
How logfiles are read in Travis
Kristof Kipp

University of Bremen
Bremen, Germany

kkipp@informatik.uni-bremen.de

Nils Leusmann
University of Bremen
Bremen, Germany

leusmann@informatik.uni-bremen.de

Ingmar Ludwig
University of Bremen
Bremen, Germany

iludwig@informatik.uni-bremen.de

Abstract—This paper introduces three layers of communica-
tion from the reading of log data that was written by an AUV
during a mission to the simulation provided by the Travis project
team. The first layer handles data reading and providing of raw
data in primitive c++ data types. A second layer prepares these
data and provides the means for the Unreal Engine to read the
data. The third and highest layer reads the prepared data of
the second layer and uses it to manipulate the simulated model
within the Unreal Engine.

Index Terms—unreal engine, unreal, trajectory, Travis, visual-
isation

I. INTRODUCTION

After talking about how to handle the data we got from
MARUM (which is disclosed from public), we decided to
create a multi-layer architecture for handling and presenting
the data. This decision was made due to the sheer amount
of data (approx. 500k lines per logfile) and the possible
priotization of data importance (e.g., some of the data might
be neglectable due to physical reasons). Every layer has its
own chain of responsibility and needs to be described to a
certain degree. The interaction between the layers is done via
layer-specific calls (e.g., via UPROPERTY).

II. DATA LAYER

This layer is responsible for the reading of the log file and
efficient storage of all data concerning the log file data.

A. Logfiles

The log files are available in pure CSV format and con-
tain all data logged on a mission, sample files provided
by MARUM contain about 500000 lines, so redundand data
holding is highly discouraged. Therefore we propose a sin-
gle layer for holding and maintaining the data. The set of
sample data contains two files: log 20160516 dive.csv and
log 20160517 dive.csv. They both contain a large set of data
columns of which only a subset is actually needed for the
means of this project. The complete set of colums can be found
in section 5 of this paper. Despite it being a huge chunk of
columns this layer will only handle I/O operations concerning
the data.

B. Reading of the Log file

The log file itself is a huge raw text file in the csv file
format1 consisting of data logged by any of the sensors, the

1https://tools.ietf.org/html/rfc4180

file is comma-seperated and delimited by either of the CR
(carriage return) and the LF (line feed) control character.

The reading process starts by storing each line into a string
vector. This vector will increase in size and will hold all
the information in an unsorted way. For further processing
purpose we needed to make the data easier accessible. Hence
we created an data object which would store all the data of
one column. Here each column, which describes one data
value, will get its own variable according name. This data
type is called logdata t. To have all lines accessible in one
variable we created an logdata t vector, which will hold all the
logdata t objects for each row. The MARUM assured us that
the order of the sensor data will always be the same, because
of this concession we created an function which separates
the line strings at a comma and then stores the values of
each sup-string according to their position to the variables.
To increase the performance we will be using multiple threads
while converting the huge string vector into a logdata t object.
This means we will have multiple threads converting many
different lines at once. Because of the thread pool library we
are using, it is only possible to give a thread one parameter. For
the thread to work properly it needs more information. This
means we needed to create an new data object which will be
passed to each thread. The logline consists of the variables
seen in table I. Because the C++ std::vector is not thread safe
we created an mutex lock for the data vector.

C. Functions on Layer 1

• ‘public int readLog(string logfile)‘: opens the file that
is passed in the argument ‘logfile‘ and reads its contents.

• ‘public logdata t[] GetAllData()‘: returns the complete
data set (most likely used for building the initial trajectory
in the simulation.

