Massively Parallel Algorithms
Parallel Prefix Sum
And Its Applications

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de
- Remember the *reduction* operation
 - Extremely important/frequent operation → Google's *MapReduce*

- Definition **prefix sum**: Given an input sequence
 \[A = (a_0, a_1, a_2, \ldots, a_{n-1}) \]
 the *(inclusive)* **prefix sum** of this sequence is the output sequence
 \[\hat{A} = (a_0, a_1 \oplus a_0, a_2 \oplus a_1 \oplus a_0, \ldots, a_{n-1} \oplus \cdots \oplus a_0) \]
 where \(\oplus \) is an arbitrary binary associative operator.
 The **exclusive prefix sum** is
 \[\hat{A}' = (\iota, a_0, a_1 \oplus a_0, \ldots, a_{n-2} \oplus \cdots \oplus a_0) \]
 where \(\iota \) is the identity/zero element, e.g., 0 for the + operator.

- The prefix sum operation is sometimes also called a **scan** (operation)
Example:

- Input: \(A = (3\ 1\ 7\ 0\ 4\ 1\ 6\ 3) \)
- Inclusive prefix sum: \(\hat{A} = (3\ 4\ 11\ 11\ 15\ 16\ 22\ 25) \)
- Exclusive prefix sum: \(\hat{A}' = (0\ 3\ 4\ 11\ 11\ 15\ 16\ 22) \)

Further variant: backward scan

Applications: many!

- For example: polynomial evaluation (Horner's scheme)
- In general: "What came before/after me?"
- "Where do I start writing my data?"

The prefix sum problem appears to be "inherently sequential"
Actually, *prefix-sum* (a.k.a. *scan*) was considered such an important operation, that it was implemented as a *primitive* in the CM-2 *Connection Machine* (of Thinking Machines Corp.)
Variation: **Segmented Scan**

- **Input:** *segments* of numbers in one large vector

```
3 1 7 0 4 1 6 3
1 0 1 0 0 1 0 0
```

- **Task:** scan (prefix-sum) *within* each segment

- **Output:** prefix-sums for *each* segment, in one vector

```
0 3 0 7 7 0 1 7
```

- Forms the basis for a wide variety of algorithms:
 - E.g., Quicksort, Sparse Matrix-Vector Multiply, Convex Hull
 - Won't go into details here
Application from "Everyday" Life

- Given:
 - A 100-inch sandwich
 - 10 persons
 - We know how many inches each person wants: [3 5 2 7 28 4 3 0 8 1]

- Task: cut the sandwich quickly

- Sequential method: one cut after another (3 inches first, 5 inches next, ...)

- Parallel method:
 - Compute prefix sum
 - Cut in parallel
 - How quickly can we compute the prefix sum??
Importance of the Scan Operation

- Assume the scan operation is a primitive that has *unit* time costs, then the following algorithms have the following complexities:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EREW</td>
</tr>
<tr>
<td>Graph Algorithms</td>
<td></td>
</tr>
<tr>
<td>Minimum Spanning Tree</td>
<td>$\lg^2 n$</td>
</tr>
<tr>
<td>Connected Components</td>
<td>$\frac{1}{2} \lg n$</td>
</tr>
<tr>
<td>Maximum Flow</td>
<td>$n \lg n$</td>
</tr>
<tr>
<td>Maximal Independent Set</td>
<td>$\frac{1}{2} \lg n$</td>
</tr>
<tr>
<td>Biconnected Components</td>
<td>$\lg^2 n$</td>
</tr>
<tr>
<td>Sorting and Merging</td>
<td></td>
</tr>
<tr>
<td>Sorting</td>
<td>$\lg n$</td>
</tr>
<tr>
<td>Merging</td>
<td>$\lg n$</td>
</tr>
<tr>
<td>Computational Geometry</td>
<td></td>
</tr>
<tr>
<td>Convex Hull</td>
<td>$\frac{1}{2} \lg n$</td>
</tr>
<tr>
<td>Building a K-D Tree</td>
<td>$\frac{1}{2} \lg n$</td>
</tr>
<tr>
<td>Closest Pair in the Plane</td>
<td>$\frac{1}{2} \lg n$</td>
</tr>
<tr>
<td>Line of Sight</td>
<td>$\lg n$</td>
</tr>
<tr>
<td>Matrix Manipulation</td>
<td></td>
</tr>
<tr>
<td>Matrix \times Matrix</td>
<td>n</td>
</tr>
<tr>
<td>Vector \times Matrix</td>
<td>$\lg n$</td>
</tr>
<tr>
<td>Matrix Inversion</td>
<td>$n \lg n$</td>
</tr>
</tbody>
</table>

