arbitrary questions, answerable with either yes or no (e.g.

”
is it a

meal?“ or
”
is it big?“). The goal is to identify the unknown object/person/etc. with as

few questions as possible.

The machine learning technique based on this approach tries also to identify a given
case as quick as possible, with the help of concise queries. For this, a dataset with as
many possible occurring states needs to be provided, which is used to train the decision
tree (see chapter 2.2.1). When the dataset is retrieved, the next step is to begin the
build process by starting to split on one of the given features. In a binary tree, a split
generates two sub datasets who together resemble the same information, that could be
extracted from the original one. The subsequent iteration continues the splitting with
the sub-datasets. This procedure is repeated until the design of the constructed tree
structure fits the specifications (e.g. full dataset splitting, or finishing earlier to avoid
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overfitting).

However the question remains where to set a split. Often in machine learning, a method
is granted more time for its training phase, as long as the processing speed in the testing
phase (i.e.: the actual application) increases. For achieving this goal, either the feature
extraction is accelerated, or on the classifier’s side, the amount of queries/repetitions
until the actual prediction is kept low. The later minimization is often implemented
with the information gain [42], it is shown in equation 5. With A as the attribute that
splits the set S and H as a metric function.

I(S,A) = H(S)−
∑
θ∈A

|Sθ|
|S|
·H(Sθ) (5)

There are plenty options for the metric H, where the most common ones are presented
subsequently.

Gini-Index

This measure is commonly used to split the parent’s node dataset, if the selected feature
is of a categorical nature (e.g.: music genres) [43]. It is shown in equation 6 with pc as
the relative class frequency of a certain instance of C classes.

H(S) = 1−
C∑
c=1

(pc)
2 (6)

Entropy

Very common next to Gini is the Entropy measure, shown in equation 7. According to
Elkan’s opinion in [44] different criteria do not have that much effect on the outcome,
because of their similarity. However [45] states that it rather choses smaller counts but
many distinct values.

H(S) = −
C∑
c=1

log2(pc) · pc (7)

ROC-based splitting

To mention an alternative, that is independent from the information gain, Ferri at al.
suggest in [46] to chose the attribute that retrieves the highest local area under the curve
(see chapter 2.2.3.1).

Further options to increase predicting performance

A notable variation in this area for improving the prediction accuracy in the testing
phase is Bagging / Bootstrap Aggregating, where per classifier a few random samples
of a given set are chosen for the training (this includes cases where some data can be
selected multiple times, but others not even once). Alternatively in Boosting multiple
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weak learners (which are more or less accurate than a random guess) are combined to
complement each others weaknesses, for instance on a specific feature [47, p. 23 f. p. 47
ff.].

A complete different approach is to avoid carefully selecting the best split and replace it
by a random separation [48]. This might yield a processing speed acceleration during the
training phase, as the overhead of the metric’s calculation falls away, when even though
it is especially for very inhomogeneous datasets possible to generate an unnecessarily
complex tree design. Particularly when a method is applied on a mobile platform or
a robot, not only time is a criteria but the energy consumption carries valuable con-
sideration too, since less device accesses consumes less energy compared to long-term
calculations. Unfortunately the drawback of this non-optimized tree layout is, that might
demand more time during its actual prediction in the testing phase. This kind of design
is unsuitable for the problem handled by the thesis, but it might come in handy on cases
with small datasets whose worst layout can’t become a too complex structure.

In conclusion the decision tree developer has to design a layout specifically according
to the application. Including the considerations about the type of estimation (numeric
or deterministic). Furthermore if it is required to perform as a real-time application,
or if it is used in decision making (e.g. evaluating a dataset in medical consultations).
Also choices if the accuracy is the most important attribute, or if the priority is to keep
the processing speed below a certain limit, need to be reasonable compromised. Besides
these trade-offs it is recommended to provide an uncorrelated feature extraction as origin
of the algorithm’s prediction quality.

2.3.4 A decision tree in feature space

In this section the mechanisms of such a classifier is visualized, to outline its attributes
and mechanisms. Also to point out the negative aspects, in order to show why a decision
tree alone is not enough and a RF is preferred, as it eliminates the weaknesses.

When a decision tree was trained to separate all the entities for a given dataset, then it
is likely that an overfitting has been achieved, which leads to misinterpreting the actual
testing data. This problem shall be explained with an artificially constructed example
below.
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Figure 11: A feature space of random values to demonstrate the meaning of a split.

In this example a tree is trained with a dataset concerning only two features: X1 and X2

to be seen in fig. 11. For this machine learning technique a split can either be a vertical
or a horizontal line in feature space (concerning X1, or X2 respectively). The result of a
first separation can be observed in fig. 12 a). If one forces the training process to stop
at this position, the testing data then will be poorly separated as demonstrated in b)
with the yellow area as class A and the blue area for class B prediction. It’s clear to see
that this isn’t very accurate, observing the inhomogeneous distribution of class samples
inside both fields.

X
2

X
1

(a) first split

X
2

X
1

(b) current tree prediction

Figure 12: The feature space after the first step of building a decision tree with a given
dataset.
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Continuing and fully splitting the given training dataset generates two special cases one
needs to be aware of, they are marked as gray areas in fig. 13. For the lower right
spot it could be just an error in the training data set or just a correct but special case.
Same situation applies for the spot in the middle, but here one could believe there was
just a typo when building up a dataset and it actually belongs to the blue group below.
Assumed these were mistakes and should actually be part of the class B (yellow) area,
if the data however is then strictly separated by the given (noisy) dataset, future pre-
dictions in these areas will be false, this is called overfitting. The opposite phenomenon
underfitting can be observed in the big gray area up-left in the graph, where one cannot
be very sure if all samples in this area can be identified as class A (blue) because of the
missing training data for these cases.

?

?

?

X
2

X
1

Figure 13: The feature space after full separation of all known entities.

The results of decision tree training with a insufficient dataset, that leads to over- and
underfitting for this example can be observed in fig. 14. Subgraph a) greedily separates
the data as best as it could, which leads to wrong labeling areas, compared to the ideal
result in b).

Certainly this is a behavior that requires further attention to avoid false predictions.
On possibility is to prune the tree, which means to prevent a complete separation of the
dataset entities, as shown above. Either this is implemented during the training phase
(pre-pruning) or after the tree was built (post-pruning).
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(b) ideal separation

Figure 14: Comparison of the final result of the training phase between a real and ideal
sample separation.

That implies the question about when or where to snip the tree. For this, additional
methods are necessary that gauge the current state of overfitting. Selected tools for
this purpose are briefly mentioned in the following. Reduced error pruning, where in-
ternal nodes are replaced by a leave (prediction) and evaluated if the error is equal or
smaller than the previous state, which then should replace the current subtree with the
leave. Cost-complexity pruning works on a fully trained tree, where bottom-up itera-
tively branches are replaced with leaves. This is repeated until the main tree is only a
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leave too. Under all solutions during these iterations, the error rate is compared and the
best case is chosen. In critical value pruning each node is checked, whether it exceeds
a critical value and if not it will be pruned with an exception: the branch is kept if
its sub-branches don’t meet the pruning condition, because then they contain relevant
splitting information. The higher the critical error was chosen, the smaller the resulting
tree will become [49].

2.3.5 Conclusion

Summarizing the decision tree algorithms with its strengths and limitations [50, p. 45
ff], [51], [52]:

Positive aspects:

• Performing well with a high accu-
racy even in image processing

• Easy to visualize and demon-
strate.

• Works with numerical and deter-
ministic data.

• Performs well on reasonable
amounts of computing power,
even on a large dataset.

• Have various applications in med-
ical decision making.

Negative aspects:

• Might generate overly complex
models, depending on the training
dataset.

• A good design demands a signifi-
cant, quality dataset, which is not
always available in a medical area.

• Sensitive to overfitting.

• Is forced to process a parent node
first, whose decision might not be
defined for all cases.

A decision tree’s solid ability to minimize the amount of queries before a prediction,
makes it a favorable candidate for real-time calculation demands. Also the high accu-
racy even in image processing, supports the choice of being an appropriate tool for the
ultrasonic tracking. But it cannot be ignored, that the training dataset will be small
(i.e.: it needs to be generated by the algorithm itself based on a few information, thus
being sparse), it must then be taking into account that it might not cover all possible
states in its training phase. The outcome of learning a tree in such a manner, will surely
be burdened with overfitting and the fact that the tree needs to process parent nodes,
who were trained with insufficient data, that confuse the classifier on unprepared situa-
tions.

To reduce the negative but obtaining the positive aspects, a general variation of working
with decision trees was provided provided by L. Breiman as he introduced in [53] the
RF.
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2.4 Random forest

This ML-technique ranks amongst others in a group of algorithms that consist of mul-
tiple classifiers that aggregate their individual results and collectively submit a single
prediction, which is the sole output used for further processing afterwards. As there
are many variants, referring publications are usually collected by the name ensemble
learning or combined predictors. Simply spoken all of such methods run many instances
of an underlying fundamental algorithm, each of of them with a slight variation. This
difference however is the point were one could further split up these methods. In one
group the training is designed in a kind of manner that every classifier is constructed
independently from each other, resulting in an appropriate low error rate already per
classifier. the other group in turn, generates its individual elements on a shared basis
[54]. Exemplary methods are Bagging and Boosting as mentioned in chapter 2.3.3.

Starting with a decision tree, it is rather easy to move on towards ensemble learn-
ing. Initially, multiple trees need to be generated and form together a decision forest. If
this forest is taken as a whole algorithm, a sample prediction can be estimated simply
by voting. This is graphically summarized in figure 15, where circles constitute a de-
cision, rectangles a prediction, an orange line as the way of the same input sample for
each classifier and the blue entities as illustration of the individual decision path inside
each tree. Already by this figure a few properties are observable. The left algorithm
visibly needs less resources in memory. Also its processing time here is ≈ 5 times faster
compared to the forest (consisting of 5 individual trees and thus the 5 times decreased
speed), if the trees aren’t parallelized. However, the left algorithm doesn’t seem to be
trained very well, or at least the input sample is hard to safely predict, which leads to
retrieving an already wrong prediction that is used for further processing. Also a few
trees inside the ensemble have false estimate, but the actual algorithm output is given
by a subsequent voting procedure of all individuals and thus being able averaging errors
simply. For the voting system many options are imaginable, such as the majority vote,
where the prediction is chosen that was selected the most amongst all other entities.
Contrary to this example, if the ensemble is not interpreted as a binary classifier (i.e.:
having more than two possible options to predict), a median vote might be a suitable
option as well.

Many different ways for constructing the single classifiers in the ensemble are conceiv-
able and because it is a comparably rather old procedure, there are different publications
suggesting methods to efficiently arrange the tree design.. In connection to the meth-
ods shown before Schapire et al. evaluate the effectiveness of utilizing Boosting on this
purpose [55]. Bagging in this area is investigated by Breiman [56] with the statement,
that this method already might cause substantial gains in accuracy. A few more notable
investigations are mentioned in the following. Dietterich inspects randomizing the split
selection from a collection of n favorable splits, to enhance the outcome of the results
[57]. Ho states, that adding more trees might help to overcome a poor generalization,
where likewise the accuracy increases monotonically by the amount of trees being part
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Figure 15: A graphical comparison between the mechanics of a single decision tree and
a forest.

of the ensemble. Also different feature vectors, number of subspace dimensions or tree
growing algorithms don’t seem influence the classification accuracy much [58].

With this introduction, the mechanism of a random forest can be explained. Basically
it continues the idea of Bagging by increasing its randomness, with the aim of having
an ability of a better handling the unseen data. Instead of figuring out, what would be
the best information to chose (e.g. preselecting the significant features of the dataset
for each tree), this shall rather be done less precisely by working with a unoptimized
information basis. It appears obvious when a training set doesn’t cover all occurring
cases of the testing phase, that it is needless to perfectly adjust to the complete training
set, that decreases the generalization capabilities (a possible outcome is described in
feature space analysis of chapter 2.3.4 or figure 7). More precisely every single tree is
generated independently from its adjacent classifier-relatives. Further on every tree-node
is selected as the prime split amongst its random (thus the name) subset of features,
but with the same distribution. Especially to demonstrate the generalization abilities,
there is a very useful measurement tool, which is the so called out-of-bag error. It is the
mean error if a sample was evaluated by all trees that didn’t use it during their training
phase [53].

A random forest is already built in a few steps. Starting by creating nTrees bootstrap
samples, where each tree shall grow unpruned (see chapter 2.3.4) but instead of using
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all of the provided features, an arbitrary choice of the whole collection is used for a
current node. Now for predicting samples all results of the nTrees classifiers need to be
aggregated, for instance by majority vote or calculating a mean value (preferably for
regression tasks) and hence deliver the single result [59].

