
Generating an Aquarium from AUV Log Data
Kristof Kipp

University of Bremen
Bremen, Germany

kkipp@informatik.uni-bremen.de

Nils Leusmann
University of Bremen
Bremen, Germany

leusmann@informatik.uni-bremen.de

Abstract—To visualize data in a simulated environment, data
has to be transformed. What this implies is that real log data
contains data in metric format, while the game engine that
contains the simulation needs computer-readable data. This
transformation and the calculation of this data is described in
this paper.

Index Terms—unreal engine, unreal, trajectory, travis, visual-
isation

I. INTRODUCTION

Travis is a masters project operated by University of Bremen
(UoB) and MARUM, which tries to re-simulate a deep dive
mission in the Unreal Engine. Re-simulating in this case
means that log data is provided by an Autonomous Underwater
Vehicle (AUV) that needs to be read by a computer and
displayed in a simulated environment. The output layer of
this simulation might be a computer display or any technology
involving Virtual and/or Augmented Reality.

II. INITIAL CONDITIONS

For the better understanding of this topic, we need to
introduce some new terms. The first term will be the aquarium.
Travis will run in an simulated environment, specifically the
Unreal gaming engine. Because we do not know how large the
simulated terrain will be we need to specify a part of the map
in which the simulation will take place. The Box in which the
simulation takes place is called aquarium. Inside the aquarium
every point is described with x, y and z values. In the real
world our reference system would you the latitude, longitude
and depth values to describe an specific point where the AUV
could have been. To show these different reference systems we
created two different Classes. The so called WorldAnchorPoint
will store the values of the real world (latitude, longitude,
depth) and the so called GameAnchorPoint will hold the values
of Points in the Unreal engine (x, y, z).

A. WorldAnchorPoint

A WorldAnchorPoint represents a specific point on earth.
Each point on the earth can be described as an WorldAn-
chorPoint and each Point can be distinguished form others.
A WorldAnchorPoint possesses three member variables which
stands for latitude, longitude and height.

B. GameAnchorPoint

A GameAnchorPoint represents a specific point in the
Unreal Engine. It is also unique, if initialized with an concert
value. In contrary to an WorldAnchorPoint a GameAnchor-
Point has four different member variables and in thus is able
to have a specific state. The four different member variables
are the following:

• x
• y
• z
• index

The index defines the state of a GameAnchorPoint. If it is
-1 the GameAnchorPoint is invalid (this can be checked by
using the Valid() method). An index of 0 means that this
GameAnchorPoint is uninitialized meaning it is currently not
used in the bathemytry. For more information of why we are
using states and how we are using them see our landscape
paper.

III. LOGFILES

Logfiles are written by an AUV to log the progress of a
mission, it contains a lot of data (read: 500k lines in 100
columns for a mission of 6 hours). The MARUM-SEAL1

has heaps of sensors that provide data to this log file. The
following list of items is taken from a list of sensors from
the official MARUM SEAL web site. The list is not complete
and only contains sensors that were used in the data layer (see
other paper) of the simulation. The list:

• Teledyne RDI DVL 300 kHz
• Kongsberg, Altimeter, 675 kHz (nose)
• Paro-Scientific 8B7000-I
• SBE-49 / SEABIRD FastCat CTD
• IXBLUE PHINS (dry, serial, pressure housing)
These sensors are found within the log file (again, see our

data paper for a full list of all columns in the logfile) as a
name infix, e.g. the first item in the list is the DVL (doppler
velocity log) and can be found with the infix ’dvl ’ (e.g.
vcc dvl altitude fb m for the feedback (fb) data in meter (m)
of the altitude sensor that lies within the dvl). There may be
two different values for each set of data of a sensor: fb, which
correlates to the feedback value of the sensor, so this is the

1https://www.marum.de/Infrastruktur/MARUM-SEAL.html

actually measured value, and sp, which is a setpoint value that
bears the value in a optimal situation. This scheme resides
throughout the complete log file and describes several data.
Part of the complete data consists of value from the PHINS
sensor, which provides us with a feedback value of an internal
GPS tracker in form of geographic coordinates (latitude and
longitude).

IV. AQUARIUM

In order to calculate the width of the aquarium, we need
to consider the bottom-left and the bottom-right point of the
data (e.g., the lowest latitude and the highest latitude in the log
files and an arbitrary but fixed longitude value) and calculate
the metric distance between these points. This is done with
the Haversine Formula.

hav(θ) = sin2
(
θ

2

)
=

1− cos(θ)

2

Given a static three-dimensional maximum aquarium size,
the converter would theoretically stretch the given bathymetry
into the desired format, e.g. a bathymetry with the dimensions
502x128:

Fig. 1. Real size of a non-real bathymetry

would be stretched onto an aquarium with the maximum
dimensions of 5000x5000:

Fig. 2. distorted antisymmetrical size of a non-real bathymetry

This behaviour would distort the actual bathymetry and
therefore make all data we’d show utterly useless. Thus the

next problem we tackled was the aspect ratio of the data.
If we’d just projected the given data on a fixed value cube
the data would have been distorted as the log data would be
stretched either on the x- or the y-axis. Therefore we needed
to (a) calculate the aspect ratio of the log files, (b) apply
this calculated ratio to the height of the real log data and
(c) multiply each data point with the factor of the aspect ratio
on each dimension. This implies that we needed to focus on
type and unit safety throughout the whole calculation.

