
Object-Space Interference Detection on

Programmable Graphics Hardware

Alexander Greß Gabriel Zachmann

Abstract. We present a novel method for checking the intersection
of polygonal models on graphics hardware utilizing its SIMD, occlu-
sion query, and floating-point texture capabilities. Our algorithm
simultaneously traverses a pair of bounding volume hierarchies per-
forming all the necessary computations during this traversal, in-
cluding the final triangle intersection tests, in vertex and fragment
programs on the GPU. Unlike previous graphics hardware based
methods, our method does all computations in object space and
does not make any requirements on connectivity or topology.

§1. Introduction

Fast and exact collision detection of polygonal objects undergoing rigid
motions is at the core of many simulation algorithms in computer graph-
ics. In particular, virtual reality applications such as virtual prototyping
need exact collision detection at interactive speed for very complex, ar-
bitrary “polygon soups”. It is also a fundamental problem of dynamic
simulation of rigid bodies, simulation of natural interaction with objects,
haptic rendering, path planning, and CAD/CAM.

Currently, the performance of graphics hardware (GPUs) is progressing
faster than general-purpose CPUs. The main reason is an architecture
that combines stream processing [11] and SIMD processing. In addition,
the programmability of the GPU has increased drastically over the past
few years. Overall, today a programmer can write kernels for all stages
of the graphics pipeline that are automatically executed in parallel on
an indefinite number of processing units. This has led many researchers
to investigate exploitation of the GPU for other computations, such as
matrix computations, ray tracing, distance field computation, etc.

XXX 1
xxx and xxx (eds.), pp. 1–4.

Copyright c© 200x by Nashboro Press, Brentwood, TN.

ISBN 0-9728482-x-x

All rights of reproduction in any form reserved.

2 A. Greß and G. Zachmann

Many algorithms have been proposed to utilize graphics hardware for
the problem of collision detection. They can be classified into techniques
that make use of the depth and stencil buffer tests, and those that compute
discrete distance fields. In any case, the problem is approached in image
space, i.e., it is discretized.

However, to our knowledge, no attempts have been made to utilize the
GPU while still performing all computations in object space. This is what
we address in this paper.

Based on techniques known from traditional CPU based collision de-
tection approaches we develop a new method that utilizes the graphics
hardware for hierarchical collision detection. Our algorithm simultane-
ously traverses a pair of bounding volume hierarchies consisting of axis-
aligned bounding boxes. All computations during this traversal, including
the final triangle intersection tests, are performed in vertex and fragment
programs on the GPU. The algorithm has no requirements on the shape,
topology, or connectivity of the polygonal input models.

§2. Related Work

GPU based processing has become a trend over the past few years [15].
Generally, the idea is to formulate the given problem such that it can
be solved by a number of rendering passes. During each of them, some
of the computations are performed by rendering a number of geometric
primitives, thereby updating one or more of the available buffers (stencil,
color, z-buffer, etc.).

A clever way to utilize graphics hardware was presented by [13]. Based
on the observation that an intersection can occur if and only if an edge of
one object intersects the other one, they render edges of one object and
polygons of the other. This even works for deformable geometry. Unlike
many previous approaches, objects do not need to be convex. However,
they must still be closed. Furthermore, it seems to work robustly only for
moderate polygon counts.

A hybrid approach was proposed by [8]. Here, the graphics hardware
is used only to detect potentially colliding objects, while triangle-triangle
intersections are performed in the CPU. While this approach alleviates
previous restrictions on object topology, its effectiveness seems to degrade
dramatically when the density of the environment increases.

The approach presented by [2] can compute the penetration depth
using graphics hardware, but only for convex objects.

Earlier image-based methods include [20, 18, 3, 16, 4].
Virtually all image-based collision detection methods have several draw-

backs in common:

1. Their complexity is usually in O(n), which is much slower than the

Object-Space Interference Detection on Progr. Graphics Hardware 3

complexity of hierarchical, software-based approaches that seem to
be in O(log n).

2. Rendering geometric primitives basically amounts to a discretiza-
tion of the problem and thus introduces geometric errors. These
errors depend more or less on the size of the viewport, the inter-
nal representation of numbers, and the number of bits per pixel in
the z-buffer. The size of the viewport has significant impact on the
performance.