In [53, p. 7] Breiman attributes following properties, which are remarkable to these
procedures. Their accuracy is comparably good or even better than the AdaBoost com-
petitor, while being quite robust in terms of handling data with outliers and noise. It
is working with a faster processing speed as against Boosting or Bagging, also comes
in modest and is easy to parallelize (thus represents itself interesting for rapid or even
real-time applications). Its structure hands in useful information about estimates of
error, correlation, variable importance and strength. These information are important
for feature engineering or the algorithm developer at all. It’s fair enough to cite the
handbook of random forests [60], which interferes with the mentioned attributes but
also continues with the following statements. When talking about accuracy in classifi-
cation the random forest shall be as good as SVM, with its technique that maintains its
accuracy even if around 80% of the actual necessary data is missing and also possibly
because of it’s attribute of harmonizing the error of an unbalanced dataset class distri-
bution. Then in turn Liaw et al. [59] state that the effectiveness does depend on various
parameters. Amongst others issues, having an highly unbalanced class distribution may
recognizably lead to a false prediction due to the voting system, since the commonly used
majority vote may be inappropriate at this special case. As the algorithm is perfectly
parallelizable it might come in handy to run many random forests on different machines
and combine each result together to calculate the final outcome. The amount of involved
features doesn’t take that much influence on the results, since already only one can be
sufficient for some data. However the advise was given to rather increase the amount of
features, when there are generally a lot of features where only a few are determinative.
Breiman in turn suggested in [60] a more empiric approach of using twice, half or just the
amount of features from the default case and pick the one with most promising results.

2.5 Discussion

Tracking on medical ultrasonic image data comes with many influence taking factors,
that carefully need to be weighted to develop the optimal algorithm. In comparison,
following a ball in a two- or even three-dimensional scene is rather easy due to its almost
static appearance (a sphere with the same size on each frame), subjected to physical
laws that help to predict at least a rough position on forthcoming fames, if not inter-
fered on the way. Balls are often robustly identified with circle recognition tools like the
hough-transformation [61], or if the scene is even less complex and stays static during the
whole tracking period, a simple image-subtraction might already be enough to identify
the moving object. However, observing an object and its scene on ultrasonic image data
lead to the impression, that these kind of problems are substantially more difficult and
might not be able to be handle by rather simple approaches at all (see fig. 5 in 2.1.2 as
impression). As for instance it is perfectly normal that the appearances of scene and ob-
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ject change dynamically over time, occurring occlusions of relevant and irrelevant parts
and also the object’s dimensions may easily change. Consequentially a more perceptive
method is needed, capable of such factors. Often machine learning methods are used
on similar purposes, such as face or handwriting recognition and the like. Especially
because of these two examples on object recognition with a lot of possible variation in
the looks (e.g.: distinguishing an arbitrary letter under the influence of different style of
writing, cursive or capital format, etc.) and their problem’s similarity to the ultrasonic
tracking issues, as also successful ML-submissions to the CLUST challenge, it appears
promising to assemble these potentials in the own tracking algorithm.

Deciding to use ML leaves up the question which of all available algorithms is suit-
able for this situation. Because of such a massive amount of choices (e.g. see chapter
2.2.2, or the well known overview map of scikit-learn [62]), the right option needs to
be encircled with the help of appropriate queries. It’s fair enough to initially decide
between classification, regression or clustering. Since it is already known what shall be
inspected, ambiguous techniques, like the ones from clustering, are probably a lot less
efficient because there is already a clear border between the possible occurring groups.
Further on, a regression might only be worth considering when the trajectory shall be
learned (more precisely the particular continuous image coordinates on the image’s y-
and x-axis). Leaving up a majority weight on classification procedures, being capable
of classifying either positions or pixels affiliation for instance. Even though, most of
the algorithms are often capable for both options. Having a closer look on a given
ROI. Because many pixels of its pattern already change from one frame to another, the
classifier then is probably going to handle a lot of unseen cases or situations and still
needs to give a solid prediction, thus a well generalization is demanded. Further on,
if the algorithm should be used right away after the training input was given, a rapid
training phase is necessary. This excludes neural networks,because of their training may
last hours (e.g. the variant presented in [9], took around 1.5 h for adjusting a CNN to
the CLUST Data). The next commonly used classification method is the SVM because
of their accuracy. But also these might take in multiple hours of time for preparation,
as inspected for face recognition in [63]. A lesser known method is the discriminant
analysis and according to a multi-class experiment in [64] is quite competitive to other
classifiers like SVM. Unfortunately [65] indicates that this variant tends to overfitting
that probably impedes handling the various unseen ROI-appearances during tracking.
Sollich and Krogh [66] are discussing overfitting and realistic ensemble sizes, it seems
adequate to state ensemble methods hold a higher potential to avoid overfitting because
of their averaging technique, if it was not over-optimized (e.g. when the individuals in a
decision forest are adjusted to the whole dataset. Then the result is not likely to change
after the averaging, since all classifiers would be alike - see chapter 2.4). Which mini-
mizes a lot more the amount of appropriate ML-techniques to these kind of composed
classifiers.

In general RF as an ensemble classifier is known to handle unseen data well, that suits
the requirement of the ROI appearance. With short training and testing phases it’s
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applicable in reality with no further extensions on one hand (e.g. it is not required a
session with the patient for training the algorithm and a second session for the actual
application), as on the other it greatly reduces the evaluation time during development
due to the lack of long waiting periods until the algorithm is finished and ready to use.
However, there are quite contrary meanings about the accuracy. Douglas is comparing
the accuracy of K*, Naive Bayes, SVM, Decision Tree, AdaBoost and RF in [67], for
a 10-fold cross validation on MRI image data to guess mental processes. The RF has
achieved maximum accuracy with 92 % followed by AdaBoost’s 91% whereas the worst
result came from the SVM with 84 %. This impression is also supported by the results
of [68], where inter alia RF, SVM, neural networks and linear regression are compared
with each other on 11 different datasets (each separated further in training and test sets)
from the UCI repository. Whereas in [69], RF has the highest FP-rate (segregating non-
phising E-Mails) but still the lowest FN-rate (actual spam that would be let through) in
predicting phising E-Mails, which still is considered as useful, when it is outperforming
the other classifiers e.g.: neural networks, SVM or linear regression. Piater et al. [70]
investigate the classifier’s performances on image data. Where for the MNIST dataset
(handwriting) RF achieves a position in the midfield (3% error rate) against a winning
implementation of a one layer neural network, followed by the SVM. Also an average
performance for the COIL-100 dataset (3D objects) for the RF (1.17% error rate) as
against a better result of a linear SVM (0.4% error rate). For the ORL dataset (faces)
in turn, the performance increased again, RF takes with SVM a leading position (both
around 1.24% error rate). As in the last dataset OUTEX (textures) RF has a incredibly
high error rate of 66.9% but still better than a linear SVM with 71.99%, or a classical
decision tree with 89.35%, even another ensemble method, the extra trees, consisting of
1000 classifiers only achieved 65.05%. However [71] clearly states SVM as the winner of
the direct comparison with RF, in almost all 22 datasets about a deterministic cancer
diagnosis.

After all, these individual results cannot be put in contrast directly with each other,
but it is meant to leave an impression, for supporting the choice of the right method.
Besides the different winners on each test may certainly be influenced of the particular
test setups as for instance the specific parameter settings, as also by the type of each
datasets (image analysis, cancer diagnosis, etc.) that makes it hard to clearly settle down
for the best decision, on the other hand this leaves up room for further investigations for
variating the thesis procedures with different ML-techniques. Even though RF cannot
be seen as the only algorithm-of-choice, it generally verifies a relative high prediction
accuracy, adding a relative quick training/testing phase and a well reduction of overfit-
ting, that makes it a excellent choice for the tracking algorithm. To mention published
algorithms, Criminsi et al. describe in [72, p.193-209] an algorithm for anatomy detec-
tion implemented with regression forests and in [72, p.247-260] classification forests for
segmentation of sclerosis lesions. The involved CT- or MR-images are not quite the same
as ultrasonic data, but still they are similar, which makes this decision about utilizing
RF more confident.
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As there are already plenty of RF implementations, tested, evaluated and updated ac-
cordingly in many different cases, it seems more than appropriate to pick one of these
existing solutions too. This positively helps to concentrate on the actual tracking prob-
lem. Additionally, by being inspected from a larger group of people the implementation
is very likely to be at a highly optimized state. Also a big supporting community that
usually comes along with such programs, are arguments that may greatly decrease the
developing time. As a drawback, the user of such utilities often is limited to the spe-
cific implementation (because of proprietary software, or too complex coding that would
claim to much time for reengineering) that may or may not be sufficient for a current
approach, which excludes applying already small variations on their base algorithm. In
[73] multiple implementations of RF are compared with each other on a numeric, airline-
based dataset and summarized below. The properties of the implementation from

• R are slow and memory-inefficient with an average accuracy.

• scikit-learn are faster, more memory efficient and a slightly better accuracy.

• H2O are alike with the ones of scikit-learn, but with an even higher accuracy.

• Spark are slow and a lower accuracy.

On another test for MNIST (handwriting) and for a dataset about forest covertypes
from the UCI repository, claims that the scikit-learn variant has a minimal higher accu-
racy than H2O [74].

At this very initial stage of development a fully optimized design is not in focus, whereas
a lightweight and swift development environment (such as programming with Python) is
a lot more helpful for constructing first prototypes, where ideas with a comparably low
effort are implementable. Since H2O is a Java library, the decision falls on scikit learn
as it is free, apparently working very well and perfectly able to be used within Python
programs.
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3
Algorithm development



Besides the already wide variety of proposed solutions by the CLUST challenge partic-
ipants (e.g. chapter 1.2), there are further options to handle the tracking scenarios, a
different kind of way. This section presents the own developed approaches, where at first
a solution concerning about the ROI-appearance and secondly a solution that focuses
on global features, is presented.

The pixel classification describes an approach, where the underlying RF decides if an
arbitrary sample pixel is part of the ROI and thus distinguishing the object from its
environment bit by bit. The classifier of the later method predicts the object’s position
on a learned trajectory according to pattern-variations, which are extracted from a static
image section in landmark estimation.

Both algorithms make use of the correlation coefficient. It is an algorithm for locating a
reference patch Fr in a corresponding image Fs according to similar pixel intensities. If
the image dimension of Fr is a lot smaller than Fs, then the most similar position can
be detected, by moving the smaller Fr upon the larger Fs (i.e.: a sliding window). On
each position a different similarity is calculated and a result matrix is generated, so in
the end the coordinates of the position with the best result is likely to be the new center
of Fr in Fs. An example is given in figure 16, where r(∆y,∆x) is the chosen estimate.
Formula 8 shows the mathematics.[75, p. 395 f].

r(∆y,∆x) =

∑
y

∑
x

(Fs(y + ∆y, x+ ∆x)− F̄s)(Fr(y, x)− F̄r)√∑
y

∑
x

(Fs(y + ∆y, x+ ∆x)− F̄s)2 ·
∑
y

∑
x

(Fr(y, x)− F̄r)2
(8)

Figure 16: Example for the result matrix of the correlation coefficient.

37



3.1 Pixel classification

The idea for the following approach is to predict each part of the image whether it is part
of the object or not. Since the smallest part of a digital image is a pixel, the classifier
is trained to distinguish between the two classes (object and environment) on each of
these elements. If these predictions are not parallelized it might demand a lot of time
processing an image, but on the other hand the highest resolution is retrieved, assuming
that the RF doesn’t classify falsely. In the end an image of the estimated object will be
generated, from where the object’s center coordinates are extractable.

3.1.1 Pixel label generation

A sparse a priori knowledge was given with the ultrasonic images, providing the position
of a ROI for just a few frames. Moreover unfortunately this doesn’t contain any labels
per pixel.

It must be considered that not all parts on the ultrasonic record can be clearly la-
beled, since for most of the sequences multiple objects are analyzed at the same frame.
When there are for instance two ROIs on each frame, a decision about the label design
has to be made. For instance all pixel for both objects could be labeled the same, as
object, since both look related compared to the surrounding areas. Then this would
greatly increase the amount of pixels for the dataset identified as object and additionally
reduce the amount of same feature vectors but with different labels, when one feature
combination was extracted from both ROIs (since otherwise, there would be one labeled
as environment and the other as object). But then there is the drawback that an area
could be falsely identified as object in the testing phase, just because of the labels in the
training dataset. This occurrence usually happens only, if the two ROI are situated close
together, since if they are far away from each other, the classifier’s scope could easily
be restricted, which excludes the false candidate from the very start. It probably might
then be better, having only the pixel of the ROI be labeled as object and all others as
another class. Then again with the drawback, that multiple same feature vectors could
occur but with different labels, that lowers the amount of training data especially for
the object.