We make use of the following helper variables: latmax is
the highest value in the whole data set, latmin is the lowest
value, the same helper variables apply to the longitude and
the depth (lngmin, lngmax) we can apply these values to the
following formula for an existing logpoint pt:

ptx = ((ptlat − latmin)/(latmax − latmin))× w × xfactor
pty = ((ptlng − lngmin)/(lngmax − lngmin))× h× yfactor

ptz = z − ((ptdepth + |depthmin|)/dmax × z)/xmeter

Now a data point of the log file is transformed to a point in
the game engine’s aquarium and can be rendered on screen.

Fig. 3. correct symmetrical size of a non-real bathymetry

V. BATHYMETRY

After the aquarium is initialized it is possible to calculate
the bathymetry, with the help of another file. Here it could
be possible that the height map we want to create is bigger
then the actual aquarium. For this case we created an new
calculation function. Given an input vector into this function,
its values will be compared with the min and max values of
the currently initialized aquarium. If the value is not inside
the defined boarders the function will return, an invalid game
vector. Otherwise we can calculate the point as it is using the
already existing formula.

VI. SOURCE CODE

The source code can be found in the project-relative path
/aquarium/aquarium.{c,h}. The most important methods are:

• void CalculateAquarium();
• GameAnchorPoint *calculatePoint(float lat, float lng,

float depth);
• GameAnchorPoint *calculateBathymetry(double lat, dou-

ble lng, double depth, double invalid data value);

We will now take a closer look at these methods and what
impact they have on the calculation.

CalculateAquarium

i f (t h i s−>W o r l d P o i n t s . s i z e () > 0)
{

f o r (Wor ldAnchorPoin t p t : t h i s−>W o r l d P o i n t s)
{

/ / made t h i s t o i n c r e a s e r e a d a b i l i t y
i n s t e a d o f pe r fo rmance , I ’m aware t h a t a bunch
of i f s t a t e m e n t s would be b e t t e r

t h i s−>maxLat = p t . l a t > t h i s−>maxLat ? p t .
l a t : t h i s−>maxLat ;

t h i s−>minLat = p t . l a t < t h i s−>minLat ? p t .
l a t : t h i s−>minLat ;

t h i s−>maxLng = p t . l n g > t h i s−>maxLng ? p t .
l n g : t h i s−>maxLng ;

t h i s−>minLng = p t . l n g < t h i s−>minLng ? p t .
l n g : t h i s−>minLng ;

t h i s−>maxDepth = p t . h e i g h t > t h i s−>maxDepth
? p t . h e i g h t : t h i s−>maxDepth ;

t h i s−>minDepth = p t . h e i g h t < t h i s−>minDepth
? p t . h e i g h t : t h i s−>minDepth ;
}

}

t h i s−>maxDepth = t h i s−>maxDepth + abs (t h i s−>
minDepth) ;

do ub l e a = (t h i s−>maxLat − t h i s−>minLat) ;
do ub l e b = (t h i s−>maxLng − t h i s−>minLng) ;
t h i s−>s u p e r F a k t o r = (1 / ((1 / (a > b ? (a / b) :

1)) == 1 ? (1 / (a > b ? (a / b) : 1)) : (b / a
))) ;

t h i s−>xMeter = d i s t a n c e i n m e t e r s (t h i s−>minLat ,
t h i s−>minLng , t h i s−>maxLat , t h i s−>minLng) / (
t h i s−>maxX * t h i s−>s u p e r F a k t o r) ;

t h i s−>yMeter = t h i s−>xMeter ;
t h i s−>zMeter = t h i s−>maxZ / (t h i s−>maxDepth − abs

(t h i s−>minDepth)) ;

/ / u p d a t e t h e game p o i n t s
f o r (Wor ldAnchorPoin t p t : t h i s−>W o r l d P o i n t s)
{

GameAnchorPoint * foo = t h i s−>c a l c u l a t e P o i n t (p t
. l a t , p t . lng , p t . h e i g h t) ;

t h i s−>GamePoints . push back (foo) ;
}

The CalculateAquarium method does exactly what the name
of the method makes you believe it does. Some insights of
the logic behind it: first the highest and lowest latitude and
longitude are checked. There is sadly no better way than
to iterate through all elements, thus making it run in O(n).
After having projections to the left and rightmost top and
bottom points, it is now possible to upsample the data while
maintaining the right aspect ratio.

calculatePoint

f l o a t myX = (((l a t − t h i s−>minLat) / (t h i s−>
maxLat − t h i s−>minLat)) * (t h i s−>maxX)) * t h i s−>
s u p e r F a k t o r ;

f l o a t myY = (((l n g − t h i s−>minLng) / (t h i s−>
maxLng − t h i s−>minLng)) * (t h i s−>maxY)) * t h i s−>
s u p e r F a k t o r ;

f l o a t myZ = t h i s−>maxZ − (abs (d e p t h) * t h i s−>
s u p e r F a k t o r) ;

r e t u r n new GameAnchorPoint{ myX, myY, myZ } ;

