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Abstract

We present a new acceleration scheme for continuous collision detection of objects under arbitrary deformations. Both pairwise
and self collision detection are presented. This scheme is facilitated by a new acceleration data structure, the kinetic separation
list. The event-based approach of our kinetic separation list enables us to transform the continuous problem into a discrete
one. Thus, the number of updates of the bounding volume hierarchies as well as the number of bounding volume checks can be
reduced significantly.

We performed a comparison of our kinetic approaches with the classical swept volume algorithm. The results show that our
algorithm performs up to fifty times faster in practically relevant scenarios.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Geometric algorithms, Object hierar-

chies 1.3.7 [Computer Graphics]: Animation, Virtual reality

1. Introduction

Environments with dynamically deforming objects play an
important role in many applications, including medical sim-
ulation, entertainment, and surgery simulation. Virtually all
of these applications require collision detection to be per-
formed in order to avoid the simulated objects to penetrate
themselves or each other. For example, in cloth simulations,
we have to avoid penetrations between the cloth and the
body, but also between the wrinkles of the cloth itself.

Most current techniques use bounding volume hierarchies
(BVHSs) to quickly cull parts of the objects that cannot in-
tersect. Usually, a BVH is constructed in a pre-processing
step, but if the object deforms, the hierarchy becomes in-
valid. In order to still use this well-known method for de-
forming objects, it is necessary to update the hierarchies af-
ter the deformation happened. Another problem that arises
when using BVHs for self-collision detection is the problem
of adjacency, because two adjacent subareas are always col-
liding by contact along their borders. Using swept volumes
and lazy updating methods for continuous collision detec-
tion aggravates this problem. Moreover, most of the earlier
methods in collision detection do not make use of the tem-
poral and spatial coherence of simulations.
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In order to avoid all those problems mentioned above,
we propose an event-based approach for continuous colli-
sion detection. The rationale is as follows: We all know that
motion in the physical world is normally continuous. So,
if an animation is discretized by very fine time intervals, a
brute-force approach to the problem of updating BVHs and
checking for collisions would need to do this at each of these
points in time, possibly utilizing swept BVs between suc-
cessive times. However, changes in the combinatorial struc-
ture of a BVH and, analogously, collisions only occur at
discrete points in time. Therefore, we propose to utilize an
event-based approach to remedy this unnecessary frequency
of BVH updates and collision checks.

Exploiting this observation, we present the novel kinetic
separation list, which enables continuous inter- and intra-
object collision detection for arbitrary deformations such
that checks between bounding volumes (BVs) and polygons
are done only when necessary, i.e., when changes in the
moving front really happen.

This way, the continuous problem of continuous collision
detection is reduced to the discrete problem of determining
exactly those points in time, where the combinatorial struc-
ture of our kinetic separation list changes.

We use the framework of kinetic data structures (KDS)
for the design and the analysis of our algorithms. To use this
framework, it is required that a flightplan is given for ev-
ery vertex. This flightplan may change during the motion,
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maybe by user interaction or by physical events (like col-
lisions). Many deformations caused by simulations satisfy
these constraints, like keyframe animations and many other
animation schemes.

The kinetic separation list is based on the kinetic AABB
tree. In contrast to conventional AABB trees, only the com-
binatorial structure of the hierarchy is stored instead of real
vertex positions of the BVs. An update of the hierarchy
is only necessary, if this combinatorial structure changes,
which happens much less frequent than changes of vertex
positions. However, the kinetic AABB tree utilize the tem-
poral and spatial coherence only for the update of an indi-
vidual hierarchy.

Our kinetic separation list extends the same principle to
collision detection between pairs of objects. We maintain the
combinatorial structure of a separation list of a conventional
recursion tree.

As a natural consequence of this event-based approach,
collisions are detected automatically in the right order, so
there is no further ordering required like in many other ap-
proaches. Therefore, our kinetic separation list is well suited
for collision response.

In the following, we will restrict our discussion to polyg-
onal meshes, but it should become obvious that our data
structures can, in principle, handle all objects for which we
can build a bounding volume hierarchy, including polygon
soups, point clouds, and NURBS models. Our algorithms are
even flexible enough for handling insertions or deletions of
vertices or edges in the mesh during run-time.

