Eurographics Symposium on Point-Based Graphics (2004)
M. Alexa, S. Rusinkiewicz, (Editors)

Proximity Graphs for Defining Surfaces over Point Clouds

Jan Klein' and Gabriel Zachmann

2

! Heinz Nixdorf Institute and Institute of Computer Science, University of Paderborn, Germany
2 Department of Computer Science II, University of Bonn, Germany

ChEAS

Visualization of the moving least squares surface (magenta) over a 2D point cloud (black dots)
based on different distance functions: (a,c) Euclidean, (b,d) ours based on proximity graphs.

Abstract

We present a new definition of an implicit surface over a noisy point cloud. It can be evaluated very fast, but, unlike
other definitions based on the moving least squares approach, it does not suffer from artifacts.

In order to achieve robustness, we propose to use a different kernel function that approximates geodesic distances on the
surface by utilizing a geometric proximity graph. The starting point in the graph is determined by approximate nearest
neighbor search. From a variety of possibilities, we have examined the Delaunay graph and the sphere-of-influence
graph (SIG). For both, we propose to use modifications, the r-SIG and the pruned Delaunay graph.

We have implemented our new surface definition as well as a test environment which allows to visualize and to evaluate
the quality of the surfaces. We have evaluated the different surfaces induced by different proximity graphs. The results
show that artifacts and the root mean square error are significantly reduced.

Categories and Subject Descriptors (according to ACM CCS): G.1.2 [Numerical Analysis]: Approximation of surfaces
and contours 1.3.5 [Computer Graphics]: Curve, surface, solid, and object representations

1. Introduction

In the past few years, point clouds have had a renais-
sance caused by the wide-spread availability of scanning
technology. In order to render [PvBZG00, RL0O0, ZPvBGO02,
BWGO03] and interact [KZ04] with objects thus represented,
one must define an appropriate surface (even if it is not ex-
plicitly reconstructed).

This definition should produce a surface that is as close to
the original surface as possible. At the same time, it should
allow the object to be rendered and interacted with as fast as
possible.

In this paper, we present a new definition of a surface
over a given point cloud. It is based on moving least squares
(MLS), i.e., it is the zero set of a function f(x) that is based
on weighted averages and MLS regression.

(© The Eurographics Association 2004.

The simple MLS definition of point cloud surfaces is quite
attractive and can be evaluated very fast. However, it suffers
from artifacts in the surface. They are caused by a distance
function that is not adapted to the topology of the surface: the
Euclidean distance makes points “close” to x that are really
topologically far away.

The idea of our method is to utilize (conceptually) a
Voronoi diagram to find the nearest neighbor of a query point
x, and then traverse the Voronoi diagram breadth-first to
compute approximate geodesic distances between the query
point and the cloud points. Since the Voronoi diagram basi-
cally provides an adjacency relation based on some notion of
proximity, we can also use other proximity graphs. Here, we
investigate also the sphere-of-influence graph, and a gener-
alization, that provides a natural notion of proximity in our
context.

J. Klein and G. Zachmann / Point Cloud Surface Definition

This way, our new method offers the advantages of MLS,
but does not suffer from robustness issues and offers the po-
tential to handle non-uniform point clouds.

In order to evaluate the quality of our surfaces we gen-
erate noisy point clouds from a given “exact” surface. For
these, we compute the deviation of the zero sets of the dif-
ferent definitions from the original exact surface. The results
show that our new definition produces much better surfaces.
In addition, our experiments show that our method can be
evaluated very fast.

2. Related Work

The representation of objects by point clouds is based on
some notion of surface that describes the surface in-between
the points, which are samples taken from an original surface,
usually with error.

One way is to extend the points to so-called surfels yield-
ing a piece-wise constant surface [RLOO, PvBZGO00]. Our
work does not deal with this kind of surface representation.

Another way is to consider the problem of reconstruc-
tion, where a continuous surface is explicitly constructed
from the set of points, usually in the form of a polyg-
onal mesh. Several methods can be distinguished; an at-
tractive one are combinatorial methods because they can
guarantee the reconstructed mesh to be homeomorphic to
the original surface under some reasonable assumptions
[ASCL02,DG03]. Other methods are more cluster- or graph-
based [HUHJO1, HDD*92]. With the present paper, we are
not concerned with this approach, because it does not stay
within the framework of point clouds.

