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Figure 1. From left to right, an N-Body Gravity simulation, a flocking simulation, and 
particles interacting with and influencing their environment. 
 
 
7.1 Introduction 
 
 
Particle systems ([Reeves83, Sims90, McAllister00]) have been the mainstay of video 
game effects for the past decade.  They have been used to simulate everything from 
explosions ([Burg2000]) to swarms of insects ([Reynolds87]).  As more and more 
processing power is becoming available on commodity graphics processors, many video 
game subsystems are now moving over to the GPU.  Particle systems have moved with 
them, but in doing so, have lost some of their functionality in the move.   
 
In this chapter we introduce several methods for creating advanced interaction particle 
system simulations whose data and computations reside entirely on the GPU. We use 
non-parametric particle systems on the GPU to display complex particle behavior 
otherwise reserved for CPU based particle systems.  In this chapter we cover the basics 
of non-parametric particle systems, particle-to-particle interactions, and particle versus 
scene interactions.  
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For the intents of this chapter, we base our approach on an assumption that the particle 
system data is not instrumental to gameplay and that the CPU does not need to results 
of particle system operations to perform any other game-related functions. However, it is 
a fairly straightforward extension of our approach to provide particle data back to the 
CPU by read-back.  
 
 
7.2 Rendering System Requirements 
 
 
While many of the methods described here can be adapted to work on the majority of 
consumer video graphics hardware currently in the market, some techniques require the 
use of more advanced features that can only be found on Direct3D 10-level graphics 
devices (as described in [Blythe06]). 
 
For the following techniques we assume that the video hardware is a recent video card 
that supports at least a Direct3D 10 level of functionality.  In our case we are specifically 
going to take advantage of such features of this generation of hardware as additive 
alpha blending; instancing support; the ability render directly to volume textures; the 
ability to sample textures or data buffers from any stage of the pipeline; support for pixel, 
vertex, and geometry shaders; the ability to save transformed geometry back into GPU 
memory; texture array support; and automatic generation of mip-maps. 
 
 
7.3 Non-Parametric Particle Systems 
 
 
Parametric or stateless particle systems are easy to handle in programmable graphics 
pipelines.  Because each particle position is described parametrically the position of the 
particle at any time can be determined by plugging that time into an equation of motion.  
This approach has two main benefits.  The first is that it requires no extra storage for 
intermediate particle state.  The second is that it is an exact analytical solution to the 
path of motion for the particle.  No integration of the equations of motion is required to 
find the position of the particle. 
 
Unfortunately, there are drawbacks to using parametric systems.  The main one is that 
once set, the motion of a particle cannot change.  This limits the ability of a parametric 
particle system to react to its environment in real-time.  In addition, it limits the system to 
paths of motion with known analytical solutions (as described in [Lutz04]). 
 
For our work, we use non-parametric particle systems similar to [Lutz04].  These work 
on the premise that the equations of acceleration are integrated over the course of the 
simulation to compute instantaneous velocity.  The velocity equation is integrated over 
the course of the simulation to compute instantaneous position.  This approach is less 
accurate than a purely analytical parametric solution, but maintains a level of flexibility 
and interaction far beyond a parametric system. 
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7.3.1 Storage Requirement 
 
 
In order to integrate the equations of acceleration and velocity, we must store the 
immediate values for the previous frame’s instantaneous velocity and position.  These 
will be known as the particle’s state.  For the remaining techniques, we can store particle 
state using either of two storage objects readily available on current graphics hardware.   
 
The first option is to store state in a vertex buffer.  In this approach, each vertex 
represents the state of one particle in its entirety.  It must contain at a minimum, the 
instantaneous position and velocity of the particle at the current time value.  The 
particles are stored linearly in the vertex buffer object. 
 
The second option is to store the particle state in series of floating point textures. 
Whereas [Lutz04] used several individual textures to store the data, we split the data 
between multiple slices of a single texture array.  A texture array is a single object that 
acts as a container for an array of traditional textures.  The first array slice stores 
instantaneous position and the second instantaneous velocity.  Additional array slices 
may be used to store additional data.  This data could be stored in one-dimensional 
textures, but size limitations on one-dimensional textures for current API and hardware 
versions would limit us to 8192 particles in the best case.  Therefore, we store particle 
state in two-dimensional textures where the height and width of the texture are the next 
largest integral square of the number of particles. 
 