Traditionally, rigid collision detection has been solved by simultane-
ously traversing a precomputed bounding volume hierarchy. A wealth of
different BV hierarchies has been explored, such as sphere trees [10, 19],
OBB trees [7], DOP trees [12, 22], Boxtrees [23, 1], AABB trees [21, 14],
and convex hulls [5].

Another rather recent effort is to design hardware specifically for the
purpose of collision detection [24, 25]. In the present paper, however, we
are concerned with utilizing commodity general-purpose graphics hard-
ware.

To our knowledge, there is no previous work tackling the problem of
collision detection in object space on the GPU.

§3. Triangle Intersection Tests

Assume that two triangle meshes are to be checked for interference. Ob-
viously, the brute-force approach is to check all triangles of the first mesh
against all triangles of the second mesh for intersection. Before passing on
to the hierarchical approach in the following section, we describe how to
realize the straightforward solution in programmable graphics hardware.

The m ·n triangle intersection tests required to check all m triangles of
one mesh against all n triangles of another mesh obviously do not depend
on each other and thus can be performed efficiently in graphics hardware
by rendering a rectangle of size m×n using a fragment program that tests
exactly one triangle pair at a time.

Note that on programmable graphics hardware, rendering a rectangle
of size m × n corresponds to m · n invocations of a fragment program.
Theoretically, all these fragment program invocations could be performed
in parallel since the input required for each invocation may not depend
upon the output of another fragment program invocation for the same
rectangle primitive. Therefore, all available fragment program execution
units can be utilized for such a task.

To determine whether two triangles intersect, we implemented the SAT
method as fragment program, which checks if there is an axis such that the
two triangles projected onto that axis are disjoint. This method is based

4 A. Greß and G. Zachmann

on the separating axes theorem [6].1 Each fragment, whose corresponding
triangle pair does not intersect, is discarded by the fragment program.
(A fragment can be discarded conditionally using the KIL instruction in
an ARB fragment program or, equivalently, using the clip instruction in
NVIDIA’s Cg or Microsoft’s HLSL high-level shading language.)

To determine the number of intersecting triangle pairs, we use the oc-
clusion query feature of current GPUs. (Occlusion queries are OpenGL
core functionality since version 1.5, and have also been available in prior
OpenGL versions via various hardware-specific extensions.) The occlusion
query returns the number of pixels actually written to the output buffer.
Using the described fragment program, which discards all fragments cor-
responding to non-intersecting triangle pairs, this number exactly corre-
sponds to the number of intersecting triangle pairs.

The input required for the intersection tests has to be stored in graph-
ics memory. This can be done using floating-point textures available on
current graphics hardware. An array of vertex positions is represented by
a three-component floating-point 1D texture. As in a simple triangle soup
representation, we use three such textures for each input model to store
the three vertex positions of each triangle.

To be able to check two polygonal models specified in different object-
spaces for interference, we need the transformation matrix from one object-
space to the other one as further input. Since this matrix is constant for
all m · n intersection tests, it can be passed to the fragment program
as program parameter (i.e., as uniform variable in the high-level shading
language). Using this matrix, the fragment program first transforms the
three vertices of the considered triangle from the first mesh to the object-
space of the second mesh and then does the intersection test, discarding
the fragment if there is no intersection. However, in total each triangle of
the first mesh is transformed n-times using this method.

Therefore, it is more efficient to move the transformation into the ver-
tex program, as it is done in the following alternative solution. Instead of
rendering a single rectangle primitive of size m×n, we render m horizontal
line primitives of length n. Using this technique, the vertex program is
invoked 2m-times (as a line primitive consists of two vertices), and the
fragment program is invoked n-times per line. The vertex program trans-
forms a triangle of the first mesh into the object-space of the second mesh
and passes the transformed triangle as fragment data to the fragment pro-

1Note, that the graphics hardware available at the time when this work was done
had no dynamic flow control logic in the fragment program units. Without dynamic
flow control, the execution time of the fragment program always depends on the total
number of instructions of the program, even for fragments that are discarded at an early
stage of the program. Therefore, we use a triangle intersection test method that requires
less case differentiations than alternative methods and thus can be implemented with
a comparatively low total instruction count.

Object-Space Interference Detection on Progr. Graphics Hardware 5

gram. Contrary to the first solution, we now use a vertex array instead
of three textures to store the triangles of the first mesh and make the
transformation matrix a program parameter of the vertex program.