• ‘logdata t GetDate(float time)‘: returns a dataset by the
given timestamp (see section 5, first column of csv file)

• ‘logdata t GetDate(int idx)‘: returns a dataset by the
given index (e.g., data[i])

• ‘logdata t *GetDateGeqTime(double time)‘: Gets the
first date where the logdata t.time¿time

• ‘logdata t *GetDateLeqTime(double time)‘: Gets the
first date where the logdata t.time¡=time



Human readable String Description
int idx The row in which the data will be stored (needs to be -6)
std::string line The actual data from the line
ascdata t* data A pointer to the dataobject in which the data will be stored
AquariumHelper* helper The aquarium in which the points should be converted

TABLE I
THE MEMBERVARIABLES OF THE LOGLINE

III. COMMUNICATION LAYER

The communication layer does not store any of the raw
data. It will only convert the needed Data (and only when it is
needed) from the Data Layer into an format that can be used in
the presentation layer (Unreal Engine). The difficulty here is
that the presentation layer will use Unreal Engine Blueprints,
which is limited in some ways. For example the presentation
layer can not work with double values2. In addition the
presentation layer is incapable of using polymorph functions3.
Next to some downsides the Unreal Engine entails it also
provides some unique opportunities like special Datatypes,
which will be very useful later on, for example the FVector.

A. Design

The second layer will be represented in the Unreal Engine as
an Unreal Aactor-Object. This Object is called the DataCom-
municator. The main reason for this representation is the fact,
that we wanted the DataCommunicator to be easily accessible
in the Levelblueprint. In addition to this we want the Object
which represents the communication layer to be single point
of interest in the Unreal Engine. In other words we want the
Presentation Layer to always turn to the DataCommunicator
if it wants to know something about the AUV. A positive side
effect of the fact that the Communication Layer is represented
as an Aactor-Object in the Unreal Engine is, the fact that we
can track the time since the start of the simulation via the
Tick() function.
The Communication Layer will only store two different Data
points, in an Blueprint accessible format, at any time. The
values of these these Data points will immediately translated
into a blueprints and needs to be changed according to the
wishes of the Presentation Layer. The Presentation Layer will
only need two different Data Points at any time. The reason
for two data points is due the fact, that the whole Data set
is a discrete set which we try to represent in a continuous
way (time). If the simulation time is between two data points
the presentation layer will interpolate the value it wants to
show. All functions which update the available Data in the
Presentation Layer will signal if the updating was successful
(true) or not (false).

B. Communication

The Data Layer will be initialized in the Communication
Layer, so the Communication Layer always has a direct

2https://answers.unrealengine.com/questions/89591/
blueprint-does-not-have-double-type.html

3https://answers.unrealengine.com/questions/553278/
inheritancepolymorphismoverriding.html

connection to the Data Layer which allows it to access the read
data. As already mentioned in III-A the Communication Layer
stores only two data points at any time. This is technically
correct, but it also stores two pointer to the corresponding data
points in the Data Layer. So it can always access the currently
active data points in both layers. Once as it is in the Data
Layer, and once as it will be made available to the Presentation
Layer. The difference between these two data objects (log-
data t,UWaypoint) is the precision. The communication with
the Presentaion Layer will be done via UWaypoint objects. The
UWaypoint class is a class specially created for this purpose.
It inherits from the UObject-class from Unreal, which means
we can reference to it inside the Engine. Inside the class
all important data values for one specific time stamp. Each
data point inside the Waypoint is a variables which is made
accessible for the Blueprints via usage of UPROTPERTY.
Usually the variables should be BlueprintReadOnly because
we do not want the Presentation Layer to be able to change
the Data. The Objects of this class which will be created
by the DataCommunicator and also need to mad accessible
via the UPROPERTY(BlueprintReadOnly). To change the data
values which are currently available to presentation layer
the communication layer offers specific functions, which will
updated the stored values accordingly.

C. Procedure

The Task of the Communication Layer is to convert the raw
C++ Data into Datatypes which are accessible in the Unreal
Engine. For this Task the DataCommunicator is the connection
between both sides. At the beginning of the simulation the
DataCommunicator will be initialized via the StartCommu-
nication() function. This will and needs to be called in the
Levelblueprint right after the beginning of the game. Now
the DataCommunicator will read the Travis Configuration file.
The configuration file is editable via an launcher and stores
the absolute file path to the .log file (log of the mission), the
.asc file (height map data) and an possible shift and rotation
for the height map. After reading the configuration file the
Communication Layer will begin to initialize the Data Layer
Object. This Object will need a Path to an Mission-log file
and begin to read it. Afterwards the DataCommunicator has
a direct connection to the Data Layer and access the values.
Subsequently the aquarium will be created. Followed by the
creation of the bathymetry, if there is already an corresponding
Travissave-file for the chosen log file the DataCommuicator
will read the save file and create the map accordingly. If not
then it will create an height map accordingly to the data stored