2. Related Work

Many methods using bounding volume hierarchies have
been developed for collision detection of rigid bodies and
have also been adopted for deformable objects, including
axis-aligned bounding volumes (AABBs) [vdB97, Pro97],
k-Dops [KHM*98], OBBs [GLM96] and spheres [PG95].
Since the objects deform, the hierarchies must be updated
regularly and the cost of these updates can be high. Van
den Bergen [vdB97] showed that updating is about ten times
faster compared to a complete rebuild of an AABB hierar-
chy, and as long as the topology of the object is conserved,
there is no significant performance loss in the collision check
compared to rebuilding.

Several techniques to speed up the updates during each

time step were proposed, including top-down, bottom-up up-
dates and hybrid strategies [Ber98].
Mezger et al [MKEO3] accelerated the update by omitting
the update process for several time steps. Therefore, the BVs
are inflated by a certain distance, and as long as the enclosed
polygon does not move farther than this distance, the BV
need not to be updated.

There also exist some stochastic methods [KZ03, Lin93]
for deformable collision detection, but they can not guaran-
tee to find exact collisions and even a single missed collision
can result in an invalid simulation.

BVHs are also used to accelerate continuous collision de-
tection. Therefore, the BVs enclose the volume described by
a linear [RKCO02, BFA02] or screw motion [KRO3] within
two successive time steps, but most approaches are restricted
to rigid objects.

Knott and Pai [KP03] used hardware frame buffer opera-
tions to implement a ray-casting algorithm to detect static in-
terferences between polyhedral objects. Therefore, the pre-
cision is constrained by the dimension of the viewport. An-
other hardware-based approach is given by Heidelberger et
al [HTGO4]. They use layered depth images with additional
information on face orientation for the collision detection.
Govindaraju et al [GKJ*05] use chromatic decompositions
and the GPU to speed up the triangle tests using 2.5D over-
lap tests. However, for the broad phase, they use bottom-up
updates of an AABB hierarchy and a simple swept volume
algorithm. Furthermore, the algorithm is restricted to polyg-
onal meshes with fixed connectivity but it can handle also
self collisions of the objects.

Another approach for the special case of morphing objects
[LAMO3], where the objects are constructed by interpolating
between some morphing targets, is to construct one BVH
and fit this to the other morph targets, such that the corre-
sponding nodes contain exactly the same vertices. During
runtime, the current BVH can be constructed by interpolat-
ing the BVs. Fisher and Lin [FLO1] use deformed distance
fields for the collision detection between deformable objects.

James and Pai [JP04] introduced the BD tree which uses
spheres as BVs and leads to a sub-linear-time algorithm for
models which represent the deformation as linear superpo-
sition of precomputed displacement fields. However, the de-
formation is restricted to reduced deformable objects.

Most algorithms for continuous collision detection for de-
formable objects do not test for self collision [CMT02], just
use simple heuristics [FGLO03] or are to expensive [VT00].

There also exist first approaches of collision detection us-
ing the event-based kinetic data structures (KDS): Erickson
et al [EGSZ99] describes a KDS for collision detection be-
tween two convex polygons by using a so-called boomerang
hierarchy. Other approaches [ABG*02, Spe01] use pseudo
triangles for a decomposition of the common exterior of a
set of simple polygons for collision detection. However, all
these approaches could not be extended to 3D space or are
much too expensive in practice. Another kinetic approach
is given by [CS06]. They use an event-based version of the
sweep-and-prune algorithm for multi-body collision detec-
tion. But the data structure is restricted to rigid objects.

3. Kinetic Data Structures

In this section we give a quick recap of the kinetic data struc-
ture framework and its terminology.

The kinetic data structure framework (KDS) is a frame-
work for designing and analyzing algorithms for objects
(e.g. points, lines, polygons) in motion, which was invented

(© The Eurographics Association 2006.
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Figure 1: Kinetic AABB event: When P, the maximum of
the left child-box becomes larger along the x-axis than the
overall maximum vertex Py, an event will happen.

by [BGH97]. The KDS framework leads to event-based al-
gorithms that sample the state of different parts of the system
only as often as necessary for a special task. This task can be,
for example, the convex hull of a set of moving points and it
is called the attribute of the KDS.

