
The In-Game AUV-Model and its Visualizations in
Travis

Ingmar Ludwig
University of Bremen
Bremen, Germany

iludwig@uni-bremen.de

Felix Haffke
University of Bremen
Bremen, Germany

fhaffke@hfk-bremen.de

Lennart Schunk
University of Bremen
Bremen, Germany

lennart schunk@web.de

Abstract—This paper describes the AUV-model and the vi-
sualizations for its status used in the Travis simulation. The
first part describes how the AUV-model is build in regards to
its meshes, textures and the implementation of its propeller-
and hydroplane movements. The second part describes how
the AUV moves through the simulation and what needs to be
considered while dealing with the movement method. The final
part gives an overview over the different visualizations of the
AUVs status, describes what the underlying ideas are and how
the implementation is structured.

Index Terms—unreal engine, unreal, trajectory, travis, visual-
isation, AUV-model

I. INTRODUCTION

Purpose of the Travis simulation is to replay and visualize
real dives of the MARUM-SEAL AUV. The documentation
is split in several papers. In this paper the AUV-model, its
components and the visualizations of its status are described.

This paper is divided in three parts. In the first part the origin
of the different components of the AUV-model are described
(e.g. what is the source of the data is and how the components
were created). In the second part the implementation of the
movement and rotation of the AUV-model and what needs
to be considered while dealing with the implementation is
illustrated. In the final part the visualizations of the AUVs
status (e.g. pressure or motor-RPM) are explained relating to
their fundamentally ideas and implementation structure.

II. AUV-COMPONENTS

The AUV-model consist of several distinct parts which are
discussed in regards to their origin, basic idea and implemen-
tation.

A. Mesh
To create a realistic and lifelike model of the AUV, pictures

of the actual AUV taken from the offical MARUM website
1 were used. From these a simplistic model was made in
blender. Based on a tube shaped body, a simple tower and
hydroplanes more and more details were added to the AUV
model iteratively. Those details include individual screws,
antennas, lights and more.

To ensure the movability according to the data the AUV was
separated into several parts (body, wings, tower and details).

1https://www.marum.de/Entdecken/AUV-MARUM-SEAL.html

B. Texturing

In the simulation the model is covered with textures. The
texture was created without the use of real images. This leads
to a more unrealistic texture but ensured a much more clean
and polished look which again leads to a more user friendly
and easier to understand visualisation. To create the texture
a simple base color was used and then combined with some
details and a texture that we took from texturelib.com2. The
logos where added and ambient occlusion was baked directly
on the texture to get rid of performance issues which may
occur by using an ambient occlusion effect. To make the AUV
look more used and weathered different layers of dirt and
irregular surface were added to the texture. In addition to that
the logos were made looking more run down and a basic metal
texture was added.

The material work was done in the unreal engine using base
texture, ambient occlusion texture and customized variables for
shininess, metallic and roughness. The materials where made
to represent the real metal of the AUV as accurate as possible.

The resulting AUV-model (see figure 1 and 2) seeks a good
compromise between a realistic and believable look and the
visualisation purpose.

C. wing and propeller movement

To enable realistic movement of the hydroplanes and the
tower, these elements were modelled separately in blender
and than later animated in the Unreal Engine using blueprints.
Goal of the animation was to move the hydroplanes and the
propeller as close as possible as at the real AUV. To enable
that each of the items was placed at the AUV using photos of
the AUV from the MARUM Website 3. After that the models
were transformed into blueprints, setting each part as a child
actor of the main AUV body.

Finally each piece got its own animation function. All
Functions are then called in the level blueprint using custom
events for inter-blueprint communication.

D. AUV size

The size of the AUV in Travis has to take into account
several demands that are contradictory. To best satisfy those

2http://texturelib.com/texture/?path=/Textures/metal/bare/metal bare 0029
3https://www.marum.de/Entdecken/AUV-MARUM-SEAL.html



demands while still keeping the simulation clear, three differ-
ent sizes for different demands were created that are selectable
through an interface button. The smallest size (see figure
3) represents the approximately correct size of the AUV in
regards to the map an thus makes the true size ratio visible.
Since this size is very small and thus makes it difficult to
see the visualizations, a second, bigger size was added (see
figure 4). A third size was added to answer the demand for a
good possibility for seeing the movement of the AUV from a
great distance that enables to see the whole map (see figure 5).
However this very large size makes it very difficult to see the
connection between the trajectory and the AUVs movements,
so the medium size remains necessary.