 

7.3.2 Integrating the Equations of Motion 
 
 
Because the particle state is integrated using a series of instantaneous accelerations 
and velocities, the accuracy of the solution depends entirely on the length of time 
between the calculation of the previous values and the current values as well as the 
integration technique used.  Simple Euler integration will work in most cases where the 
behavior is simple or where the time between calculations is sufficiently small.  However, 
a more advanced integration such as a Runge-Kutta based integration scheme maybe 
be used where further accuracy is required.  Note that using a more advanced 
integration solution may require storage of several previous particle states.  For the 
techniques expressed here, we use Euler integration. 
 

7.3.3 Saving Particle States 
 
 
The current methodology of integrating particle motion requires a read-modify-write 
operation on the particle state data.  The Euler integration scheme for velocity requires 
that the current velocity be known and added to the instantaneous acceleration scaled 
by the current time step.  Unfortunately, read-modify-write operations are illegal in the 
programmable parts of the current graphics pipeline (they are allowed in the blend 
stages which are currently not programmable).  The solution is use a “ping-pong” 
technique to essentially double buffer the data.  In the particle update phase, the buffer 
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or texture being sampled contains the instantaneous particle state for the previous 
frame.  The particle update phase stores the new instantaneous particle state in other 
buffer or texture.  The buffers or textures are swapped for the next frame so that the 
particle update phase is always reading from the previous frame’s data. 
 

7.3.4 Changing Behaviors 
 
 
Because our particles are no longer affixed to a predestined path of motion, changing 
behaviors of individual particles is as easy as changing their individual velocities or 
positions.  While these will result in an immediate change of motion for the particle, a 
change in position will cause a break in the C1 continuity (or the position curve), while a 
change in velocity will cause a break in the C2 continuity (i..e the derivative of the 
position curve).  In the following techniques, we will only change acceleration, and 
therefore only break C3 of the position curve.  This results in a much smoother visual 
appearance of particle motion. 
 
 
7.4 Particles That React to Other Particles  
 

 
Figure 2.  Flocking and gravity simulations 
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7.4.1 N-Body Problems 
 
 
Many particle systems require that every particle influence every other particle in the 
system.  These are generally classified as N-Body problems.  We outline a method of 
dealing with N-Body problems on the GPU. 
 

7.4.2 Force Splatting for N2 Particle Interactions  
 
 
The goal of force splatting is to project the force from one particle onto all other particles 
during a single operation.  In this case, the operation is the rendering of a quad primitive.  
We create a texture that acts and an accumulation buffer for all forces applied to the 
particles.  This buffer will be the target of the rasterization operations that will 
accumulate particle forces.  Each texel in the force texture holds the accumulated forces 
acting upon a single particle.  We also create a stack of N quad primitives, where N is 
the number of particles in the system.  The dimensions of the quads are such that they 
will exactly cover the force buffer when rasterized.  The four vertices of each quad in the 
stack contain a vertex element which identifies the exact particle represented by the 
quad.  During rasterization, this interpolated vertex element is used to fetch properties of 
the particle from the particle texture or the particle buffer. 
 

 
Figure 3.  Force splatting by rendering multiple into a force texture with alpha blending 
 
During the rasterization of a single quad, the forces are calculated between the particle 
being rasterized to and the particle represented by the vertex element in the vertices of 
the quad.  Forces are accumulated by rendering successive quad with additive alpha 
blending enabled. 
 
While less than elegant in terms of algorithmic complexity, the force splatting algorithm 
exploits the fast rasterization and alpha blending capabilities of modern graphics 
hardware without the need to continually recreate complex space partitioning structures 
on the GPU. 
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7.4.3 Gravity Simulation  
 

 
Figure 4.  N-body gravity simulation using force splatting to accumulate forces between 
all N particles 

 

7.4.3.1 Using Force Splatting for Gravity Interactions 
 
 
To compute the gravitational force of all particles to all other particles, we use the 
method of force splatting mentioned above to accumulate all of the forces imparted on 
each particle in the system.  In the particle update phase, this force is divided by the 
particle’s mass to determine the instantaneous acceleration of the particle.  The 
equations of motion are integrated, and the particle system is updated. 
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7.4.4 Flocking Particles on the GPU 
 

 
Figure 5.  A boids implementation handled entirely on the GPU.  Particles use force 
splatting for collision avoidance, and separation while using fast mip map generation for 
coherence and goal seeking.  A single space-ship mesh is then instanced using particle 
position and orientation as a transform. 
 