§4. Hierarchical Interference Detection

Although the simple brute-force approach described in the previous section
takes advantage of the parallel architecture of the GPU, it can clearly not
outperform a clever hierarchical approach if large objects or scenes are to
be tested. Therefore, in this section we propose a method for hierarchical
interference detection on the GPU that is based on a bounding volume
hierarchy.

4.1. Bounding Volume Hierarchy

As in traditional CPU-based approaches, one object is to be checked for in-
terference with another one by simultaneously traversing their two bound-
ing volume hierarchies. We use axis-aligned bounding boxes (AABBs) as
bounding volumes since they are well-suited for our GPU based approach
and, despite their simplicity, still very efficient [21, 23].

For each object, we generate an AABB tree that consists of a bounding
box at each inner node and a triangle at each leaf node. This generation
is done in a preprocessing step on the CPU.

During the simultaneous traversal of two AABB trees S and T , all those
pairs of nodes (Si, Tj) are to be visited that are on the same hierarchy level
in the corresponding trees and for which the parent nodes overlap. Vari-
ous traditional CPU-based approaches use a depth-first traversal strategy.
However, this way the decision whether a pair of nodes has to be visited
depends on the result of an overlap test that was performed immediately
before. Therefore, this strategy is not suited for parallel execution on
multiple vertex or fragment program units.

Instead, we use a breadth-first traversal scheme, i.e., when a node pair
of a certain hierarchy level is visited, the node pairs of preceding hierarchy
levels must have been processed already.

To be able to traverse the AABB trees efficiently, the trees have to be
balanced. Furthermore, since leaf nodes will be handled differently than
inner nodes by our algorithm, we require that there are no leaf nodes in
the tree other than at the lowest hierarchy level, even if we construct a
tree with a number of leaf nodes that is not a power of two. Therefore, we
construct a tree where the lowest hierarchy level Lmax has exactly as many
nodes as there are triangles in the input model. For any other hierarchy
level L = 0, . . . , Lmax−1 the number of nodes n(L) equals

⌈n(L+1)
2

⌉
. This

way, each inner node of the resulting AABB tree has one or two child
nodes. Note, that there is at most one inner node at each hierarchy level
that has just one child node.

6 A. Greß and G. Zachmann

When traversing two AABB trees simultaneously, in the following we
assume that both consist of the same number of hierarchy levels. For
two trees of different depths, this requirement can be achieved by adding
further levels consisting of a single inner node at the top of one of the two
trees.

4.2. Outline of the Algorithm

Since we traverse the tree breath-first and since at each hierarchy level
only certain node pairs are to be visited, we have to store the indices of
these node pairs temporarily during the traversal. For this purpose, we
use a 2D buffer, which we will refer to in the following as node pair index
map.

This buffer contains an array of index sets as follows. Let Lj =
{i |AABB(Si) overlap AABB(Tj)}. Putting the contents of set Lj in the
2D buffer at row j, stored successively starting at the first pixel in this row,
the complete buffer consists of m horizontal lines of different lengths. The
lengths of all these lines (or, more precisely, their start and end points)
are stored in a vertex array.

In addition, we require a second temporary 2D buffer, that we call
overlap count map. This buffer consists of multiple levels, exactly as much
as there are hierarchy levels in the AABB trees. As the node pair index
map, also each level of the overlap count map consists of m horizontal lines
of different lengths. The contents of the overlap count map are constructed
during the AABB tree traversal at each hierarchy level L as follows.

At first, all those AABB node pairs that are to be visited at the con-
sidered level L are checked for overlap. Each such node pair corresponds
to one entry in the overlap count map at level L. If the AABB overlap test
of a certain node pair was positive and thus the corresponding child nodes
are to be visited when processing the next hierarchy level, the number of
these child nodes is written into the corresponding entry of the overlap
count map. Otherwise the entry of the overlap count map is set to 0. How
this is done using the GPU is described in Section 4.3.

If this step results in a map containing only 0-entries (what can be
determined using an occlusion query), all AABB overlap tests have been
negative, and therefore the two objects definitively do not collide.

