
Mass-Spring Systems on the GPU

Joachim Georgii a,∗ , Rüdiger Westermann a

aComputer Graphics & Visualization Group, Technische Universität München 1

Abstract

We present and analyze different implementations of mass-spring systems for inter-
active simulation of deformable surfaces on graphics processing units (GPUs). For
the amount of springs we target, numerical time integration of spring displacements
needs to be accelerated and the transfer of displaced point positions for rendering
must be avoided. To fulfill these requirements, we exploit features of recent graphics
accelerators to simulate spring elongation and compression on the GPU, saving dis-
placed point masses in graphics memory, and then sending these positions through
the GPU again to render the deformed surface. Two different simulation algorithms
implementing scattering and gathering operations on the GPU are compared with
respect to performance and numerical accuracy. We discuss GPU specific issues to
be considered in simulation techniques showing similar computation and memory
access patterns to mass-spring systems.

Key words: Physics-based simulation, GPU simulation, mass-spring systems

1 Introduction

To study the motion of a mechanical system caused by external forces, physics-
based simulation is needed. For a set of connected rigid or flexible parts ex-
hibiting material dependent properties, the equations of motion can be formu-
lated and solved to predict the dynamic behavior of such systems. Even for
simple abstractions, however, calculations involved are usually too expensive
as to allow for real-time simulation of reasonably sized objects.

To visualize the system dynamics, the geometric representation of the system
has to be modified according to the computed motion. In every simulation
frame, geometry has to be updated, and the data structure used by the sim-
ulation engine has to be converted into a suitable format for rendering. If

∗ Corresponding author.
Email addresses: georgii@in.tum.de (Joachim Georgii),

westermann@in.tum.de (Rüdiger Westermann).
1 http://wwwcg.in.tum.de

Preprint submitted to Elsevier Science 7 July 2005



the simulation is carried out on the CPU, displaced geometry has to be sent
to the GPU for rendering. With the ability to do more simulation steps per
time interval, the bandwidth required will grow substantially thus prohibiting
real-time or even interactive rates.

In this paper, we present and analyze different implementations of a mechan-
ical system as described on recent GPUs. Although we concentrate on mass-
spring models as they typically arise in medical and engineering simulations,
the concepts we propose can also be employed in other applications. In many
applications, despite different rules to update every part of the system, re-
trieval and evaluation of adjacent states is an intrinsic mechanism.

In particular, we have implemented a mass-spring system based on triangular
mesh structures. Edges are treated as springs connecting pairs of mass points.
Under the influence of external forces, e.g. forces exerted by user interaction,
gravity, or collision, the object deforms into a configuration where the external
forces are compensated by opposing internal forces. In the most basic form,
only the springs themselves apply forces, seeking to preserve their rest length
when compressed or stretched.

At the core of this implementation we have developed two different data struc-
tures amenable to the kind of operations performed. The first one is point-
centric and can be updated by gathering information from adjacent parts,
the second one is edge-centric and uses scattering to update the position of
mass points. Both data structures are compared to each other with respect to
memory requirement, performance and numerical accuracy.

2 Modeling

We assume the surface to be deformed is modelled by a triangulation of dis-
crete mass points. Since triangle edges are considered as springs between these
points, surface patches are prohibited from degenerating to a line. Springs can
rotate arbitrarily, and the forces they exert on connected points are obtained
from Hooke‘s law

F ij = F ij(xi, xj) = Dij

|lij| − |l0ij|

|lij|
· lij. (1)

Here, Dij describes the stiffness of the spring connecting points xi and xj,
and lij is the distance between these points. The rest length of the spring in
its initial configuration is denoted |l0ij|. For every mass point, forces exerted
by all connected springs have to be accumulated. These forces should balance
the external forces F i

ext acting on a single mass point. As external forces are
exerted continually, the balance between internal and external forces has to
be achieved dynamically.