https://answers.unrealengine.com/questions/89591/blueprint-does-not-have-double-type.html
https://answers.unrealengine.com/questions/89591/blueprint-does-not-have-double-type.html
https://answers.unrealengine.com/questions/553278/inheritancepolymorphismoverriding.html
https://answers.unrealengine.com/questions/553278/inheritancepolymorphismoverriding.html


in the .asc file. Finally after the initialization phase it will give
control over to the Presentation Layer.

D. Functions of Layer 2

The Communication Layer provides the following func-
tions:

• UFUNCTION(BlueprintCallable, Category =
”Travis”) bool StartCommunication(): Initializes
the Communication Layer and makes the first Points
accessible

• UFUNCTION(BlueprintCallable, Category
= ”Travis”) void SetHeightMapMate-
rial(UMaterialInterface* material): Sets the Material
of the HeightMap

• UFUNCTION(BlueprintCallable, Category =
”Travis”) FVector GetRandomPointonHeightMap-
InAquarium(): Gives an Random Point on the
Heightmap inside the Aquarium

• UFUNCTION(BlueprintCallable, Category =
”Travis”) FVector GetMiddleOfAquarium(): Returns
the middle of the Aquarium

• UFUNCTION(BlueprintCallable, Category =
”Travis”) bool getNextPointFromIndex(int
dataindex): Gets the point of data from index and
make it accessible to the presentation layer

• UFUNCTION(BlueprintCallable, Category =
”Travis”) bool getNextPoint(): gets the next Datapoints
for the current time and make it accessible to the
presentation layer

• UFUNCTION(BlueprintCallable, Category =
”Travis”) void SetWarp(float multiplier): changes the
timewarp

• UFUNCTION(BlueprintCallable, Category =
”Travis”) float GetWarp(): gets the timewarp

• UFUNCTION(BlueprintCallable, Category =
”Travis”) void SetTime(float time): Sets the simulation
to the current time

• UFUNCTION(BlueprintCallable, Category =
”Travis”) void ResteTimeToMissionStart(): Resets the
time to the Mission start

The most interesting function is StartCommunication(), which
is already described in III-C.
To Get an random Point on the HeightMap, we search for
a random Point in the aquarium and then make an raycast
downwards and return the position where we hit something.
To make sure we only hit the heightmap and no other Object in
the Level, we created an own Collision Channel in the default
setting are ignore. Only the Heightmap is set to block Raycasts
on this channel so we are sure that, if we hit something we
hit the Heightmap.

IV. PRESENTATION LAYER

The presentation layer is responsible for three tasks: Acquir-
ing the right data from the communication layer (depending
on the user settings and the current simulated time), preparing
the received data and transferring it to the visualizations.

The acquiring of the data is done using the excess point
of the communication layer and several methods for changing
which data is received. The access point consist of the (in-
visible, but in the level physical present) DataCommunicator
Object which can be used to access all the needed data. This is
done by getting a reference to the DataCommunicator object
and using its getter methods, which is initialized using its Start
Communication method.

The DataCommunicator Object directly offers several get-
ters from which the three most important are Get BP Waypoint
0, Get BP Waypoint 1 and Get Alpha.

The two getters Get BP Waypoint 0 and get BP Waypoint
1 each return a so called Waypoint-object. A Waypoint-object
represents one point in time at which the AUV has written
data to the log file. Waypoint 0 is the closest Waypoint in
time for that applies tWP0 <= tS with tWP0 being the time
the waypoint was recorded and tS being the current simulated
time. Analogous Waypoint 1 is the closest Waypoint in time
for that applies tWP1 > tS .

A Waypoint-object offers several getter methods for AUV
status data, e.g. the AUVs Speed at the specific Waypoint.

Get Alpha returns the interpolation factor for the two
Waypoints, calculated using the current simulation time. Using
this value the data for every point between the two waypoints
can be interpolated.