Perhaps more relevant to game development is the idea of flocking particle systems.  
Oftentimes particle systems are used to create the illusion of flocks of birds or bugs 
swarming around a light or fallen comrade.  Traditional flocking behaviors need to follow 
a few simple rules in order to look plausible.  In this situation, the rules are collision 
avoidance, separation, cohesion, and alignment.  See [Reynolds87, Reynolds99] for in-
depth descriptions of flocking behaviors. 
 

7.4.4.1 Force Splatting for Collision Avoidance and Separation 
 
 
The flocking simulation takes advantage of the previous N2 force splatting to avoid 
collisions between particles as well as to maintain a certain comfortable separation 
between all particles.  Instead of computing the gravitational attraction between particles, 
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we’re computing a repellant force for each particle based upon either how close the 
particles are to colliding or how much space is between particles. 
 

7.4.4.2 Fast Averaging for Cohesion and Alignment  
 
 
Behaviors such as cohesion and alignment rely on the knowledge of the average 
position and average velocity of the particles respectively.  Fortunately, modern graphics 
hardware provides a fast way of averaging entire textures by being able to generate mip-
maps on the fly.  By sampling from the smallest mip-level during the particle update 
phase, we can create a force vector from the particle to the center of mass for cohesion 
or create a force vector that aligns our particle with the average velocity of all other 
particles.  This force vector is added to the force vector sampled from the force 
accumulation texture. 
 

 
Figure 6.  Fast averaging of particle states by generating mip-maps 

 
7.5 Particles Reacting to Their Environments  
 
 
In order for non-parametric particle systems to have a true advantage over parametric or 
scripted systems, they must react to their environments as well as to each other. 
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7.5.1 Reacting to Spherical Objects 
 
 

 
Figure 7.  Thousands of spaceships fleeing from a user-controlled obstacle 
 
The simplest way to interact with a particle system is to influence it through a limited set 
of “point charges.”  We use this approach for flee and seek behavior.  To repel or attract 
an entire flock, we create a limited set of spherical targets and pass in their parameters 
as shader variables.  This allows the particles to react to “point charges” introduced into 
the system.  The ‘seek and flee’ algorithms are a straight GPU implementation of 
[Reynolds99]. 
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7.5.2 Reacting to Arbitrary Objects Using Render-to-Volume 
 
 

 
Figure 8.  Particles bounce off and flow along both the box and animated lizard 
 
Many times particles must interact with shapes that cannot be accurately described by a 
fixed number of spheres.  [Lutz04] partitioned spaced into a two-dimensional grid.  This 
effectively limited the problem of collision to a height-field.  In our algorithm we partition 
the space in which the particles will interact into a regular three-dimensional grid.  Before 
the particle update phase, the scene geometry is placed into this grid in such a way that 
each cell in the grid contains the plane equation and velocity of the scene geometry that 
intersects that grid cell. 
 
During the particle update phase, the particles determine which grid cell they are in and 
fetch the plane equation and velocity from the grid cell.  These are used to determine 
whether there has been an intersection with the scene geometry and the new position 
and velocity of the particle if such a collision occurred. 
 
This method requires that two problems be overcome.  The first is how to efficiently 
populate the three-dimensional grid with scene data.  The second is how to efficiently 
fetch this data during the particle update phase.  Fortunately, both problems have the 
same solution.  Modern hardware provides support for regular three-dimensional grid 
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structures in the form of volume textures.  Additionally, volume textures can be rendered 
into or sampled using the graphics hardware. 
 

7.5.2.1 Populating the Volume Texture 
 
 
The volume texture must be populated with the scene geometry once slice at a time.  
Normally this would require a separate invocation of the rendering pipeline for each slice 
of the volume and then again for each object to be rendered.  However, the latest 
advances in graphics hardware provide the ability to bind all slices of the volume to the 
pipeline at once and selectively output geometry to each slice, therefore reducing the 
process to one invocation of the rendering pipeline for each object.  This latest 
advancement in graphics hardware comes in the form of a new addition to the rendering 
pipeline called the geometry shader.  In addition to being able to specify output slices 
into a volume render target, the geometry shader can also perform operations on whole 
primitives. 
 
The process works as follows:  the scene geometry is drawn with hardware instancing 
turned on.  We draw S instances of the scene geometry where S is the number of slices 
of the volume texture.  In the shader, each triangle primitive is sent to a different slice of 
the volume depending on the instance ID of the geometry.   
 