2



In the current implementation, positions of mass points, xi, are updated with
respect to their velocity and acceleration using the Lagrangian law of motion

mi ẍi + c ẋi +
∑

j∈Ni

F ij(xi, xj) = F ext
i (2)

with mi being the mass and c the damping constant. Ni denotes the 1-
neighborhood of point xi. As forces F ij depend on the positions of all mass
points, a non-linear system of equations has to be solved in general. To avoid
this, we restrict ourselves to explicit time integration. Given a time step dt,
for every point its new position is calculated using Verlet integration. As this
scheme does not require point velocities to be explicitely calculated or stored,
the current velocity is always consistent with the current point position. New
point positions xi can then be computed as

xi(t + dt) =
F tot

i (t)

mi

dt2 + 2 xi(t) − xi(t − dt),

where the total force F tot
i is computed as

F tot
i (t) = F ext

i −
∑

j∈Ni

F ij − c
xi(t) − xi(t − dt)

dt
.

As the force calculation is solely based on point positions at the current time
step, forces F tot

i as well as updated point positions can be computed in parallel.
Since the position update affects all springs in general, external and internal
forces are no longer in balance. This results in a dynamic behavior of the
system. To let the system converge, a reasonably small integration time step
satisfying the Courant condition has to be chosen.

In chapter 4 we will describe two different approaches to exploit parallelism
and memory bandwidth on recent GPUs for the dynamic simulation of a mass-
spring system as described. On such architectures, not only can the simulation
of such systems be carried out efficiently but the deformed surface can be
directly rendered without any data read-back to the CPU.

3 GPU Architecture

On current GPUs, fully programmable parallel geometry and fragment units
are available, which can be accessed via high level shading languages Mark
et al. (2003); Microsoft (2002). These units provide powerful instruction sets
to perform arithmetic and logical operations. In addition to computational
functionality, fragment units also provide an efficient memory interface to
server-side data, i.e. texture maps and frame buffer objects. Not only can
application data be encoded into such objects to allow for high performance
access on the graphics chip, but rendering results can also be written to such

3



objects, thus providing an efficient means for the communication between
successive rendering passes.

In this work we employ OpenGL Superbuffers on the ATI X800 XT graphics
card to subsequently interpret a contiguous block of video memory as a 2D
texture map, a texture render target or a vertex array ATI (2004). In partic-
ular this mechanism allows us to send data computed in the fragment units
through the GPU again to render geometric primitives without any read-back
to CPU memory. Figure 1 gives an overview of the rendering pipeline as it is
implemented on current GPUs.

In recent years, a popular direction of research has lead towards the imple-
mentation of general techniques of numerical computing on such hardware.
A comprehensible collection of research papers in this particular area can be
found in Harris (2002); Owens et al. (2005). The results of these efforts have
shown that for compute bound applications as well as for memory bandwidth
bound applications the GPU has the potential to outperform software solu-
tions. However, this statement is valid only for such algorithms that can be
compiled to a stream program, which then can be processed by SIMD kernels
as provided on recent GPUs. As we will show, mass-spring systems exhibit
this property.

4 GPU Implementation

Typically, the implementation of a mass-spring system is performed in the
following steps:

(1) Calculation and accumulation of spring forces at mass points
(2) Time integration of mass points
(3) Update of point positions

As the first step requires adjacent points to be accessed, a GPU data structure
able to efficiently perform this kind of operation needs to be developed. In the
following we will investigate the use of two different data structures in this
particular scenario – point-centric and edge-centric. Depending on which data
structure is used, mass-spring simulation is implemented as shown below.

Point-centric

for all mass points i do

initialize total force F_i

// Gather force

for all neighboring mass points j do

calculate spring force F_ij

add F_ij to total force F_i

endfor

update vertex position x_i

endfor

Edge-centric

for all mass points i do

initialize total force F_i

endfor

for all springs ij do

calculate spring force F_ij

// Scatter force to incident mass points

add F_ij to total force F_i of left mass point

add F_ij to total force F_j of right mass point

endfor

for all mass points i do

update vertex position x_i

endfor

4



The major difference is the way spring forces are calculated. In the point-
centric approach, for every mass point adjacency information is gathered. In
the edge-centric approach, every edge computes its spring force only once and
scatters this force to the mass points it connects.

