
C o m p u t e r G r a p h i c s T e c h n i c a l R e p o r t s

CG-2004-2

Object-Space Interference Detection on Programmable
Graphics Hardware

Alexander Greß
Computer Graphics, Universität Bonn. gress@cs.uni-bonn.de

Gabriel Zachmann
Computer Graphics, Universität Bonn. zach@cs.uni-bonn.de

Institut für Informatik II
Universität Bonn

D-53117 Bonn, Germany

© Universität Bonn 2004
ISSN 1610-8892



Object-Space Interference Detection on Programmable
Graphics Hardware

Alexander Greß Gabriel Zachmann

June 9, 2004

Abstract

We present a novel method for checking the in-
tersection of polygonal models on graphics hard-
ware utilizing its SIMD, occlusion query, and
floating point texture capabilities. It consists of
two stages: traversal of bounding volume hierar-
chies, thus quickly determining potentially inter-
secting sets of polygons, and the actual intersec-
tion tests, resulting in lists of intersecting poly-
gons. Unlike previous methods, our method does
all computations in object space and does not
make any requirements on connectivity or topol-
ogy.

1 Introduction

Fast and exact collision detection of polygonal
objects undergoing rigid motions is at the core of
many simulation algorithms in computer graph-
ics. In particular, virtual reality applications such
as virtual prototyping need exact collision detec-
tion at interactive speed for very complex, arbi-
trary “polygon soups”. It is also a fundamen-
tal problem of dynamic simulation of rigid bod-
ies, simulation of natural interaction with objects,
haptic rendering, path planning, and CAD/CAM.

Currently, the performance of graphics hard-
ware (GPUs) is progressing faster than general-
purpose CPUs. The main reason is an archi-
tecture that combines stream processing [9] and
SIMD processing. In addition, the programma-
bility of the GPU has increased drastically over
the past few years. Overall, today a programmer
can write kernels for all stages of the graphics
pipeline that are automatically executed in par-
allel on an indefinite number of processing units.
This has led many researchers to investigate ex-
ploitation of the GPU for other computations,

such as matrix computations, ray tracing, dis-
tance field computation, etc.

Many algorithms have been proposed to utilize
graphics hardware for the problem of collision
detection. They can be classified into techniques
that make use of the depth and stencil buffer tests,
and those that compute discrete distance fields.
In any case, the problem is approached in image
space, i.e., it is discretized.

However, to our knowledge, no attempts have
been made to utilize the GPU while still perform-
ing all computations in object space. This is what
we address in this paper.

Based on techniques known from traditional
CPU based collision detection approaches we de-
velop a new method that utilizes the graphics
hardware for hierarchical collision detection. Our
algorithm simultaneously traverses a pair of bound-
ing volume hierarchies performing all the neces-
sary computations during this traversal, including
the final triangle intersection tests, in vertex and
fragment programs on the GPU. The algorithm
has no requirements on the shape, topology, or
connectivity of the polygonal input models.

2 Related Work

GPU based processing has become a trend over
the past few years [13]. Generally, the idea is
to formulate the given problem such that it can
be solved by a number of rendering passes. Dur-
ing each of them, some of the computations are
performed by rendering a number of geometric
primitives, thereby updating one or more of the
available buffers (stencil, color, z-buffer, etc.).

A clever way to utilize graphics hardware was
presented by [11]. Based on the observation that
an intersection can occur if and only if an edge
of one object intersect the other one, they ren-
der edges of one object and polygons of the other.

1



This even works for deformable geometry. Unlike
many previous approaches, objects do not need
to be convex. However, they must still be closed.
Furthermore, it seems to work robustly only for
moderate polygon counts.

A hybrid approach was proposed by [7]. Here,
the graphics hardware is used only to detect po-
tentially colliding objects, while triangle-triangle
intersections are performed in the CPU. While
this approach allievates previous restrictions on
object topology, its effectiveness seems to degrade
dramatically when the density of the environment
increases.

The approach presented by [2] can compute the
penetration depth using graphics hardware, but
only for convex objects.

Earlier image-based methods include [17, 15, 3,
14, 4].