An attractive way of handling point clouds is to define the
surface as the zero set of an implicit function that is con-
structed from the point cloud. Usually, this function is not
analytically but “algorithmically” given. This is a general
method that can be used for reconstruction as well as ray-
tracing or collision detection.

An interesting method pursuing this approach is the use of
natural coordinates (which are based on Voronoi diagrams)
[BCOO]. They are used to turn Hoppe’s discontinuous defini-
tion [HDD*92] into a continuous one. However, computing
the natural coordinates is very expensive.

A very popular class of methods is to define the surface
locally as the graph of a function [ABCO*03, AA03, AAO4,
Lev03, AKO4]. For each evaluation of the function, an ap-
proximating polynomial function needs to be computed over
a suitable projection plane, both of which are found using
MLS. They are fairly simple to implement but difficult to
make robust. In particular, non-uniform point clouds are dif-
ficult to handle generally, and there can be extra zero sets.

Recent publications have, therefore, proposed to partition
the point set by an octree and fit quadratic functions only to
leaves that are occupied by points [OBA*03].

As mentioned above, our method is based on proxim-
ity graphs, which have been studied extensively in the past
decade. There is a broad spectrum of them, including the
Delaunay graph, nearest-neighbor graph, y-graph, a-shape,
and the spheres-of-influence graph, to name but a few; see
[JT92] for a good survey. They have been used for OCR
[BLS00,MQO03], reconstruction [Vel93], and many other ap-
plications.

In [Lee00], a Euclidean minimum spanning tree is used to
thin out a given set of unorganized points from which one
can reconstruct the surface afterwards.

3. Moving Least Squares

In this section, we will first give a quick recap, and then ex-
plain the problem of the conventional MLS method. For sake
of clarity, all illustrations are in 2D, but the methods work in
R? as well (and, in fact, in any dimension).

3.1. Surface Definition

Let a point cloud P with N points p; € R be given. Then,
an appealing definition of the surface from P is the zero set
S = {x|f(x) = 0} of an implicit function [Lev03, AA03]

f(x) =n(x)- (a(x) —x) (1)

where a(x) is the weighted average of all points P

Y 0(Ix — pilpi

a(x) = . 2)
¥ e(lx—pill)
Usually, a Gaussian kernel (weight function)
0(d) = /" 3)

with d = ||x — p||, is used, but other kernels work as well.
The global bandwidth of the kernel, given by A, allows us
to tune the decay of the influence of the points. It should be
chosen such that no holes appear [KZ04].

The normal n(x) is determined by moving least squares.
It is defined as the direction of smallest weighted covariance,
i.e., it minimizes

N
;<n<x>-(a<x>fpi>)2e<||x—piu> @)

for fixed x and under the constraint ||n(x)|| = 1.

Note that, unlike [AA03], we use a(x) as the center of the
PCA, which makes the function f much more aesthetically
appealing (see Figure 1). Also, we do not solve a minimiza-
tion problem like [Lev03, ABCO*03], because we are aim-
ing at an extremely fast method.

The normal n(x) defined by (4) is the smallest eigenvector
of the centered covariance matrix B = (b;;) with

N
bij = kz O(lx —pill) (P, — a(x)i)(px; —a(x);). (5
=1

(© The Eurographics Association 2004.

J. Klein and G. Zachmann / Point Cloud Surface Definition

(d)

Figure 1: Visualization of the implicit function f(x) over a 2D point cloud. Points X € R? with f(x) =0, i.e., points on or close
to the surface, are shown magenta. Red denotes f(x) > 0 and blue denotes f(x) < 0. (a) point cloud; (b) reconstructed surface
using the definition of [AAO3]; (c) utilizing the centered covariance matrix produces a better surface, but it still has several
artifacts; (d) surface and function f(x) based on our more geodesic kernel using the sphere-of-influence graph.