The difficulties are, that there is practically no dedicated information that distinguishes
the object from its vicinity and taking into account when it comes to apply the method
in a real-life scenario, the user shall be discharged of as many settings as possible (i.e.:
it is desirable, to only provide the initial position and the size of a tracking object as
algorithm input parameters). Having this situation and because RF require a dataset,
the algorithm necessarily needs to arrange one on its own.

A näıve. yet effective approach is to analyze, not the whole image, but just the area
around the object. Exploiting the user-input of the position as virtual center of a ROI,
a decision value then can be made from the small image section around the object, di-
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viding the pixels in two classes. This threshold tO is simply calculated by a mean value
in the area, as shown in equation 9, with Ft as the image and Ft(i, j) as the intensity
value at a particular position, x and y as the center coordinates of the ROI retrieved
from the user input.

tO =
1

9
·
y+1∑
i=y−1

x+1∑
j=x−1

Ft(i, j) (9)

In general, the so generated threshold is somewhere in between of the image data type’s
upper and lower limits. With this value, for separating the object from its environ-
ment by just a single boundary, would leave open only one option: splitting with a
greater/smaller decision. But this separation wouldn’t be appropriate, when for instance
lower values than the threshold probably are part of the vicinity and higher intensities
could be a margin from the object. Because it is the center of the ROI intensities dis-
tribution, which means there are pixel on the upper and lower side of the tO boundary,
which den are isolated incorrectly. It would still be inappropriate, if only those values
are not labeled as environment, who are equal to the threshold, since the intensities of
the ROI vary slightly around the threshold, or as a worst case wouldn’t retrieve any
result at all. So it is clear to see, introducing a tolerance tt ranging around the decision
value could solve the problem, as described in equation 10 below. A sample (i.e.: pixel)
then is identified as one of the two cases when:

label
(
I(i, j)

)
=

{
object , tO − tt ≤ I(i, j) ≤ tO + tt

environment , otherwise
(10)

When applying this basic kind of identification to a ROI, mostly it is able to divide the
two groups (object, environment) visually rather good from each other. For instance, the
sample shown in fig. 3 e) could easily retrieve a sufficient separation, since the difference
of the intensity-average between both groups is big. However one cannot exclude cases of
pixels being in the range, that would be identified as object, but are actually noise in the
vicinity, which match the requirements just by random. Even worse, when it comes to
apply the method on the ROI as shown in fig. 3 g), where the object is only separated by
its margin from the environment. Here, most of the pixels would be identified as object,
except of the ones with higher intensities from the objects margin. This is because both
groups have more or less the same average intensity level and thus being identified as
object, according to the rule of equation 10. Therefore, further mechanics need to be
included to prevent this kind of misinterpretation.

For the algorithm, besides the position and size, an additional information about the
object can be achieved by practically no further efforts at all. Simply, by instructing the
user to define the size of the image section in such a manner, that a constant fraction of
the image size needs to be part of the object. For instance it could be stated that n%
of the section has to be filled with the object as the remaining 100% − n% are part of
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its surroundings (n ∈ N|0 < n < 100).

With this information it becomes a lot easier to prevent the errors mentioned above.
Pixel around the image margin most probably won’t belong to the object, whereas the
ones from the center do. It is then adequate to start separating, where it is save to
say an area is part of the ROI. Nevertheless a rule needs to be defined about which
pixel should be analyzed first, which to processed next and finally when to stop the
binarization. A common technique is to start at a certain (seed) point, remembering all
adjacent pixel positions. When the current spot’s identity is defined as object by the
method mentioned above, it is then granted to recover all saved adjacent pixel positions
before, otherwise not. This is repeated as long as there are no remaining pixels left to
check, or the amount of ROI-pixels were reached (i.e. n % of all pixels). This method is
commonly known by the name flood fill, seed fill or region growing.

Finally the separation method is assembled in three steps. In the first, the user’s in-
formation about the ROI is retrieved (i.e.: position and size, with the precondition to
define the size of the image section relative to the amount of the object pixels). Secondly,
the decision value tO is extracted as shown in equation 9, which is extended with a tol-
erance band to distinguish the two groups, as described with equation 10 and ultimately
applying this kind of flood fill on the image section.

A few samples of this approach are exposed in figure 17, a) as a rather good exam-
ple, b) with a moderate result and c) with the problematic background. The outcomes
are visualized as binary image, where white pixels indicate the object and black inten-
sities the environment. The results carry a good recognition value compared to the
original ROIs next to them. Especially with the problematic tissue c), the advances of
this method stand out. Since, the object’s margin was not labeled incorrectly and where
the back- and foreground do not differ much, the algorithm stopped adding object pixels,
when their specific amount is reached. This retrieves a decent separation under various
difficulties.

(a) MED02-3, ID 1 (b) ICR01, ID2 (c) ETH01-1,ID 2

Figure 17: Results of the artificial label generation.

At last the so generated labels need to be combined with the appropriate feature vectors.
The next paragraph discusses the feature extraction and how they are linked together
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for a specific pixel.

3.1.2 Feature extraction

As illustrated in chapter 2.2.1, features can have a variety of appearances (such as a
binary or multiple deterministic states, or even a continues range), leaving a large free-
dom for the design. What really matters for their value, is to remain virtually constant
during all possible states, in a sense, that a well recognition of the involved classes along
the object’s trajectory can be guaranteed. Figure 10 initially showed, that the strictness
of being forced to ideally stay correct in every case, can be eased by involving additional
features, which combined are capable to figure out the right estimate of a given sample.
But if a feature response is always distinctively different whenever similar samples are
handled, it indicates a random behavior (e.g. noise). If such data is included to the
training set, it doesn’t positively influence much the later estimates, since it is only rel-
evant for this special case but lacks of generalization, that provides little information to
effectively separate the dataset.

The evaluated features were:

• Boxfilter responses based on mean value.

• Boxfilter responses based on local minimum.

• Boxfilter responses based on local maximum.

• Intensity stretching filter responses.

• Unprocessed pixel intensities.

• Responses of a correlation coefficient.

• Combination of the options mentioned above.

A boxfilter, sometimes called moving window, is a mask whose size is a fraction of the
full image’s dimension. It’s moving stepwise over the whole image and applies for each
position an attached filter-function, that changes its response value according to the
currently involved pixels inside its mask. This means one gets different feature values
by simply changing the mask size or the filter function. For the following features, this
technique was implemented in different ways.

3.1.2.1 Mean-Boxfilter

Simply all intensities inside the mask are summed up and divided by the amount of
involved elements, the result is applied to the center pixel (algorithm 1)

41



Algorithm 1: Feature extraction: Mean-Boxfilter

1 function meanInArea (img, filtersize Ffs)
Output: feature image Ff

2

3 Ff ← copy(img)
4 for ycur ← Ffs.y · 1

2 to img.y − Ffs.y · 1
2 inc +1 do

5 for xcur ← Ffs.x · 1
2 to img.x− Ffs.x · 1

2 inc +1 do
6

7 curMean ← 0
8 for yfilt ← ycur − Ffs.y · 1

2 to ycur + Ffs.y · 1
2 inc +1 do

9 for xfilt ← xcur − Ffs.x · 1
2 to xcur + Ffs.x · 1

2 inc +1 do
10 curMean← curMean+ img(yfilt, xfilt).intensity
11 end

12 end

13 Ff (ycur, xcur)←
curMean

Ffs.x · Ffs.y
14 end

15 end

3.1.2.2 Minimum/Maximum-Boxfilter

For this case the boxfilter was applied differently. The filter response isn’t just ap-
plied for the center pixel of the mask, this response rather is assigned to all involved
elements. Here the filter function simply retrieves the minimum or maximum intensity
level inside the mask. Algorithm 2 shows the procedure (to avoid redundancy both fil-
ter were combined into one algorithm for the documentation), with option as switch to
either find the minimum or maximum and the curWindow as the current filter section,
extracted from img. To prevent the algorithm from overwriting already existing assign-
ments, the mask needs to have a bigger step sizes than iterating every pixel, so only
unprocessed data is handled (i.e.: step size is equivalent to the related filter dimension).
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Algorithm 2: Feature extraction: Min/Max-Boxfilter.

1 function extremaInArea (img, filtersize Ffs, option)
Output: feature image Ff

2

3 Ff ← copy(img)
4 for ycur ← Ffs.y · 1

2 to img.y − Ffs.y · 1
2 inc Ffs.y do

5 for xcur ← Ffs.x · 1
2 to img.x− Ffs.x · 1

2 inc Ffs.x do
6 curPos ← (ycur, xcur)
7 curWindow ← crop(img, curPos, Ffs)
8 if option =′ max ′ then
9 curExtr ← min(curWindow.intensity)

10 else
11 curExtr ← max(curWindow.intensity)
12 end
13

14 for yfilt ← ycur − Ffs.y · 1
2 to ycur + Ffs.y · 1

2 inc+1 do
15 for xfilt ← xcur − Ffs.x · 1

2 to xcur + Ffs.x · 1
2 inc+1 do

16 Ff (yfilt, xfilt).intensity ← curExtr
17 end

18 end

19 end

20 end

3.1.2.3 Intensity stretching filter

With the help of the function, shown in equation 11, the bright intensities diverge from
their dark opponents. Even for a human inspector it is hard to distinguish each object
pixel and thus it is likewise problematic to define a clear boundary to separate both
groups. The intention of this function then is to highlight the certain attributes. If
the local intensity is higher than the average of the full image, then this difference will
increase the current pixel intensity. Otherwise, if the difference is negative, for values
beneath the average, the lower intensities are further decreased, due to the underlying
subtraction. Since it is not constantly adjusting the individual elements with the same
value, the image appearance changes and thus retrieves an information benefit.

F (x, y) = F (x, y) +
[
F (x, y)− F̄

]
(11)

with F̄ as the average intensity level from the current filter position.

43



Algorithm 3: Feature extraction: intensity stretching

1 function intensityStretching (img, filtersize Ffs)
Output: feature image Ff

2

3 Ff ← copy(img)
4 for ycur ← Ffs.y · 1

2 to img.y − Ffs.y · 1
2 inc Ffs.y do

5 for xcur ← Ffs.x · 1
2 to img.x− Ffs.x · 1

2 inc Ffs.x do
6

7 curPos← (ycur, xcur)
8 x̄← getCurrentMean(img, curPos, Ffs)
9 for yfilt ← ycur − Ffs.y · 1

2 to ycur + Ffs.y · 1
2 inc +1 do

10 for xfilt ← xcur − Ffs.x · 1
2 to xcur + Ffs.x · 1

2 inc +1 do
11 Ff (yfilt, xfilt).intensity ← (img(yfilt, xfilt).intensity − x̄)
12 end

13 end

14 end

15 end

3.1.2.4 Unprocessed image intensities

At first glance, using raw pixel intensities might appear as a weak feature, but its in-
tention is a different one. When viewing an arbitrary ROI as a human, for most of
the cases it is not too hard to distinguish at least a smooth border between object and
environment. Unfortunately these impressions are not directly transferable to computer
vision, by just reading the bare local image intensities. However, machine learning might
have the possibility to learn the significant highlights. The worst case, that could occur
is when a pixel intensity (more precisely a feature state) appears likewise in the object ’s
and environment ’s area. But this could easily be classified as unknown, which simply
states it cannot be safely classified with the raw intensity levels alone.

3.1.2.5 Correlation coefficient

The correlation is described in the beginning of chapter 3. While processing Fs, a
matrix with the results is generated, where a value in all of the cells describe how likely
the image center from Fr was found at the current position in Fs. Besides the position,
it could also compare how similar the patterns are, in purpose of the cases where for in-
stance a dark ROI differentiates itself from the brighter vicinity, which yields a different
result as if when both regions are alike.

3.1.2.6 Combination of the stated features

To have a better impression, the options mentioned above could be stated as basic
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modules. Whenever they are defined, a lot more new features can be generated by com-
bining these modules. Subtraction, amongst other methods, is a lightweight operation
where not too much additional time is lost on each pixel and a desired form of combina-
tion is achieved. For this certainly there are further options, where different approaches
may retrieve other numeric values, but if these results still correlate with each other,
then no useful information was added. Hence, a single combination-option is enough
because it is more important to reduce the processing time. If two feature-images (i.e.:
the filter response matrices) are subtracted cell by cell, various outcomes are expectable.
For instance, it is aimed at to point out specific scene highlights (a similar effect as with
the unprocessed image), or to mention a negative example: a noise like appearance.