Virtually all image-based collision detection meth-
ods have several drawbacks in common:

1. Their complexity is usually in O(n), which is
much slower than the complexity of hierarchi-
cal, software-based approaches that seems to
be in O(log n).

2. Rendering geometric primitives basically amounts
to a discretization of the problem and thus in-
troduces geometric errors. These errors de-
pend more or less on the size of the viewport,
the internal representation of numbers, and
the number of bits per pixel in the z-buffer.
The size of the viewport has significant impact
on the performance.

Traditionally, rigid collision detection has been
solved by simultaneously traversing a precom-
puted bounding volume hierarchy. A wealth of
different BV hierarchies has been explored, such
as sphere trees [8, 16], OBB trees [6], DOP trees
[10, 19], Boxtrees [20, 1], AABB trees [18, 12],
and convex hulls [5].

Another rather recent effort is to design hard-
ware specifically for the purpose of collision de-
tection [21, 22]. In the present paper, how-
ever, we are concerned with utilizing commodity
general-purpose graphics hardware.

To our knowledge, there is no previous work
tackling the problem of collision detection in ob-
ject space on the GPU.

3 Triangle Intersection Tests

Assume that two triangle meshes are to be checked
for interference. Obviously, the brute-force ap-
proach is to check all triangles of the first mesh
against all triangles of the second mesh for inter-
section. Before passing on to the hierarchical ap-
proach in the following section, we describe how
to realize the straight-forward solution in pro-
grammable graphics hardware.

On programmable graphics hardware, render-
ing a rectangle of size m×n corresponds to m ·n
invocations of a fragment program. Theoreti-
cally, all fragment program invocations could be
performed in parallel since the input required for
each invocation may not depend upon the output
of another fragment program invocation for the
same rectangle primitive. This way, all available
fragment program execution units can be utilized
for such a task.

If we want to check all m triangles of a mesh
against all n triangles of another mesh, the m · n
triangle intersection tests obviously do not de-
pend on each other and thus can be performed
efficiently in graphics hardware by rendering a
rectangle of size m×n using a fragment program
that tests exactly one triangle pair at a time.

Suppose we want to determine the number of
intersecting triangle pairs. This can be done us-
ing an occlusion query. (Occlusion queries are
OpenGL 1.5 core functionality, and are also avail-
able in prior OpenGL versions on various graph-
ics hardware via a corresponding extension.) The
occlusion query returns the number of pixels ac-
tually written to the output buffer. If we use the
fragment program to discard all fragments corre-
sponding to non-intersecting triangle pairs, this
number exactly corresponds to the number of in-
tersecting triangle pairs. A fragment can be dis-
carded conditionally using the KIL instruction in
an ARB fragment program or using the clip in-
struction in the high-level shading languages of
NVidia and Microsoft.

The input required for the intersection tests
has to be stored in graphics memory. This can
be done using floating-point textures available
on current graphics hardware. An array of ver-
tex positions is represented by a three-component
floating-point 1D texture. Using a simple triangle
soup representation, three such textures are used
for each input model storing the three vertex po-
sitions of each triangle.

2



To be able to check two polygonal models spec-
ified in different object-spaces for interference, we
need the transformation matrix from one object-
space to the other one as further input. Since this
matrix is constant for all m · n intersection tests,
it can be passed to the fragment program as pro-
gram parameter (i.e., as uniform variable in the
high-level shading languages). This way, the frag-
ment program first transforms the three vertices
of one triangle to the object-space belonging to
the other triangle and then does the intersection
test, discarding the fragment if there is no inter-
section. However, this way each triangle of the
first mesh is transformed n-times.

Therefore, it is more efficient to move the trans-
formation into the vertex program, as it is done in
the following alternative solution. Instead of ren-
dering a single rectangle primitive of size m × n

we render m horizontal line primitives of length
n. This way the vertex program is invoked 2m-
times (as a line primitive consists of two vertices),
and the fragment program is invoked n-times per
line. The vertex program transforms a triangle of
the first mesh into the object-space of the second
mesh and passes the transformed triangle as frag-
ment data to the fragment program. The trans-
formation matrix is now a program parameter of
the vertex program. Since a vertex program can-
not yet access textures on current graphics hard-
ware, the three arrays containing the vertex posi-
tions of the first mesh now have to be represented
by vertex attribute arrays rather than by textures.