Otherwise, the AABB tree traversal is continued as follows. Before the
iteration proceeds to the next hierarchy level, the node pair index map has
to be updated, as well as the vertex array containing the start and end
points of the horizontal lines contained in this map. This is done in two
steps. First, the vertex array is updated, as well as levels 0, . . . , L−1 of the
overlap count map. Second, the information contained in levels 0, . . . , L
of the overlap count map is used to construct the node pair index map
required as input for processing the next hierarchy level. These two steps
are explained in detail in Section 4.4.

Object-Space Interference Detection on Progr. Graphics Hardware 7

The whole process is repeated for all hierarchy levels as long as there
are positive AABB overlap tests. If the last hierarchy level is reached,
instead of testing AABB overlaps, triangle intersection tests are performed
on the GPU for all leaf node pairs that have to be visited according to the
node pair index map. Using an occlusion query, we obtain the number
of intersecting triangle pairs for the considered objects. If required, the
actual list of intersecting triangles can be obtained via read-back from
graphics memory.

The outline of the overall algorithm is summarized in Fig. 1.

4.3. Box Overlap Tests

To perform the overlap tests of all AABB pairs corresponding to the in-
dices contained in the node pair index map, we use a fragment program
that is executed by rendering m horizontal lines, similar to the method
described in Section 3. Here however, these lines have different lengths, as
defined by the content of the vertex array. The fragment program uses the
index i contained in the node pair index map to obtain the AABB of node
Si from a pair of 1D floating-point textures. One of these two textures
contains the center point of the AABBs, while the other one contains the
corresponding box extents. In addition, one of them contains also the
number of child nodes of the tree node, which is 1 or 2.

This information is used in the fragment program to check whether the
AABB pair overlaps by performing a SAT lite test [21]. This is shown in
the fragment program subroutine found in Appendix A.

All fragments corresponding to non-overlapping AABB pairs are dis-
carded by this program. Otherwise (not shown in the program), the num-
ber of children of Si is written to level L of the overlap count map.

4.4. Generating the Node Pair Index Map

We construct the new node pair index map and the corresponding vertex
array in multiple passes using the following technique.

The length of each horizontal line in the new node pair index map
corresponds to the number of nodes of level L + 1 for whose parent nodes
the AABB overlap test was positive. By construction, this number is
equal to the sum of all values in level L of the overlap count map at the
corresponding row.

Therefore, we can construct the vertex array by summing up these
values. In analogy to the construction of 1D MIP maps on the GPU, we
do this by constructing the levels L− 1, . . . , 0 of the overlap count map as
follows. Each level i = L− 1, . . . , 0 of this map consists of 2i × m entries,
each of which is calculated by summing up two values from level i+1, see
Fig. 2.

We store the entries of level 0 of the overlap count map, each of which
corresponds to the sum of all values in the corresponding row of level L, in

8 A. Greß and G. Zachmann

Clear level L of overlap count map.
Construct level L of overlap count map (by performing AABB overlap tests).

count := occlusion query result

Construct levels 0 ... L-1 of overlap count map (by summing-up overlap counts),
writing level 0 in a vertex array.

Construct the node pair index map in L passes.
L := L + 1.

Optionally clear level L of overlap count map (not required).
Construct level L of overlap count map (by performing triangle intersection tests).

count := occlusion query result

count = 0 ?

count = 0 ?

L is
last level ?

L := 0

No collision.

No collision.

Collision found.

yes

yes

no

Fig. 1. The outline of our approach.

Object-Space Interference Detection on Progr. Graphics Hardware 9

+

+

2 0 2 1

2 3

5

+

IH

D

M NL

GF

J K

E

Fig. 2. Summing up the overlap counts.

a vertex array, such that they can be used as vertex program input for the
AABB overlap tests at hierarchy level L + 1. In our current implementa-
tion, this is accomplished by transferring the data from the render target
texture directly to the vertex array using the EXT pixel buffer object
OpenGL extension.

Next, we construct the new node pair index map for hierarchy level
L + 1 in L passes as follows.

The basic idea is that for every row of the node pair index map the
nth entry corresponds to the nth AABB tree node of level L+1 that is to
be visited. This node can be found be traversing the AABB tree starting
at the root node. Note, that the first entry of level 1 of the overlap count
map contains the number of nodes of level L + 1 to be visited that are
reached from the root node via its first child node. Therefore, this value
decides whether we must proceed to the first or to the second child of the
root node to reach the searched node. Then, this step is repeated using
levels 2, . . . , L of the overlap count map.