Before the data is accessible through the Waypoint-objects
and the Get Alpha method the right data has to be set by the
communication layer. This is requested in the level blueprint
through using one of two methods: Get Next Point From
Index or Get Next Point. Get Next Point from Index sets the
Waypoints using their index (e.g. Get next Point From Index(0)
returns the first and the second Waypoint). This method is
used for drawing the trajectory. The second method Get Next
Point sets the Waypoints and the Alpha-value according to
the current simulation time. This method requires a call of the
Reset Time To Mission Start method before it can be used the
first time and after every use of the Get next Point From Index
method.

The received data is then processed depending on the
visualization and the data. For fast changing visualizations
with easy visible changes (e.g. the AUV movement) the values
of the two waypoints are interpolated using Unreals own linear
interpolation algorithm. For slow changing visualization (e.g.
the pressure visualization) this is not necessary due to the
large number of Waypoints. For the purpose of optimizing the
computation time the value of the first Waypoint is passed to
the visualization while the two Waypoints remain the same.
Without interpolation this leads to approximately 10 updates
of the value per second (vs. one update per tick while using
interpolation). For an Overview over the executed modification
Refer To Table I, II and II.

While using the Get Next Point method to receive data, the
simulation can be influenced using one of two methods: First,
the simulation time can be set using the Set Time method, e.g.
to jump to the middle of the simulation. Second, the speed of
the time laps can be increased or decreased using the Set Warp



method, which takes a factor that is multiplied with the speed
of the time laps (e.g. 1 for normal time laps and 2 for double
speed).

All the used Values obtained from the Waypoints and the
DataCommunicator getters are further described in Table I, II
and II.

V. APPENDIX: LOGFILE LAYOUT

• vcc clock real seconds
• vcc log counter
• vcc dvl altitude fb m
• vcc altimeter altitude fb m
• vcc em2040 altitude fb m
• vcc dvl altitude valid
• vcc em2040 status word
• vcc battery fb volts
• vcc battery current fb amps
• vcc energy used kwhs
• vcc energy used percent
• vcc thruster current fb amps
• vcc man heading sp deg
• vcc dgps longitude fb
• vcc dgps latitude fb
• vcc dgps quality fb
• vcc phins longitude fb deg
• vcc phins latitude fb deg
• vcc man pitch sp deg
• vcc phins pitch fb deg
• vcc plane 1 sp deg
• vcc plane 1 fb deg
• vcc plane 2 sp deg
• vcc plane 2 fb deg
• vcc plane 3 sp deg
• vcc plane 3 fb deg
• vcc plane 4 sp deg
• vcc plane 4 fb deg
• vcc plane 5 sp deg
• vcc plane 5 fb deg
• vcc man roll sp deg
• vcc phins roll fb deg
• vcc thruster rpm sp
• vcc thruster rpm fb
• vcc thruster rpm sp profiled
• vcc dgps speed fb mps
• vcc system mode fb
• vcc ctd temp fb degc
• vcc hull temperature fb degc
• vcc dvl temperature fb degc
• vcc phins heading fb deg
• vcc speed sp mps
• vcc speed fb mps
• vcc thruster modelled speed fb mps
• vcc man depth sp m
• vcc pos depth fb m
• vcc man altitude sp m actual
• vcc pos altitude fb m

• vcc man altitude depth sp m
• vcc man vert control mode
• vcc man depth control mode
• vcc mission line heading
• vcc mission line offline distance
• vcc mission line output control heading
• vcc man pitch force clipped
• vcc man roll force clipped
• vcc man yaw force clipped
• vcc man depth force clipped
• vcc thruster volts cmd
• vcc ctd conductivity fb spm
• vcc ctd press fb dbars
• vcc ctd salinity fb psu
• vcc ctd soundvel fb mps
• vcc ctd status ok
• vcc battery can fb volts
• vcc battery can load current fb amp
• vcc battery can id fb
• vcc bottom avoid active
• vcc phins long speed fb mps
• vcc phins trans speed fb mps
• vcc phins vert speed fb mps
• vcc phins output status
• vcc wa fault
• vcc gf gfm3 fault
• vcc plane fault
• vcc thruster status alarm
• vcc battery timeout alarm
• vcc paro press fb psi
• vcc acsa hh
• vcc acsa mm
• vcc acsa ss
• vcc dgps utc seconds
• vcc acsa error
• vcc acsa mode
• vcc pos pitch rate fb dps
• vcc pos roll rate fb dps
• vcc pos heading rate fb dps
• vcc phins error
• vcc pos heave m
• vcc dvl bottom vel x fb mps
• vcc dvl bottom vel y fb mps
• vcc dvl bottom vel z fb mps
• vcc dvl bottom range b1 fb m
• vcc dvl bottom range b2 fb m
• vcc dvl bottom range b3 fb m
• vcc dvl bottom range b4 fb m
• vcc em2040 ping number
• vcc altimeter altitude fb m raw
• vcc dvl water vel valid
• Time in English