3.2. Euclidean Kernel

The above definition can produce artifacts in the surface S
(see Figure 1); two typical cases are as follows. First, as-
sume x is halfway between two (possibly unconnected) com-
ponents of the point cloud; then it is still influenced by both
parts of the point cloud, which have similar weights in Equ. 2
and 4. This can lead to an artificial zero subset C S where
there are no points from P at all. Second, let us assume that x
is inside a cavity of the point cloud. Then, a(x) gets “drawn”
closer to x than if the point cloud was flat. This makes the
zero set biased towards the “outside” of the cavity, away
from the true surface. In the extreme, this can lead to can-
cellation near the center of a spherical point cloud, where all
points on the sphere have a similar weight.

This thwarts algorithms based solely on the point cloud
representation, such as collision detection [KZ04] or ray-
tracing [AA04].

In all of these cases, the problem is caused by the fol-
lowing deficiency in the kernel (3). The Euclidean distance
[Ix—p||, p € P, can be small, while the distance from x to
the closest point on S and then along the shortest path to p
on S (the geodesic) is quite large.

The problems mentioned above could be alleviated some-
what by restricting the surface to {x : ||x—a(x)|| < ¢} (since
a(x) must stay within the convex hull of 7). However, this
does not help in many cases involving cavities.

4. Geodesic Distance Approximation

As mentioned above, the main problems are caused by a dis-
tance function that does not take the topology of S into ac-
count. We propose to use a different distance function that is
based on geodesic distances on the surface S. Unfortunately,
we do not have an explicit reconstruction of S, and in many
applications, we do not even want to construct one.

(© The Eurographics Association 2004.

Therefore, we propose to utilize a geometric proximity
graph where the nodes are points € P. In such proximity
graphs, nodes p and q are connected by an edge if some
geometric proximity predicate holds.

There is a variety of different proximity graphs over a
set P, for instance the Delaunay graph DG(P), the Gabriel
graph, the relative nearest neighbor graph, and the nearest
neighbor graph (NNG) [JT92]. The Delaunay graph is the
densest one of these, while each of the others is a subgraph of
the previous one. We chose to investigate one graph from the
dense end of the spectrum, namely DG(P), and one from the
sparse end. Clearly, the NNG is too sparse, so we chose to
investigate the sphere-of-influence graph SIG(P), for which
we also propose and utilize a nice generalization.

In the following, the length of an edge is the Euclidean
distance ||p — q|| (or any other metric).

4.1. Geodesic Kernel

Given a proximity graph, we compute a restricted all pairs
shortest paths (APSP) matrix. Computing and storing the
full matrix would be, of course, prohibitively expensive.
Since our kernel (3) decays fairly quickly (for reasonable
choices of /), we need to store only paths up to some length;
the contribution of nodes in Equations 2 and 5 that are far-
ther away can be neglected. In Section 4.2, we show that the
resulting matrix can be computed and stored in O(N) time
and space using a simple lookup table. Therefore, we denote
it just as CPSP (close-pairs shortest-paths) map.

We now define a new distance function ||x — p||geo as fol-
lows. Given some location X, we compute its approximate
nearest neighbor p* € P; using a simple k-d tree, this can
be done in O(log® N) in 3D [AMN*98]. An exact nearest
neighbor could be found in time O(logN) using a Delaunay
hierarchy [Dev02], but this may not always be practical.

J. Klein and G. Zachmann / Point Cloud Surface Definition

llx = Pllgeo

X [lx—pll

Figure 2: Instead of the Euclidean distance ||x —p||, we use
an approximate geodesic distance ||x — p||geo based on the
close-pairs shortest-paths matrix over a proximity graph.

Starting from p*, we determine the distance d(p*,p) for
any p € P as the accumulated length of the shortest path
from p* to p, multiplied by the number of “hops” along
the path. This can be retrieved readily from the precomputed
CPSP map. Overall, ||x — p||geo is defined by

Ix—pllgeo = x—p"[|+d(p".p) 6)
Figure 2 illustrates this idea.