This technique to construct the new node pair index map is realized
on the GPU as follows. We need a temporary buffer of the same size as
the node pair index map that we are going to construct, consisting of two
components per entry. The first component, called current node index in
the following, is used to store the indices of AABB tree nodes that are
visited during the traversal. The second component, called current child
index in the following, corresponds to n if we search the nth node of level
L + 1 to be visited that is reached from the node specified by the current
node index.

At the beginning, this temporary buffer is initialized as follows: In
each row of the texture, the current child index is numbered consecutively
starting with 0. The current node index is initialized to 0 and thus ad-
dresses the root node. Each row of the temporary buffer is assumed to be
of the corresponding length stored in the vertex array.

10 A. Greß and G. Zachmann

We use a fragment program that does the following for each pass i =
1, . . . , L: First, the value from the overlap count map of level i at the index
that equals 2·current node index is read. Then, this value (overlap count)
is compared against the current child index. If it is greater, the current
node index is replaced by 2·current node index in the temporary buffer,
and the current child index remains unchanged. Otherwise, the current
node index is replaced by 2·current node index+1, and the overlap count
is subtracted from the current child index, see Fig. 3.

After these L passes, the new node pair index map can be obtained
based on the values in the temporary buffer and the current contents of the
node pair index map as follows. For each entry of the map, we identify the
actual corresponding AABB tree node by accessing the current contents
of the node pair index map at the index specified by the current node
index from the temporary buffer. Then we store the index of its first or
second child, depending on the current child index from the temporary
buffer, into the new node pair index map. This step is shown in the lower
right of Fig. 3.

Instead of doing this last step in an additional render pass, it can be
incorporated directly into the fragment programs used for box overlap and
triangle intersection testing, such that the construction of the node pair
index map requires L passes in total.

Note that the multi-pass construction technique described above is
also suited for graphics hardware with dependent texture read limit (like
the current ATI Radeon GPUs). On hardware without such a limit, the
number of passes could be reduced by combining multiple of these passes
into a single one, provided that total number of textures used in such a
pass does not exceed the corresponding hardware limit.

§5. A Hybrid Approach Based on Temporal Coherence

It is clear that for a given object pair it might not be most efficient to start
the hierarchy traversal at the top levels of the two hierarchies. If more than
half of the box pairs of a certain level overlap, then we can save box overlap
tests by starting the traversal at that level. Since the traversal itself incurs
some further computational overhead, it might be more efficient to start
at a certain hierarchy level even for a smaller percentage of overlapping
box pairs. However, to decide which level is most efficient to start with,
we would have to know the number of overlapping box pairs in advance,
what is obviously not possible.

However, in a typical real-time application of collision detection objects
are moving on a smooth path. Therefore, we can use a heuristic based
on temporal coherence: we simply remember for a each object pair the
highest hierarchy level at which more than a certain percentage of box
pairs overlapped. This percentage is obtained using an occlusion query.

Object-Space Interference Detection on Progr. Graphics Hardware 11

+

+

2 3

5

+

3rd 4th2nd1st0th

2 0 2 1

IH

D

M NL

GF

J K

E

+

2 3

+

1st 2nd0th1st0th

2 0 2 1

IH

D

M NL

GF

J K

E

1st 0th0th1st0th

2 0 2 1

IH

D

M NL

GF

J K

E

IH M NLJ K

Fig. 3. Construction of the node pair index map in multiple passes. The
values on gray background are the overlap counts that are compared to
the current child indices shown at the top row.

12 A. Greß and G. Zachmann

For the next frame, we start the traversal of the hierarchy at exactly this
level. Based on the number of overlaps we determine on this level now,
we adjust the “entrance” level for the next collision check.

§6. Implementation

We implemented the method described in Section 5 in C++ using OpenGL
on a NVIDIA GeForce FX 5900 GPU.

The AABB tree is stored using 32-bit floating-point textures with rect-
angle texture target (i.e. on texture lookup, the centers of the texels con-
tained in a m×n-sized texture are addressed using (u, v)-coordinates with
u = 1

2 , 1 1
2 , . . . , m − 1

2 and v = 1
2 , 1 1

2 , . . . , m − 1
2).