4 Hierarchical Interference
Detection

Although the simple brute-force approach described
in the previous section takes advantage of the par-
allel architecture of the GPU, it can clearly not
outperform a clever hierarchical approach if large
objects or scenes are to be tested. Therefore in
this section, we propose a method for hierarchical
interference detection on the GPU that is based on
a bounding volume hierarchy.

4.1 Bounding Volume Hierarchy

As in traditional CPU-based approaches one ob-
ject is to be checked for interference with an-
other one by simultaneously traversing their two
bounding volume hierarchies. We use axis-aligned
bounding boxes (AABBs) as bounding volumes

since they are suitable for the GPU and still ef-
ficient [20].

Therefore, we generate an AABB tree for each
object that consists of a bounding box at each
inner node and a triangle at each leaf node. This
generation is done in a preprocessing step on the
CPU.

During the simultaneous traversal of two AABB
trees S and T , all those pairs of nodes (Si, Tj)
are to be visited that are on the same hierarchy
level in the corresponding trees and for which the
parent nodes overlap. Various traditional CPU-
based approaches use a depth-first traversal strat-
egy. However, this way the decision whether a
pair of nodes has to be visited depends on the
result of an overlap test that was performed im-
mediately before. Therefore, this strategy is not
suited for execution using an indefinite number
of vertex and fragment program units.

Instead, we use a breadth-first traveral scheme,
i.e., all node pairs of a certain hierarchy level that
have to be visited are processed before any node
pair of the succeeding hierarchy level.

To be able to traverse the AABB trees efficiently,
the trees have to be balanced. Furthermore, since
leaf nodes will be handled differently than inner
nodes by our algorithm, we require that there are
no leaf nodes in the tree other than at the lowest
hierarchy level, even if we construct a tree with
a number of leaf nodes that is not a power of
two. Therefore, we construct a tree where the
lowest hierarchy level has exactly as many nodes
as there are triangles in the input model. For any
other hierarchy level L the number of nodes n(L)

equals
⌈n(L+1)

2

⌉
. This way, we yield an AABB

tree where each inner node has one or two child
nodes. Note, that there is at most one inner node
at each hierarchy level that has just one child
node.

When traversing two AABB trees simultane-
ously, in the following we assume that both con-
sist of the same number of hierarchy levels. For
two trees of different depths, this requirement can
be achieved by adding further levels consisting of
a single inner node at the top of one of the two
trees.

4.2 Outline of the Algorithm

Since we traverse the tree breath-first and since at
each hierarchy level only certain node pairs are
to be visited, we have to store the indices of these
node pairs temporarily during the traversal. For

3



this purpose we use a 2D buffer which we will
refer to in the following as node pair index map.

This buffer contains a set of index lists as fol-
lows. Let Lj = {i | AABB(Si) overlap AABB(Tj)}.
Putting Lj in the 2D buffer at row j, stored suc-
cessively starting at the first pixel in this row, the
complete buffer consists of m horizontal lines of
different lengths. For each row, the length of the
corresponding line (possibly 0) is stored in a ver-
tex array (or, more precisely, its start and end
points).

In addition, we require a second temporary 2D
buffer, that we call overlap count map. This
buffer consists of multiple levels, exactly as much
as there are levels in the AABB trees. Each level
consists, analogous to the node pair index map,
of m horizontal lines of different lengths. The
contents of the overlap count map are constructed
at each hierarchy level L during the AABB tree
traversal as follows.

At first we perform AABB overlap tests for the
AABB node pairs that are to be visited at the con-
sidered level L. Each such node pair corresponds
to one entry in the overlap count map at level L. If
the AABB overlap test of a certain node pair was
positive and thus the corresponding child nodes
are to be visited when processing the next hierar-
chy level, the number of these child nodes is writ-
ten into the corresponding entry of the overlap
count map. Otherwise the entry of the overlap
count map is set to 0. How this is done using the
GPU is described in Section 4.3.

If this step results in a map containing only 0-
entries (which can be determined using occlusion
query), all AABB overlap tests have been nega-
tive, and therefore the two objects definitively do
not collide.