EREW = exclusive-read, exclusive-write PRAM
CRCW = concurrent-read, concurrent-write PRAM
Scan = EREW with scan as unit-cost primitive

Guy E. Blelloch:
Vector Models for Data-Parallel Computing
Example: Line-of-Sight

- Given:
 - Terrain as grid of height values (*height map*)
 - Point X in the grid (our "viewpoint", has a height, too)
 - Horizontal viewing direction (we can look up and down, but not to the left or right)

- Problem: find all *visible* points in the grid along the view direction

- Assumption: we have already extracted a vector of heights from the grid containing all cells' heights that are in our horizontal viewing direction
The algorithm:

1. Convert height vector to vertical angles (as seen from X) → A
 - One thread per vector element
2. Perform \textit{max-scan} on angle vector (i.e., prefix sum with the max operator) → \hat{A}
3. Test $\hat{a}_i < a_i$, if true then grid point is visible from X
The Hillis-Steele Algorithm

- Iterate \(\log(n) \) times:

\[
\begin{array}{cccccccc}
A: & 3 & 1 & 7 & 0 & 4 & 1 & 6 & 3 \\
B: & 3 & 4 & 8 & 7 & 4 & 5 & 7 & 9 \\
\end{array}
\]

\(d = 0 \), stride 1

\(d = 1 \), stride 2

\(d = 2 \), stride 4

- Notes:
 - Blue = active threads
 - Each thread reads from "another" thread, too → must use double buffering and barrier synchronization
The algorithm as pseudo-code:

```plaintext
forall i in parallel do // n threads
    for d = 0...log(n)-1:
        if i >= 2^d :
            x[i] = x[i - 2^d] + x[i]
```

- Note: we omitted the double-buffering and the barrier synchronization
Terminology

- Algorithmic technique: recursive/iterative doubling technique = "Accesses or actions are governed by increasing powers of 2"
 - Remember the algo for maintaining dynamic arrays? (2nd/1st semester)

- Definitions:
 - **Depth** \(D(n) = \text{"#iterations"} = \text{parallel running time} \ T_p(n) \)
 - (Think of the loops unrolled and "baked" into a hardware pipeline)
 - Sometimes also called **step complexity**
 - **Work** \(W(n) = \text{total number of operations performed by all threads together} \)
 - With **sequential** algorithms, **work complexity** = **time complexity**
 - **Work-efficient**: A parallel algorithm is called **work-efficient**, if it performs no more work than the sequential one
Visual definition of depth/work complexity:

- Express computation as a dependence graph of parallel tasks:

- Work complexity = total amount of work performed by all tasks
- Depth complexity = length of the "critical path" in the graph

- Parallel algorithms should be always both work and depth efficient!
Complexity of the Hillis-Steele algorithm:

- Depth \(d = T_p(n) = \# \text{ iterations} = \log(n) \rightarrow \text{good} \)
- In iteration \(d \): \(n - 2^{d-1} \) adds
- Total number of adds = work complexity

\[
W(n) = \sum_{d=1}^{\log_2 n} (n - 2^{d-1}) = \sum_{d=1}^{\log_2 n} n - \sum_{d=1}^{\log_2 n} 2^{d-1} = n \cdot \log n - n \in O(n \log n)
\]

- Conclusion: not work-efficient
 - A factor of \(\log(n) \) can hurt: 20x for \(10^6 \) elements
The Blelloch Algorithm (for Exclusive Scan)

- Consists of two phases: up-sweep (= reduction) and down-sweep

1. Up-sweep:

 - d = 0, stride 1
 - 3 1 7 0 4 1 6 3

 - d = 1, stride 2
 - 3 4 7 7 4 5 6 9

 - d = 2, stride 4
 - 3 4 7 11 4 5 6 14

 - Note: no double-buffering needed! (sync is still needed, of course)
2. Down-sweep:

- First: zero last element (might seem strange at first thought)

\[
\begin{bmatrix}
3 & 4 & 7 & 11 & 4 & 5 & 6 & 0 \\
\end{bmatrix}
\]

- Dashed line means "store into" (overwriting previous content)
- Depth complexity:
 - Performs $2 \cdot \log(n)$ iterations
 - $D(n) \in O(\log n)$

- Work-efficiency:
 - Number of adds: $n/2 + n/4 + \ldots + 1 + 1 + \ldots + n/4 + n/2$
 - Work complexity $W(n) = 2 \cdot n = O(n)$
 - The Blelloch algorithm is work efficient

- This up-sweep followed by down-sweep is a very common pattern in massively parallel algorithms!