A KDS consists of a set of elementary conditions, called
certificates, which prove altogether the correctness of the
attribute. Those certificates can fail as a result of the mo-
tion of the objects. These certificate failures, the so-called
events, are placed in an event-queue, ordered according to
their earliest failure time. If the attribute changes at the time
of an event, the event is called external, otherwise the event
is called internal. Thus, sampling of time is not fixed, but
determined by the failures of some conditions.

The quality of a KDS is measured by four criteria: A good
KDS is compact, if it requires only little space, it is respon-
sive, if we can update it quickly in case of a certificate fail-
ure. It is called local, if one object is involved in not too
many events. This guarantees that we can adjust changes in
the flighplan of the objects quickly. And finally, a KDS is
efficient, if the overhead of internal events with respect to
external events is reasonable.

In case of the kinetic AABB tree, the objects are a set of
m polygons with n vertices; in the case of the kinetic sep-
aration list, they are a pair of BVs or a pair of polygons.
Every vertex p; has a flightplan f, (¢). This might be a chain
of line segments in the case of a keyframe animation or al-
gebraic motions in the case of physically-based simulations.
The flightplan is assumed to use O(1) space and the intersec-
tion between two flightplans can be computed in O(1) time.
The flightplan may change during simulation by user inter-
action or physical phenomena, including collisions. In this
case, we have to update all events the vertex is involved in.

The attribute is, in the case of the kinetic AABB tree, a
valid BVH for a set of moving polygons. An event will hap-
pen, when a vertex moves out of its BV. In the case of the
kinetic separation list, the attribute is a valid separation list,
i.e., a list of non overlapping BVs in the traversal tree. An
event will happen, if two BVs in the traversal tree will over-
lap, or if their fathers does not overlap anymore.

(© The Eurographics Association 2006.

Figure 2: This figure shows the complete traversal tree of
two given BVHs. The overlapping nodes are colored red, the
non overlapping nodes are colored blue. When we perform
a collision check, we get a BVTT. Those BV pairs, where the
traversal stops, build a list in this tree. We call it the separa-
tion list. This list consists of inner nodes, whose BVs do not
overlap (B, 3), leaf nodes, where the BVs are leaves in the
BVH that do not overlap (G, 5) and finally non-overlapping
leaf nodes which contain leaves of the BVHs which do over-
lap (E 6).

4. The Kinetic AABB-Tree

In this section, we give a short recap of the kinetization of
the well-known AABB tree [ZWO06Db].

We build the tree by any algorithm that can build a static
BVH. However, instead of storing the actual extends of the
AABBs with the nodes, we store references to those points,
that determine the bounding box. For the theoretical runtime
analysis, we assume that the height of the BVH is logarith-
mic.

After building the hierarchy, we compute the initial set of
events. Basically, an event will happen, if a vertex becomes
greater or smaller than the current respective extent of its
box, which is only stored in the form of a reference to an-
other vertex (see Fig. 1).

During runtime, we just have to process all those events
in the event queue with a timestamp smaller than the current
query time. When an event happens, we simply have to re-
place the old maximum or minimum along the axis, with the
new one, and compute a new event for this BV. In addition,
we have to propagate this change possibly to the upper BVs
in the BVH.

In [ZWO06b] we showed, that our kinetic AABB tree is
compact, local, responsive, and efficient. Furthermore, the
BVH is valid at every point of time, not only at the query
times as is the case with most other update algorithms,
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Figure 3: If the BVs move so that they begin to overlap, we
get an BV-overlap event.

like bottom-up or top-down approaches. Moreover, the to-
tal number of events is bounded by nearly O(nlogn) f,

For a detailed description of the kinetic AABB, we would
like to refer the interested reader to [ZWO06b].

5. The Kinetic Separation List

So far, the kinetic AABB tree utilizes the temporal and, thus,
combinatorial coherence only for the updates of individual
hierarchies. In this section, we will describe a novel KDS
specifically for detecting collisions between pairs of objects.