Due to wishes from the MARUM a second size-related
functionality was added: while the keyboard button g is
pressed the AUV is temporally increased ten times in size.
This enables the user to easily find the AUV if he or she
temporally lost the view on it.

Since the size of the earth surface represented by the map
differs from mission to mission, the smallest AUV size has
to be adjusted accordingly (for further information over the
correlation between the earth surface size and the map size
refer to the Aquarium-paper). Initially the AUV has the size
that would be right if one Unreal Unit would represent one
meter. This size is than adjusted by multiplying the number
of Unreal Units that represent one meter in this special setting
(which is passed from DataCommunicator).

A known issue with the AUV sizing in Travis is that the
hitbox of the AUV-model does not resize correctly. This leads
to limitations in getting really close to the smallest AUV-model
version and enables the user to fly through the largest version.
Since this fact is no real problem while using the simulation,
it was not fixed due to other priorities.

III. AUV MOVEMENT AND ROTATION

The purpose of the implemented AUV movement function-
ality is to be able to replay AUV dives with continuous and
frequent data points (at least one per second, tested with 10
data points per second). General idea is to take those data
points and linearly interpolate the movement and rotation
between them.

All the movements and rotations of the AUV-model take
place in the Move AUV method, which takes the position
and rotation data from two data points and an interpolation
value. The method than interpolates the position and rotation
values and places the AUV-model accordingly in regards to its
center of gravity. The AUV-models center of gravity on the
other hand was placed directly in the geometric center of the
model during the creation process.

The method excepts two kinds of z coordinates, one being
the actual z component and the other being the altitude above
ground. In the current simulation only the first one is used,
but since it was not clear what the data would look like at the
beginning of the project when the method was implemented,
both possibilities were anticipated.

A general problem with the approach of using no intelligent
steering for the AUV, but instead setting the positions directly
according to the data from the log file, is that effects from the
data logging phase in the real dive can lead to strange effects
in the simulation. In the data samples we got for testing our
simulation the longitude, latitude and the depth seem to have
different update rates, leading to a slight zigzag curse when
the simulation is played with low speed (This zigzag does not
result from the interpolation process: It also happens when
interpolation is turned of. In this case the AUV is teleported
from one point to the other in a zigzag fashion.). But since
our task was to visualize the data (and not necessarily the real
dive), we chose this kind of AUV positioning nevertheless.

IV. CHANGING THE AUV MODEL

For changing the AUV-model (a feature that is planned
for the future), several steps are necessary: First, the new
AUV-model needs to be transferred into an unreal uasset file
using the unreal engine. Than the current AUV-model (named
”submarine” in the simulation) can be switched to the new
model. If there is a wish to use the motor rpm, pressure, speed
or rotation visualization, the actors for the visualization (which
also have these names and are structured accordingly) need to
be moved from the old to the new model. If the hydroplane
rotation also should be visualized like in the current model,
these actors also need to be transferred to the new model
and, since the position of the hydroplane will probably differ,
repositioned. If the hydroplanes also should move like in the
current model, the new model will need to use the Move Front
Left Plane, Move Front Right Plane, Move Back Left Plane,
Move Back Right Plane and Move Submarine Tower Events
for moving its hydroplanes. Since we were not able to check
this procedure (due to the lack of another AUV-model), this
guidelines should be treated with caution.

V. VISUALIZATION OF AUV-STATUS

In addition to displaying mission data as text in the user
interface, we wanted to visualise important parts of the data
within the 3D space. To archive a clean and easy to under-
stand visualisation it was placed directly around the auv. The
different visualizations and their general ideas are described
in this paper.

A. AUV rotation

We started with the AUVs rotation within the 3D space.
First we thought about what we had to display: 3 Rotation
axes and a way to show at what degree the AUV is rotated
within those axes. The first thought was to create some kind
of 3D compass and use the AUV itself as the compass needle.
It was planned to archive that by creating a model of the 3
axes and then move those with the AUV. The compass would
only move with the AUVs position but not with its rotation.
This would result in the AUV rotating within the compass.
This idea whatsoever did not quite work out due to the fact
that the AUV is usually not pointing at the axis. As we figured
out, we had to rotate the axes with other axes in the right way



to ensure a correct display of the data. For example the pitch
is rotated with the heading angle to ensure that the AUV is
always pointing at the correct pitch axis (while still being able
to rotate horizontally). In the end we still somehow used the
3D compass idea: The AUV is within a ”sphere” build out of
the 3 rotation axes (xyz) for pitch, yaw and heading angle (see
figure 6, 7 and 8). Those move with the AUV and an arrow
connected to the AUV points at the rotation scales.