- Limitations so far:
 - Only one block of threads (what if the array is larger?)
 - Only arrays with power-of-2 size
Working on Arbitrary Length Input

- One kernel launch handles up to 2^{*}blockDim.x elements
- Partition array into blocks
 - Choose fairly small block size $= 2^k$, so we can easily pad array to $b \cdot 2^k$

1. Run up-sweep on each block
2. Each block writes the sum of its section (= last element after up-sweep) into a *Sums* array at blockIdx.x
3. Run prefix sum on the *Sums* array
4. Perform down-sweep on each block
5. Add *Sums*[blockIdx.x] to each element in "next" array section blockIdx.x+1
Initial Array of Arbitrary Values

Up-sweep block 0 ➔ Up-sweep block 1 ➔ Up-sweep block 2 ➔ Up-sweep block 3

Store block sums to auxiliary array $Sums$

Scan auxiliary array $Sums$

"Seed" last value in block $i+1$ with $Sums[i]$, instead of 0

Down-sweep block 0 ➔ Down-sweep block 1 ➔ Down-sweep block 2 ➔ Down-sweep block 3

Final Array of Scanned Values
Further Optimizations

- A *real* implementation needs to do all the nitty-gritty optimizations
 - E.g., worry about *bank conflicts* (very technical, pretty complex)

- A simple & effective technique:
 - Each thread i loads 4 floats from global memory $\rightarrow \text{float4} \ x$
 - Store $\sum_{j=1}^{4} x[i][j]$ in shared memory $a[i]$
 - Compute the prefix-sum on $a \rightarrow \hat{a}$
 - Store 4 values back in global memory:
 - $\hat{a}[i] + x[0]$
 - $\hat{a}[i] + x[0] + x[1]$
 - $\hat{a}[i] + x[0] + x[1] + x[2]$
 - Experience shows: 2x faster
 - Why does this improve performance? \rightarrow Brent's theorem
Brent's Theorem

- Assumption when formulating parallel algorithms: we have arbitrarily many processors
 - E.g., $O(n)$ many processors for input of size n
 - Kernel launch even reflects that!
 - Often, we run as many threads as there are input elements
 - I.e., CUDA/GPU provide us with this (nice) abstraction

- Real hardware: only has fixed number p of processors
 - E.g., on current GPUs: $p \approx 200–2000$ (depending on viewpoint)

- Question: how fast can an implementation of a massively parallel algorithm really be?
Assumptions for Brent's theorem: PRAM model
- No explicit synchronization needed
- Memory access = free

Brent's Theorem:
Given a massively parallel algorithm \(A \); let \(D(n) \) = its depth (i.e., parallel time complexity), and \(W(n) \) = its work complexity. Then, \(A \) can be run on a \(p \)-processor PRAM in time

\[
T(n, p) \leq \left\lfloor \frac{W(n)}{p} \right\rfloor + D(n)
\]

(Note the "≤")
Proof:

- For each iteration step i, $1 \leq i \leq D(n)$, let $W_i(n) = \text{number of operations in that step}$

- Distribute those operations on p processors:
 - Groups of $\left\lfloor \frac{W_i(n)}{p} \right\rfloor$ operations in parallel on the p processors
 - Takes $\left\lfloor \frac{W_i(n)}{p} \right\rfloor$ time steps on the PRAM

- Overall:

\[
T(n, p) = \sum_{i=1}^{D(n)} \left\lfloor \frac{W_i(n)}{p} \right\rfloor \leq \sum_{i=1}^{D(n)} \left(\left\lfloor \frac{W_i(n)}{p} \right\rfloor + 1 \right) \leq \left\lfloor \frac{W(n)}{p} \right\rfloor + D(n)
\]