The multi-level overlap count map and the node pair index map are
both used as temporary buffers during the described algorithm. Therefore,
we require a method that enables these textures to be used as targets
for rendering operations. Probably the most efficient technique allowing
this would be to use the upcoming ARB super buffer extension (which
is currently under specification). However, since this OpenGL extension
is not yet available for our target system, we had to use the p-buffer and
render-to-texture WGL extensions instead.

However, due to driver limitations on the GPU we used, integer p-
buffers cannot have more than 8 bits per component. As this would not be
sufficient in our case, we use 16-bit half-precision floating-point p-buffers
instead. (Their 11-bit mantissa is sufficient to accurately store values up
to 4096, which corresponds to the maximum texture size on the used GPU
and thus to our maximum index value.)

A disadvantage of using p-buffers is that each render target change
causes a GL render context switch which is connected with degraded per-
formance caused by pipeline flushes. Another disadvantage is that we
cannot share occlusion queries between multiple render contexts, which
would be of great benefit for delayed evaluation of the query result. For-
tunately, these disadvantages are expected to disappear when the super
buffer extension will be available. Furthermore, the super buffer extension
will allow to render level 0 of the overlap count map directly to a vertex
array instead of transferring the data from a p-buffer to the vertex array
using the EXT pixel buffer object extension (see Section 4.4).2

§7. Results

We tested the performance of our algorithm using a test scenario similar
to that of [25]: Two identical objects are positioned at a certain distance

2Another alternative to transferring the data to the vertex array would be to access
the texture containing level 0 of the overlap count map directly from the vertex program.
However, this requires graphics hardware that allows to access textures from a vertex
program, which was not available at the time when this work was done.

Object-Space Interference Detection on Progr. Graphics Hardware 13

from each other. The distance is computed between the centers of the
bounding boxes of the two objects; objects are scaled uniformly so they
fit into a cube of size 23. One of the two objects is rotated around a
fixed axis by a fixed number of small steps. In each step, the two objects
are checked for collision, and the average collision detection time for a
complete revolution at that distance is computed. Then the process is
repeated with a slightly decreased distance of the two objects.

This test was performed on a set of CAD objects with varying com-
plexities. To compare the performance of GPU and CPU based collision
detection methods, we also implemented the AABB tree traversal ap-
proach on the CPU using an identical traversal scheme and ran the same
tests on that implementation. Fig. 4 shows the results.

Note, that the timings include the determination of all intersecting
triangle pairs as well as the read-back of its indices from graphics memory
in case of the GPU implementation.

When comparing the performance of the individual steps of the algo-
rithm between its GPU and CPU implementations, it turns out that in
the GPU implementation the box overlap and triangle intersection tests
perform up to four times faster especially at the lower hierarchy levels.
However, this speed-up is reduced by the overhead of the node pair index
map generation, which is larger in the GPU implementation. Overall, in
general our current GPU implementation is slightly faster than the CPU
implementation.

We also made some tests with a very early super buffer beta imple-
mentation on an ATI Radeon GPU, where we used the super buffer for
rendering to our temporary textures as well as for directly rendering into
the vertex array. However, due to some issues with this beta implemen-
tation, we cannot provide reliable results so far. But as soon as they
will be resolved, we expect that the overhead of the node pair index map
generation can be reduced by the use of super buffers.

§8. Conclusion and Future Work

We presented a method for interference detection using programmable
graphics hardware. Unlike previous GPU-based approaches, there are no
requirements on shape, topology, and connectivity of the polygonal input
models. Furthermore, all calculations are done in object-space rather than
image-space.

Our method is a hierarchical algorithm that borrows ideas from tra-
ditional CPU based collision detection approaches. It simultaneously tra-
verses a pair of bounding volume hierarchies consisting of axis-aligned
bounding boxes. In addition, the method utilizes temporal coherence when
used for collision testing over a period of time.

Although our current implementation can probably be improved by

14 A. Greß and G. Zachmann

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

tim
e

/ s
ec

distance

GPU
CPU

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

tim
e

/ s
ec

distance

GPU
CPU

Fig. 4. The collision response times for the car are shown in the middle,
and those for the door lock at the bottom. The corresponding polygonal
models can be seen in the top row. (Data courtesy of VW and BMW.)