4.1 Point-centric approach (PCA)

In the point-centric approach, a surface point needs to maintain its current and
last position for time integration, its mass as well as references to all adjacent
points including spring stiffness and rest length. Furthermore, the memory
requirement for each vertex is not constant and depends on its valence (the
number of incident edges).

On the GPU, per-point attributes and references are stored in equally sized
2D texture maps. We store references into a 2D texture in a single float com-
ponent, and we use shader arithmetic to decode the appropriate 2D texture
coordinates. A stream of as many fragments as there are points is generated by
rendering a view plane aligned quadrilateral that covers exactly this number
of pixels. In the fragment units the edge-centric algorithm is carried out by
fetching attributes of adjacent points from the respective texture maps. Forces
are then calculated and used to integrate to the next position. These positions
are written to an additional render target, which becomes the container of
point coordinates in the following simulation pass.

Using the proposed data structure, two different realizations of mass-spring
simulation on the GPU are possible. First, if all vertices have the same valence,
all computations necessary to update mass point positions can be performed
in one rendering pass. Only if the valence exceeds the number of available
texture units the execution has to be broken into multiple passes. Second, if
the valence is not constant the computation has to be split into multiple ren-
dering passes. To avoid processing of points that have no further neighbor, a
particular texture layout can be employed Georgii et al. (2005). In this layout,
with increasing valence points are stored within an ever smaller rectangular
sub-area of the entire 2D texture. The application program renders an appro-
priately sized quadrilateral to produce exactly the same number of fragments
as there are points not yet updated. This approach requires multiple render-
ing passes, which communicate their results via an additional render target.
Moreover, in every single pass the position of the center mass point has to be
read, which increases the number of texture fetches to be performed.

The point-centric approach comes at the expense of calculating each spring
force twice, as every spring is incident to two mass points. Moreover, the data
structure becomes very inefficient for large valences. As it requires as many
textures as the maximal valence of the mesh, the number of memory access
operations as well as the amount of memory to be kept can quickly become the
bottleneck of the simulation. In particular because texture fetches to adjacent

5



mass points are dependent fetches, due to the fact that references are stored in
texture maps, for typical meshes this approach exhibits significant drawbacks.

4.2 Edge-centric approach (ECA)

An edge-centric data structure overcomes the aforementioned drawbacks of
a point-centric approach. For every edge, references to both incident points
as well as spring stiffness and rest length are stored in an appropriately sized
edge texture. In a first rendering pass, spring forces are calculated and rendered
into a texture target – the force texture. As there are three times more edges
than points in a triangulation, this texture is different in size than the texture
keeping point coordinates – the point texture. The problem now becomes to
scatter the computed forces to the respective points, and for every point to
accumulate the received contributions. Such an operation is not supported on
recent GPUs, and gathering the forces using a point-centric data structure
results in the same problems as described.

To enable GPU scattering, we harness the power of vertex processing. For
every edge, a point primitive is rendered twice into a render target that is equal
in size than the point texture. First, primitives are rendered at the respective
position of the left mass point of every edge. In the second pass, the target
position is at the entry of the right mass point in this texture. As both target
positions are already stored in the edge texture, this structure can directly be
rendered as server-side vertex array. In a vertex shader program, references
stored are decoded into appropriate point coordinates to be rasterized at the
respective position in the render target. In every pass, the force texture is used
as additional color array. In the second pass, forces are negated in a fragment
shader before they are combined using accumulative blending in the current
render target. In this way, multiple points are rendered into the same entry of
a point-centric render target, which finally stores the force per mass point.

Independent of the points’ valences in the mesh, the edge-centric approach only
requires four rendering passes. The first three passes operate as described, and
in the fourth pass the time integration of mass point positions is performed
using computed per-point forces. In addition, forces are only computed once for
each edge, reducing the number of arithmetic operations and texture fetches
to be performed.