5.1. Kinetization

Our so-called kinetic separation list builds on the ki-
netic AABB tree and utilizes an idea described in [CL99,
PCLM95] for rigid bodies. Given two kinetic AABB trees
of two objects O and O, we traverse them once for the
initialization of the kinetic incremental collision detection.
Thereby, we get a list, the so-called separation list, of over-
lapping BVs in the BV test tree (BVTT) (see Fig. 2). We
call the pairs of BVs in the separation list nodes. This list
contains three different kinds of nodes: Those which contain
BVs that do not overlap (we will call them the inner nodes),
leaves in the BVTT, where the BV pairs do not overlap (the
non-overlapping leaves), and finally, leaf nodes in the BVTT
that contain pairs of overlapping BVs, the so called overlap-
ping leaves.

During run-time, this list configuration changes at discrete
points in time, when one of the following events happens:

BV-overlap event: This event happens, when the pair of
BVs of a node in the separation list which did not overlap
so far, do overlap now. Thus, this event can happen only at
inner nodes and non-overlapping leaves (see Fig. 3).

Fathers-do-not-overlap event: This event happens, if the
BVs of a father of an inner node or a non-overlapping leaf in
the BVTT do not overlap anymore (see Fig. 4). This could
be inner nodes or non-overlapping leaves.

T The exact bound for the number of events is O(nlognlog* n). But
log™ n could be regarded as constant for all reasonable cases.
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Figure 4: When the fathers B| and B) of the BVs vy, vy,
vp, and vy do not overlap anymore, we get a fathers-do-not-
overlap event.

Leaves-do-not-overlap event: The fathers-do-not-overlap
event cannot occur to overlapping leaves, because if their
fathers do not overlap, then the leaves cannot overlap in
the first place. Therefore, we introduce the leaves-do-not-
overlap event.

Polygons-collide event: A collision between two triangles
can only happen in overlapping leaves. If a non-overlapping
leaf turns into an overlapping leaf, we have to compute the
collision time and insert an adequate event into the event
queue.

BV-change event: Finally, we need an event that remarks
changes of the BV hierarchies. This event is somewhat com-
parable to flightplan updates of the kinetic AABB tree, but
it is not exactly the same: This is, because an object in the
separation list is composed of two BVs of different objects
01 and O, and the flightplans are attributes of the vertices
of only one single object. Therefore, not every flightplan up-
date of an object affects the separation list (see Fig. 6).

In addition, a BV-change event happens, if the combina-
torial structure of a BV in the separation list changes. Since
we use kinetic AABB trees as BVH for the objects, this can
happen only if a tree event or a leaf event in the BVH of an
object happens. Surely, not all events cause changes at the
separation list.

Assuming that the BVs of the object do not overlap at the
beginning of the simulation, the separation list only consists
of one node, which contains the root BVs of the two hierar-
chies.

During run-time, we have to update the separation list ev-
ery time one of the above event happens according to the
following cases:

BV-overlap event: Let K be the inner node with BVs V| of
object O and V, of object O;. Here, we need to distinguish
two cases:

e Node K is inner node: In order to keep the separation list
valid after the event happened, we have to delete K from
it and insert the child nodes from the BVTT instead. This
means, if V; has the children V|; and Vg, and V, has the
children V,;, and V,z we have to put 4 new nodes, namely
Vi, Var), ViL, Var), (Vig, Vo) and (Vig, Vag) into the
list. Then we have to compute the next time point ¢, when
(V1, V2) do not overlap. Furthermore, we have to compute

(© The Eurographics Association 2006.



R. Weller & G. Zachmann / Kinetic Separation Lists for Continuous Collision Detection of Deformable Objects

Vil o .

Vir

separation — list
N N 7
L7 L7

Vi Y Y ~
@ E®® -

B
Figure 5: If a fathers-do-not-overlap event happens, that
means By and By do not overlap anymore. Thus, we have

to remove their child BVs from the separation list and insert
the new node (B}, By ) into it.

the times #; for the new nodes, when they will overlap. If
t; < t we put a BV-overlap event in the queue, otherwise
a father-do-not-overlap event.

e Node K is a not overlapping leaf: In this case we just have
to turn the node into an overlapping leaf and compute the
next leaves-do-not-overlap event (Fig. 7).

Fathers-do-not-overlap event: In this case, we have to
delete the corresponding node from the separation list, and
insert its father from the BVTT instead. Furthermore, we
have to compute the new fathers-do-not-overlap event and
BV-overlap event for the new node and insert the one which
will happen first into the event queue (see Fig. 5).