Object-Space Interference Detection on Progr. Graphics Hardware 15

using upcoming hardware and driver features it is still able to compete
with CPU based hierarchical collision detection approaches. This allows
using the CPU idle time (for example while waiting for occlusion query
results) for other tasks. And with the release of future GPUs, our method
is potentially able to outperform the CPU based approaches clearly.

As there is no early termination in case of a determined intersecting
triangle pair, the main target of this method are applications that need to
determine the complete list of intersecting triangles or its number.

There are still possible enhancements and optimization opportunities
we want to investigate in the future:

• One objective of future work is to enhance the algorithm for the use
in complex environments where multiple polygonal models with its
own object-space have to be checked against each other. It might be
worthwhile to check if we can speed-up the collision detection in this
scenario by starting the bounding volume traversal with processing
multiple pairs of AABB trees at once, for example by accessing a
matrix palette from the vertex program for handling the individual
transformation matrixes.

• Our approach could easily be modified to use hierarchies based on
bounding volumes other than AABBs. One future task would be
to evaluate the influence of using different bounding volumes on the
performance of our GPU based approach.

• Recently (after finishing the work on this paper), graphics hard-
ware has become available that has dynamic flow control logic in
the fragment program units and allows to access textures from ver-
tex programs. Therefore, another objective of future work is to
incorporate these features in our approach, for example by accessing
level 0 of the overlap count map directly from a texture rather than
transferring it to a vertex array first. Furthermore, we would like
to explore how much the triangle intersection and AABB overlap
tests can profit from dynamic flow control and if alternative triangle
intersection test methods like [17, 9] are more efficient on this kind
of hardware.

§A. Fragment Program Implementation

SAT lite test in high-level shading language:

void testBoxOverlap (f loat4 centerS , f loat3 extentS ,
f loat4 centerT , f loat3 extentT)

{
f loat3 d i s t ; // d i s t ance between cen t e r s
f loat3 extsum ; // i n t e r v a l r a d i i

16 A. Greß and G. Zachmann

// compute d i f f e r e n c e o f box c en t e r s in S space
f loat3 d i s t I nS = f loat3 (dot (centerT , matC [0]) ,

dot (centerT , matC [1]) ,
dot (centerT , matC [2]))

− centerS . xyz ;

// determine three p o t e n t i a l l y s epa ra t i n g axes
d i s t = d i s t I nS ;
extsum = extentS ;
extsum . x += dot (extentT , matAbsC [0]) ;
extsum . y += dot (extentT , matAbsC [1]) ;
extsum . z += dot (extentT , matAbsC [2]) ;

// d i scard fragment i f any component
// o f ” extsum − abs (d i s t)” < 0
cl ip (extsum − abs (d i s t)) ;

// determine three more p o t e n t i a l l y s epa ra t i n g axes
d i s t . x = dot (d ist InS , matCInv [0]) ;
d i s t . y = dot (d ist InS , matCInv [1]) ;
d i s t . z = dot (d ist InS , matCInv [2]) ;
extsum . x = dot (extentS , matAbsCInv [0]) ;
extsum . y = dot (extentS , matAbsCInv [1]) ;
extsum . z = dot (extentS , matAbsCInv [2]) ;
extsum += extentT ;

// d i scard fragment i f any component
// o f ” extsum − abs (d i s t)” < 0
cl ip (extsum − abs (d i s t)) ;

}

where the uniform parameter matC is the transformation matrix from T ’s
object-space to S’s, matCInv is its inverse, and matAbsC and matAbs-
CInv are the matrixes obtained by taking the absolute value of each entry
of matC and matCInv, respectively.

§B. References

1. Agarwal, P., M. de Berg, J. Gudmundsson, M. Hammar, and
H. Haverkort, Box-trees and r-trees with near-optimal query time,
Discr. Comp. Geom. 28 (2002), 291–312.

2. Agarwal, P., S. Krishnan, N. Mustafa, and S. Venkatasubramanian,
Streaming geometric optimization using graphics hardware, in Proc. of
the 11th European Symposium on Algorithms, 2003, 544–555.

Object-Space Interference Detection on Progr. Graphics Hardware 17

3. Baciu, G. and W. S.-K. Wong, Hardware-assisted self-collision for de-
formable surfaces, in Proc. of the ACM Symposium on Virtual Reality
Software and Technology (VRST), ACM Press, 2002, 129–136.