5 Discussion and results

We now start the evaluation of the proposed data structures in the particular
scenario. Memory requirements as well as the number of texture fetches and
arithmetic operations are compared. We distinguish between texture fetches
and dependent texture fetches, the latter being dependent on the result of an
earlier texture lookup. Such fetches are known to be a potential bottleneck in

6



GPU applications, as the pipeline has to be stalled until the result of the first
texture fetch is available.

In the following, N denotes the maximal valence of a vertex in the triangula-
tion. nv and ne are the number of vertices and edges, respectively. For regular
meshes, nv and ne are related as N = 2ne/nv. In the general case, N can be
significantly larger.

Table 1 shows the statistics for the point-centric and the edge-centric ap-
proach. In PCA, for every mass point and every adjacent point the reference
to this point, the stiffness of the spring connecting both points, and the springs
rest length are encoded in a RGB texel. In ECA, two references to the points
connected by the spring, spring stiffness, and rest length, are encoded in one
RGBA quadruple. While forces are stored in a RGB texture map, a RGBA
texture is used to keep each point position and mass. Throughout the dis-
cussion we do not account for the overhead introduced by the Verlet time
integration, as it adds the same additional expense to both approaches, i.e.
2nv texture fetches to get the current and the previous point position and
about 10 arithmetic operations to perform the integration.

On our target architecture, a P4 3 GHz processor equipped with an ATI X800
XT card, we can render about 240 million point coordinates per second from
the server-side edge texture as described. Even for the largest mesh we consider
in our investigations, consisting of 5122 vertices, this throughput allows us
to perform GPU scattering in ECA about 480 times per second. As will be
shown below, this time is justifiable compared to the time required by force
calculation and time integration.

For a regular mesh of valence 6 as shown in Figure 2, the PCA requires nv +ne

more texture fetches than ECA at the same number of dependent fetches. In
addition, the number of operations to be performed in the fragment units is
slightly increased. The memory requirement of ECA, on the other hand, is
slightly higher compared to PCA. This is due to the force texture needed to
store the result of the first pass. As can be seen in Table 2, due to the lower
number of arithmetic and memory access operations, even for regular meshes
exhibiting rather low valence ECA outperforms PCA in terms of run-time.

For irregular meshes, on the other hand, the benefits of ECA will grow sub-
stantially, as it does not depend on the maximal valence of the mesh. With
increasing valence, both memory requirements and texture fetch operations of

mem. RGB mem. RGBA tex. fetches dep. tex. fetches ops

PCA N · nv nv nv + N · nv N · nv 10 N · nv

ECA ne ne + nv ne 2 ne 14 ne

Table 1
Comparison of memory requirement, texture fetches and arithmetic operations for
the point-centric approach (PCA) and the edge-centric approach (ECA).

7



force calculation force accumulation Verlet integration total

PCA 1282 0.54ms 0.20ms 0.74ms

ECA 1282 0.40ms 0.12ms 0.20ms 0.72ms

PCA 2562 2.34ms 0.74ms 3.08ms

ECA 2562 1.76ms 0.52ms 0.74ms 3.02ms

PCA 5122 9.82ms 3.18ms 13.0ms

ECA 5122 7.34ms 2.08ms 3.18ms 12.6ms

Table 2
Performance comparison between the point-centric (PCA) and edge-centric (ECA)
approach. All timings are measured for a regular mesh with valence 6.

PCA will increase as well. Moreover, a potentially large number of rendering
passes has to be performed. Even if an optimized texture layout is employed
to minimize the number of fragments to be processed, this texture cannot be
packed densely in general and thus introduces some overhead in the current
application. For example, PCA performs 1.6 times slower in total for a mesh
with valences in the range from 3 to 12.

The most crucial limitation of ECA in the current scenario is with respect to
additive blending in the render target that is used to accumulate the force
contributions. As 32 Bit floating point blending is currently not supported
on any GPU, force accumulation was performed inadequately in 8 Bit fixed
point precision. In contrast to PCA, where force accumulation is carried out
in the fragment shader with 24 Bit floating point precision on current ATI
graphics cards, numerical precision is therefore a problem in ECA. However,
next generation graphics cards will overcome this limitation, as they might
allow for a read-back from the current render target or a full precision floating
point blending.