3.1.3 Building the dataset

In the section above the feature extraction is shown. It is a basic part for constructing
the dataset. But ML algorithms like the RF do not operate with these isolated values
directly, they first need to be put into a constant order of a vector. Gathering the fea-
tures into such a container indicates, this combination describes one particular state,
which the algorithm uses either for training or testing.

Summarizing, a raw ultrasonic frame is retrieved initially, which in turn gets processed
by any of the presented algorithms. The result is then again another image, where the
intensity for each pixel is customized according to the selected function. At this point
there is only a collection of processed images with equal sizes.

In order to retrieve the desired feature vector, one has to iterate through all feature-
images and combine them with the appropriate label, which was artificially retrieved
beforehand. To generate a such a vector ν for a given coordinate Pf (y, x), a value is
extracted from this specific position of a feature-image Ff and concatenated to ν. If this
is iterated for all Ff , one ν is generated. This is summarized in equation 12 with Nf as
the amount of feature-images

ν(Pf ) =

Nf⋃
k=1

{Ff,k(Pf )} (12)

This ν(Pf ) can already be used in the RF prediction. Alternatively, if ν(Pf ) is intended
as part of the training dataset, the class identification is required to be attached, which
is taken from the related element of the label matrix, described in chapter 3.1.1. To
retrieve the full dataset, this procedure needs to be repeated for all coordinates and
training images. This is visualized in table 5. If this information is created, the RF can
already start with its training.
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Table 5: The illustration of how the dataset is constructed with random values.

Position Label Feature 1 Feature 2 ...

x y Object 132 34 ...

x+1 y Object 121 54 ...

x+2 y Environment 34 2 ...

... ... ... ... ... ...

x y+1 Object 144 78 ...

x+1 y+1 Environment 12 30 ...

... ... ... ... ... ...

3.1.4 Pinpointing the coordinates of a ROI

When the user has selected the center of the desired tracking object, immediately after-
wards the image segmentation begins to obtain the labels. The extracted patch around
the ROI is then processed by Nf features, thereby multiple feature-vectors are gener-
ated, combined with the obtained labels retrieves the dataset.

Whenever the classifier finished its training phase, it begins to predict sample vectors
already on the next frame. Since one is able to chose between an absolute classification
and the numeric probability of each class, there are two different ways to go on from
here. Either the classifier estimates the sample as object or environment, that could
directly be transformed into a segmented image. Alternatively, the probabilities first are
mapped on the possible intensity levels, which can be used to create a grayscale image.
For applying a segmentation on this image, a threshold tp needs to be set, that converts
the results in to a deterministic prediction. In other words, the choice at this point
defines, whether the classification is made by the RF alone, or if the probabilities are
processed by suitable data separation tools further on (e.g. clustering, or even another
feature extraction as described in chapter 3.1.2). A rather fair method for automati-
cally defining tp is the variant demonstrated by Otsu in [76], because instead of a plain
average, the value is orientated at the histogram, that often gives a good insight of the
available groups.

In any case, whenever the deterministic image prediction is available, the next step
is to define the center of the object. If this is solved by calculating the arithmetic mean
from y- and x-coordinates of all involved pixels, then there is the drawback of being
sensitive to outliers. More secure is the declaration of a centroid (equation 13, with u,v
as x, y coordinates respectively, Ψ as the set of pixels predicted as object)[77, p. 223].

ȳ =
1

|Ψ|
∑
u,v∈Ψ

v x̄ =
1

|Ψ|
∑
u,v∈Ψ

u (13)

To further increase precision, outliers could carefully be removed. One information
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about the tracking system is very useful for this special kind of filtering. Taking into
account that an arbitrary ROI does move little between two consecutive frames, then
a sample is assumed to be an outlier, if it is situated next to the image margin and is
estimated as object, since in these areas ideally only environment should be detected.
These false predictions can be neglected, when simply for instance the related label is
switched. However, the more the outlier is located next to the center of the ROI, the
harder it gets to decide whether it is a false prediction or not. Hence, a strict binary
mask that insensitively predicts every pixel only as either valid or invalid is inappro-
priate. What fits the situation more is a gradient descent, such as a circular decrease
of the influenceability. However a circle is not always a good representation of a ROI,
when for instance some are elongated. It then presents as useful to make this descent
relative to the shape of the object. Figure 18 shows an example, where the colored
numbers represent the percentage of the actual object-prediction at the current position.
For instance the RF-prediction was 255 (the brightest intensity on the image) but the
referring reduction value is 25 % then the intensity is lowered to a darker gray of ≈
64, as low that it in many cases won’t be estimated as object anymore, which highly
depends on the threshold function.

Figure 18: Example of a mask for an outlier suppression.

Such a mask quickly can be generated in a few steps, with algorithm 4. Basis of this
function is the näıve segmentation as shown in figure 17 (chapter 3.1.1). Whenever on
the binary image Fb, at position (y, x), an intensity Fb(y, x) 6= 0 was found and it’s
adjacent pixel e.g. Fb(x+ 1, y) 6= 0, as well as on the opposite side Fb(x− 1, y) = 0 were
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detected, then Fb(x, y) gets the current percentage level, which in the end gets multiplied
with the classifier’s prediction result. Starting from the center, when moving towards
the margins this percentage gets reduced appropriately step-by-step. The decrement
of the percentage should be big enough, that the outliers at the margin are excluded
completely (0 %).

Algorithm 4: Generation of the outlier suppression mask.

1 function generateInfluenceFields (segmentatedROI, percentageDec)
Output: influenceMask

2 Fb ← copy(segmentatedROI)
3 for curPercentage← 100 to 0 dec percentageDec do
4 for y ← 1 to ymax − 1inc +1 do
5 for x← 1 to xmax − 1inc +1 do
6

7 if Fb(y, x) 6= 0 then
8 if (

(Fb(y, x+ 1) = 0 ∧ Fb(y, x− 1) 6= 0) ∨
(Fb(y, x− 1) = 0 ∧ Fb(y, x+ 1) 6= 0) ∨
(Fb(y + 1, x) = 0 ∧ Fb(y − 1, x) 6= 0) ∨
(Fb(y − 1, x) = 0 ∧ Fb(y + 1, x) 6= 0)
) then

9 Fb(y − 1, x)← curPercentage

10 end

11 end

12 end

13 end
14 influenceMask ← Fb

An exemplary result of this procedure is shown in figure 19. The brighter intensities
in the lower two images correlate with the probability to be part of the object. One
remarkable note is the difference of the shown center in the sections, with and without
the mask. This center is the relative localization of the ROI, which the algorithm will
use to define as position for the current frame. Based on such an offset it’s easy to see,
that this outlier suppression can take a big influence on the prediction’s accuracy.
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Figure 19: An example for generating a outlier suppression mask and its influence on
the actual prediction result.

3.2 Landmark estimation

This solution approaches the problem in a different kind of manner. The algorithm is
designed to analyze speckle-phenomena that occur during the process of an ultra sonic
scanning. As mentioned in chapter 2.1.2, the appearance of those patterns are relative
to their environment and thus a once learned trajectory should be stored, where these
kind of patterns encode the position of a ROI on its trajectory. Certainly the involved
parts start to move over time (e.g. drifting) and thereby the appearances vary. These
unseen pattern refer to no known position. To increase generalization and being able to
handle such data too, a RF is used for this encoding.

The chapter is structured into the implementation of:

• rough-tracker - that handles the speckle patterns.

• fine-tracker - a method suggestion to further process the result of the rough-tracker.

• further optimization - miscellaneous options to further optimize the precision.
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3.2.1 Rough tracking

The main characteristic of the rough tracker is to follow the object in a steady, robust
way. Due to a subsequent tracker that handles the inspection of the exact position, it
is not important to retrieve a precise position in first place. But because of its further
analysis, a rapid processing is required. This leaves more processing time for the complex
fine tracking algorithms. In conclusion, the tracker:

• needs to provide a fast frame processing speed.

• needs to provide a robust position estimation of the object each frame.

• does not need to be accurate.

Unsupervised methods that rely on a relative argument as input variable (e.g the last
position) have a risk to lose the object and get lost. Once they went astray it is pure
luck for them to get back on track. This might happen when, under all possibilities it
was chosen to stay at the exact same spot, which means when the object moves back
within the reach of the tracker, it could continue its work. However empiric tests have
shown it is not unlikely to drift away to the image’s margin and remaining at this posi-
tion, practically impossible to get back on track again. Which breaks the requirement
of providing a robust position estimate.

Such an effect is avoidable, if the algorithm is able to forgo local ROI features and
instead performing the tracking with attributes independent from the object. This way
a current estimate doesn’t get affected if there was a poor prediction of the preceding
sample, that otherwise would spoil a correct estimate (e.g.: the tracker was moved out
of reach, based on the previous false classification). Therefore, the RF should be trained
out of the data from an initial short unsupervised tracking. Figure 20 gives an overview
of the rough tracking algorithm.

3.2.1.1 The initial run

First of all the trajectory needs to get estimated. By the algorithm’s ignition, a lo-
calization of the desired traceable ROI is demanded. Along the CLUST competition
this is given for the first frame by the annotation coordinates for a specific sequence and
object, where in a real application the user simply needs to set the initial ROI coor-
dinates. With this information the object’s reference patch Fr is extracted once from
the first frame, which is the ROI itself for the fine tracker. Simultaneously, from the
same image, the training patterns (i.e.: speckles) for the first position of the object’s
trajectory are recorded. These pattern localizations can arbitrarily be defined, but need
to be at a fixed position during the tracking period. The only limitation on selecting
these extraction areas, is to ensure that the underlying pixels carry the ultrasonic data.

50



Figure 20: Overview of the rough tracking algorithm, passing its estimated position to
the fine tracker as an input parameter.
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Based on the initial coordinates and the saved Fr, the ROI is searched for in the cur-
rent image-neighborhood but this time in the upcoming frame. For this the correlation
coefficient is used (as explained in the beginning of chapter 3), with a certain constant
search window size Fs. Once this is achieved, the patterns are saved again for the same
purpose as before. In other words, in each iteration (i.e.: frame) of the initial run, on
the one hand patterns from a constant location are extracted, where on the other hand
the correlation retrieves the object’s new position. This procedure is repeated until this
unsupervised tracking has collected enough of these frames for the image-vector Iinit. It
stops whenever the ROI has collected at least ninit,min frames and was passing by its
initial position 4 times, which usually means that 2 breathing cycles have happened. For
this purpose, on each frame simply the correlation result from the first ROI estimation
is compared with the one between Fr and a patch of the same size, extracted from the
tracking object’s initial position. If the current patch results a higher score than the
initial one with a small tolerance it indicates, that the ROI just moved over its starting
position. Then this check is locked until the euclidean distance between the current
ROI position and the initial coordinates is higher than 5 pixels again, to prevent double
checking in a short time. In any case, the unsupervised tracking finishes latest after
ninit,max iterations. This way the trajectory is recorded step-by-step and the classifier
is ready for its training in the next step. The procedure is summarized in the figure 21.

A few points have to be considered for the integration of this mechanism. There are
generally different speed options for a traceable object, which encounters the algorithm
not directly as a time problem, but as smaller or bigger steps of motion. This behavior
can be controlled by the size of the correlation-search window Fs. If the shift is minimal
then the dimensions of Fs are also allowed to become appropriately small, then again a
quicker ROI motion naturally requires a wider dimension. Tiny search areas enable a
faster processing speed and arise probably less false predictions, due to the lack of the
higher amount of potential results in general. Despite the timing factor, it is more sta-
bilizing to have a wider scanning range along slow motions, thereby the system is better
prepared to handle situations like occurring jumps (i.e. there’s a higher ROI position
difference from one frame to the next), when for instance a real-time environment of the
image acquisition isn’t guaranteed.

3.2.1.2 Analyzing the Speckles

Due to the reproducible attitude of these patterns, it would be easy to hold a sample per
each ROI-position and simply figure out its position by comparing this database with
an arbitrary pattern. Often simple approaches consume less processing time, which is
needed for a real-time application. Such a simple method for comparing data containers
is for instance the Hamming distance (chapter 2.2.3: other performance measurements).
In this case it would inspect the patterns of the training dataset to compare each of
them with the current sample. Due to its algorithmic nature one is able to boost the
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Figure 21: The course of the initial run, where the data for the rough-tracker is gathered.

processing speed by parallelizing the pixel-comparison either on a GPU or by multiple
CPU cores. Utilizing this metric appears fair enough, however there are a few reasons
to avoid this technique in the given scenario. A bigger database with a lot of samples
might increase the accuracy, but it also increases the effort to inspect every entity. But
even worse the appearance of a given sample varies over time and thus the recall value
with the patterns of the dataset decreases. As consequence, a diminishing score of the
Hamming distance is expectable, which in the end lowers the actual prediction robust-
ness.