Leaves-do-not-overlap event: If such an event happens, we
have to turn the overlapping leaf into a non-overlapping leaf,
and compute either a new fathers-do-not-overlap event or a
BV-overlap event and put it into the event queue.

Polygons-collide event: A polygons-collide event does not
change the structure of the separation list. Such an event
must be handled by the collision response. But after the colli-
sion response, we have to compute the next polygons-collide
event.

Note, that the polygons-collide events are reported in the
correct order to the collision response module, this means,
that that pair of polygons which collides first is also reported
first. There is no other sorting required as it is by normal
bottom-up strategies if we want to handle the first collision
between two frames foremost.

BV-change event: If something in a BV in the separation
list changes, e.g., the fligthplan of a vertex or the maximum
or minimum vertex of a BV, then we have to recompute all
events the BV is involved in.

(© The Eurographics Association 2006.
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Figure 6: If the flightplan of P4 changes, this has no effect on
the separation list, and thus, no BV-change event will happen
due to this change.

5.2. Analysis

For measuring the theoretical performance of our algorithm
we use the four criteria of quality given for every KDS. First,
we have to define the "validity" of a separation list:

Definition 1 We call a separation list "valid", if it contains
exactly the non-overlapping nodes that are direct children of
overlapping nodes in the BVTT plus the overlapping leaves.

Theorem 1 Our kinetic separation list is compact, local, re-
sponsive and efficient. Furthermore, we maintain a valid sep-
aration list at every point in time, if we update it as described
above.

In order to prove the first part of the theorem, we assume,
w.l.o.g, that both objects O and O, have the same number
of vertices n and the same number of polygons m.

In the worst case, it is possible that every polygon of ob-
ject O collides with every polygon of O,. However, this
will not happen in real world application. Thus, it is a rea-
sonable assumption, that one polygon can collide with only
O(1) polygons of the other object. We will show the proof
for both, the worst and the practical case:

Compactness: In order to evaluate the compactness, we
have to define the attribute we are interested in. In the case
of the kinetic incremental collision detection, this is the sep-
aration list. Thus, the size of a proof of correctness of the
attribute may have size O(nz) in the worst case and O(n) in
the practical case.

For every node in the separation list, we store one event
in the event queue, which will be at most O(n?) in the worst,
respectively O(n) in the practical case in total.

Furthermore, for every BV we have to store the nodes in
the separation list in which it is participating, which could be
at most O(n?) in the worst case or rather O(n) in the practi-
cal case, too. Summarizing, the storage does not exceed the
asymptotic size of the proof of correctness and thus, the data
structure is compact.

Responsiveness: We will show the responsiveness for the
four kinds of events separately:

e [eaves-do-not-overlap event: The structure of the separa-
tion list does not change if such an event happens. We just
have to declare the node as not overlapping leaf and com-
pute a new event which costs time O(1), and the insertion
into the event queue of the new event could be done in
O(logn).
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Figure 7: Ifthe BVs B| and B, overlap due to an BV-overlap
event, we have to remove the corresponding node from the

separation list and insert the pairs of their child-BVs vy,
V1, vor and vy

e BV-overlap event: The insertion of a new node into the
separation list and deletion of the old node needs time
O(logn). In addition we have to delete the links from the
old BV to the old node in the separation list and insert the
new ones. If we organise this lists of links as AVL-tree,
we get costs of O(logn).

e Fathers-do-not-overlap event: The deletion of nodes and
events takes time of O(logn) again.

e BV-change event: When this kind of event happens, the
structure of our separation list does not change. We just
have to recompute the event of the affected node. The in-
sertion and deletion of an event costs O(logn).

Overall, our data structure is responsive in all cases.

Efficiency: To determine the efficiency is bit more com-
plicated, because it is not immediately obvious which
events we should treat as inner and which as outer events.
Clearly, leaves-do-not-overlap events, BV-overlap events
and fathers-do-not-overlap event cause a real change of
the attribute, the separation list, so these events are outer
events. But classifying the BV-change events is more dif-
ficult. Those which happen due to flightplan updates clearly
do not count, because they happen due to user interactions
and could not be counted in advance. But there are also BV-
change events which happen due to changes of the BV hier-
archies, and they could be regarded as inner events.