 
Figure 9.  Rendering an object into a volume using instancing to send it to all slices 



Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2007 

91 

Using the aforementioned geometry shader, the plane equation for the primitive is 
computed and passed along to the pixel shader along with the velocities of each of the 
vertices.  In order to ensure only geometry that passes through a particular slice ends up 
being rasterized to that slice, user specified clip planes are provided to clip any geometry 
that falls outside of its specified slice.  The pixel shader then outputs the plane equation 
and interpolated velocity into the volume texture. 
 

 
Figure 10.  The plane equation and velocity are rendered into each voxel of the volume 
 

7.5.2.2 Sampling the Volume Texture  

 
In the particle update phase, the particle volume texel that encompasses the particle is 
sampled for its plane equation and velocity.  The particle is then checked for collisions 
against the plane equation.  If a collision occurs, the particle is deflected according to its 
own velocity, the plane equation, and the plane velocity. 
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7.5.2.3 Resolving Aliasing  
 
 
With detailed geometry or a coarse volume texture representation, multiple primitives 
may be rasterized into the same volume cell.  To store all plane equations and velocities 
that intersect that grid cell would take too much video memory and require multiple 
fetches in the sampling phase.  Therefore, we keep only the most important plane 
equation and velocity to use in our computations.  We do this by rendering the scene 
geometry into the volume texture from the direction that the majority of the particles will 
be traveling in.  This is often the point of view of the emitter.  We then use the depth test 
in the hardware to ensure that the primitive closest to the camera position used when 
rendering the scene into the volume will be kept.  Since the majority of the particles are 
moving in the direction away from the camera we can ensure that in an ideal situation 
most particles would hit this plane before hitting any other plane that would also occupy 
this particular cell.  However, the incorrect results may be achieved for particles traveling 
in a direction that is too different from the average direction.  This error can also be 
avoided with a denser volume texture. 
 

 
Figure 11.  Aliasing can occur when two primitives occupy the same voxel.  Keep the one 
closest to the direction of motion of most particles. 
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Figure 12.  One way to combat aliasing is to use a denser volume texture 
 
 
7.6 Environments That React to Particles  
 

 
Figure 13.  The particles paint into the diffuse channel of the box and lizard when they 
intersect the objects.   
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Finally, we show how particles can actually affect their environments.  We use the 
particles to affect the appearance of the world geometry. 
 

7.6.1 Painting with Particles Using a Gather Approach 
 
 
Finally, we show how the appearance of the scene geometry can change based upon 
it’s interaction with particles.  In particular, the particles will apply paint to any part of the 
object that they encounter. 
 

7.6.1.1 Rendering the Position Buffer  
 
 
First we need to create a position buffer for each object in the scene.  The position buffer 
is a floating point texture that contains a world-space position for each texel in the 
object’s UV space.  This is effectively a UV to world space mapping.  To populate the 
position buffer, we render the mesh using the texture uv coordinates as position 
coordinates.  This renders the mesh geometry in UV space.  The pixel shader then 
outputs the interpolated position data into the position texture.  Care must be taken to 
ensure that the uv element being used is a unique parameterization of the mesh, 
otherwise the results will be incorrect. 
 

 
Figure 14.  Creation of the position texture:  World position is rendered into UV space. 
 

7.6.1.2 Gathering Paint Splotches  
 
 
With the position buffer populated, we need to gather particles from the particle buffer or 
texture and determine whether they intersect the mesh.  If so, we add their paint to a 
paint texture.  We handle this by setting the paint texture as a render target and 
rasterizing a quad that, when rendered, covers the render target exactly.  During 
rasterization, we sample the world-space position from the position texture for the 
current texel.  We then iterate over the particles in the particle buffer or texture.  For 
each particle, we determine if it is close enough to the world-space position in the 
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position buffer to leave any paint.  If so, we add the paint influence to the total paint 
output for this pixel shader invocation. 

 
Figure 15.  A pixel shader passes over the position texture.  For each particle, it 
determines whether the current position intersects the particle.  If it does, it outputs an 
appropriate amount of paint into the diffuse texture. 

 

7.6.1.3 Amortizing the Gather over Time  
 
 
For systems containing thousands of particles, iterating over all particles during gather 
time may not provide the best frame rate.  For hardware with a fixed instruction count it 
may not be possible to loop over all particles. We amortize the cost of gathering over 
several frames by determining a fixed amount of particles to gather.  For example, for 
the first frame we gather the first G particles.  For the next frame we gather the next G 
particles, and so on until we loop back around to the beginning of the particle buffer.  
This gives much better performance with little loss in the quality of the effect. 
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