
Dynamic creation of an underwater terrain
according to AUV Data

Kristof Kipp
University of Bremen
Bremen, Germany

kkipp@informatik.uni-bremen.de

Nils Leusmann
University of Bremen
Bremen, Germany

leusmann@informatik.uni-bremen.de

Phillip Schneider
University of Bremen
Bremen, Germany

phisch@informatik.uni-bremen.de

Abstract—This document addresses the basic ideas for the
deepsea landscape creation for the Travis project of the University
of Bremen.
The aim was to create a solution, that dynamicaly creates a
landscape with a given heightmap.
Due to some restrictions in the Unreal Engines source code,
we needed to implement a routine that uses procedural mesh
components (PMC) to create a landscape at runtime.

I. INTRODUCTION

The Unreal Engine Editor provides the possibility to import
a heightmap to create a landscape. One of the requirements on
TRAVIS was, to load different mission related data on runtime.
The Unreal Engine offers this specific solution only during the
runtime of the editor. This means that every engine code which
implements the import of a heightmap is only initialized during
editor runtime. Using this code would also implay a copyright
violation, because using editor code in a packeged software is
not allowed by epic 1. All in all it is not yet intended by epic
to provide a heightmap import routine outside the editor. A
good solution for our problem seem to be PMC. Hereinafter
should be described how PMCs function and how we used
them to implement our deep sea landscape.

II. HOW PROCEDURAL MESHES WORK

A Procedural Mesh Componets in simple is a mesh of trian-
gles which can represent any geometric object and manipulate
its shape during runtime. One advantage of PMCs is, that
they also can be generated during runtime. All instances of a
PMC can have multiple different mesh sections. Every single
section can have its own structure, texture, can be updated
independently 2. An object of this type consits of the following
elements:

• a list of points (more accurate: vertices)
• a list of triangles
• two lists of normals and tangents to control lightning and

visability
• a few optional lists for texture coding

The Unreal Engine takes this information and then drwas the
specific geometric object: Three vertices build one triangle. By
using certin vertices for multiple triangles a mesh is shaped.

In detail the constructor contains the following parameters
(all of them are arrays):

• SectionIndex Index of the section to create or replace.
• Vertices Vertex buffer of all vertex positions to use for

this mesh section.

1https://forums.unrealengine.com/unreal-engine/feedback-for-epic/
26495-terrain-editing-in-runtime/page11

2for further reading: cf. [1] , [2] and [3].

• Triangles Index buffer indicating which vertices make up
each triangle. Length must be a multiple of 3.

• Normals Optional array of normal vectors for each vertex.
If supplied, must be same length as Vertices array.

• UV0 Optional array of texture co-ordinates for each
vertex. If supplied, must be same length as Vertices array.

• VertexColors Optional array of colors for each vertex. If
supplied, must be same length as Vertices array.

• Tangents Optional array of tangent vector for each vertex.
If supplied, must be same length as Vertices array.

• bCreateCollision Indicates whether collision should be
created for this section. This adds significant cost.

III. HOW PROCEDURAL MESH COMPONENT IS USED IN
TRAVIS

A. Necessary steps to generate the deepsea landscape

The generation of the procedural mesh component is split in
different parts. First part is reading and convertig the mission
data. Second part is to put the necessary parameters into
arrays3. In the end the unreal engine draws the mesh object.
All of this individual parts are descriped in detail below.

B. First draft of the algorithem building our landscape mesh

The first version of the allgorithem was very simple and is
inspired by [2].

f o r (i n t k = 0 ; k < wid th ; k ++)
{

/ / adds two s t a r t i n g p o i n t s f o r e v e r y row
v e r t i c e s . Add (FVec tor (s i z e , k* s i z e , 0)) ;
v e r t i c e s . Add (FVec tor (s i z e , (k +1) * s i z e , 0)) ;

f o r (i n t j = 1 ; j <= l e n g t h ; j +=2)
{

/ / add two a d d i t i o n a l p o i n t s t o g e n e r a t e a
r e c t a n g l e

v e r t i c e s . Add (FVec tor (s i z e * j , s i z e *k , 0)) ;
v e r t i c e s . Add (FVec tor (s i z e * j , s i z e * (k +1) , 0)

) ;
/ / f i s t t r i a n g l e
T r i a n g l e s . Add ((j − 1) +(k* l e n g t h)) ;
T r i a n g l e s . Add (j +(k* l e n g t h)) ;
T r i a n g l e s . Add ((j + 1) +(k* l e n g t h)) ;
/ / second t r i a n g l e
T r i a n g l e s . Add ((j + 2) +(k* l e n g t h)) ;
T r i a n g l e s . Add ((j + 1) +(k* l e n g t h)) ;
T r i a n g l e s . Add (j +(k* l e n g t h)) ;

}
}

It just adds triangles together to form a rectangle. This way
only four vertices are necessary and used by two triangles.
The rectangles are then connected together to form a two-
dimensionale mesh. In a nested for-loop the algorithem creates
two starting points for each new row in the outer-loop. Each
inner-loop then generates two new points. This four given
points are then used to create two vertecis which form a
rectangle.