The rationale for multiplying the path length by the num-
ber of hops is the following: if an (indirect) neighbor p is
reached by a shortest path with many hops, then there are
many points in P that should be weighted much more than
p, even if the Euclidean distance ||p* — p|| is small. This is
independent of the concrete proximity graph used for com-
puting the shortest paths.

Overall, when computing f by (1)—(5), we use ||+ - ||geo
in (3). We call this modified kernel a geodesic kernel.

4.2. Close-Pairs Shortest-Paths Map

In this section, we show that our CPSP map can be computed
and stored in O(N) with N = | P|.

Definition 1 (Sampling radius) Consider a set of spheres,
centered at points p; € P, that cover the surface defined by
‘P, where all spheres have equal radius. We define the sam-
pling radius r(P) as the minimal radius of such a sphere
covering.

In [KZ04] it is shown, that the bandwidth 4 should be cho-
sen such that points up to a distance of about m - r(P) around
a point p; € P have an influence in Equ. 1 (m = 5). That
means, for each point p; € P we have to run a SSSP algo-
rithm for all points lying in the sphere S; with radius m - r(P)
centered at p;. The following lemma shows, that only a con-
stant number of points is inside S;, if P is a uniform (pos-
sibly noisy) sampling of a surface. As a consequence, we
have to start N times a SSSP algorithm for a constant num-
ber of points. Overall, our CPSP map can be computed in
time O(N).

Lemma 1 Let a point cloud P with uniformly distributed
points p; € RY (d € {2,3}) and sampling radius r(P) be
given. Then, at most [/d - m]d points € P lie in a sphere
with radius m - r(P).

T

m-r(P) \

(P m=4

Figure 3: Under reasonable assumptions, the close-pairs
shortest-paths matrix has size O(N). Left: a sphere with ra-
dius m - r(P) can be covered by O(m>) spheres with radius
r(P). Right: [\/2-m)? uniformly distributed points inside.

Proof: In the following, we consider only the 3D case
(d =3), the 2D case can be shown analogously.

A sphere S; with radius m - r(P) can be covered with at
most ¢ := [v/3-m]> smaller spheres of radius (). This
has already been shown by Rogers [Rog63]: the sphere S
can be covered by a cube with side length 2mr(P) and
the smaller spheres with radius r(P) cover cubes with side
length \/4/3r(P) (see Fig. 3 left). As a consequence, the
larger cube can be covered by [2mr(P)/\/4/3r(P)]® = ¢
smaller cubes and therefore by the same number of spheres
with radius r(P).

That means, ¢ uniformly distributed spheres of radius
r(P) with centers in S cover S;. Only if the spheres are not
uniformly distributed, more than ¢ spheres with sampling ra-
dius r(P) are necessary to cover Sj.]

Note that in practice often much fewer points than ¢ lie
inside S, in most cases k- [v/d — 1-m]¢ ™! are realistic (k is
a small constant of about 2 or 3).

For memory efficiency reasons, we store the CPSP matrix
in a hash table of size O(N) instead of using a N? matrix.

4.3. Proximity by Delaunay Graph

It is very intuitive to use the Delaunay graph DG(P) for
our problem (which can be computed efficiently in O(N)
time in 3D for uniform point clouds), because [ASCL02]
described an intriguing algorithm for reconstructing a polyg-
onal surface over a point cloud without noise from the
Voronoi diagram (which is the dual of the Delaunay graph).
In addition, [DGO04] used it as reasonable noise model. So,
it is obvious that geodesic distances between the points
can be approximated by shortest paths on the edges of the
graph. This approximation can be improved if we also al-
low paths across the polygonal tessellation, not only on the
edges [KS00, CH90].

Since the DG(P) induces a neighborhood relation that
also includes “long distance” neighborhoods, some shortest

(© The Eurographics Association 2004.

J. Klein and G. Zachmann / Point Cloud Surface Definition

Figure 4: Different proximity graphs. (a) DG(P), (b)
DG(P) where edges are pruned according to a global sam-
ple density, (c) DG(P), pruning by first quartile, (d) DG(P),
pruning by second quartile, (e) SIG(P).

paths can “tunnel” through space that should really be a gap
in the model (see Figure 4, left). Therefore, we prune edges
from DG(P) based on criteria that involve an estimation of
the local spatial density of the point cloud.