Otherwise the AABB tree traversal is continued
as follows. Before the iteration proceedes to the
next hierarchy level, the node pair index map has
to be updated as well as the vertex array contain-
ing the lengths of the horizontal lines contained
in this map. First, the new vertex array is up-
dated. In the same step also levels 0, . . . , L − 1
of the overlap count map are updated. Second,
the information contained in levels 0, . . . , L of the
overlap count map is used to construct the node
pair index map required as input for processing
the next hierarchy level. These two steps are ex-
plained in detail in Section 4.4.

The whole process is repeated for all hierarchy
levels as long as there had been positive AABB

Clear level L of overlap count map.
Construct level L of overlap count map (by performing AABB overlap tests).

count := occlusion query result

Construct levels 0 ... L-1 of overlap count map (by summing-up overlap counts),
writing level 0 in a vertex array.

L := L + 1.
Construct the node pair index map in L [or optionally L-1] passes.

[Optionally clear level L of overlap count map.]
Construct level L of overlap count map (by performing triangle intersection tests).

count := occlusion query result

count = 0 ?

count = 0 ?

L is
last level ?

L := 0

No collision.

No collision.

Collision found.

yes

yes

no

Figure 1: The outline of our approach.

overlap tests. If we reached the last hierarchy
level, instead of testing AABB overlaps triangle
intersection tests are performed on the GPU for
all leaf node pairs that have to be visited accord-
ing to the node pair index map. Using occlusion
query, we obtain the number of intersecting trian-
gle pairs for the considered objects. If required,
the actual list of intersecting triangles can be ob-
tained via read-back from graphics memory.

The outline of the overall algorithm is summa-
rized in Fig. 1.

4.3 Box Overlap Tests

To perform the overlap tests of all AABB pairs
corresponding to the indices contained in the node
pair index map, we use a fragment program that
is executed by rendering m horizontal lines, sim-
ilar to the method described in Section 3. Here
however, those lines are of differents lengths, which
are contained in the vertex array. The fragment
program uses the index i contained in the node
pair index map to obtain the AABB of node Si

from a pair of 1D floating point textures. One
of these two textures contains the center point of
the AABBs, while the other one contains the cor-

4



+

+

2 0 2 1

2 3

5

+

IH

D

M NL

GF

J K

E

Figure 2: Summing up the overlap counts.

responding box extents. In addition, one of them
contains also the number of child nodes of the
tree node, which is 1 or 2.

This information is used in the fragment pro-
gram to check whether the AABB pair overlaps
by performing a SAT lite test [18]. This is shown
in the fragment program subroutine found in Ap-
pendix A.

All fragments corresponding to non-overlapping
AABB pairs are discarded by this program. Oth-
erwise (not shown in the program), the number of
children of Si is written to level L of the overlap
count map.

4.4 Generating the Node Pair Index
Map

We construct the new node pair index map and
the corresponding vertex array in multiple passes
using the following technique.

The lengths of the horizontal lines for the new
node pair index map corresponds to the number
of nodes of level L+1 for whose parent nodes the
AABB overlap test was positive. By construction,
this equals to the sum of all values in level L of
the overlap count map at the corresponding row.

Therefore, we can construct the vertex array by
summing up those values. In analogy to the con-
struction of 1D MIP maps on the GPU, we do this
by constructing the levels L−1, . . . , 0 of the over-
lap count map. Each level i = L − 1, . . . , 0 of this
map consists of 2i × m entries, each of which is
calculated by summing up two values from level
i + 1, see Fig. 2.

The contents of level 0 of the overlap count
map, which correspond to the totals sums of the
values in each row of level L, are to be stored in
a vertex array as required for the AABB overlap
tests at hierarchy level L+ 1. Using the upcoming
ARB_super_buffer extension (which is currently
under specification), it will be possible to render
them directly into the vertex array. Another, less
efficient alternative is to transfer the data from
the texture directly to the vertex array using the
EXT_pixel_buffer_object extension.

Next, we construct the new node pair index
map for hierarchy level L + 1 in L + 1 passes.
(Note, that the technique presented here is also
suited for graphics hardware with dependent tex-
ture read limit, like the current ATI GPUs.)

