
Trajectory Visualisation
Ingmar Ludwig

University of Bremen
Bremen, Germany

iludwig@informatik.uni-bremen.de

Abstract—One important functionality of the TraVis simula-
tion is the ability to first show the AUVs trajectory in 3D and
second to project color coded AUV status data on the trajectory
for different benefits. In this paper the process of creating the
three dimensional trajectory and using it for projecting AUV
status data is described and examples for the projections and
possible uses are given.

Index Terms—unreal engine, unreal, trajectory, travis, visual-
isation

I. INTRODUCTION

The documentation of the TraVis simulation is divided in
several parts. In this part the visualization of the trajectory is
explained.

One of the key features of the TraVis simulation software
is the ability to show the AUVs trajectory in 3D as shown in
figure 1. This visualization enables the user to get an easy
overview over the AUVs movement in space especially in
regards to the other parts of the simulation like the landscape.

The trajectory is drawn using three-dimensional spheres
which collectively form a dotted line from the missions start
point to the endpoint. This mechanism is further utilized to
make collected data overseeable within the simulation by
projecting color coded data on the spheres depending on their
position. This can help to make effects visible that might
not be visible otherwise or help with resolving errors e.g. by
uncovering when an error first occurs.

Currently six different data sets can be projected on the
visualization: rotations per minute of the motor, speed, pres-
sure, heading angle (direction of movement), pitch (ascend
or descend angle) and roll (rotation around the long axis).
Examples for those data projections and possible uses are
given in figure 2 to 7.

The visualization is created in the initialization phase of the
Level Blueprint and then modified during runtime according
to the user inputs (for further information on the initialization
phase refer the Lifecycle-paper). In this paper the process of
the the creation of the visible trajectory and the data projection
is described.

II. CREATION OF THE VISUALIZATION

The visualization of the trajectory consist of a dotted
line which is realized using generated spheres. This is done
in the draw trajectory method, which is called in the ini-
tialization phase of the level blueprint after the connection
to the DataCommunicator object is established through the

StartCommunication method. The DataCommunicator enables
accessing the AUV mission data using so called Waypoints
with one waypoint representing one point in time at which
the AUV recorded its status (or, in other words, one line
in the AUV log file). It is necessary to keep this order of
method calling, because the draw trajectory method uses the
DataCommunicators Waypoints internally.

After the draw trajectory method finished, the mission time
needs to be reset through the reset time to mission start
method, otherwise the simulation will not work correctly.

The draw trajectory method has two parameters: dis-
tance between objects, which determines the distance be-
tween the spheres, and use every nth value, which deter-
mines how much Waypoints are left out between two con-
nected Waypoints while drawing the trajectory. For example
if use every nth value is 2, the first and third waypoint is
connected, then the third and the fifth and so forth. This
parameter is introduced for increasing drawing speed with very
close waypoints. If for example the maximal distance between
two Waypoints is 0.1 meters and the distance between two
spheres is 20 meters it is possible to use only every 10th
waypoint without risking visible deviations while increasing
the drawing speed significantly.

The method itself has two main responsibilities: acquiring
and checking the waypoints and connecting the two waypoints
with dots.

The waypoints are acquired using the method
get next point from index of the DataCommunicator.
This method returns true if there is a Waypoint in the data
with this index and false if not. While this method returns
true, draw trajectory takes every nth Waypoint and connects
it with spheres as a dotted line.

Since the method might not use every waypoint due to
the use every nth value parameter, it is possible that some
waypoints at the end might be left out. If for example n is
10 and there are 102 values, the last two values are not used.
Since there are 500,000+ waypoints in the current context, this
is currently not a problem.

Every Waypoint is checked in two ways: First, it is checked
weather there are Waypoints with this index at all, using the
return value of the get next point from index method. If there
are no Waypoints with this index the method finishes (since
there are no ”holes” in the waypoints, this means the end
of the Waypoints is reached). Secondly, it is checked if both
Waypoints have a valid entry. If there was an error while



reading, the entry is x=0, y=0, z=0. In this case the false
Waypoint is skipped. Since the position x=0, y=0, z=0 is not
in the region of the trajectory, it is no problem to skip these
Waypoints.

In the next step, the two positions from the Waypoints are
connected with spheres, which happens in its own method
spawn objects from vec A vec B which connects two posi-
tions in unreal coordinates. The procedure in this method is
described further below.

Since it is usually the case that the distance between
the two positions differs from the distance defined in dis-
tance between objects, it is necessary to consider the distance
between the last spawned sphere and the end of the last
segment. For example if the distance between the last spawned
sphere and the end position in the previous iteration was 10
and the distance defined in distance between objects is 20,
the distance between the start position and the first spawned
sphere in the current iteration should be 10. Since it is often
the case that segments are shorter than the distance defined
in distance between objects, it is often necessary to add the
distance up over several iterations without any spheres before
the next sphere is added.