This function does exactly what it says: it converts a
wordanchorpoint to a gameanchorpoint, thus projecting a point
in the real bathymetric data to a point inside the simulation
while keeping the aspect ratio.

calculateBathymetry

i f (l a t > (t h i s−>maxLat * (1 + d i f f)) | | l a t < (
t h i s−>minLat *(1 − d i f f)) | | l n g >(t h i s−>maxLng *

(1 + d i f f)) | | l n g < (t h i s−>minLng * (1 − d i f f)
) | | d e p t h == i n v a l i d d a t a v a l u e) {

a u t o gap = new GameAnchorPoint (−1 , −1, −1) ;
gap−>i d = −1;
r e t u r n gap ;

}
a u t o p = c a l c u l a t e P o i n t (l a t , l n g , d e p t h) ;
p−>z = p−>z * −1;
r e t u r n p ;

While being rather similar to the calculatePoint method the
calculateBathymetry method is used to draw the deep sea
landscape, which is discussed in our landscape paper. Trough
the usage of the diff helper variable it is possible to set an
small offset and draw more parts of the landscape.

VII. DIVERGENCE BETWEEN LOGDATA AND BATHYMETRIC
DATA

In the later time of the project the consortium together
with Ralf Bachmayer from MARUM pointed out that the
trajectory does not naturally overlap with the bathymetry in
our simulation. Since we ran out of implementation time
we could only narrow down the problem and document our
results.

The main problem at this point is the data and structure
behind the bathymetric ascii file that is not well documented.
The data found in the log files are rather easily interpretable,
so the min and max values for each the latitude and the
longitude are as easily found: iterate through all the entries,
find the lowest and highest values for each field. this yields
the following result (coming from RStudio) with:

l o g 1 6 a d j u s t e d <− r e a d . csv (”C : / Use r s / s t u d 6 / Downloads
/ MV Ridge / MV Ridge / l o g 1 6 a d j u s t e d . csv ” , dec=” , ” ,

q u o t e =” ’ ” , s t r i n g s A s F a c t o r s =FALSE)
> min (l o g 1 6 a d j u s t e d $ v c c p h i n s l a t i t u d e f b d e g)
[1] ” 38.30261153333334 ”
> max (l o g 1 6 a d j u s t e d $ v c c p h i n s l a t i t u d e f b d e g)
[1] ” 38.33708008333334 ”
> max (l o g 1 6 a d j u s t e d $ v c c p h i n s l o n g i t u d e f b d e g)
[1] ” 17.78288008333333 ”
> min (l o g 1 6 a d j u s t e d $ v c c p h i n s l o n g i t u d e f b d e g)
[1] ” 17.71249268333334 ”

Giving the following results for the log file:
• Max Latitude: 38.33708008333334
• Min Latitude: 38.30261153333334
• Max Longitude: 17.78288008333333
• Min Longitude: 17.71249268333334
Now the bathymetry file (short: bat) has a whole different

layout of the presented data (see document regarding the
batfile). The header structure deliver the following values to
work with:

n c o l s 10123
nrows 5097
x l l c e n t e r 17 .6763952465
y l l c e n t e r 38 .2872007428
c e l l s i z e 0 .0000100000
n o d a t a v a l u e −99999.000000

Therefor, it’s obvious that xllcenter is the arithmetic center
of the longitude, as the dead center and the amount of values to
each direction (ncols / 2) are known, the max and min values
for both directions can be calulated as well,

lngmin,max = 17.6763952465± (10123/2) ∗ 0.0000100000
latmin,max = 38.2872007428± (5097/2) ∗ 0.0000100000

Thus giving the values for the bat-file:
• Max Latitude: 38.3381707428
• Min Latitude: 38.2362307428
• Max Longitude: 17.7776252465
• Min Longitude: 17.5751652465
Due to the structure of these files the following natural

constraints are set:
1) The maximum latitude of the bat MUST BE ≥ max lat

o
2) The maximum longitude of the bat MUST BE ≥ max

lng of the logfiles
3) The minimal latitude of the bat MUST BE ≤ min lat

of the logfiles
4) The minimal longitude of the bat MUST BE ≤ min lng

of the logfiles
Inserting the numbers found in the observations above, we

get the following propositions:
1) 38.3381707428 ≥ 38.33708008333334
2) 17.7776252465 ≥ 17.78288008333333
3) 38.2362307428 ≤ 38.30261153333334
4) 17.5751652465 ≤ 17.71249268333334

Check if these are true (not using human logic but rather
Wolfram Alpha due to the faultiness of human logic):

1) 38.3381707428 ≥ 38.33708008333334 = TRUE
2) 17.7776252465 ≥ 17.78288008333333 = FALSE
3) 38.2362307428 ≤ 38.30261153333334 = TRUE
4) 17.5751652465 ≤ 17.71249268333334 = TRUE
As seen above the data given to us does not fulfill our

validity checks, therefore a manual reposition has to be added
to the calculated position by the aquarium.