Integrating a RF eases both of the timing and robustness issues. The classifier is trained
on the whole database of patterns, so it is able to figure out the significant parts of a
pattern to improve the recognition of unseen data. Internally, its decision trees can be
designed in a way, for as a result the ROI position is returned.

For this a dataset is needed, where the label for one feature-vector represents a po-
sition on the trajectory. That vector itself is solely composed of the related intensities in
a manner, that for each of the pattern’s pixel a separate feature is added. It is critical,
that an extraction of a given feature in the training and testing phase is always at the
same position (i.e. a feature does not only provide a pixel intensity but also carries a
local information). To provide a more generic algorithm that runs not only on selected
data but also when changing arbitrary influence factors (e.g. the ultrasonic scanner),
it comes in quite handy to select multiple patterns from different areas. This avoids
algorithm confusion, when in an observed area high-intensity differences occur but from
a more direct source (e.g. movement of a bone), instead of the expected background
granulation. An example is given in figure 22. The brown boxes define the areas where
the patterns are extracted, as the colorized squares represent a pixel/feature of this
method.
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Figure 22: The feature extraction for the rough tracker.

To give a better illustration of the process, an example dataset with artificial entries
is shown in table 6, where every feature represents an intensity from a specific location
(i.e. a certain pixel) and each marked with an individual color (Feat. = Feature). The
feature values in this example were taken from the ultrasonic frame shown in figure 22,
where the marked pixels stand for the feature extraction at the correct position with
the same color in table 6. More precisely, collecting these entities is generating a vector,
when on one image the red pixel is stored as Feat. 1, the orange as Feat. 2, and so on.
Each vector then represents the pattern states for a certain frame, thus the position la-
bel, which is provided for every frame by the unsupervised tracker. Certainly assembling
these containers retrieves the dataset for the training.

Table 6: The representation of the speckle-pixel in a dataset, to train the rough-tracker.

ROI-
coordinates Intensities of the ultrasonic pattern appearances

Label Feat. 1 Feat. 2 Feat. 3 Feat. 4 ... Feat. n Feat. n+1 ...

[x , y] 68 82 86 81 ... 57 56 ...

[x+1, y] 70 80 84 81 ... 54 56 ...

... ... ... ... ... ... ... ... ...

A more detailed description of the rough tracker’s dataset composition is described in
appendix A.2.
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3.2.2 Fine tracking

The essential characteristics of this algorithm part is to retrieve the exact object lo-
calization within a constricted area, considerably smaller than the size of the full ultra
sonic image frame. From here, plenty of ways can be chosen to go on from here, such as
learning the ROI pattern with the help of ML-algorithms, that compare the representa-
tive patch Fr with the current frame. Or using more complex approaches with feature
detectors, descriptors and matchers like SIFT [78], which was already evaluated for the
CLUST challenge in [10]. In ML, CNN on the one hand have quiet a good reputation
when it comes to recognition, on the other hand they ordinarily need more time in train-
ing. In [9] it is mentioned that their approach required 1.5 h for adjusting to the CLUST
data. Yet a RF is trained incomparably faster and is known to handle unseen data well.
When it comes to a direct matrix comparison, a rather robust method is the correlation
coefficient.

All of these methods have one attribute in common. It doesn’t matter how ingeniously
their design is, non of them performs without mistakes. This being said, it has to be
inspected how deep an impact of a false prediction at this position could get. If the
FP and FN of a very reliable method is at a dwindling low level, it could be considered
that these cases are just going to be ignored (means their false predictions are blindly
accepted in any case), since they seemingly barley ever occur. In contrary, if the algo-
rithm is not that reliable or any false prediction is not acceptable at all, then another
safety check needs to be included. Leaving these decision up for a human inspection
may greatly decrease the FP- and FN-rates, but certainly is impractical to apply. Thus
a control switch close to this state is desired, that doesn’t affect the working flow much.

Recovering hypothesis analysis from chapter 2.2.4.2, then significance testing seems to
be an appropriate tool, that on one hand decreases the false predictions as on the other
hand is kept simple and lightweight and thus will not increase the processing load too
much. As it is stated that a result of the fine tracker may or may not be correct, there
are yet two cases to consider. However, deciding whether the estimate was right or not
does still not show an appropriate default fallback to chose in such occurrences. For this
there a two options. The first, is specifically concerned about the mechanisms of this
two-component algorithm. Since the rough tracker is designed to deliver a preferably
robust but not exact position, it is appropriate to chose the rough-trackers position as
default location. The other option depends on the assumption that in the usual case no
big movement can be expected, between two consecutive frames and thus simply the last
position is selected. Unfortunately this comes with the drawback, that this doesn’t cover
the few exceptions of a delay caused by the system, where wider jumps in movement
are potentially detectable. Significantly, the first option stands for a more robust yet
less accurate solution, since the rough tracker is capable of such jumps but half of a
rough-tracker estimate range has to be expected as usual error each time. In turn the
later option is a lot more precise, due to the small change of the distance between two
consecutive frames for most of the cases, but might retrieve an error a lot higher during
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a system delay. Nevertheless the probability of such interrupts should be observed as
a rarity, otherwise the user, perhaps, wouldn’t be able to utilize the ultrasonic scanner
at all. Additionally, considering a case where a jump occurred doesn’t necessarily mean
the fine tracker is not able to estimate the correct position. In other words, that the two
probabilities (a jump occurred and the tracker’s capabilities were exceeded) summing
up is an uncommon event, unlikely to happen that often. Hence, the precise solution is
selected for the algorithm.

In conclusion for retrieving a current frame position, there is the default hypothesis
H0, where the algorithm should use the last sincere prediction from a previous frame.
As against H1 is the most recent result of the two-component tracker from the current
frame. Thus Hcur defines the selection, which is used to continue the algorithm. What is
still missing for utilizing the significance test is the rule, when H0 is going to be rejected
over H1. Since the rough tracker’s RF does retrieve a class probability score RTScore,
the algorithm is able to verify the outcome of an arbitrary sample prediction with the
help of this value.

After the algorithm finished the initial unsupervised tracking, the first ROI-position
is estimated by the rough tracker immediately. Along to this prediction the desired
score is created, because the ultrasonic pattern appearances from the current frame
marginally are different, compared to the ones from the rough tracker’s dataset. The
related class prediction probability then is held as some highest achievable value. The
more an arbitrary pattern appearance differs from the ones learned out of the gener-
ated training dataset, the lower this value becomes. Therefore a limit lthresh needs to
be defined relative to this optimal value. The helper function of this control switch is
described in equation 14.

Hcur =

{
H1 if RTScore > lthresh

H0 otherwise
(14)

As stated in the beginning, the fine tracker offers many possible implementations. In the
following the implementations of a ML solution, the Random Forest-recognition, as well
as a matrix comparison with the correlation-coefficient comparison, are demonstrated.

3.2.2.1 Comparison with the correlation-coefficient

The basics of this technique is already explained in the chapter 3. The more one chooses
to rely on the preceding rough-tracker, the smaller the sliding-window-dimensions of the
correlation possibly can get, as a result the processing speed increases. Considering a
case, where the rough tracker’s prediction never fails (i.e. the precise location of the ROI
is always within the range of the current predicted label/position), it is then appropriate
to set the window’s dimension similar to the estimated class range. But because this
usually counts as an ideal state, it might be more appropriate to gently exceed these
limitations, in order to capture the possible false predictions.
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3.2.2.2 Random Forest recognition

Other to the method mentioned above, this option doesn’t need to handle every pixel
of the reference patch. It extracts significant parts of the patch, thus it’s aiming to
handle the forthcoming unseen ROI well and because of the lesser work per frame have
a faster processing time. More precisely this approach is similar to the technique shown
in sub-chapter 3.2.1.2.

Figure 23: The regions dataset extraction for the RF-recognition.

The reference patch Fr is extracted like before and each of its pixels are used as a specific
feature (here again one feature carries the intensity level as well as a localization infor-
mation, then again it is crucial that the features for each iteration are extracted always
at the same relative position as given by the training data). The features for the object-
label is extracted directly from the ROI itself and also in its nearest pixel-neighborhood.
Feature vectors for the environment-labels are generated almost artificially, as an arbi-
trary region is chosen for this. It is recommended to set this choice close to the object, to
make it clear for the classifier to not only learn the significant part of the tracking object,
but to clearly distinguish between these adjacent patterns belonging to the environment.
This procedure is visualized in figure 24 for the whole trajectory and in figure 23 on a
real ultrasonic frame, with the green area as object and red as four environment areas,
where the ROI is denoted by the yellow cross.

Once these patches are captured, the classifier is trained right away, since it will al-
ready be used for prediction in the second and all following subsequent frames. The
prediction itself is also applied like the method before with a sliding window, the differ-
ence here is that for each cell of the result matrix a class probability is given from the
RF, about the ROI-center, instead of the correlation coefficient.
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After the position in the second frame is located the procedure from the beginning
is repeated, gathering more training data and retrain the forest for its next prediction.
This loop is continued, until the rough-tracker is ready.

As already mentioned, this approach is intended for the classifier to especially focus
on the significant parts, that ensures its generalization. With this demand it also should
be feasible handling uncategorized pixels states. For instance image data originating
from a different source than the ultrasonic scanner. This could be the black area sur-
rounding the actual ultrasonic scatters, or other data artificially added by the image
provider (e.g.: text or a diagram with the hint which part of the body is observed in
the record). When for instance the ROI is near to the edge of the scanner’s range as
shown in figure 24, then during the first iteration, the left environment area extracts a
part of the non-ultrasonic image data, which is used for the classifier’s training in the
end. However even if non of these kind of training data is available, the RF still should
handle the situation reliably, as it has sufficient data that never included a black area
as part of the ROI.

ROI at Position 1

ROI Position n

ROI Position m

Area for environment 
training data extraction
Area for object  
training data extraction
ROI center at current position

ROI trajectory

Different ROI appearances

Figure 24: The procedure of the RF-recognition.
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3.2.3 Further optimization

With the demonstrated methods there are still a few special cases open, able to worsen
the accuracy. For this, the following section demonstrates further options, designed to
capture possible issues, which the base algorithm lacks to handle. Common problems
are:

• The classifier has learned an insufficient trajectory (i.e. the trajectory in training
is shorter than in the subsequent testing phase).

• The trajectory drifts over time, thus leaving the learned path.

• Black non-ultrasonic image data occurs at the margin, that possibly confuses the
algorithm.

Chapter 4 elaborates their efficiency, thus subsequently only the principles of these tech-
niques are explained.

3.2.3.1 Black area detection

Whenever there is non ultrasonic image data, it possibly confuses the presented al-
gorithms. The impact for the correlation-coefficient method is arguably higher than for
the RF variant. While each affected pixel, unfortunately, has an equal weight on its
result with the first method, only a little selection of image points are required for the
second one, however certainly will fail if they were taken from the area which is going
to be occluded.

(a) Frame 1 (b) Frame 188

Figure 25: A given ROI from the MED-1-1 sequence, at two different locations from its
trajectory.

A basic scenario is shown in figure 25, where the traceable ROI is marked with a cross.
The correlation method is comparing each region during testing with a pattern, taken
from the tracking ignition (Fr), shown in figure 25 a). The more the object-localization
reaches the black margin, the more pixels of the current image with Fc(x, y) = 0 are

59



compared with corresponding Fr(x, y) 6= 0 from the reference pattern. Normally, in-
tensities are examined that have a much higher level in both cases (correct and wrong
area). Due to the black levels, the recognition is constantly worsened even though these
pixels should not take any influence on the decision. This situation eases other sur-
rounding areas to be identified as object, over the actual ROI (such as regions with less
non-ultrasonic image pixels), when even though the score there would be low in general.
One reason is, if the difference between the scores of the false ultrasonic image pixels
is smaller than compared to right but occluded ones. Tests have shown, that in this
particular case the algorithm got confused as its prediction shifted to the surrounding
ROI-like area, ending in a false learning of the object’s trajectory. Whereas the other
suggested ML-option, either also fails because its prediction relies on the occluded pixels
or is luckily capable of handling the situation, when for this case the decisive image data
is extracted from the bottom right (i.e. it doesn’t even get in touch with the problematic
zone). Conclusively, for related scenarios this behavior takes a big impact, that quite
easily could even prevent a successful tracking in general.