The basic idea is that for every row of the node
pair index map the nth entry corresponds to the
nth AABB tree node of level L + 1 that is to be
visited. This node can be found be traversing the
AABB tree starting at the root node. Note, that
the first entry of level 1 of the overlap count map
contains the number of nodes of level L + 1 to
be visited that are reached from the root node via
its first child node. Therefore, depending on this
value, it is clear whether we must proceed to the
first or to the second child of the root node to
reach the searched node. Then, this step is re-
peated using levels 2, . . . , L of the overlap count
map.

This technique to construct the new node pair
index map is realized on the GPU as follows. We
need a temporary buffer of the same size as the
node pair index map that we are going to con-
struct, consisting of two components per entry.
The first component, called current node index in
the following, is used to store the indices of AABB
tree nodes that are visited during the traversal.
The second component, called current child index
in the following, corresponds to n if we search
the nth node of level L + 1 to be visited that is
reached from the node specified by the current
node index.

At the beginning, this temporary buffer is ini-
tialized as follows: In each row of the texture,
the current child index is numbered consecutively
starting with 0. The current node index is initial-
ized to 0 and thus addresses the root node. Each
row of the temporary buffer is assumed to be of
the corresponding length stored in the vertex ar-
ray.

5



+

+

2 3

5

+

3rd 4th2nd1st0th

2 0 2 1

IH

D

M NL

GF

J K

E

+

2 3

+

1st 2nd0th1st0th

2 0 2 1

IH

D

M NL

GF

J K

E

1st 0th0th1st0th

2 0 2 1

IH

D

M NL

GF

J K

E

IH M NLJ K

Figure 3: Construction of the node pair index map
in multiple passes. The values on gray background
are the overlap counts that are compared to the cur-
rent child indices shown at the top row.

We use a fragment program that does the fol-
lowing for each pass i = 1, . . . , L: First, the value
from the overlap count map of level i at the index
that equals 2·current node index is read. Then,
this value (overlap count) is compared against the
current child index. If it is greater, the current
node index is replaced by 2·current node index in
the temporary buffer, and the current child index
remains unchanged. Otherwise, the current node
index is replaced by 2·current node index+1, and
the overlap count is subtracted from the current
child index; see Fig. 3.

After these L passes one further pass is required
to obtain the new node pair index map based on
the values in the temporary buffer and the cur-
rent contents of the node pair index map. For
each entry of the map, we identify the actual cor-
responding AABB tree node by accessing the cur-
rent contents of the node pair index map at the
index specified by the current node index from
the temporary buffer. Then we store the index of
its first or second child, depending on the current
child index from the temporary buffer, into the
new node pair index map. This step is shown in
the lower right of Fig. 3.

To avoid the additional render pass, the last
operation optionally can be incorporated directly

into the fragment shaders used for box overlap
and triangle intersection testing.

5 A Hybrid Approach Based on
Temporal Coherence

It is clear that for a given object pair it might not
be most efficient to start the hierarchy traversal
at the top levels of the two hierarchies. If more
than half of the box pairs of a certain level over-
lap, then we can save box overlap tests by starting
the traversal at that level. Since the traversal it-
self incurs some further computational overhead,
it might be more efficient to start at a certain
hierarchy level even for a smaller percentage of
overlapping box pairs. However, to decide which
level is most efficient to start with, we would have
to know the number of overlapping box pairs in
advance, which is obviously not possible.

However, in a typical real-time application of
collision detection objects are moving on a smooth
path. Therefore, we can use a heuristic based
on temporal coherence: we simply remember for
a each object pair the highest hierarchy level at
which more than a certain percentage of box
pairs overlapped. This percentage is obtained us-
ing an occlusion query. For the next frame we
start the traversal of the hierarchy at exactly this
level. Based on the number of overlaps we deter-
mine on this level this time, we adjust the “en-
trance” level for the next collision check.

6 Implementation

We implemented the method described in Sec-
tion 5 using C++ and OpenGL on a NVidia GeForce
FX 5900 GPU.