If our point cloud is well-sampled in the sense of
[ASCLO2], then we could prune all edges incident to a point
p € P that are longer than the distance of p from the medial
axis of § — provided we knew that distance for each p. This
is, of course, not feasible.

Therefore, we propose to utilize a statistical outlier detec-
tion method to prune edges. This is motivated by the obser-
vation that most of the unwanted “long distance” edges are
local outliers, or form a cluster of outliers. In the following,
we describe a simple outlier detection algorithm that seems
to perform well in our case, but, of course, other outlier de-
tection algorithms [VB94] should work as well.

In statistics, an outlier is a single observation which is
far away from the rest of the data. One definition of “far
away” in this context is “greater than Q3 +1.5-IQR” where
Q3 is the third quartile, and /QR is the interquartile range
(equal to O3 — Q7). As a consequence, for each node in the
graph we can determine the lengths of its adjacent edges and
cut edges with length of at least Q3 + 1.5 - IQR. However,
in most cases each node in the Delaunay graph has only a
handful of adjacent edges so that only few edges would be
pruned. Our empirical evaluation showed us, that the best
results are achieved by pruning edges with length of at least
0 (i.e., median).

4.4. Proximity by Sphere-of-Influence Graph

The sphere-of-influence graph (SIG) is a fairly little known
proximity graph [MQO03,BLS00] which can be computed ef-
ficiently in time O(N) on average for uniform point sampled
models with size N in any fixed dimension [Dwy95]. The
idea is to connect points if their “spheres of influence” inter-
sect. More precisely, for each point p; the distance d; to its
nearest neighbor is determined and two points p; and p; are
connected by an edge if |p; — p;|| < d; +d;.

(© The Eurographics Association 2004.

’/,ﬁf‘&c&ﬁw@k = 5 < g g
N e
S s
Y 3
7 v
) ()

Figure 5: If the proximity graph is too sparse, artifacts can
occur. (a) DG(P) where edges are pruned by second quar-
tile, (b) SIG (=1-SIG(P)), (c) 2-SIG(P) (d) 3-SIG(P). The
surface is rendered magenta.

As a consequence, the SIG tends to connect points that
are “close” to each other relative to the local point density. In
contrast to the DG(P), no “long distance” neighbor relations
are included, except for some pathological cases when the
surface is very irregularly sampled. In these cases, we could
apply once again our outlier detection algorithm proposed in
the previous section.

4.5. r-SIG

In noisy or irregularly sampled point clouds, there can be
several pairs of points that are placed much farther apart
from each other than their inter-pair separation. In such situ-
ations, the SIG(P) would consist of a lot of isolated “mini-
clusters”, even though there are no holes in the original sur-
face (see Figure 5 b). Consequently, the corresponding sur-
face could not be reconstructed correctly, because the ap-
proximated geodesic distances are too imprecise: on the one
hand, they are too large because points close together can
only indirectly be accessed through the graph by visiting
other nodes; on the other hand — in the case of uncon-
nected components — for some points in space, too few
cloud points are considered for the reconstruction.

To overcome this problem, we propose the r-th order SIG:
instead of computing the distance to the nearest neighbor for
each node, we compute the distance to the r-nearest neighbor
and then proceed as in the case of » = 1. It is obvious that the
larger r, the more nodes are directly connected by an edge,
and that too large r can result in “long distance” edges as in
the case of the DG(P).

4.6. Reducing Discontinuities

Independent of the proximity graph being used, there can
be discontinuities in function f and sometimes even in the
reconstructed surface (see Figure 6). These can occur at the
borders of the Voronoi regions of the cloud points. They are

J. Klein and G. Zachmann / Point Cloud Surface Definition

—

) (b)

(e)

Figure 6: Discontinuities can be avoided by our geodesic kernel ||X — P||geo(k)- (@) point cloud, (b) SIG, (c) Euclidean kernel,
(d) geodesic kernel as of Equation 6 can cause discontinuities, (e) geodesic kernel |x — p|| geo(4) as of Equation 7 causes no

noticeable artifacts or discontinuities in the surface.

more pronounced at borders where the Voronoi sites are far
apart from each other, such as those close to the medial axis.