For avoiding these situations, another routine checks black pixels (i.e. F (x, y) = 0)
and interpolates their intensity to a more plausible level. Since the goal is to retrieve a
possibly high score for comparing the current Fc with the initial Fr, the interpolation is
leaned on the initial appearance. The corresponding pixels are copied from the reference
pattern to the current ones with the black area. This way, all the affected coordinates
receive a full score, with the intention that a ROI around the non-ultrasonic area is more
likely to be chosen than its adjacent regions, which look less alike but contain more ul-
trasonic image data over the whole pattern. The process is demonstrated in figure 26.

reference ROI edge ROI

merged ROI

Figure 26: The black area is filled with the intensity levels from the initial ROI pattern.
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3.2.3.2 Multiple rough classifiers

When working with different ultrasonic devices, the image structure is likely to change
as well. Exemplary occurrences are differences in the look of the speckle phenomena, a
darker or brighter image and a smaller or wider area for ultrasonic image data. During
observing the behavior of the rough tracker, empiric tests have shown that its predic-
tion quality depends on the pattern extraction areas, which in turn is influenced by the
general image appearance.

Either the user has to manually find out the most fitting region before the actual usage,
or more comfortable training multiple forests at different positions. Hence, during the
testing phase, the algorithm uses with this poly random forest design, under all predic-
tions from each of these classifiers the one, who holds the highest probability score for
its result.

3.2.3.3 Shift trajectory

Sequence MED-1-1, showed it might occur for the object, it is not always moving along
the same path. Here the object always followed the same trajectory but adds an offset in
a specific direction over time, thus drifting away. The consequence for the rough tracker
is simply that its prediction might be correct at the very first frames, but because of the
constant offset is far away from the actual ROI-center, so the distance between estimated
and annotated position (i.e. the error) increases. Thus within a loop, after a certain
amount of frames |Fshift|, the difference of coordinates from the rough and fine tracker
are calculated and the arithmetic mean of these samples generated. This mean value
is taken as the current offset and simply added to the coordinates for every trajectory
landmark (i.e.: a trajectory coordinate behind a feature vector label).

3.2.3.4 Artificially extending the training database

The main task of the rough tracker’s initial run is collecting for each frame the po-
sition estimation and the current patterns. In this scenario, the worst case that could
occur for creating a dataset is when there is only one feature-vector per position avail-
able, which usually results in a bad classifier’s accuracy. However, there may or may not
be a few spots with a bigger dataset if the same position was captured more than once,
which solely happens when the object is passing by again on its trajectory back where
it just came from. Even in the best scenarios the dataset still remains at a sparse state.

As mentioned in the beginning, the rough tracker does not need to work very precisely
for its localizations. It is then tolerable to neglect the correct position estimates, as col-
lected in the training phase. However, the estimation security is a lot more important,
that enforces the right and disregards false label -predictions as best as possible. Hence,
more feature-vectors for a given position can be constructed if the adjacent positions
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are merged to a new artificial position (i.e. a new label) and their features kept as they
are. This means now there is only a vague trajectory stored, as the possible predictable
labels have decreased. Each of these equidistant spots include all possible feature vectors
within their specific range. The mentioned range is relative to the trajectory’s length
and is simply the half distance from one merged trajectory landmark to the next one,
in a manner that no data is used twice, which improves the dataset quality when two
identical feature vectors with different labels can be avoided. This is visualized in figure
27, with the red line as a vague trajectory, gray crosses as the stored positions from the
very initial run, black crosses as the new merged landmarks, where each feature vector
(underlying to each gray cross) is now referring to within its specific range, which is
depicted as the orange circles.

Figure 27: A merged trajectory compared to its originally recognized spots.

3.2.3.5 Adaptive trajectory learning

A less coarse variant is stepwise extending the decision database, by never ceasing the
learning process even during the testing phase. Whenever the algorithm has learned
enough of new input, which is after nsamples newly added feature vectors, the rough
tracker’s random forest training reignites (i.e.: adjusting the decisions and predictions
of each tree). After the rough tracker finished its adjustments, it is capable of predicting
the most recent state of the trajectory’s way-points.

More precisely the algorithm’s training stage doesn’t get adjusted, whereas its test-
ing phase only gets extended. Whenever the classificator is ready to predict, figuratively
spoken it is placing landmarks along the trajectory with a certain distance to each spot
(as shown in figure 27). However the classifier is dealing with probabilities and thus
false predictions are expectable. This estimate then needs to be assessed if it was valid
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or not, so that the new data could be stored. As there are many labels to guess, a
good (or an assumed correct) position statement then is whenever the fine tracker was
able to retrieve the ROI within a specific range rlm, with its center upon the currently
estimated merged position, which is the rough tracker’s prediction. This way the error
cannot be excluded because it also cannot be guaranteed that the fine tracker is working
flawlessly, but negative influence is minimal since the accurate position is not needed,
as the coarse is sufficient enough for updating the landmarks. As a last step, whenever
the new dataset is big enough, the rough tracker training can be reignited.

For the RF is able to recognize and estimate the extending trajectory, further spots
are needed at least on one of the trajectory’s ends. When it then comes to retrain the
classifier, the two spots with the highest distance from each other are detected (S1, S2).
Then the first new merged landmark is set upon one of these spots. Since there is always
the same amount of merged landmarks nlm for the rough tracker, their influence range
is simply recalculated in two steps. First nlm equidistant merged landmarks are placed
from one end to the other starting from S1 or S2. Afterwards the real estimated spots
are assigned to the landmark to which the euclidean distance is the shortest. Finally the
coordinates of the merged landmarks are recalculated according to the mean value of
their assigned spot-coordinates, which helps to rebuild the trajectory instead of creating
a straight line. Empiric tests have shown that, whenever there is a case with a growing
trajectory, the exceedance usually happens rather slowly, in other words, it takes multi-
ples of such cycles to exceed a merged spot. Thus after a few turns, one is able to update
the trajectory and can now successfully capture new positions with the rough tracker in
future.

Figure 28: Visualization for the possible states of the adaptive range.
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4
Evaluation



After all relevant methods are described in chapter 3 before, in this successive section
the impact of the parameters on the actual tracking error and the strategy to define the
optimal parameters are discussed.

4.1 Fundamentals of performing the algorithm’s evaluation

In the context of ML, the presented algorithm and its settings are also known by the
terms model and hyper-parameters respectively. Such models usually consist of many
variables that take influence of the performance, likewise in a positive and negative kind
of manner. With the help of a so called hyper-parameter optimization (or parameter
tuning) it is pursued to determine the configuration, where the related model retrieves
the best results (e.g. the highest accuracy).

The most commonly used variant of this optimization is the grid search, that atomi-
cally evaluates every possible combination, where for each added parameter the amount
of joint values grow exponentially. This means, with many variables this method could
easily become too time consuming for real applications. In contrary to this meticulous
approach, a randomized search from a uniform density of the same configuration space
retrieves a considerably well model after only a few evaluations [79]. In turn, a method
based on probability theory is the Bayesian optimization, that approaches the minimum
error based on the history of previous evaluated configurations and chooses the most
promising hyper-parameters for each iteration [80]. Because the random and Bayesian
approach seemed a bit too risky for a limited evaluation period and grid search could
consume too much time, a combination of the random variant and the grid search were
applied. By stepwise defining the parameters (e.g. the rough tracker separately from the
subsequent methods), the amount of necessary test can greatly be decreased. Candidates
for parameters like the position of the speckle extraction areas are randomly estimated.

In case of the tracking scenario, a model configuration is considered good, if the dis-
tance between estimated and annotated ROI-position is minimal. The related metric
is the euclidean distance de, as described in equation 4a in chapter 2.2.3. Since the
tracking is performed on planar ultrasonic images, the actual distance for the evaluation
is based on two dimensions (i.e.: the y- & x-coordinates). The final formula for the error
determination is shown in equatoin 15.

de

(
P (y, x), P̂ (y, x))

)
=

√
(Px − P̂x)2 + (Py − P̂y)2 (15)

On a closer look it is equivalent to the Pythagoras theorem, where P̂ (x, y) is the algo-
rithm’s estimated and P (x, y) the annotated position.

4.2 The ultrasonic data

For tracking on liver ultrasound images, MICCAI Clust has established a challenge for
a direct comparison of different methods. This challenge provides 64 sequences for the
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2D-tracking, who were recorded by 5 different ultrasonic scanners, where the length of
a sequence range between 4 s and 10 min. The data is separated in a training- and test-
set, where each challenge-participant receives the trainingsset’s annotation for the own
development. This annotation determines the ROI position on many frames (but not
all), which were manually defined by 3 human observers. The accuracy for the testset
is evaluated by the challenge organizers themselves [6].

In the area of ML there are strategies, that help to improve the algorithm’s perfor-
mance. Especially when it comes to classification tasks, a commonly used technique is
the cross validation (see chapter 2.2.4). Because both algorithms rely on classifying ei-
ther pixel labels or trajectory landmarks, it is then appropriate to integrate this tool into
the development. It was intended from the very beginning to set the algorithm’s design
with these techniques. Unfortunately, this is barely feasible due to the handling of the
data during tracking. When working with a deterministic dataset (e.g. handwriting),
usually it is randomly split into a part for training and one for testing, afterwards it is
evaluated how well the classifier performed. For both of the own algorithms this is out
of reach, because the algorithm is trained and adjusted every time an arbitrary tracking
task is initiated (i.e.: there is no separated training part at all). Additionally for these
algorithms, a given estimate always depends on the first image of a sequence and also
on the previous tracking result (e.g. when trying to find the ROI around the previous
ROI-position estimate). The situation is different in case of handwriting classification,
since there the individual samples are usually is provided (e.g. MNIST) and doesn’t
need to be constructed beforehand.

4.3 Pixel classification

Classification of pixels that in the end retrieve a binary image, where the object is sep-
arated from the environment seems to be a promising approach, when considering the
prediction quality that could be extracted from the related pixel-precise accuracy. Addi-
tionally, this variant even provides multiple options to determine the ROI position (e.g.
the center or centroid of predicted object pixels).

The evaluation showed many different results that give an insight about the algorithm’s
attributes. For instance the tracker was able to obtain the ROI’s position, with a com-
parably well tracking error already with its set of basic features. Figure 29 shows the
result of sequence CIL-1 2, with the top graph as de for a current frame and below the
three different kind of error measures.

To give an impression about the actual classification, a screenshot, taken out of a running
tracking procedure, from two different sequences are shown in figure 30 (left: CIL-01 2,
right: MED-02-1 1). With the top left accumulation of white intensities, as the pixel
classified as object, which is the same as the purple group who are situated upon the
estimated ROI position. The yellow cross denotes the center retrieved by the algorithm,
where the blue cross is the annotated center for the current frame. Both images were
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provided from two different ultrasonic scanners. Similar results of different scenarios are
shown in appendix A.1.

Figure 29: Tracking result of CIL-1 2 via pixel classification.

(a) CIL-01 2, Frame 142 (b) MED-02-1 1, Frame 2429

Figure 30: Exemplary ROI positions, estimated by the pixel classification method.

67



However in many cases the algorithm simply has lost the object during tracking. Figure
31 shows the results where just before the 1000th frame the tracker moved towards the
image margin.

Figure 31: Tracking result of MED-02-1 2.

Another example is shown in figure 33,
where the tracker mistakenly classified
the adjacent region as ROI, hence the
minimal constant offset that starts right
before the 500th frame. But in the end
the algorithm couldn’t be saved from
going astray. For a better insight the
object is shown in figure 32.

Figure 32: The ROI of MED-02-
1 3, where the adjacent
region has a similar ap-
pearance.
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Figure 33: Tracking result of MED-02-1 3.

In conclusion, tracking via pixel classification is feasible for many cases, but has its
problems that need to be eliminated for a secure tracking. Because of the adjacent
pixels were falsely classified, the tracker has lost the object. Simply, because of their
overwhelming majority, the pixel mass center point shifts away from the ROI over time.
This is because the involved features apparently were not significant enough. False
classifications cannot be avoided and likewise it cannot be prevented for the tracker
to go astray. This clearly argues against the robustness and thus is less suitable for
applications in the medical area, which discards the approach for further development.
However, it was intended to design the model with the help of a ROC curve (see chapter
2.2.3) between the classifier’s pixel estimation and the initially generated binary label
image, as described in chapter 3.1.1.

