
Save and Load Function
Phillip Schneider

University of Bremen
Bremen, Germany

phisch@uni-bremen.de

Abstract—This document will explain why and how we im-
plemented a function to save and load mission related data. To
avoid loading and interpreting the necessary mission data during
each and every run of TraVis, we designed a routine that saves
all the mission data TraVis needs in a binary file and loads this
file if a mission is simulated again.

Index Terms—Unreal Engine 4, C++, Cpp, SaveGame, Saving,
Loading, Compressed, Binary

I. INTRODUCTION

Travis is a masters project operated by University of Bremen
(UoB) and Marum, which tries to re-simulate a deep dive
mission in the Unreal Engine. Re-simulating in this case
means that log data is provided by an Autonomous Underwater
Vehicle (AUV) that needs to be read by a computer and
displayed in a simulated environment. To read more about
this mission specific data and how TraVis treats this data,
read the data-paper. Before TraVis can start to simulate a
mission, all mission data files need to be converted in a format
that is readable for the unreal engine. Because we don’t want
TRAVIS to do this procedure every time , we developed a
function, that saves all the data that TraVis needs to simulate
a mission; recognizes if a mission was already simulated and
then loads the previously saved data. This function is also
capable of compressing the converted parts.

II. WHAT ADVANTAGES DOES A SAVE AND LOAD
FUNCTION OFFER FOR A SOFTWARE

During develpoment we recognized the process of loading
and interpreting the mission data made up the majority of
the startup time of the program. Not to forget the recources
this process takes every time. The main advantage is the time
that can be saved due to skipping the process of converting
and interpreting the mission data. The second advantage will
be the amount of storage that can be saved by saving only
the data that is realy used by the program and compressing
it afterwards. In our testcase we had a input file of 478,353
KB (∼478 Megabyte). The saved file is about ∼35,000KB
(∼35 Megabyte). If we use a compression algorithm, the
now compressed savefile needs 16,205 KB (16.205 Megabyte)
of storage. Summing up we expect three advantages from
implementing a save- and load-data function.

• Reducing time to setup TRAVIS when loading previously
saved missions

• Reducing the necessary storage1 by saving only the data
TRAVIS uses and

• applying a compression algorithem to this data to save
evan more storage.

A. Which data does TRAVIS need to smimulate a mission?

First of all we have to outline which mission related data
TRAVIS has to visualize and how this is accomplished 2.
There are two big files which TRAVIS gets as inputdata. A
CSV-file which contains the data which was logged by the
AUV 3 during a mission and a ASCII-file in formatted in the
Esri grid 4 file format. The ASCII-File contains information
which descripe a heightmap. We use this information to
generate the deepsea landscape area. The algorithems which
read and convert the ASCII-file automatically ignore all values
which aren’t used later. The same is done with the CSV-
file. An optimised algorithm for loading and calculating the
data from csv files rendered a saveload approach obsolete.
Thus this paper does not consider the loading and saving
of csv-files. The converted data from the ASCII-file is later
used to generate a deap-sea landscape. This landscpae consists
of the heightmap information and is implemented with a
procedural mesh component (PMC) in C++ 5. Each instance
of the PMC class needs serveral arrays as input parameters
to generate a three-dimensional graphic object. To generate
these arrays another algorithem takes the converted data from
the ASCII-file and creates the arrays. At this point in the
TraVis environment we can implement an optimization by
saving these arrays in a savefile and skipping the whole routine
described abouve, when a mission was simulated before.

B. Which data does TRAVIS store in a save-file

As mentioned in the previous subsection, TraVis saves all
needed information to generate a mesh component without
having to re-read and calculate these information from the
ASCII-file as mentioned earlier.

1we actually do not make use of this advantage because the ascii file will
still remain in the same directory

2This is documented in the other papers for this project: datacomunicator
3for further information see https://www.marum.de/Entdecken/AUV-

MARUM-SEAL.html
4 https://en.wikipedia.org/wiki/Esri grid and the landscape paper
5for more detail read the landscape paper

https://en.wikipedia.org/wiki/Esri_grid

III. SAVING AND LOADING - FROM ASCII TO BINARY AND
VICE VERSA

The already mentiont TraVis savefile is a binary file. All
variables are serialized to a binary array by using the Archive
class of UE4. The binary array is then saved to the hard disk
or SSD. From a UE4 C++ standpoint binary array means
TArray<uint8>. Most of the fileformates used in the UE4 can
be converted to TArray<uint8> easily by buildin functions.
With the FileManager class TArray<uint8> can be written to
the hard disk or SSD. TRAVIS savefiles have the *.savetravis
extension.