4. Baciu, G. and W. S.-K. Wong, Image-based techniques in a hybrid col-
lision detector, IEEE Trans. on Visualization and Comput. Graphics 9
(2003), 254–271.

5. Ehmann, S. A. and M. C. Lin, Accurate and fast proximity queries be-
tween polyhedra using convex surface decomposition, Comput. Graph-
ics Forum 20 (2001), 500–510.

6. Gottschalk, S., Collision queries using oriented bounding boxes, PhD
thesis, University of North Carolina at Chapel Hill, 2000.

7. Gottschalk, S., M. Lin, and D. Manocha, OBB-Tree: A hierarchical
structure for rapid interference detection, in SIGGRAPH 96 Conference
Proceedings, H. Rushmeier (ed.), Addison Wesley, 1996, 171–180.

8. Govindaraju, N., S. Redon, M. C. Lin, and D. Manocha, CULLIDE:
Interactive collision detection between complex models in large envi-
ronments using graphics hardware, in Proc. of Graphics Hardware, San
Diego, California, 2003, 25–32.

9. Held, M., ERIT: A collection of efficient and reliable intersection tests,
Journal of Graphics Tools 2 (1997), 25–44.

10. Hubbard, P. M., Approximating polyhedra with spheres for time-
critical collision detection, ACM Trans. on Graphics 15 (1996), 179–
210.

11. Kapasi, U. J., S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Matt-
son, and J. D. Owens, Programmable stream processors, IEEE Com-
put. (2003), 54–61.

12. Klosowski, J. T., M. Held, J. S. B. Mitchell, H. Sowrizal, and K. Zikan,
Efficient collision detection using bounding volume hierarchies of k-
DOPs, IEEE Trans. on Visualization and Comput. Graphics 4 (1998),
21–36.

13. Knott, D. and D. K. Pai, CInDeR: Collision and interference detection
in real-time using graphics hardware, in Proc. of Graphics Interface,
Halifax, Nova Scotia, Canada, 2003, 73–80.

14. Larsson, T. and T. Akenine-Möller, Collision detection for continuously
deforming bodies, in Proc. of Eurographics, 2001, 325–333.

15. Lin, M. C. and D. Manocha, Interactive geometric computations using
graphics hardware, in SIGGRAPH 2002 Course Notes, No. 31, 2002.

16. Lombardo, J.-C., M.-P. Cani, and F. Neyret, Real-time collision de-
tection for virtual surgery, in Proc. of Computer Animation, Geneva,
Switzerland, 1999, 82–90.

18 A. Greß and G. Zachmann

17. Möller, T., A fast triangle-triangle intersection test, Journal of Graphics
Tools 2 (1997), 25–30.

18. Myszkowski, K., O. G. Okunev, and T. L. Kunii, Fast collision detec-
tion between complex solids using rasterizing graphics hardware, Visual
Comput. 11 (1995), 497–512.

19. Palmer, I. J. and R. L. Grimsdale, Collision detection for animation
using sphere-trees, Comput. Graphics Forum 14 (1995), 105–116.

20. Shinya, M. and M.-C. Forgue, Interference detection through raster-
ization, Journal of Visualization and Comput. Animation 2 (1991),
132–134.

21. van den Bergen, G., Efficient collision detection of complex deformable
models using AABB trees, Journal of Graphics Tools 2 (1997), 1–14.

22. Zachmann, G., Rapid collision detection by dynamically aligned DOP-
trees, in Proc. of IEEE Virtual Reality Annual International Sympo-
sium (VRAIS), Atlanta, Georgia, 1998, 90–97.

23. Zachmann, G., Minimal hierarchical collision detection, in Proc. of
ACM Symposium on Virtual Reality Software and Technology (VRST),
Hong Kong, China, 2002, 121–128.

24. Zachmann, G. and G. Knittel, An architecture for hierarchical collision
detection, in Journal of WSCG ’2003, University of West Bohemia,
Plzen, Czech Republic, 2003, 149–156.

25. Zachmann, G. and G. Knittel, High-performance collision detection
hardware, Tech. Rep. CG-2003-3, University of Bonn, Bonn, Germany,
2003.

Alexander Greß and Gabriel Zachmann
University of Bonn
Bonn, Germany
{gress|zach}@cs.uni-bonn.de
http://cg.cs.uni-bonn.de