4.4 Estimating landmarks

This approach solves the main problem of the pixel classification. Whenever the clas-
sifier is trained, the tracker is automatically orientated towards the object’s trajectory
and thus it is able after each poor classification to obtain an optimal result already in
the subsequent iteration again.

Testing the algorithm was performed in parallel on multiple computers with the same
system specification. Unfortunately, the same PCs could not be kept until the end of the
hyperparamter-optimization. The results are reproducible if a test was repeated with
the same computer. When switching to the new group of PCs, the results compared the
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other group differed. Calculating the standard deviation of the difference from 84 tests,
between a pc of the new and one from the old group, retrieves ≈ 0.7979 pixel for the
mean tracking error, ≈ 0.5486 pixel for the standard deviation error and ≈ 1.9853 pixel
for the 95th percentile (see table 14 in appendix A.4 for the results of this comparison),
in other words, the variances are minimal and thus the results do correlate. The process-
ing time for evaluating the training set ranges from less than a minute until a few days.
Because of the lack of time, it was not feasible to reexecute the gridsearch again with the
new computer group. However, because their individual results are similar to each other,
both grid searches are merged and out of it the best parameter settings were chosen.
The hard- and software specifications of evaluation computers are listed in appendix A.3.

Tracking on the CLUST testset was performed with python scripts and the RF im-
plementation of scikit-learn. For this a classifier RandomForestClassifier with the
appropriate values for n estimators, criterion and 3 as constant seed for the random
number generator random state were set. All other parameters were the scikit-learn
defaults. The class probability value is retrieved from the RF preditc proba function.
For both, the correlation coefficient in the rough tracker’s initial run and as part of the
fine tracker, the OpenCV implementation matchTemplate with TM CCORR NORMED
was used. In order to define lthresh, the highest class probability value of the 3 inde-
pendent classifiers form the first estimation is used for RTScore. The threshold lthresh
for significance testing from chapter 2.2.4.2 then is set to lthresh = 2

3 RTScore. For all
sequences, 3 RF are trained, with independent pattern extraction areas from forest to
forest (see the tables 10-12 in appendix A.2).

4.4.1 Trainingset evaluation

Starting with the algorithm’s first part, the rough tracker. The parameter with a direct
influence on its performance are the splitting criterion and dimension of the RF, the size
of the ultrasonic patterns and the range of the landmark merger. Options like shifting
the trajectory are first applicable when the fine tracker is engaged, but before inspecting
the fine tracker, a robust input signal should be guaranteed to obtain adequate results.
Therefore these options can be skipped at this first stage.

The figures 34 - 37 show different results, who are based on the same sequence of tests.
Because many options are repeated with different hyper-parameters, some of the graphs
are illustrated as heatmap to give a visual impression, especially about the center of a
certain error distribution.

When inspecting the figure 34, a) and b) show for each of the evaluated forest dimensions
a similar minimal error, where c) points out that especially the amount of 40 and 50 have
achieved a better result than the others. However inspecting the particular error centers
(illustrated by the color, where a darker color indicates a higher accumulation), clearly
forests consisting of 10 decision trees achieved the minimal error for most of the cases.
Whereas the criterion doesn’t show a distinctive winner of the gini-entropy comparison
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in figure 35, which coincides with the Elkan’s opinion that there is no big difference to
be expected, when using different criteria [44].

(a) Mean (b) Standard deviation

(c) 95th percentile

Figure 34: The influence of the amount RF-trees
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(a) Mean (b) Standard deviation

(c) 95th percentile

Figure 35: The influence of the splitting criterion.

The next two parameter are directly responsible for the design and the size of the rough
tracker’s training database. While for a good generalization often a big dataset with a
minimal amount of labels is admired, a higher range of the landmark merger is retrieving
more data for less classes. In other words, if the number of different labels (i.e. the land-
marks) is small, then automatically the merger’s range increases, that combined retrieve
more feature-vectors for a label and thus better results are expected to be acquired. The
figures in 36 show the best amount of labels is 5, between the decision of extracting a
big dataset and losing precision by getting a worse trajectory approximation (e.g.: 2
landmarks only describe a straight line).

Where the landmark merger handles the labeled vectors, the pattern size manages the
relative amount of features. Because speckle appearances are moving steadily, it needs
to be inspected on the one hand, if more significant features can be extracted from hor-
izontal or vertical oriented patterns. This way the preferred movement of the speckles
should be assumed, with the sense that a certain feature is able to recognize a highlight
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that was once seen before in another element. Then again, it needs to be considered,
if small patches are sufficient enough for encoding the speckles or if a combined version
(i.e. a square) is required. The results in the figures 37 show, the vertical patterns seem
to retrieve more reliable results than the vertical opponents. Compared to the squared
solution the difference is marginal, but the work load is increasing. Thus 50 pixel in
height and 5 pixel in width for all patterns are set.

(a) Mean (b) Standard deviation

(c) 95th percentile

Figure 36: The influence of the merge range.
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(a) Mean (b) Standard deviation

(c) 95th percentile

Figure 37: The influence of the ultrasonic pattern size

Certainly the localization and the amount of ultrasonic patterns take an important
role too. Each position is relative to the dimensions of a full image, which varies from
sequence to sequence. A pattern position is retrieved when (in this case) the image
height is multiplied with one of the evaluated options (e.g. if the image height is 420 px
and the option is 0.6 then the y-center of the pattern is at position 252). As described in
chapter 3.2.3.2, using multiple, different combinations of the classifier’s extraction areas
are evaluated where the y-position of a single RF is denoted with square brackets in
the figures 38. Here, the combination of independent RF [0.5], [0.6] and [0.7] have sim-
ilar results with the sequence of classifiers at the positions [0.6], [0.75] and [0.8], where
the later combination has a lower value in the standard deviation, which is a better
indication for robustness than displaying the mean-error center. Because of this, it was
selected for all later investigations. In any case, extracting the patterns from the lower
half of the image yields lower errors.
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(a) Mean (b) Standard deviation

(c) 95th percentile

Figure 38: The influence of the speckle pattern’s y coordinate

In the figures 39 the related x-components of the patterns are visualized, where 3 different
tests are shown at once. The first simply links an option with each of the classifiers y-
coordinate (e.g. with x-option 0.1, the pattern centers are [0.6, 0.1], [0.75, 0.1] and [0.8,
0.1], multiplied with the image dimensions respectively). The options marked with * have
additional patterns, slightly shifted from the shown centers, with the idea of recognizing
the speckle movement from one pattern into the adjacent patch again. The shift is -
0.05 on the y-axis (i.e.: each classifier has now two areas on the ordinate to extract the
features: [0.6, 0.55] [0.75, 0.7] and [0.8, 0.75]). The last approach is to provide individual
y- and x- positions for all patches of the classifier. This is implemented in a manner that
the -0.05 option of the y-coordinate gets combined with each x-coordinate behind the /
in the figure 39 (see appendix A.2).
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(a) Mean (b) Standard deviation

(c) 95th percentile

Figure 39: The influence of the speckle pattern’s x coordinate
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To engage the fine-tracker, the dimension of its search window Fs for retrieving the
best results needs to be set. In the figures of 40, two minima at 10 and 18 stand out,
where the later result obtains a lower error for the percentile but a higher in the standard
deviation. The size of Fs then is calculated, when this value simply is added to both of
the dimensions of Fr.

(a) Mean (b) Standard deviation (c) 95th percentile

Figure 40: The influence of the dimension of the fine tracker’s constricted area Fs.

After the relevant parts for the rough tracker have been handled, the question remains
at which point a switch from the unsupervised tracking mode of the initial run, to the
rough tracker’s training, is appropriate. Even though the results in the figures 41 lead
to a different assumption, to start training after the 50th frame in particular, it is more
recommended to start at the local minimum around 350, because 50 frames might not be
enough in some particular cases for learning the basic trajectory. Besides the displayed
error has a small range in general, which indicates that a higher amount of initial frames
hardly take influence on the tracking performance.

(a) Mean (b) Standard deviation (c) 95th percentile

Figure 41: The influence of the duration of the inital unsupervised tracking.

Whenever the fine-tracker is enabled, the adaptive method and the frequency of forest

77



training can be evaluated. According to the figures 42 and 43, it is a decision between 2
or 6 pixel for the adaptive range and either retraining after achieving every 10th or 20th

valid new sample.

(a) Mean

(b) Standard deviation

(c) 95th percentile

Figure 42: The influence of the splitting
criterion.

(a) Mean

(b) Standard deviation

(c) 95th percentile

Figure 43: The influence of updating
the RF.

Also choosing the parameter, that defines after how many frames the trajectory shall
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be shifted, retrieves no clear result. Figure 44 leaves the impression that an appropriate
selection is any value after 150 frames.

Figure 44: The influence of the trajectory-shift frequency.

To use a RF instead of the cross-correlation as a fine-tracker, seems promising to learn
the significant parts of a ROI. Unfortunately, under all window sizes, the averaged
mean tracking error for all sequences was always > 25 pixel, practically unusable. The
actual problem is not the poor intermediate result, but the fact that this currently false
predicted ROI position is used to extend its dataset, when its actually mandatory to
learn from a true ROI center. Otherwise only a vague appearance gets learned over time.

Under all evaluated combinations of hyper-parameters, there is no configuration that
clearly stands out against the others. Because of this, the different settings need to be
joined and tested, to define the best model for evaluating the actual testset. The pa-
rameters, who are equally used for all of these final tests are: amount of trees (10), fine
tracking method (correlation coefficient), duration of the unsupervised tracking ninit,max
(350 frames), ultrasonic pattern dimensions ( 50 pixel x 5 pixel), dimensions of the ROI
reference window Fr ( 60 pixel x 60 pixel ), relative pattern position on the abscissa
(0.1/0.15 0.2/25 0.3/0.35 0.4/0.45 0.5/0.55 0.6/0.65 0.7/0.75), relative pattern position
on the ordinate (1st classifier: [0.55, 0.6], 2nd classifier: [0.7, 0.75], 3rd classifier: [0.75,
0.8]), adaptive range rar (2 pixel), amount of merged landmarks nlm (5). Hence, the
parameters that had no distinctive optimum are: splitting criterion (entropy and gini),
search window size of the fine tracker Fs (70 and 78 pixel, equally for width and height),
retrain frequency frf (10 and 20 valid new samples) and shift frequency |Fshift| (250
and 350 frames).

After evaluating the mentioned combinations above, the best configuration is defined,
whose standard deviation error was minimal, because this error type give a better im-
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pression if the algorithm is performing reliably. The parameters without a distinctive
optimum are set according to the configuration with the minimal standard deviation,
as shown in table 7, whose results were for the trainingset (with an averaged factor of
≈ 0.4 mm

pixel , from the datasheet [6]):

mean tracking error ≈ 4.261 pixel ≈ 1.704 mm
standard deviation error ≈ 4.024 pixel ≈ 1.61 mm

95th percentile ≈ 10.8 pixel ≈ 4,32 mm

Table 7: The final algorithm settings.

algorithm Estimating landmarks
|Ishift| 250 frames
rar 2 pixel
nlm 5
frf 20 1/valid new estimates

ninit,max 350 frames
dimensions of Fr 60 pixel x 60 pixel
dimensions of Fs 70 pixel x 70 pixel
dimensions of the patterns 50 pixel x 5 pixel
relative pattern positions 0.1/0.15 0.2/25 0.3/0.35
on the ordinate 0.4/0.45 0.5/0.55 0.6/0.65 0.7/0.75
relative pattern positions 1st classifier: [0.55, 0.6],
on the abscissa 2nd classifier: [0.7, 0.75], 3rd classifier: [0.75, 0.8]
fine tracker method correlation
criterion entropy

4.4.2 Testset evaluation

For evaluating the actual testset from the CLUST challenge, the optimal parameters
were chosen as mentioned in the previous section (see table 7).

Hardly information can be given about the runtime. Unfortunately it was not possi-
ble to solely execute the tracking algorithm on the computer. Moreover, multiple users
have access to the system at the same time and thus it cannot be guaranteed that the
algorithm could run on full performance, which certainly takes influence in the process-
ing speed. However in table 8 a few selective examples are shown, that at least a rough
impression can be given. Each ROI was evaluated sequentially. The average processing
time per frame, for these examples range between ≈ 0.045 s to ≈ 0.248 s. Besides that
the PC couldn’t be used exclusively, there is another factor that takes influence on the
timing results. Depending of the size from the rough tracker’s dataset, it certainly takes
more time to train the classifier, when the amount of feature vectors becomes higher.
Because of the adaptive learning in the RF’s testing phase, all datasets are increasing
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continually, and enlarge their amount of data relative to the number of frames in the cur-
rent sequence. There are multiple ways to eliminate this time problem, such as initially
tracking all possible states of the trajectory and thus avoiding to adaptively extend the
dataset and restarting the classifier’s training, which is not feasible during the challenge
environment.