Since we use the kinetic AABB tree, there are at most
O(nlogn) events in one single BVH. One BV could be
involved in n nodes in the separation list. So there are
O(n?logn) inner events in the worst case.

On the other hand, there may be Q(n?) outer events and

thus the KDS is still responsive, even if we treat the BV-
change events as inner events.

In the reasonable case we have at most O(nlogn) inner
events from the kinetic AABB tree and O(n) outer events in
the separation list and therefore our KDS is also responsive
in this case.

Locality: We also have to be careful when showing the lo-
cality of our data structure. The objects of our kinetic data
structure, are the nodes in the separation list, not the single
BVs in the kinetic AABB hierarchies. Each node is involved
in only O(1) events and thus, our kinetic separation list is
trivially local.

Otherwise, if the flightplan of one single BV changes, this
could cause O(n) BV-change events in the kinetic separa-
tion list, because one BV could participate O(n) nodes in
the worst case. However, this is compared to O(nz) total
nodes in our kinetic separation list small and moreover, in
the reasonable case there are at most O(1) nodes affected by
a flightplan update. Summarized, our kinetic separation list
can be updated efficiently in all cases if a flightplan update
happens.

Due to its length, the proof of the second part of the theo-
rem is omitted here, but it can be found at [ZW06a].

Overall, our data structure fulfills all quality criteria of a
kinetic data structure both in the practical and in the worst
case. Our experiments in the last section show, that it per-
forms very well in practical cases and that the running time
is up to 50 times faster compared to other approaches.

Algorithm 1: Simulation Loop

while simulation runs do
determine time ¢ of next rendering;

e < min event in event queue;

while e.timestamp <t do
processEvent(e);

if e = Polygons-Collide event then
collision response;
e < min event in event queue;
render scene;

5.3. Self-Collision Detection

BVHs are also used for self-collision detection. In general,
collisions and self-collisions are detected in the same way.
If two different objects are tested for collisions, their BVHs
are checked against each other. Analogously, self-collisions
of an object are performed by testing one BVH against itself.
The main problem which arises when using this method in
combination with discrete time sampling algorithms, is the
problem of adjacency. E.g., the BVs of adjacent polygons
allways overlap. Therefore, approaches which are not using
temporal and spatial coherence, has to descent from the root
of the BVTT down to all neighbours of a polygon at ev-
ery query time. This are O(nlogn) BV overlap tests, even if
there are no colliding polygons.

(© The Eurographics Association 2006.
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Our kinetic separation list avoid the problem of adjacency.
For self collision tests, we also test the BVH against itself,
but we do this only one time for the initialisation. During
run-time, pairs of adjacent BVs stay all the time in the sep-
aration list and their parents will never be checked for colli-
sion as it is with most other approaches.

6. Implementation Details

In this section, we describe the implementation details of our
kinetic separation list, which differs in several points from
the basic algorithms described above. Algorithm 1 shows the
basic simulation loop.

6.1. Kinetic Separation List

First of all, it is not necessary to store the separation list ex-
plicitly. Instead, it is sufficient to link only the two colliding
BVs in the kinetic AABB tree. Therefore, we use a simple
list for every BV in the kinetic AABB hierarchy and store
pointers to the colliding BVs in the other hierarchy. It is suf-
ficient, to use a list, even if we have to delete or insert some
pointers when an event appears, because in real world sce-
narios the degree of vertices is bounded and thus, a single
BV does not collide with too many other BVs in the BVTT.

Moreover, if a fathers-do-not-overlap event happens, we
do not simply add the father of the affected BVs into our
separation list, because in most cases, the fathers of the fa-
thers do not overlap either. Instead, we ascend in the hierar-
chy to the highest pair of BVs which does not overlap and
then delete all its children that are in the separation list. Note,
that the data structure is not responsive anymore if we pro-
ceed like this, because in the worst case, we have cost of
O(nz) for one single event. However, if we simply proceed
as described in the section before, we would have to pro-
cess O(nz) events. Thus, the overall complexity is still the
same. Equivalently, we do not insert just the children if a
BV-overlap event happens. Instead, we descent directly to
the deepest non overlapping-nodes in the BVHs.