The AABB tree is stored using 32 bit floating
point textures with rectangle texture target (i.e.,
the entries of a m×n-sized texture are addressed
using coordinates (i+ 1

2 , j+ 1
2 ) for i = 0, . . . , m−

1, j = 0, . . . , n − 1 on texture lookup).
The multi-level overlap count map and the node

pair index map are both used as temporary buffers
during the described algorithm. Therefore, we
require a method that enables these textures to
be used as targets for rendering operations. The
most efficient technique allowing this would be
to use the upcoming super buffer extension. But
since it is not yet available for our target system

6



we had to use the p-buffer and render-to-texture
WGL extensions instead.

However, due to driver limitations on this GPU
we cannot create integer p-buffers with more than
8 bits per component. As this would not be suf-
ficient in our case, we use 16 bit half-precision
floating point p-buffers instead. (Its 11 bit man-
tissa is sufficent to accurately store values up to
4096, which corresponds to the maximum tex-
ture size on the used GPU and thus to our maxi-
mum index value.)

The main disadvange of the fact that we can-
not use super buffers is that using p-buffers each
render target change causes a GL render context
switch which is connected with degraded perfor-
mance caused by pipeline flushes. Another dis-
advantage of using p-buffers is that we cannot
share occlusion queries between multiple render
contexts which would be of great benefit for de-
layed evaluation of the query result. Fortunately,
these disadvantages will disappear as soon as the
super buffer extension will be available.

7 Results

We tested the performance of our algorithm us-
ing a test scenario similar to that of [22]: Two
identical objects are positioned at a certain dis-
tance from each other. The distance is computed
between the centers of the bounding boxes of the
two objects; objects are scaled uniformely so they
fit into a cube of size 23. One of the two ob-
jects is rotated around a fixed axis by fixed num-
ber of small steps. In each step, the two objects
are checked for collision, and the average colli-
sion detection time for a complete revolution at
that distance is computed. Then the process is
repeated with a slightly decreased distance of the
two objects.

This test was performed on a set of CAD ob-
jects with varying complexities. To compare the
performance of GPU and CPU based collision de-
tection methods, we also implemented the AABB
tree traversal approach on the CPU using an iden-
tical traversal scheme and ran the same tests on
that implementation. Fig. 4 shows the results.

Note, that the timings include the determina-
tion of all intersecting triangle pairs as well as the
read-back of its indices from graphics memory in
case of the GPU implementation.

When comparing the performance of the indi-
vidual steps of the algorithm beetween its GPU

and CPU implementations, it turns out that in
the GPU implementation the box overlap and tri-
angle intersection tests perform up to four times
faster especially at the lower hierarchy levels. How-
ever, this speed-up is reduced by the overhead
of the node pair index map generation which
is larger in the GPU implementation. Overall,
in general our current GPU implementation is
slightly faster than the CPU implementation.

We also made some tests with ATIs current su-
per buffer beta implementation on an ATI Radeon
GPU, where we used the super buffer for render-
ing to our temporary textures as well as for di-
rectly rendering into the vertex array. However,
due to stability issues, we cannot provide reliable
results so far. But as soon as they will be resolved,
we expect that by using this technique the over-
head introduced by generating the node pair in-
dex maps in several passes could be reduced sig-
nificantly.

8 Conclusion and Future Work

We presented a method for interference detection
using programmable graphics hardware. Unlike
previous GPU-based approaches, there are no re-
quirements on shape, topology, and connectivity
on the polygonal input models. Furthermore, all
calculations are done in object-space rather than
image-space.

Our method is an hierarchical algorithm that
borrows ideas from traditional CPU based colli-
sion detection approaches. It simultaneously tra-
verses a pair of bounding volume hierarchies con-
sisting of axis-aligned bounding boxes. In ad-
dition, the method utilizes temporal coherence
when used for collision testing over a period of
time.

Although our current implementation could still
be improved by using upcoming driver features it
is still able to compete with CPU based hierarchi-
cal collision detection approaches. This allows
using the CPU idle time (for example while wait-
ing for occlusion query results) for other tasks.
And with the release of future GPUs our method
is potentially able to outperform the CPU based
approaches clearly.

As there is no early termination in case of a de-
termined intersecting triangle pair, the main tar-
get of this method are applications that need to
determine the complete list of intersecting trian-
gles or at least its number.