A. When should be loaded and saved

When TRAVIS is started a config file is read. This config
file contains the path to the CSV- and ASCII-file. TRAVIS
then automaticly checks if there already exists a savefile for
the ASCII-file. From this point on, there are two trails:

• There is no binary savefile:
– Create an ASCReader object and start reading the

ascii-file and converting of the data
– create a HeightMesh object and generate the arrays

which are necessary for the procedural mesh com-
ponent

– create a SaveLoadMission object and start serializ-
ing the data

– start compressing the serialized data
– save the generated binary file
– draw the deapsea landscape

• There is already a binary savefile:
– create a SaveLoadMission object and load the bi-

nary file , decompress it and deserialize the data
– create a HeightMesh object and use the data from

the binary file for the procedural mesh component
– draw the procedural mesh component

One can easily recognize that the saveload function defi-
nitely speeds up TraVis.

B. How does the save and load process work?

As mentioned already above the main routine of the save
and load process starts as soon as the process of generating
a deap-sea landscape with a PMC is initiated. Right before
the PMC instance is created, an instance of the HeightMesh
class calls either the LoadGameDataFromFile() or SaveGame-
DataToFile() function. These both functions ar members of the
SaveLoadMission class and do exactly one thing each: save
data to the hard disk / SSD or load data from hard disk / SSD.
Both functions use exactly the same list of parameters. All of
these individual parameters are passed by reference. With this
decision made, we save up some space in the ram 6 and can
modify all arguments directly. The LoadGameDataFromFile()
and SaveGameDataToFile() work in a similar way but in an
opposite order. The order for SaveGameDataToFile() is:

6Some of these parameters contain several hundred MB and TraVis already
uses an average of 6 GB ram or more

1. call the SaveLoadData() function and write all parameters
to an binary array

2. start compressing this binary array
3. write the compressed array to the hard disk / SSD
The order for LoadGameDataFromFile() is:

1. read the savefile from hard disk / SSD
2. decompress the savefile which results in a binary array
3. call the SaveLoadData() function and read all parameters

from the binary array
Figure 1 showes the different sequences of the save and

load process.

Fig. 1. Sequence diagram of the save and load function

Because every argument is passed by reference this whole
process can be included and excluded very easily by just
commenting out the SaveGameDataToFile() and LoadGame-
DataFromFile() function calls. This was helpfull durin devel-
opment.

The excerpt from the TraVis source code below shows
the SaveLoadMission() helpfer function. It makes use of the
overloaded << C++ operator. The << operator is context
sensitive which means it can either get data out of an archive
and put it into a variable or put data from the variable into
the archived binary format[1].

vo id USaveLoadMission : : SaveLoadData (
FArchive& Ar ,
F S t r i n g& S a v e D a t a S t r i n g ,
TArray<FVector>& SaveDataVec tor ,
TArray<i n t 3 2>& SaveDa ta In t32 ,)
{

Ar << S a v e D a t a S t r i n g ;
Ar << SaveDa taVec to r ;
Ar << S a v e D a t a I n t 3 2 ;
Ar << Savenorma l s ;
Ar << SaveUV0 ;
Ar << S a v e v e r t e x C o l o r s ;

}

CONCLUSION

As already shown above TraVis benefits from a save and
load function. In future versions of TraVis an overview of all

previously simulated missions could be a good extension of
the software. It would be nice to see if also the log-data from
the CSV-file could be put in the savefile and how much more
proceedings could be accelerated. Users then would only need
the TraVis savefiles to simulate missions and could share them
among themselves instead of keeping gigabytes of mission
related data.

REFERENCES

[1] Rama, “Save System, Read & Write Any Data to Compressed Binary
Files,” in Unreal Wiki, https://wiki.unrealengine.com/Save System,
Read %26 Write Any Data to Compressed Binary Files

[2] Epic Games, “Saving Your Game with C++,” in Unreal Wiki, https:
//docs.unrealengine.com/en-us/Gameplay/SaveGame/Code

https://wiki.unrealengine.com/Save_System,_Read_%26_Write_Any_Data_to_Compressed_Binary_Files
https://wiki.unrealengine.com/Save_System,_Read_%26_Write_Any_Data_to_Compressed_Binary_Files
https://docs.unrealengine.com/en-us/Gameplay/SaveGame/Code
https://docs.unrealengine.com/en-us/Gameplay/SaveGame/Code

	Introduction
	What advantages does a save and load function offer for a software
	Which data does TRAVIS need to smimulate a mission?
	Which data does TRAVIS store in a save-file

	Saving and Loading - From ascii to binary and vice versa
	When should be loaded and saved
	How does the save and load process work?

	References