As event queue, we use a Fibonacci heap. With this data
structure, we can efficiently insert, delete and update events.

6.2. Event Calculation

The calculation of the events depends on the motion of the
objects. At first we assume a linear motion of the vertices.

In the kinetic AABB tree, we get an event if a vertex P be-
come larger than another vertex Q along some axis. There-
fore, the computation of an event corresponds to line inter-
section tests in 2D.

More precisely, assume two vertices P and Q with velocity
vectors p and g respectively, and at time 7, we have Py(r) <

QOx (7). In order to get the next point of time 7 when P be-
Q) =P:(t)

comes larger than Q along the x-axis, we getf = =g

If 7 < 0, there will be no event.

In the kinetic separation list, we get events if two BVs
begin to overlap or do not overlap anymore.

(© The Eurographics Association 2006.

Assume two BVs A and B with extreme points anax and
Pffnax, respectively, and minimum points Pf,‘nm and Pﬁw, re-
spectively, with i € {x,y,z} at time 7.

Algorithm 2: Event Calculation
Compute f with - f <t <I-(f+1);
P=l-(f+1);
whilez > [- f do

D=P.pr1y— Py
q=Qr.(r+1) = Q115

Compute f when P gets larger than Q;
f=r+5

There are two different cases for events:

e Assume A and B overlap at time ¢ and we want to get the

point of time 7 when they do not overlap anymore. Surely,
A and B do not overlap <> there exists an axis i € {x,y,z}
with %ax (f) < Pllr;nm (i) or Pllrgnax(f) < Piflizin (i)
Thus, we have to compute the points of time #; for every
axis i € {x,y,z} when Pf,‘mx becomes smaller than P,-lf,,in
and P,ﬁm becomes smaller than P,»’,A‘nin. We generate an
event for the minimum of these ;.

e If A and B do not overlap at time ¢, we have to look for the
time 7, when they overlap. A and B overlap < %ax () >
P (7) and PE,, () > P, (7) for all axes i € {x,y,z}.
Thus we have to compute the points of time 7; for all i €
{x,y,2}, when Pf,‘nm becomes smaller than anax and anm

gets smaller than Pf}nax too. We generate an event for the

maximum of the 7;.

We tested our algorithms with keyframe animations. Be-
tween two keyframes, we interpolated linearly. Therefore,
we get paths of line segments as motion of the vertices.

Assume k keyframes Ky, .. ., K;. Let [ be the number of in-
terpolated frames between two keyframes. We want to com-
pute, for the vertices P and Q with positions P(¢) and Q(7),
respectively, when the next event between these points will
happen, i.e., when P will become larger along the x-axis than
0.

Therefore, we first have to determine the actual keyframe
Ky with I-f <t <1-(f41). We get the actual velocity ps
and g for the two vertices by py = P(I- (f+1)) — P(I- f)
and gy = Q(I- (f+1)) — (- f).

Now, we can compute time 7 when P gets larger than Q,
as described in the previous section. If 7 < m- (f + 1) we get
the event for P and Q. Butif 7 > /- (f + 1) we have to look
at the next keyframe wether the paths of P and Q intersects,
and so on (see Algorithm 2). Thus, we have to compute k
line intersections for one single event in the worst case.

7. Results

We implemented our algorithms in C++ and tested the per-
formance on a PC with a 3 GHz Pentium IV. For the contin-
uous triangle test we used the method proposed in [ES99].
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As benchmark, we used three different scenes of keyframe
animations.

Figure 8: A tablecloth falling down on a table and a virtual
character animation including the simulation of a shirt.

The first scene shows a tablecloth falling on a table. This
scene contains both fairly static geometry on the top of the
table and geometry with large deformations. We used this
scene with several resolutions of the cloth, ranging from
2k to 16k faces (Fig. 8). The second scene shows a single
swirling cloth in resolutions of 4K to 33K deforming poly-
gons (Fig. 9). We used this scene in order to stress our al-
gorithm: It contains very heavy deformation of the cloth and
many self collisions. The last scenario show typical cloth an-
imation: A male avatar with a shirt in resolutions from 35k
to 90k deforming triangles walking around (Fig. 8).