Name in Blueprint Origin of data in log file Description Modifications of data Destination of Data
relativetime derived from

vcc clock real seconds
Time at which the values
were recorded (in seconds
since mission-start).

No modifications User interface (update
time slider), Set
Time method of
DataCommunicator
(for time jumps with fixed
length)

Vcc Pos Altitude Fb M vcc pos altitude fb m Height over ground as
recorded by the AUV.
Note: There are also other
altitude values in the log-
file which do not dif-
fer much in our samples.
According to the mis-
sion these might be better
suited.

Only WP0 used user interface (update alti-
tude display)

Position derived from
vcc phins longitude fb deg,
vcc phins latitude fb deg
and vcc pos depth fb

The Position of the AUV
in the Aquarium in Carte-
sian coordinates (refer the
Aquarium Paper for de-
tails on the calculation)

Interpolation with Alpha
value

Set AUV position (using
the move AUV method)

Rotator derived from
vcc phins roll fb deg,
vcc phins pitch fb deg
and
vcc phins heading fb deg

Rotation state of the AUV
(heading angle, pitch and
roll)

Interpolation with Alpha
value (for setting of AUV
rotation state), using only
WP0 (for display in user
interface)

Move AUV method (up-
date AUV rotation state),
Update Rotation Visual-
ization method, user inter-
face (display of values)

Vcc Ctd Press Fb Dbars vcc ctd press fb dbars Pressure on the AUV
recorded by the CDT de-
vice.

Only WP0 used Update Pressure Visual-
ization method, user in-
terface (display pressure
value), Calculatate Color
From Values method (vi-
sualize pressure on trajec-
tory

Vcc Thruster Rpm Fb Vcc thruster rpm fb Rotations per minute of
the AUVs propeller.

Interpolation with Alpha
value (visualization of
Propeller rotation), Only
WP0 used (display in
Interface, visualize on
trajectory)

Update Motor Rpm Visu-
alization method , user in-
terface (display motor rpm
value), Calculatate Color
From Values method (vi-
sualize motor rpm on tra-
jectory)

Vcc Speed Fb Mph vcc speed fb mph Current speed of the AUV
relative to the water. Note:
The Speed relative to the
ground might differ from
the speed relative to the
water.

Only WP0 is used Update Speed
Visualization method
(3D Visualization), user
interface (display speed
value), Calculatate Color
From Values method
(visualize speed on
trajectory)

Vcc Plane 1 Fb Deg Vcc Plane 1 Fb Deg Rotation state of
the AUVs front left
hydroplane relative to the
neutral position.

Only WP0 used Move Front Left
Plane method (update
Hydroplane position),
Unreals Make Rotator
method (Update
hydroplane rotation
visualization)

Vcc Plane 2 Fb Deg Vcc Plane 2 Fb Deg Rotation state of the
AUVs front right
hydroplane relative to
the neutral position. Note:
The value is multiplied
with -1 for correct
visualization because
of the 180° difference
between the hydroplanes
on the right and the left
side and the different
rotation definition in
Unreal and the log.