7



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
tim

e 
/ s

ec

distance

GPU
CPU

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

tim
e 

/ s
ec

distance

GPU
CPU

Figure 4: The collision response times for the car are shown in the middle, and those for the door lock at
the bottom. The corresponding polygonal models can be seen in the top row. (Data courtesy of VW and
BMW.)

There are still possible enhancements and opti-
mization opportunities we want to investigate in
the future:

• The algorithm might be enhanced for the ap-
plication of collision detection in complex en-
vironments where multiple polygonal models
with its own object-space have to be checked
against each other. It might be worthwhile
to check if we can speed-up the collision de-
tection in this scenario by starting the bound-
ing volume traversal with processing multiple
pairs of AABB trees at once, for example by
accessing a matrix palette from the vertex pro-
gram for handling the individual transforma-
tion matrixes.

• Our approach could easily be modified to use
hierarchies based on bounding volumes other
than AABBs. One future task would be to
evaluate the influence of using different bound-
ing volumes on the performance of our GPU
based approach.

A Fragment Program
Implementation

SAT lite test in high-level shading language:

void testBoxOverlap (float4 centerS, float3 extentS,

float4 centerT, float3 extentT)

{

float3 dist; // distance between centers

float3 extsum; // interval radii

// compute difference of box centers in S space

float3 distInS = float3(dot(centerT, matC[0]),

dot(centerT, matC[1]),

dot(centerT, matC[2])

- centerS.xyz;

// determine three potentially seperating axes

dist = distInS;

extsum = extentS;

extsum.x += dot(extentT, matAbsC[0]);

extsum.y += dot(extentT, matAbsC[1]);

extsum.z += dot(extentT, matAbsC[2]);

// discard fragment if any component of

// "extsum - abs(dist)" < 0

clip(extsum - abs(dist));

// determine three more potentially seperating axes

dist.x = dot(distInS, matCInv[0]);

dist.y = dot(distInS, matCInv[1]);

dist.z = dot(distInS, matCInv[2]);

extsum.x = dot(extentS, matAbsCInv[0]);

extsum.y = dot(extentS, matAbsCInv[1]);

extsum.z = dot(extentS, matAbsCInv[2]);

extsum += extentT;

// discard fragment if any component of

// "extsum - abs(dist)" < 0

clip(extsum - abs(dist));

}

where the uniform parameter matC is the trans-
formation matrix from T ’s object-space to S’s,
matCInv its inverse, and matAbsC and matAb-
sCInv the matrixes obtained by taking the abso-
lute value of each entry of matC and matCInv, re-
spectively.

References

[1] Agarwal, P., M. de Berg, J. Gudmundsson,
M. Hammar, and H. Haverkort, Box-Trees
and R-Trees with Near-Optimal Query
Time, Discrete and Computational Geome-
try, 28 (2002), pp. 291–312.

[2] Agarwal, P., S. Krishnan, N. Mustafa, and
S. Venkatasubramanian, Streaming Geo-

8



metric Optimization Using Graphics Hard-
ware, in 11th European Symposium on Al-
gorithms, 2003.

[3] Baciu, G. and W. S.-K. Wong, Hardware-
assisted self-collision for deformable sur-
faces, in Proceedings of the ACM Sympo-
sium on Virtual Reality Software and Tech-
nology (VRST), 2002, pp. 129–136. ISBN
1-58113-530-0. http://doi.acm.org/10.
1145/585740.585762.

[4] Baciu, G. and W. S.-K. Wong, Image-Based
Techniques in a Hybrid Collision Detec-
tor, IEEE Transactions on Visualization and
Computer Graphics, 9 (2003), pp. 254–271.

[5] Ehmann, S. A. and M. C. Lin, Accurate and
Fast Proximity Queries Between Polyhedra
Using Convex Surface Decomposition, in
Computer Graphics Forum, vol. 20, 2001,
pp. 500–510. ISSN 1067-7055.