We compared the performance of our algorithms with a
classical swept volume algorithm for continuous collision
detection: We updated the hierarchy with a bottom-up updat-
ing strategy. For the proper collision check, we constructed
an AABB which enclosed the BVs at the beginning and the
end of the frame.

First, we considered the number of events in our kinetic
separation list compared to the number of checks the swept
volume algorithm has to perform. In the high-resolution
tablecloth scene, we have about 500 events per frame with
our kinetic data structure compared to several tens of thou-
sands collision checks with the swept volume. Since the
computation costs for an event are relatively high, this re-
sults in an overall speed-up of about factor 50 for updating
the kinetic separation list. The number of events rises nearly
linearly with the number of polygons (see Fig. 11).

In the cloth animation scenes with the male avatar and
the tablecloth, the gain of our kinetic data structures is high-
est, because the objects undergo less deformation than the
swirling cloth, and thus we have to compute and handle less
events. In these scenarios, we see a performance gain of a
factor up to 50 compared to the swept volume algorithm
(Fig. 10). This factor would increase even further, if the
number of interpolated frames between two keyframes were
increased. This is because the performance of the event-
based kinetic data structures only depends on the number
of keyframes and not on the total length of the scene or the
number of collision checks.

Figure 9: The swirling cloth animation scene.

Overall, the kinetic separation list performs best, and the
running time of the updating operations is independent from
the sampling frequency. This means, for example, if we want
to render a scene in slow motion, maybe ten times slower, the
overall costs for updating the hierarchies and the collision
detection are still the same, while they increase for the swept
volume algorithm by a factor of ten.

Moreover, the collisions are reported in the right order
with our kinetic separation list. This is important for a cor-
rect collision response scheme. The collisions in the swept
volume algorithms are reported in random order. If we would
sort them, the gain by our algorithms would even increase.

8. Conclusions and Future Work

We introduced a novel data structure, the kinetic separation
list, for continuous inter- and intra-collision detection be-
tween deformable objects, i.e., pairwise and self collision
detection. The algorithm gains its efficiency from the event-
based approach.

It contains a discrete event-based part, which updates only
the combinatorial changes in the BVH, and a continuous
part, which needs to compute only the time of future events
after such a combinatorial change. Our algorithm is particu-
larly well-suited for animations where the deformation can-
not be restricted in some way (such as bounded deforma-
tions).

We presented a theoretical and experimental analysis
showing that our new algorithm is fast and efficient both
theoretically and in practice. We used the kinetic data struc-
ture framework to analyze our algorithm and showed that
our data structure fulfills all quality criteria for good KDS.
Moreover, our kinetic separation list is perfectly qualified for
a stable collision response, because it naturally delivers the
collisions ordered by time to the collision response module.

In practically relevant cloth animation scenes, our kinetic
data structures can find collisions and self-collisions more
than 50 times faster than a swept volumes approach. Even
in scenarios with heavy deformations of the objects we ob-
served a significant gain by our algorithm.

In the future, we plan to use our algorithms with other
kinds of motion, including physically-based simulations and
other animation schemes. In addition, it should be straight-
forward to extend our novel algorithms to other primitives
such as NURBS or point clouds.

(© The Eurographics Association 2006.
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Figure 10: The left diagram shows the average total time for updating the hierarchies and performing the inter- and intra-
collision detection in the male avatar scene. We have an overall gain of about a factor of 20 with our kinetic separation list.
The table on the right shows the update time for the same scene in the resolution of 49K triangles, depending on the number of
interpolated frames in-between two key frames. Since the number of events only depends on the number of key frames and not
on the number of interpolated frames, the average update time decreases if we increase the total number of frames.
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Figure 11: The left diagram shows the total time, this means updating the hierarchies and the time for the collision check
including self collision for the tablecloth scene. The gain of our kinetic data structures is about a factor of 50. The right
diagram shows the number of events in our kinetic data structure compared to the number of collision checks we have to
perform with the swept volume algorithm. The number of events is significantly smaller. Note the different scales.
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Figure 12: The left diagram shows the time for updating and self collision check in the swirling cloth scene. Even in this worst
case scenario for our algorithm, we have a gain of a factor about two for our kinetic data structure. This depends on the higher
number of events in this scenario, which is shown in the right diagram. Again, note the different scales.
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