Only WP0 used Move Front Right
Plane method (update
Hydroplane position),
Unreals Make Rotator
method (Update
hydroplane rotation
visualization)

TABLE II
DATA MODIFICATION AND TRANSMISSION IN THE PRESENTATION LAYER, PART I



Name in Blueprint Origin of data in log file Description Modifications of data Destination of Data
Vcc Plane 3 Fb Deg Vcc Plane 3 Fb Deg Rotation state of the

AUVs top hydroplane
(or tower) relative to
the neutral position. The
value is multiplied with -1
for correct visualization
because of the different
rotation definition in
Unreal and the log.

Only WP0 used Move Tower Submarine
method (update
Hydroplane position),
Unreals Make Rotator
method (Update
hydroplane rotation
visualization)

Vcc Plane 4 Fb Deg Vcc Plane 4 Fb Deg Rotation state of
the AUVs back left
hydroplane relative to the
neutral position.

Only WP0 used Move Back Left
Plane method (update
Hydroplane position),
Unreals Make Rotator
method (Update
hydroplane rotation
visualization)

Vcc Plane 5 Fb Deg Vcc Plane 5 Fb Deg Rotation state of the
AUVs back right
hydroplane relative to
the neutral position. Note:
The value is multiplied
with -1 for correct
visualization because
of the 180° difference
between the hydroplanes
on the right and the left
side and the different
rotation definition in
Unreal and the log.

Only WP0 used Move Back Right
Plane method (update
Hydroplane position),
Unreals Make Rotator
method (Update
hydroplane rotation
visualization)

Vcc Energy Used Percent Vcc Energy Used Percent Percentage of the AUVs
Battery that has been al-
ready used.

Only WP0 used Update Auv Interface Val-
ues (display used energy)

Vcc Ctd Temp Fb Degc vcc ctd Temp fb degc Temperature in the AUV
as measured by the AUVs
CDT device.

Only WP0 used Update Auv Interface Val-
ues (display current Tem-
perature)

Time in English Time in English Time of the recording of
the Waypoint as a string.
The timezone is GMT and
the string is formatted to
the standard English time
format.

Not modified User interface (display
simulated time).

TABLE III
DATA MODIFICATION AND TRANSMISSION IN THE PRESENTATION LAYER, PART II



Getter Name in Blueprint Description of return value Modifications of data Destination of Data
Get AUV Size Factor A factor that represents how the AUV size

has to be adapted to approximately match the
size of the represented earth surface (for the
smallest of the three selectable AUV sizes,
for more information over the relationship be-
tween the size of the world in the simulation
and the represented earth surface refer to the
Aquarium paper)

The Value is multiplied with a fac-
tor connecting the AUV size with
the size of the AUV model uasset
in Unreal.

Used to determin the
value of Initial Scale
AUV (a factor that adjusts
the size of the AUV)

Get Middle Of Aquarium A point that lies in the middle of the Aquar-
ium (for details on the Aquarium refer the
Aquarium paper)

Not currently used Not currently used

Get Random Point on
Hight Map

Returns a Random Point on The Map gener-
ated from the AUVs Sonar Data.

Not modified Spawn Actor method (in
the Spawn Decoration
method which adds
decorative Elements like
stones to the map).

Get Warp Current time expiration acceleration factor The factor is doubled or halved Set Warp (Used to in-
crease or decrease the
time expiration rate de-
pending on the current
value).

Get Alpha Interpolation value for interpolating the values
between two recorded datasets. Calculated
from current simulation time

No modifications Unreals lerp interpolation
method, used with all in-
terpolated values

Get BP Waypoint 0 Returns an object that offers access to data
of the nearest Waypoint with tWP0 <= tS .
Refer section presentation level.

Object is not modified Very frequently used in
the whole level Blueprint

Get BP Waypoint 1 Returns an object that offers access to data
of the nearest Waypoint with tWP1 > tS .
Refer section presentation level.

Object is not modified Very frequently used in
the whole level Blueprint

TABLE IV
DATACOMMUNICATOR GETTER METHODS, MODIFICATION OF RETURN VALUES AND TRANSMISSION OF DATA


	Introduction
	Data Layer
	Logfiles
	Reading of the Log file
	Functions on Layer 1

	Communication Layer
	Design
	Communication
	Procedure
	Functions of Layer 2

	Presentation Layer
	Appendix: Logfile Layout