To overcome this problem, we propose to modify our
geodesic kernel of Equation 6 to use a small set of k-nearest
neighbors of x to get a smooth geodesic distance over the
whole space

X —P|lgeo(k) = min x—p*||+d(p", 7
X~ Blleat = min (="l +d0" 2})

where Py (x) denotes the set of the k-nearest neighbors in the
corresponding proximity graph.

Alternatively, this problem could possibly be solved by
utilizing natural coordinates [BC00]. However, the compu-
tational costs seem to be very high (albeit a constant factor
over insertion of a point in the Delaunay graph).

5. Results

‘We have implemented our new point cloud surface definition
in C++. It is easy to implement and can be evaluated very
fast: once the graphs are built, we can evaluate f(x) simply
by finding a nearest neighbor, traversing the graph, comput-
ing a number of weights from the CPSP map, and finally one
eigenvector by Cholesky decomposition.

First of all, Figure 7 shows the performance that can be
achieved using our new surface definition for a reasonable
choice of h. Although our implementation is not fully opti-
mized, the performance is of the same order as that of the
Euclidean kernel.

Figure 10 illustrates the quality depending on the Eu-
clidean kernel and our new geodesic one, respectively. More-
over, in order to give a numerical hint for the quality, we
determined the root mean square error (RMSE) for the devi-
ation (i.e., distance) of the reconstructed surface from the
original surface. Obviously, our geodesic kernel approxi-
mates the surface very well, while the Euclidean kernel pro-
duces several artifacts. Even when the bandwidth & (see
Equation 3) is chosen optimally with respect to the RMSE,

50 1 -
— Euclidean

— SIG/DG

40

w
o
I

time / microsec

Pentium 3, 1GHz
0 T T T T
0 20 40 h 60 80 100

Figure 7: Average evaluation time of f(X) depending on the
kernel bandwidth h (size of point cloud: >2000 points). The
timings for SIG(P) and DG(P) are nearly identical (there-
fore, we omit one curve). Please note that our implementa-
tion is not yet fully optimized.

the Euclidean kernel produces severe artifacts (see Fig-
ure 10e).

We also performed experiments to assess the sensitivity of
our surface definition with respect to the kernel bandwidth
h. The plots in Figure 8 (left and center) show for two dif-
ferent example surfaces that our new kernel is less sensitive
towards the choice of / than the old one: for a large range
of the bandwidth, the RMSE using our new surface defini-
tion is quite low. In contrast, only for a small bandwidth the
Euclidean kernel yields a relatively low RMSE. Note that
in almost every case the RMSE of the Euclidean kernel is
larger than the RMSE of our new kernel. Note further, that
the minimal RMSE of our new definition is clearly smaller
than the minimal RMSE of the old one.

It might seem that there are still two parameters in our new
approach, which require fine-tuning: r, the radius for our

(© The Eurographics Association 2004.

J. Klein and G. Zachmann / Point Cloud Surface Definition

40

35 | |~~~ Euclid

Delaunay /
30 1 35IG ;
25 /
) 420 - a 2
2 2 v’ 221 S—
%15 4 . k=0
10 A . _.—=""""" point cloud “star’ k=3
2] /\v L S 11 k=5
point cloud “lines” SN e point cloud “lines” ———k=10
0 T T T T T 0 T T T T T 0 T T T T
0 20 40 h 60 80 100 0 20 40 h 60 80 100 2 4 reé 8 10

Figure 8: Left and center: RMSE depending on the bandwidth, h, of the kernel. Our new kernel is less sensitive towards the
choice of h than the old one. Right: RMSE for 1-SIG('P) depending on different r.

iy
=
o
1)

RIS
2

point cloud “lines” point cloud “star”

Figure 9: Original (not reconstructed) surfaces (a,c) from
which the noisy point clouds (b,d) have been generated that
are used for the evaluation in Fig. 8.

modified sphere-of-influence graph r-SIG, and the param-
eter k in our geodesic approximation || - -+ [|geo()- However,
numerous measurements for different point clouds showed,
that for k,r € [3...6], these two parameters are very robust
and yield very similar results. Figure 8 (right) shows the
RMSE depending on both parameters.