[6] Gottschalk, S., M. Lin, and D. Manocha,
OBB-Tree: A Hierarchical Structure for
Rapid Interference Detection, in SIG-
GRAPH 96 Conference Proceedings, Rush-
meier, H., ed., ACM SIGGRAPH, Aug.
1996, pp. 171–180. held in New Orleans,
Louisiana, 04-09 August 1996.

[7] Govindaraju, N., S. Redon, M. C. Lin,
and D. Manocha, CULLIDE: Interac-
tive Collision Detection Between Com-
plex Models in Large Environments Us-
ing Graphics Hardware, in Proc. of Graph-
ics Hardware, San Diego, California, July
2003. http://graphics.stanford.edu/
papers/photongfx/.

[8] Hubbard, P. M., Approximating Polyhedra
with Spheres for Time-Critical Collision De-
tection, ACM Transactions on Graphics, 15
(1996), pp. 179–210. ISSN 0730-0301.

[9] Kapasi, U. J., S. Rixner, W. J. Dally,
B. Khailany, J. H. Ahn, P. Mattson, and J. D.
Owens, Programmable Stream Processors,
IEEE Computer, (2003), pp. 54–61.

[10] Klosowski, J. T., M. Held, J. S. B. Mitchell,
H. Sowrizal, and K. Zikan, Efficient Col-
lision Detection Using Bounding Volume
Hierarchies of k-DOPs, IEEE Transactions
on Visualization and Computer Graphics, 4
(1998), pp. 21–36.

[11] Knott, D. and D. K. Pai, CInDeR: Collision
and Interference Detection in Real-Time Us-
ing Graphics Hardware, in Proc. of Graph-
ics Interface, Halifax, Nova Scotia,Canada,
June11–13 2003.

[12] Larsson, T. and T. Akenine-Möller, Colli-
sion Detection for Continuously Deform-
ing Bodies, in Eurographics, 2001, pp. 325–
333. short presentation.

[13] Lin, M. C. and D. Manocha, Interac-
tive Geometric Computations Using Graph-
ics Hardware, in SIGGRAPH 2002 Course
Notes Number 31, July 2002.

[14] Lombardo, J.-C., M.-P. Cani, and F. Neyret,
Real-time collision detection for virtual
surgery, in Proc. of Computer Animation,
Geneva, Switzerland, May26-28 1999.

[15] Myszkowski, K., O. G. Okunev, and T. L.
Kunii, Fast collision detection between com-
plex solids using rasterizing graphics hard-
ware, The Visual Computer, 11 (1995),
pp. 497–512. ISSN 0178-2789.

[16] Palmer, I. J. and R. L. Grimsdale, Colli-
sion Detection for Animation using Sphere-
Trees, Computer Graphics Forum, 14
(1995), pp. 105–116. ISSN 0167-7055.

[17] Shinya, M. and M.-C. Forgue, Interference
detection through rasterization, The Journal
of Visualization and Computer Animation,
2 (1991), pp. 132–134. ISSN 1049-8907.

[18] van den Bergen, G., Efficient Collision De-
tection of Complex Deformable Models us-
ing AABB Trees, Journal of Graphics Tools,
2 (1997), pp. 1–14.

[19] Zachmann, G., Rapid Collision Detection
by Dynamically Aligned DOP-Trees, in
Proc. of IEEE Virtual Reality Annual Inter-
national Symposium; VRAIS ’98, Atlanta,
Georgia, Mar. 1998, pp. 90–97.

[20] Zachmann, G., Minimal Hierarchical Colli-
sion Detection, in Proc. ACM Symposium
on Virtual Reality Software and Technol-
ogy (VRST), Hong Kong, China, Nov.11–
13 2002, pp. 121–128. http://www.
gabrielzachmann.org/.

9



[21] Zachmann, G. and G. Knittel, An Archi-
tecture for Hierarchical Collision Detec-
tion, in Journal of WSCG ’2003, University
of West Bohemia, Plzen, Czech Republic,
Feb.3–7 2003, pp. 149–156. http://www.
gabrielzachmann.org/.

[22] Zachmann, G. and G. Knittel, High-

Performance Collision Detection Hard-
ware, Tech. Rep. CG-2003-3, University
Bonn, Informatikk II, Bonn, Germany, Aug.
2003. http://www.gabrielzachmann.
org/.

10