Table 8: A selection of ROIs to give a rough impression about the runtime.

ROI Amount of frames processing time

CIL-03 1 1070 52 s
CIL-03 2 1070 72 s

ETH-06-2 1 5165 28 min, 53 s
ETH-10-2 1 5584 7 min, 27 s
ETH-10-2 2 5584 36 min, 6 s
ETH-10-2 3 5584 11 min, 12 s
ETH-12-1 1 14516 59 min, 1 s

ICR-09 1 3481 2 min, 38 s
ICR-09 2 3481 6 min, 4 s

After submitting the tracking series, the data was evaluated by CLUST and the received
score is shown in table 9. This attributes the algorithm, great tracking qualities on
arbitrary medical ultrasonic data. There are a few cases, where during the unsupervised
stage the ROI couldn’t steadily be recognized and thus a false trajectory was learned,
that in the end yield in a general poor result. In a real scenario a support function
for this stage could be added or simply the user monitors the short initial period and
verifies, if the learned trajectory was correct.

Table 9: The summarized tracking errors of the testset.

Mean Std 95th Min Max
Sequence / mm / mm / mm / mm / mm

CIL 1.7287 1.6055 4.8389 0.03836 13.8033
ETH 2.398 4.956 16.3749 0.0044 42.2414
ICR 1.6417 2.0684 4.7851 0.0107 21.4724

MED1 3.7332 7.3815 17.2261 0.0235 55.2858
MED2 1.6702 2.2358 4.8202 0.02705 28.5819

2D 2.4761 5.0861 15.1296 0.0044 55.2858
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5
Conclusion



Tracking with random forest on medical ultrasonic image records is feasible in various
ways. Many approaches have been implemented, that will be summarized below and also
a few suggestions that may further increase either the algorithm’s precision or robustness.

5.1 Summary

In this thesis two different concepts of utilizing RF as part of a tracking algorithm are
presented. The idea of the one approach is to identify arbitrary pixels whether they are
part of the object or not. Whereas the other solution estimates intermediate positions
from a learned trajectory. Both have in common, that the algorithm gets started only
with the initial position of a selected ROI. From there on, the training dataset needs to
be generated, which is an individual process for both approaches.

For the classification, a small patch around the ROI is created, where different functions
extract highlights and visual aspects, which are then used as the features. Exemplary
functions are the intensity stretching, local mean values or a combination of two feature
responses. Because only an initial annotation is provided, there is no particular informa-
tion that could distinguish each pixel’s group affiliation. Therefore these labels need to
be generated artificially, in a way that each pixel with an intensity that approximates the
ones from the center of the ROI and also its adjacent pixel are already identified as part
of the target, should be considered as an object, otherwise it is part of the environment.
The so generated dataset is then used to train the classifier, which starts estimating
already on the next frame. Finally, when a sample image has been analyzed and the
particular pixels have been estimated, the center of the object pixels can be retrieved
(e.g. by calculating the centroid of the pixel mass, or the mean position value).

On many sequences the tracking with pixel classification could successfully be engaged.
It is assumed that the basic kind of extracted features for the dataset, lead to a poor
classification in a couple of cases, where the tracker completely looses the object. A
better set of features might help to prevent these issues. However, then it is still unclear
if such problems will reoccur in future, which is a sign that it might be not suitable for
the medical field.

The landmark estimation consists of two main components. The first part retrieves a
coarse, but robust position estimation upon a learned trajectory, the second one further
analyzes this constricted area to retrieve the exact ROI position. With the algorithm’s
ignition, in a preceding unsupervised but short tracking procedure, the object’s trajec-
tory is estimated. During this period the intermediate positions are gathered, where in
the mean time, ultrasonic patterns from different but static positions of the full image
are extracted. These patterns are influenced from all elements, which are involved in
the making of an ultrasonic scanning. Because the appearances of these patterns are
reproducible, they appear to be capable of linking a pattern with a particular interme-
diate position on the learned trajectory. Since the trajectory varies over time, only a
rough localization can be provided by this method. It is then the task of the fine tracker
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to define the exact position within this constricted area. Additional support functions
help to handle special tracking cases, such as an automatic trajectory shift, a landmark
merger that artificially increases the training dataset, a non-ultrasonic image data in-
terpolation and an adaptive trajectory adjustment that rearranges landmarks for the
coarse estimation whenever the algorithm has learned enough valid new instances. All
parameters are either defined by the algorithm itself (e.g. training dataset) or are figured
out empirically during development (e.g. correlation window dimensions, or landmark
merge radius). This is done in a way that for each algorithm invocation, only an arbi-
trary sequence and an initial position of the desired ROI needs to be provided and no
information is transmitted between two sequences or annotations.

The tracking results of the landmark tracker were promising enough to prefer this vari-
ant over the pixel classification for further parameter tuning. This approach was also
submitted to the CLUST2015 challenge, where it retrieved the following results for all
2D sequences: mean error ≈ 2.4761 mm, standard deviation error ≈ 5.0861 mm and the
95th percentil ≈ 15.1296 mm.

General attributes of this variant are:

• Any element is traceable (e.g. tissues, highlights, arbitrary signals), if the fine
tracker is able to recognize the ROI.

• No preparation required, could be applied at anytime.

• The highest error that occurs, if the trajectory was learned successfully, is the
distance between both of the trajectory’s ends including the related search areas
of the fine tracker.

• A short initial warm up phase of a few breathing cycles, to generate the rough
tracker’s dataset

• Practically independent from previous results, because of the pattern analysis (i.e.
the frames could be processed in an arbitrary order and don’t need to be consec-
utive, when the algorithm is trained and the usual scenario is considered without
growing trajectory).

• Achieves a high precision already with only a template matching for the fine track-
ing.

• Could be implemented, to be applied in real-time scenarios.

• Due to the nature of landmark estimation, strong differences for the ROI position
statement between only two frames can possibly occur.

• Relies on the fine tracking method, for generating its dataset and also for retrieving
the exact position.
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With this algorithm, a user is able to track tissues on ultrasonic images, with minimal
effort, as only the starting point of the desired ROI is necessary and in return, the
related object’s coordinates per frame are retrieved. Performance in real-time could
only be indicated, because the most time consuming part is the forest training over
the time, which shouldn’t even be necessary when the user initially records all possible
positions of the trajectory, just once. Hence, the initial requirements are mainly met.

5.2 Outlook

There are multiple ways of expanding or improving the algorithm, if the current state
of the algorithm does not meet the requirements. Below a few promising options are
briefly described.

First of all, there is the option to keep the algorithm as it is and simply replace the
RF with another technique out of ML. A promising alternative is the SVM.

5.2.1 Pixel classification

More significant features are required to improve the pixel classification. Following the
example of pattern recognition with CNN (e.g. handwriting, faces), specific features
for each ultrasonic scanner could be obtained by learning every annotated ROI in the
CLUST training set with the help of neural networks. Many different filter functions
could then be copied and simply be integrated in the random forest’s feature extraction.

Similar to the landmark estimation, during an initial unsupervised tracking, the tra-
jectory could be learned. If this trajectory is then combined with a maximum distance
to the estimated ROI as tolerance, then the tracker could be prevented from loosing the
object.

5.2.2 Landmark estimation

In order to improve the exact localization, it might help to inspect further distance
metrics such as briefly discussed in chapter 2.2.3 as an alternative for the fine-tracking
algorithm. It might turn out to significantly increase the accuracy, when combining
multiple metrics (e.g. correlation-coefficient and canberra-distance) to one algorithm in
the sense of a sensor fusion.

The current state of adaptive learning could be further optimized, to achieve higher
processing speeds. For the CLUST challenge it is designed in such a way that after a
certain frequency the forest gets deleted and retrained (with the new data). This could
be improved with an incremental induction, where the classifier simply gets edited, as
mentioned in [81]. Another approach without further developing the algorithm, is to
simply instruct the user to force every extreme trajectory position. This way the whole
trajectory gets learned and updating the classifier once in a while is not necessary any-
more.

85



Handling the algorithm’s outliers could increase likewise precision and robustness. They
could be suppressed, when during each iteration, subsequently to the tracker a filter is
added. Implementations like finite and infinite impulse response (FIR, IIR respectively)
are based on results from previous frames, thus whenever an outlier occurs, the error
gets adjusted to the tracking history. However, in case of a system freeze such a de-
tected jump is valid and needs to be excluded. To distinguish the validity, simply the
timestamps of the frames could be compared, because this would also lower the current
frame rate. Unfortunately this information was not provided by the challenge, thus this
option was skipped.

Instead of pattern matching, the pixel classification could be applied as fine-tracker.
This way the user combines the aspects of both algorithms. With the resulting method
the user for instance would have the freedom of choice for defining the ROI center and
also preventing the tracker to unintentionally move away from the trajectory.
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Appendix

A.1 Tracking error graphs of the pixel classification

This section contains a few selected examples to give an impression about the accuracy
of the pixel classification. The images are provided from a different ultrasonic scanner
on each of the results shown in the figures below.

Figure 45: Tracking result of ICR-01 2.
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Figure 46: Tracking result of ETH-01-1 1.

Figure 47: Tracking result of MED-02-1 1.
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A.2 The design of the rough tracker’s dataset

This section describes the rough tracker’s dataset design, that is assembled online for
tracking each ROI of the CLUST evaluation testset.

The number of patterns np for the rough tracker is 14 for one classifier, where each
pattern’s height ph is 50 pixel and width pw is 5 pixel. Since 3 independent RF were
used on every ROI, the total amount of different patches then is 42, whose locations are
relative to the full ultrasonic image dimensions of each sequence. The center positions
for all 3 classifiers are shown in the tables 10, 11 and 12, with the units as percentage
of the height and width from the entire image, for the y and x coordinates respectively
(e.g.: if a frame’s height is 240 pixels and the width 640, then, as an example, the center
of the top pattern from table 10 is located at coordinate y=144, x=64).

Table 10: Patches for
the first RF.

coordinates
/ %

y x

60 10
55 15
60 20
55 25
60 30
55 35
60 40
55 45
60 50
55 55
60 60
55 65
60 70
55 75

Table 11: Patches for
the second RF.

coordinates
/ %

y x

75 10
70 15
75 20
70 25
75 30
70 35
75 40
70 45
75 50
70 55
75 60
70 65
75 70
70 75

Table 12: Patches for
the third RF.

coordinates
/ %

y x

80 10
75 15
80 20
75 25
80 30
75 35
80 40
75 45
80 50
75 55
80 60
75 65
80 70
75 75

Every cell of a feature vector ν represents an unprocessed pixel-intensity extraction,
out of the np patches from ultrasonic images. The individual pattern-pixels are accessed
column by column, starting with the upper left, ending with the lower right element. The
patterns in turn, are specifically arranged in the tables 10-12, with the same processing
order from top to bottom, for the feature vectors. More precisely, when for instance for
the first RF a ν is assembled, then the first feature is the intensity level of the top left
pixel from the top pattern of table 10, whereas the last feature is the intensity level of
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the bottom right pixel from the last pattern in this table.

For calculating the feature vector’s length, the amount of color channels nc for a pixel
needs to be defined, which is 1 due to every image was handled as grayscale. Finally
the length for one v and thus the amount of features per label can be calculated with
equation 16.

|ν| = label + nc · ph · pw · np = 1 + 1 · 50 · 5 · 14 = 3501 (16)

With the help of the image vector Finit, that contains the instances from the initial unsu-
pervised tracking procedure, the individual features for each frame of Finit are extracted
from the static pattern locations (see tables 10-12) and are then combined with the re-
lated ROI positions on the trajectory, saved during the unsupervised tracking period.
This creates the initial dataset, which then is a |Finit| x |ν| matrix for one RF.

A.3 System specifications

The system’s specifications of the computers, who were utilized for tracking on the
CLUST testset is shown in table 13. During evaluation of the trainingset, the group of
computers had to be switched, that lead to slightly different results. The information in
the table refers to the new group of PCs. Unfortunately information about the former
devises could not be gathered anymore.

Table 13: The tracking system specifications.

Python 2.7.3
scikit-learn 0.11
OpenCV 3.1.0-dev
OS Debian GNU/Linux 7.11
Kernel Linux 3.2.0-4-amd64

GPU Nvidia Geforce Gt 610
CPU Amd FX-8350 8 x 4000 MHz
Memory 31.4 GiB

A.4 Hyper-parameter optimization
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