6. Conclusion and Future Work

We have presented a new surface definition that utilizes
proximity graphs, k-d trees, and moving least squares to ap-
proximate geodesic distances.

Overall, our new surface definition yields implicit func-
tions over point clouds, the zero sets of which are much
closer to the original surface than the simple moving least
squares approach. At the same time, our definition can be
evaluated quite fast. In addition, the auxiliary data structures
can be constructed efficiently and incur only little additional
storage.

Of course, our method can be utilized for other variants
of point cloud surfaces as well, such as local polynomial ap-
proximations (which build on top of moving least squares).

In rare cases, our r-SIG tends to have a few more edges
than necessary, which can result in unintentional shortcuts,
e.g, in cavities. Together with our non-Euclidean distance

(© The Eurographics Association 2004.

computation, farther points (according to the true geodesic
distance) could be weighted more than nearer ones. This
should be examined in the future.

Our approach is well-suited for static settings, where the
graphs and the CPSP maps can be precomputed. It would be
desirable to adapt our approach to deformable point clouds
as well.

Finally, we will investigate methods to adjust the kernel
bandwidth automatically and locally by utilizing the prox-
imity graph.

Acknowledgements

We would like to extend our thanks to our anonymous re-
viewers for their constructive and thorough comments.

This work is partially supported by DFG grant DA155/29-
1 “Benutzerunterstiitzte Analyse von Materialflusssimula-
tionen in virtuellen Umgebungen” (BAMSI), and the DFG
program “Aktionsplan Informatik” by grant ZA292/1-1.

References

[AAO03] ADAMSON A., ALEXA M.: Approximating and inter-
secting surfaces from points. In Proc. Eurographics

Symp. on Geometry Processing (2003), pp. 230-239.

[AAO4] ADAMSON A., ALEXA M.: Approximating bounded,
non-orientable surfaces from points. In Shape Model-

ing International (2004). to appear.

[ABCO*03] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN
S.,LEVIN D, SILVA C. T.: Computing and rendering
point set surfaces. IEEE Trans. on Visualization and

Computer Graphics 9, 1 (2003), 3-15.

[AKO04] AMENTA N., KIL Y.: Defining point-set surfaces. In

Proc. of SIGGRAPH (2004). to appear.

[AMN™*98] ARYA S., MOUNT D. M., NETANYAHU N. S., SIL-
VERMAN R., WU A.: An optimal algorithm for ap-
proximate nearest neighbor searching in fixed dimen-

sions. Journal of the ACM 45 (1998), 891-923.

source

J. Klein and G. Zachmann / Point Cloud Surface Definition

(a) RMSE=2.50 (b) RMSE=3.49

L ER

c) RMSE=14.68

oy
\CA\M\SJ‘V:

-

f\‘
\

) RMSE=10.45 (e) RMSE=5.86

Figure 10: Root mean square error (RMSE) for a noisy point cloud (left: original surface). (a) DG(P) with edges larger than
second quartile are pruned, (b) 2-SIG(P), (c) Euclidean distance kernel, (d) same with reduced bandwidth h, (e) Euclidean
distance kernel with optimal bandwidth h that yielded the minimum RMSE (notice the inferior surface quality).

[ASCL02]

[BCOO]

[BLS00]

[BWGO03]

[CH90]

[Dev02]

[DGO3]

[DGO04]

[Dwy95]

[HDD*92]

[HUHJOI1]

[JT92]

AMENTA N., S. CHOI T. K. D., LEEKHA N.: A sim-
ple algorithm for homeomorphic surface reconstruc-
tion. Intl. Journal on Computational Geometry & Ap-
plications 12 (2002), 125-141.

BOISSONNAT J.-D., CAzALS F.: Smooth surface
reconstruction via natural neighbour interpolation of
distance functions. In Proc. 16th Annual Symp.
on Computational Geometry (2000), ACM Press,
pp. 223-232.