Let us conclude the discussion with some remarks concerning collision detec-
tion on the GPU. As has been shown in previous work Kolb et al. (2004);
Nvidia (2005) collisions between moving particles and simple polygonal ob-
jects or objects described analytically can be determined quite efficiently on
the GPU. Self collisions, on the other hand, have not yet been considered.
In our current implementation (see Figure 3 and 4) we have integrated the
binning approach for approximative self collision detection proposed in Kipfer
et al. (2004). With respect to a partitioning of 3D space using a regular grid,
every mass point gets assigned the unique identifier of the cell containing
this point. A GPU sorter is employed to generate a texture map in which
points contained in the same partition are most likely to be stored in adjacent
elements. By using multiple staggered space partitions, the majority of self col-
lisions can be detected. For large integration time steps or many points within
the same cell, however, the number of missed collisions increases significantly.

8



6 Conclusion

In this paper, we have presented a physics-based simulation engine for de-
formable surfaces that is exclusively realized on the GPU. We have developed
and analyzed different implementations built upon point- and edge-centric
data structures. While the computation and accumulation of forces is per-
formed in the fragment units of recent GPUs, both data structures distinguish
in the way computed force contributions are derived in the fragment shader.
With respect to performance it was shown, that even for regular meshes an
edge-based approach is superior to a point-based approach. Furthermore, such
an approach greatly simplifies the GPU implementation and requires less cod-
ing effort. For non-regular meshes as they typically arise in adaptive triangu-
lations, the benefits of edge-based data structure turn out much more domi-
nantly.

The major drawback of an edge-centric data structure is with respect to nu-
merical precision. In the simulation of mass-spring models, where the dynamic
range of exerting forces is very high, accumulation of forces using 8 Bit inter-
nal format is not sufficient. Although 16 Bit floating point precision on recent
Nvidia cards gives visually accurate results, from the numerical point of view
only full 32 Bit floating point blending will produce appropriate results.

Independent of the data structure used, displaced point coordinates are stored
in 2D texture maps, and they can be displayed directly without any read-
back to CPU memory using OpenGL memory objects. As a matter of fact, in
applications where the system dynamics should directly be visualized, a GPU
implementation comes at an additional advantage.

References

ATI, 2004. Superbuffers OpenGL Extension.
www.ati.com/developer/gdc/SuperBuffers.pdf.

Georgii, J., Echtler, F., Westermann, R., 2005. Interactive simulation of deformable
bodies on GPUs. In: Proceedings of Simulation and Visualization 2005.

Harris, M., 2002. General-purpose computing using graphics hardware.
http://www.gpgpu.org/.

Kipfer, P., Segal, M., Westermann, R., 2004. Uberflow: A GPU-based particle en-
gine. In: Proceedings Eurographics Graphics Hardware Conference. IEEE.

Kolb, A., Latta, L., Rezk-Salama, C., 2004. Hardware-based simulation and collision
detection for large particle systems. In: SIGGRAPH/Eurographics Workshop on
Graphics Hardware.

Mark, W., Glanville, R., Akeley, K., Kilgard, M., 2003. Cg: A system for program-
ming graphics hardware in a C-like language. In: ACM Computer Graphics (Proc.
SIGGRAPH ’03). pp. 896–907.

Microsoft, 2002. Directx9 sdk. http://www.microsoft.com/DirectX.
Nvidia, 2005. Sdk white paper: Cloth. http://developer.nvidia.com/.

9



Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A. E.,
Purcell, T., 2005. A survey of general-purpose computation on graphics hardware.
In: Eurographics 2005.

Fig. 1. Conceptual overview of the programmable graphics pipeline.

Fig. 2. A cloth patch fixed on 4 points under influence of gravity.

Fig. 3. Demonstration of the approximative self collision detection.

Fig. 4. Interaction of different objects in an example scenario. The arrows describe
the direction of wind forces and additional forces applied to the balls.

10