B. Pressure

Next the pressure visualisation was created (see figure 9).
The goal was to keep the visualization simple and easy
to understand. We added a sphere around the AUV which
changes its scale and color as the pressure changes. Low
pressure results in a big blue sphere and high pressure results
in a small red sphere which seems ”pressed together”. For
better discriminability later a progressive color flow was added
going from blue over green to red using the whole RGB
spectrum.

C. Speed

For visualising the speed we added an arrow right in front
of the AUV (see figure 11). The arrow rotates and moves with
the AUV but changes its size according to the AUVs speed:
As the AUV gets faster, the size of the arrow increases, as it
looses speed the arrow decreases in size.

D. Propeller speed

The propeller speed visualisation is almost the same as
the speed visualisation but instead of being in front of the
AUV, the arrow is placed behind it (see figure 11). As the
propeller speed increases the arrow gets bigger. The AUVs
movement speed is obviously related to the propeller speed and
the design of the visualizations tries to echo that by making
the interaction visible. Also using both visualizations together
enables the user to easily recognise some malfunctions: For
example if there is a big arrow behind the AUV and a small
arrow in front of it, it is obvious that the AUV is not building
up speed while the propeller is moving fast. This might be
due to a damaged propeller.

E. Hydroplanes rotation

The Hydroplane rotation is displayed similar to the AUVs
rotation itself. But because the Hydroplanes only have one
degree of freedom each, instead of using a compass with 3
axes only one axis was used. For visualizing the rotation an
arrow is moved together with the hydroplane. Together with
a (in reference to the AUV) static scale, the degree of the
rotation is visible (see figure 10).

F. implementation

All visualizations share a similar structure to keep the Level
Blueprint as clean as possible. All visualization are based on
objects in the Level Blueprint which are updated within every
tick (if the visualizations are visible). Each of those updates
is connected to the Tick Event in the Event Graph of the

Level Blueprint and highlighted as a interrelated segment with
a comment box.

The updates are done using Unreals Set Actor Scale 3D, Set
Actor Relave Location and Set Actor Rotation methods after
the right scale, rotation and location was calculated using the
current Waypoint Data from the DataCommunicator.

The visualizations are activated using buttons in the inter-
face Blueprint. This is realized utilizing a cascade of Events
that seems necessary due to Unreals structure. When a button
is clicked in the interface, a On Clicked Event is called auto-
matically. This Event is than connected to an Event Dispatcher
of the origin Blueprint that enables calling events in different
Blueprints. But before this is possible, a Custom Event of
the destination-Blueprint, in this case the Level Blueprint, has
to be bound to the Event dispatcher. This happens in the
Event Begin Play section of the Event Graph in the Level
Blueprint. In this Custom Event in the Level Blueprint the
main functionality for showing or hiding the visualizations
is located (which is located in the initialization block of the
Event Graph section).

G. Placement of the visualizations in unreal

There are two natural places for the visualizations in unreal:
Within the level and within the AUV-model blueprint. Both of
these places have their advantages. While placing the visual-
izations within the AUV-model would lead to cleaner structure,
a placement inside the Level Blueprint makes it easier to
change the AUV-model in the future. This is due to the fact
that most of the visualizations can stay the same with every
AUV model while only the visualization of the hydroplane
rotations need repositioning (which is easily achievable). This
way redundancy in the Blueprints while using multiple AUV-
models can be avoided. Since multiple AUV-models are an
important goal for the future, the second variety was chosen.



VI. APPENDIX

Fig. 1. The AUV-model as seen from the side

Fig. 2. The AUV-model as seen from the top

Fig. 3. The AUV-model in the smallest, in regards to the map correct size

Fig. 4. The AUV-model in the medium size

Fig. 5. The AUV-model in the largest size

Fig. 6. The visualization of the heading angle (movement direction)

Fig. 7. The visualization of the AUVs pitch angle



Fig. 8. The visualization of the AUVs roll angle

Fig. 9. The visualization of the pressure on the AUV

Fig. 10. The visualization of the AUVs hydroplanes rotation status

Fig. 11. The visualization of the speed (green arrow) and rotations per minute
of the motor (orange arrow)