BOYER E. D., LISTER L., SHADER B.: Sphere-of-
influence graphs using the sup-norm. Mathematical
and Computer Modelling 32 (2000), 1071-1082.

BALA K., WALTER B., GREENBERG D. P.: Combin-
ing edges and points for interactive high-quality ren-
dering. Proc. of SIGGRAPH (2003), 631-640.

CHEN J., HAN Y.: Shortest paths on a polyhedron.
In Proc. 6th ACM Symp. on Computatinal Geometry
(1990), pp. 360 — 369.

DEVILLERS O.: The Delaunay hierarchy. Internat. J.
Found. Comput. Sci. 13 (2002), 163—180.

DEY T. K., GoswAaMI S.: Tight cocone: A water
tight surface reconstructor. In Proc. 8th ACM Sympos.
Solid Modeling Appl. (2003), pp. 127-134.

DEY T. K., GOSwWAMI S.: Provable surface recon-
struction from noisy samples. In Proc. Symp. on Com-
putational Geometry (2004). to appear.

DWYER R. A.: The expected size of the sphere-of-
influence graph. Computational Geometry: Theory
and Applications 5, 3 (Oct. 1995), 155-164.

HoppE H., DEROSE T., DUCHAMP T., MCDON-
ALD J., STUETZLE W.: Surface reconstruction from
unorganized points. In Proc. of SSIGGRAPH (1992),
pp. 71-78.

HECKEL B., UvAa A. E., HAMANN B., Joy
K. I.: Surface reconstruction using adaptive clus-
tering methods. In Computing Supplement, vol. 14.
2001, pp. 199-218. Dagstuhl 1999.

JAROMCZYK J. W., TOUSSAINT G. T.: Relative

[KS00]

[KZ04]

[Lee00]

[Lev03]

[MQO3]

[OBA*03]

[PvBZG00]

[RLOO]

[Rog63]

[VB94]

[Vel93]

[ZPvBGO02]

neighborhood graphs and their relatives. In Proc. of
the IEEE (1992), vol. 80, pp. 1502-1571.

KANAI T., SUZUKI H.: Approximate shortest path
on a polyhedral surface based on selective refinement
of the discrete graph and its applications. In Proc.
Geometric and Processing (2000), pp. 241 — 250.

KLEIN J., ZACHMANN G.: Point cloud collision de-
tection. In Computer Graphics Forum (Proc. EURO-
GRAPHICS) (2004). to appear.

LEE I.-K.: Curve reconstruction from unorganized
points. Computer Aided Geometric Design 17, 2
(2000), 161-177.

LEVIN D.: Mesh-independent surface interpolation.
In Geometric Modeling for Scientific Visualization,
Brunnett H., Mueller, (Eds.). Springer, 2003.

MICHAEL T. S., QUINT T.: Sphere of influence
graphs and the loo-metric. Discrete Applied Mathe-
matics 127, 3 (2003), 447 — 460.

OHTAKE Y., BELYAEV A., ALEXA M., TURK G.,
SEIDEL H.-P.: Multi-level partition of unity implicits.
In Proc. of SIGGRAPH (2003), pp. 463-470.

PFISTER H., VAN BAAR J., ZWICKER M., GROSS
M.: Surfels: Surface elements as rendering primitives.
In Proc. of SIGGRAPH (2000), pp. 335-342.

RUSINKIEWICZ S., LEVOY M.: QSplat: A multires-
olution point rendering system for large meshes. In
Proc. of SIGGRAPH (2000), pp. 343-352.

ROGERS C.: Covering a sphere with spheres. Mathe-
matika 10 (1963), 157-164.

V. BARNETT T. L.: Qutliers in Statistical Data. John
Wiley and Sons, New York, 1994.

VELTKAMP R. C.: 3D computational morphology.
Computer Graphics Forum (Proc. EUROGRAPHICS)
(1993), 115-127.

ZWICKER M., PFISTER H., VAN BAAR J., GROSS
M.: EWA splatting. [EEE Trans. on Visualization
and Computer Graphics 8, 3 (2002), 223-238.

(© The Eurographics Association 2004.

