
Travis Launcher
Kristof Kipp

University of Bremen
Bremen, Germany

kkipp@informatik.uni-bremen.de

Abstract—This paper introduces the Travis launcher that
generates and alternates a config file for a specific mission in
Travis.

Index Terms—unreal engine, unreal, trajectory, Travis

I. INTRODUCTION

Travis is able to dynamically read a mission provided by
the user. It also dynamically creates and renders a deep sea
landscape based on another file, called the asc file. These
files need to be changed when different missions should be
simulated. As the unreal engine does not internally provide
users with a FilePicker and the creation of such a thing would
exceed the scope of the Travis project, the team decided
to outsource the changing of parameters to another program
outside the unreal engine. This is done with a simple WPF
application written in C# and called Travis Launcher.

Fig. 1. the launcher

II. MAIN PROGRAM

Upon starting the program the directory in which the
launcher is started is traversed. If the main launcher of Travis
(e.g., Travis.exe) is found, the launcher is started, otherwise a
message is shown and the launcher closed again.
if (Directory.GetFiles(Environment.CurrentDirectory)

.Any(x => x == "Travis.exe"))
{

this.Executable = Path.Combine(Environment.
CurrentDirectory, "Travis.exe");

}
else
{

MessageBox.Show("could not find Travis.exe -
make sure it exists in the current directory
", "the tallest error on earth",
MessageBoxButton.OK, MessageBoxImage.Error);

//Close();
}

When a file with the name of the main executable is found,
the launcher knows it’s in the correct directory and tries to
read the config file that holds all the neccessary data for the
simulation.

// config?
FileStream cfg = File.Open("Travis.cfg", FileMode.

OpenOrCreate, FileAccess.Read);
StreamReader sr = new StreamReader(cfg);
try
{

Args = sr.ReadLine().Split(’ ’).ToList(); //
Convert into space seperated list

txtFindAscfile.Text = Args[0]; // Asc File
Location

txtFindLogfile.Text = Args[1]; // Logfile
Location

txtPosX.Text = Args[2]; // Positional Offset X
txtPosY.Text = Args[3]; // Positional Offset Y
txtPosZ.Text = Args[4]; // Positional Offset Z
txtRot.Text = Args[5]; // Rotation Offset

}
catch (Exception)
{

Args = new List<string>(); // If there was an
error with loading the config file, we
create a new one.

}
sr.Close();
cfg.Close(); // Close the files and their respective

handles
}

This data consists of different values:

A. Asc File

The asc file is the file that is read to generate the bathymetric
landscape. It resembles a N × M matrix that holds integer
values of the depth at a given point.

B. Log File

The log file is the file that holds the data logged by the
AUV while being on a mission.

C. Positional Offset

The positional offset is applied to the position of the
landscape-mesh after calculating and rendering it.

D. Rotational Offset

The rotational offset is applied to the landscape-mesh after
calculating and rendering it.



III. ERROR HANDLING

Values may be invalid. Most likely when a textbox is empty.
As this is just a simple evaluation method, there is no need
for a complex algorithm, so the following is a simple check
if any of the text boxes in the application is empty:

foreach (UIElement ele in grdMain.Children) //
Iterate all Children of the main Grid (this one
contains all the TextBoxes, labels, etc.)

{
if (ele.GetType() == typeof(TextBox)) // We only

care about the TextBoxes
{

if (string.IsNullOrEmpty((((TextBox)ele).
Text))) // TextBox is Empty?

{
err = true;
((TextBox)ele).Background = new

SolidColorBrush(Color.FromRgb(255,
128, 128)); // Red for missing value

}
else
{

((TextBox)ele).Background = new
SolidColorBrush(Color.FromRgb(255,
255, 255)); // All fine here

}
}

}

grdMain is the main grid that holds all textboxes and all the
other controls in the application. So to keep the check simple
all children are iterated and typechecked. If the type is textbox,
the object is casted and the underlying value is checked
(.IsNullOrEmpty()). If any of the values of the textboxes is
empty, a boolean value is set to true and the background of
the control is set to a red-ish color. If a value is fine, the
background color is set to a standard white.

IV. FILE DIALOGS

The Log and Asc-Files need to be found with the a file
picker provided by the windows api. For this the Class
OpenFileDialog in the namespace Microsoft.Win32 is used.
Each file has a ... button that operates the file picker. The files
shown inside the picker is modified in the code file, one for
each file type, both are shown here:

// Configure open file dialog box
Microsoft.Win32.OpenFileDialog dlg = new Microsoft.

Win32.OpenFileDialog();
dlg.FileName = ""; // Default file name
dlg.DefaultExt = ".csv"; // Default file extension
dlg.Filter = "CSV Logfiles|*.csv"; // Filter files

by extension
if (dlg.ShowDialog().Value)
{

string nm = dlg.FileName;
txtFindLogfile.Text = nm;

}

This is the logfile file picker. Log files are provided in csv
file format. A fairly similar solution is used for the asc file
picker.

// Configure open file dialog box
Microsoft.Win32.OpenFileDialog dlg = new Microsoft.

Win32.OpenFileDialog();
dlg.FileName = ""; // Default file name

dlg.DefaultExt = ".asc"; // Default file extension
dlg.Filter = "ASC Bathymetry|*.asc"; // Filter files

by extension
if (dlg.ShowDialog().Value)
{

string nm = dlg.FileName;
txtFindAscfile.Text = nm;

}

V. SAVING

When the simulated is to be started, the state of the contents
of the launcher need to be stored in a file read by the
simulation itself. The launcher simply takes all the contents of
the textboxes, puts them in a List of strings and then simply
joins them to create a space seperated list of data.
if (!err) // No missing values?
{

// Store all the values
Args.AddRange(new string[] {

txtFindAscfile.Text,
txtFindLogfile.Text,
txtPosX.Text,
txtPosY.Text,
txtPosZ.Text,
txtRot.Text,

});

// Save them
var str = string.Join(" ", Args.ToArray());
FileStream cfg = File.Open("Travis.cfg",

FileMode.Truncate, FileAccess.Write);
StreamWriter sw = new StreamWriter(cfg);
sw.WriteLine(str);
sw.Close();
cfg.Close();

// Start the Simulation and close the
Launcher

Process.Start(this.Executable);
Process.GetCurrentProcess().Kill();

}
}

To store the data, the string of arguments is written in a
file called Travis.cfg. Even when no changes are made, the
file is truncated and re-written to make sure the config-data is
correct.

VI. OUTLOOK

Theoretically this whole program SHOULD be deprecated
by creating a filepicker in the unreal engine, which should be
possible when tackled correctly. If not, this program could be
improved by automatically searching for valid log and asc-
files in a given root directory. Additionally the values could
be checked on plausability. Plus as an extra it should be
possible to adapt the level of detail with which the heightmesh
is generated. This could be done by adding a slider to the
launcher that, while increasing the percentage (the heigher the
better) lowers the skip value of the heightmesh1, the latter is
a first priority issue actually.

1see according paper