III. CONNECTING TWO POSITIONS

In this method the actual placement of the spheres takes
place, creating a continuous line of equally distanced spheres
along the trajectory after it was called for all segments (with
one segment being the line between two waypoints).

First it is checked whether the segment should contain a
sphere or not. This is done using the distance since the last
spawn from the last segment and the length of the current
segment: If the sum of both values is longer than the distance
between two spheres, at least one sphere is added to this
segment. If the sum is smaller, the method terminates and
returns this sum.

In case at least one sphere should be spawned, the direction
from the beginning of the segment to the end of the segment
is determined and, using linear interpolation, spheres are
spawned along this direction until the rest length of the
segment is shorter than the distance between two spheres.

The first sphere is spawned at distance between spheres -
distance since last spawn units. For the rest of the segment
all distance between spheres units a sphere is spawned. Usu-
ally this should not happen since a segment is usually a lot
shorter then the distance between two spheres. Since at least
one time in our test data an error occurred in the data recording
process leading to a longer period without data, it is necessary
to be able to deal with longer segments.

After each spawn a reference to each spawned sphere
is saved in an array for color modification during runtime.
Together with the reference the index of the closest Waypoint
is stored. This is necessary for accessing the data that the AUV
had at the position of each sphere for later setting the colors
of the spheres accordingly.

IV. DATA VISUALIZATION ON TRAJECTORY

The Trajectory is initially drawn using the single color red
for all spheres. When the user presses a button to project
data on the trajectory, the color of each sphere is changed
to represent the selected data at the position of the sphere.
If the user for example selects the pressure, the color of the
spheres are set to represent the pressure at the position of each
sphere.

The method is called with one parameter, visualized data,
a string containing the name of the data that should be
visualized. Local variables are then set accordingly within
the method using a switch case. This also means that all
maximal values for the different data for the visualization on
the trajectory are kept hard coded in this method.

At the beginning of the method the current simulation time
needs to be saved for restoring the current simulation status
at the end of the method since the simulation time is distorted
by the get next waypoint from index method.

Then for every sphere in the trajectory (which are held
in one big array) the color is changed. Using the maximal
value of the data and the data value at the position of the
sphere, the right color for the sphere is determined using
the separate method calculate color from value. Since the
visualization should be similar for all kinds of values and
universally applicable, the mapping is kept simple: Using the
whole RGB-color-spectrum, the color is determined by using
the linear position of the value in regards to 0 and the maximal
value, going from blue for the lowest values over green to red
for the highest values. If for example the max value is 10 and
the current value is 5, the sphere will get the color green. In
case the current value is 0, the color would be blue, for 7.5 it
would be yellow and for 10 it would be red.

Finally in the set color spawned object method the color
is set to the sphere. This is done using a dynamic material
instance which is created for every sphere and then set as the
new material in the method.



V. APPENDIX

Fig. 1. The AUVs trajectory without projected data as initially shown after
simulation startup.

Fig. 2. The AUVs motors speed of rotation in rotations per minute projected
on the trajectory. In the picture the effect of cornering on the motor rpm (and
through this on the energy consumption) becomes visible: After each turn the
AUV needs to speed up again and does this by increasing its motor rpm.

Fig. 3. The pressure on the AUV projected on the Trajectory.The pressure
visualization can be used to examine whether the AUV (which is usually
using altitude over seafloor for its controls and not depth) is operating within
its pressure limits the whole mission.

Fig. 4. The heading angle (moving direction of the AUV) projected on the
trajectory. Using the projection of the heading angle on the trajectory can help
to clarify the trajectories visualization by showing the direction the AUV was
moving through a complex three-dimensional path.



Fig. 5. The AUVs pitch angle projected on the trajectory. The pitch
visualization can be utilized to check whether the pitch was correct during
the recording of the bathymetry: During recording the AUV should be as
horizontal as possible to prevent contortions, only when not recording (e.g.
while descending) a large pitch is acceptable.

Fig. 6. The AUVs roll angle projected on the trajectory. To ensure proper
functionality of the AUVs instruments the AUV is kept upright around the
roll axis the whole mission. This means a large roll angle is a strong indicator
for severe malfunction. Only at the sea surface some roll might occur due to
waves, as shown in the picture.

Fig. 7. The AUVs speed projected on the trajectory. The picture shows the
effect of ascends on the AUVs speed: The AUV moves back and forth over
the ascending seafloor loosing speed in the one direction and gaining speed
in the other due to the ascending/descending nature of the seafloor.


