
How we defined our User Interface
Marvin Kampen

University of Bremen
Bremen, Germany

mkampen@uni-bremen.de

Abstract—In this paper is described how our group designed
the user interface for the student project ’Travis’. We will explain
our main design goals and discuss difficulties that we have
encountered while we created the graphical user interface for
the software.

Index Terms—unreal engine, unreal, trajectory, travis, visual-
isation, gui, user interface

I. INTRODUCTION

Travis is a masters project operated by University of Bremen
(UoB) and Marum, which tries to re-simulate a deep dive
mission in the Unreal Engine. Re-simulating in this case
means that log data is provided by an Autonomous Underwater
Vehicle (AUV) that needs to be read by a computer and
displayed in a simulated environment. The output layer of
this simulation might be a computer display or any technology
involving Virtual and/or Augmented Reality.

II. DESIGN GOAL

We wanted to archieve a software that suits the seven
human-computer interaction usability criterias as mentioned
in ISO 9241.
The first criteria is task suitability. The software should fit
the main tasks in a way that the software is not full of
unused features. Furthermore the software should contain all
the abilities that a user needs to resolve his tasks.
The second criteria is self-descriptiveness. All icons have
tool-tips. The software displays the help or error messages
or results to guide the user.
The third criteria is controllability. The user controlls the
program.
The fourth criteria is conforming to expectations. That means
that we should design our interface with the user expactations
and knowledge in mind.
The fifth criteria is fault tolerance. Errors can happen and
will happen. The software should anticipate common errors
and should handle them well. Every action can be reversed.
Customizability is the sixth criteria. The user interface should
be customizable for the user.
The last criteria is an easy learnability for the user. The user
interface should explain itself and easy to remind.

III. COMPONENTS

The interface was planned with a main menue, a map
selection, a tour view and things like options and credits in
mind. The reality changed our vision in certain aspects. It was

not necessary to divide the main menue and map selection it
two components. Furthermore was orignally planned to create
a software that could plan AUV tours and get in-situ data, but
this is a longterm vision. Our current goal was just to provide
a tool that contains the possibily to display an AUV tour. So
we keept our interface simple.
The only components that we now created are the software
launcher and the tour view plus a page with the credits.

IV. LAYOUT

This section will explain how we designed the main compo-
nent of the interface: the tour view. First we created a mock-up
(see Fig. 1) as a design guideline.

Our intention with the design is a small window hierarchy.
The user should see all important information and interactions
in one view. In addition we would like to display the game
view (a window that displays the 3d environment and the auv)
the whole time as the main visualization.
The interface layout is inspired by modern games where
a mini-map is displayed in a corner of the field of view.
Furthermore are the interactions buttons divided in different
groups. One group is for icons that interact with the game
view and trajectory. Another group is for the interaction with
the warning section. The date and battery are also defined
as a group which can not be interacted with. The timeslider
activities are grouped. We used groups for a better learnability
and for the encapsulating features into certain spots.
Then we recreated the mock-up in Unreal Engine 4 blueprints.
The blueprints are a visual scripting language that contains a
wide set of predefined user interface elements. The elements
were connected via functions in the last step.

V. RENDERING THE GAME VIEW

One huge issue that we had was the creation of an individual
game view. The Unreal Engine 4 is not capable to resize the
game view by hand, so we created a work around with the
usage of a render camera.
The render camera is coupled with a normal camera and then
it renders the picture of the camera on a texture. The texture
is transformed into a material which is mapped on an image
within the auv interface blueprint. In case the user switched
the camera perspective it is necessary to turn off the current
render target. Another approach was the useage of a split
screen functionality ,but we realized that we could not control
the size of the game view properly when enabling the built in



split screen. Furthermore the useage of the split screen ended
up that the performance of the game were quite bad, because
of the additional screen that needs to be rendered. This is why
we used our work around.

VI. HANDLING THE CAMERAS

There are two cameras placed in the map. One camera is
placed beyond the auv. The camera is a 360 degree rotatable
camera with fixation on the auv.
The second camera is a free flying camera that could free roam
in the map. The camera starts always behind the auv.
The camera switch is accomplished by a click on the camera
button.

VII. THE MINI-MAP PROBLEM

With the mini-map we have encountered the issue that we
have dynamic maps. No map is the same, so our mini-map
must be dynamic, too. THe current solution is that we let a
render camera render their view on the minimap texture. This
approach has some shortcomings like it is not an effective way
to do a mini-map, because of the additional renderer. Also the
mini-map cannot really adjust to the sturcture of the map. Plus
the mini-map could be designed more beautiful, if we know
how the map would look like.

VIII. CONCLUSION

We did not archieved all goals that we defined prior the
implementation of the user interface, but the result is still
accepted by our customer. The advice from the ISO 9241
criterias helped, but we could not fulfill all the criterias.

IX. FUTURE CONTRIBUTIONS

Future versions of the TRAVIS software should consider
the following features or additions to the user interface. A
mini-map that do not rely on a render camera would improve
the software performance and it could look way better than
the current solution. The Marum said that it would be cool,
if we they could create custom profile for scientific or for
engineering purpose. The profile should show only the relevant
aspect for their work.



Fig. 1. Design Mock-up



Fig. 2. Current screenshot from the final product