3Saving and loading this parameters to guarantee userfriendly calculation
time is described in the technicalreport Save and Load Function

This picture showes the principle which is the underlying
in the algorithem above.

Adding the third dimension, some important conditions
and of corse improvements form the final algorithem whis
is descriped below.

IV. ASC-FILE

Usually the MARUM uses a specific data type, in which it
saves and distribute its bathymetry data. For the purpose of
our Simulation we will always receive this .asc-file. It will
provide Travis with all the data needed to create an height
map.

A. Structure

The simulation will only work with an .asc file and even
though there is no real standard for .asc files, the MARUM
assured us we will always revive an file with the same
structure. For an easy readability the Marum choose to use
this ascii coded file format, even though it is slower to read
for computer then raw bytes. In addition to this it makes it
easier to talk about the values.

The first five lines of the files are always composed of
a descriptive String and the corresponding value. This meta
information is followed by an huge data matrix, where each
cell is value that describe the depth. The values are separated
with a white space. Furthermore is it possible to compute the
corresponding latitude and longitude values for each cell with
the help of the given meta information. The meta values, with
example values, can be seen in table I

Human readable String Example value Description
ncols 10123 Number of columns of the height matrix
nrows 5097 Number of columns of the height matrix
xllcenter 17.6763952465 Longitude value of the center point
yllcenter 38.2872007428 Latitude value of the center point
cellsize 0.0000100000 Step range between the Cells
nodata value -99999.000000 If the AUV could not get any value

TABLE I
THE META DATA OF THE ASC FILE

B. Reading

For the purpose of storing all the data inside the asc file,
we created a new class. The asctype t class stores all the meta
data and the height matrix. The height matrix points will be
stored as GameAnchorPoints which can be roughly described
as Poitns inside the Unreal Engine. For more information about
GameAnchorPoints see our paper about the Aquarium. After
the reading process is finished we want the asctype t to have
all the data in a way that we can immediately work with it.
Since the asc file only provides us with a latitude and longitude
value we need to convert these values into GameAnchorPoints.
For this we need to use the aquarium again. In addition to that
we only know the latitude and longitude values of the middle
point of the matrix. Because we know the stepsize between
each cell we can compute the exact position of each value.
This will need to be done before we will give the values to
the aquarium, because the aquarium will only convert an 3d
vector. We know for sure that there will always be an middle
point inside the matrix because the numbers of columns and
rows will always be odd. While starting to read the file, it
is not certain how big the data matrix will become. This can
only be said, after the first two lines of the file have been read.
Then we know how large the Matrix needs to be. After we
obtained this knowledge we will resize the matrix accordingly.
The resize() function will only work, if we have stored the
column and row values of the class.

To increase the performance we will read one line and hand
it over to an worker thread. In the worker thread we will
do the necessary computations. We will compute the latitude
and longitude values and from there use the aquarium to gain
GameAnchorPoints. Because of the thread pool library we are
using, it is only possible to give a thread one parameter. For
the thread to work properly it needs more information. This
means we needed to create an new data object which will
be passed to each thread. The ascline consist of the variables
which can be seen in table II.

Human readable String Description
int idx The row in which the data will be stored (needs to be -6)
std::string line The actual data from the line
ascdata t* data A pointer to the dataobject in which the data will be stored
AquariumHelper* helper The aquarium in which the points should be converted

TABLE II
THE MEMBERVARIABLES OF THE ASCLINE

Because there is a specific ascline for each row we can
let each thread write into the real ascdata t object without
worrying to overwrite an data.

V. CONCLUSION

For our usecase the Procedural Mesh Component

VI. FURTHER READING AND SOURCES

https://wiki.unrealengine.com/Procedural Mesh
Component in C%2B%2B:Getting Started https:
//forums.unrealengine.com/unreal-engine/feedback-for-epic/
26495-terrain-editing-in-runtime/page11

VII. APPENDIX

A. Cutted first lines of the .asc File

n c o l s 10123
nrows 5097
x l l c e n t e r 17 .6763952465
y l l c e n t e r 38 .2872007428
c e l l s i z e 0 .0000100000
n o d a t a v a l u e −99999.000000
−99999.00 −99999.00 −99999.00 −99999.00 −99999.00

[. . .]
−99999.00 −99999.00 −99999.00 −99999.00 −99999.00

[. . .]
[. . .]

ACKNOWLEDGMENT

Thanks to M.Sc. Christoph Schrder, Dr. Ren Weller and
M.Sc. Philipp Dittmann for their support ,patience and en-
durance.

REFERENCES

[1] “Procedural Mesh Component in C++:Getting Started,”
https://wiki.unrealengine.com/Procedural Mesh Component in C%
2B%2B:Getting Started

[2] Chris Conway, “Mesh Basics,” https://github.com/Koderz/
RuntimeMeshComponent/wiki/Mesh-Basics

[3] Chris Conway, “Basic Concepts of the RMC,” https://github.com/
Koderz/RuntimeMeshComponent/wiki/Basic-Concepts-of-the-RMC

