Motivation

- Collision Detection is ubiquitous in VR and many physically-based simulation apps
- Obviously: worst-case running time is in $O(n^2)$
- But, we all have seen real-world running time behavior like this:
Goal

- Gain (theoretical) understanding of experienced running times
- Utilize to optimize collision detection
- Better heuristics for probabilistic collision detection

Related Work

- Distance of convex polytopes [Dobkin & Kirkpatrick, 1985]:
 \(O(\log^2 n) \), \(n \) = number of faces
- Distance of convex polytopes [Lin & Canny, 1991]:
 \(O(\sqrt{n}) \), worst-case
 \(O(1) \), expected time, bounded rotation
- General polytopes, fixed trajectory [Schömer & Thiel, 1995]:
 \(O(n^{\frac{5}{3} + \varepsilon}) \)
- All intersections of \(n \) convex polytopes [Suri et al., 1998]:
 \(O((n + k) \log^2 n) \), \(k \) = \# intersecting pairs
Hierarchical CD

- Hierarchical CD is most common technique for rigid bodies
- BV hierarchy (BVH) is constructed in preprocessing:

 ![Diagram of BVH hierarchy]

- Simultaneous traversal of two BVHs = single traversal of one BV test tree (BVTT)

Overview

- Lots of different BVs have been proposed, e.g.:

 - Cylinder [Weghorst et al., 1985]
 - Box, AABB (R*-trees) [Beckmann, Kriegel, et al., 1990]
 - Sphere [Hubbard, 1996]
 - Prism [Barequet, et al., 1996]
 - Spherical shell [Krishnan, et al., 1997]
 - Cylinder [Weghorst et al., 1985]
 - Box, AABB (R*-trees) [Beckmann, Kriegel, et al., 1990]
 - Sphere [Hubbard, 1996]
 - Prism [Barequet, et al., 1996]
 - Spherical shell [Krishnan, et al., 1997]
 - Cylinder [Weghorst et al., 1985]
 - Box, AABB (R*-trees) [Beckmann, Kriegel, et al., 1990]
 - Sphere [Hubbard, 1996]
 - Prism [Barequet, et al., 1996]
 - Spherical shell [Krishnan, et al., 1997]

- In the following: use AABBs
The Cost formula \cite{Weghorst et al. 1984; Gottschalk et al. 1996}:

$$T = N_V C_V + N_P C_P + N_u C_u + C_i$$

- \(N_V, C_V\) = num., costs of BV overlap test, resp.
- \(N_P, C_P\) = num., costs of primitive intersection test
- \(N_u, C_u\) = num., costs of BV update, resp.
- \(C_i\) = initialization costs

- Obviously: \(T(n) \sim N_V(n)\)

- Goal: determine \(E[N_V(n)] = \tilde{N}_V(n)\)
 \(=\) number of nodes in the BVTT that are visited on average

The Model to Determine \(\tilde{N}_V(n)\)

- Assumption: use AABBS
- Estimate probability of BV overlap on some level \(l\)
- Yields product of conditional probabilities
- Estimate conditional probability by geometric reasoning
Terminology

- \(P[A^{(l)} \cap B^{(l)} \neq \emptyset] \) = probability that two AABBs on level \(l \) overlap each other
- In the following, just write \(P[A^{(l)} \cap B^{(l)}] \)
- X-Overlap \(o_x := \) length of overlap of slabs of AABBs

The Chain of Probabilities

- Obviously, the expected total number of BV overlaps is
 \[
 \hat{N}_v(n) = \sum_{i=1}^{d} \hat{N}_v^{(i)} = \sum_{i=1}^{d} 4^i P[A^{(l)} \cap B^{(l)}] \quad (1)
 \]
- Recall that \(X \subseteq Y \Rightarrow P[X] = P[Y] \cdot P[X \mid Y] \)
- Turn \(P[A^{(l)} \cap B^{(l)}] \) into conditional probability that "defers" the probability up one level in the hierarchy:
 \[
 P[A^{(l)} \cap B^{(l)}] = P[A^{(l)} \cap B^{(l)} \mid A^{(l-1)} \cap B^{(l-1)} \wedge o_x^{(l)} > 0] \\
 \cdot P[A^{(l-1)} \cap B^{(l-1)} \wedge o_x^{(l)} > 0]
 \]
• Resolve further:

\[P[A^{(i)} \cap B^{(i)}] = P[A^{(i)} \cap B^{(i)} \mid A^{(i-1)} \cap B^{(i-1)} \land o_x^{(i)} > 0] \]
\[\cdot P[A^{(i-1)} \cap B^{(i-1)}] \]
\[\cdot P[o_x^{(i)} > 0 \mid A^{(i-1)} \cap B^{(i-1)}] \]

• "Unroll" recurrence:

\[P[A^{(i)} \cap B^{(i)}] = \prod_{i=1}^{j} P[A^{(i)} \cap B^{(i)} \mid A^{(i-1)} \cap B^{(i-1)} \land o_x^{(i)} > 0] \cdot \prod_{i=1}^{j} P[o_x^{(i)} > 0 \mid A^{(i-1)} \cap B^{(i-1)}] \]

The Geometric Probability

• Goal: estimate \(P[A^{(i)} \cap B^{(i)} \mid A^{(i-1)} \cap B^{(i-1)} \land o_x^{(i)} > 0] \)

• Terminology:
 - Denote parent boxes by \(A, B \)
 - Denote extents by \(a_x, a_y, b_x, b_y \)
 - Denote child boxes by \(A_1, A_2, B_1, B_2 \)
 - Denote child box extents by \(a'_{x}, a'_{y}, \ldots \)

• Re-stated goal: estimate

\[o_{ij} := P[A_i \cap B_j \mid A \cap B \land o_x > 0] \]
Assumptions for now:

- **BV diminishing factor**: \(a'_x = \alpha_x a_x, \quad a'_y = \alpha_y a_y, \) etc.
- BVs on same scale, i.e.: \(b_x \approx a_x, \quad b'_x \approx a'_x, \) etc.

Look at \(p_{11} \) first:

- Preconditions:
 - \(x \)-overlap \(\alpha_x > 0 \), and
 - parent boxes overlap

- Probability:
 \[
 p_{11} = \frac{\text{area}(L')}{\text{area}(L)} = \ldots = \alpha y \alpha z.
 \]

Good news:

\[
 p_{22} = p_{12} = p_{21} = \alpha y \alpha z
\]

By analogous reasoning, we get:

\[
 P[\alpha_x^{(l)} > 0 \mid A^{(l-1)} \cap B^{(l-1)}] \approx \alpha_x
\]
Plug all this into Equation (1):

\[\overline{N}_v(n) \leq \sum_{i=1}^{d} (4\alpha_x\alpha_y\alpha_z)^i \in \mathcal{O}(n^{\log(4\alpha_x\alpha_y\alpha_z)}) \]

Effect of diminishing factor \(\alpha \):

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(T(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>(\mathcal{O}(\log n))</td>
</tr>
<tr>
<td>(\approx 0.35)</td>
<td>(\mathcal{O}(\sqrt{n}))</td>
</tr>
<tr>
<td>3/4</td>
<td>(\mathcal{O}(n^{1.58}))</td>
</tr>
</tbody>
</table>

Experiments

- Experiment:
 - Construct simple AABB over CAD objects
 - Count number of nodes in BVTT visited by simultaneous traversal

![Diagram showing root BV overlap vs. n]
- Experiments utilizing artificial BVHs:
 - Controlled "layout" and diminishing factor α
 - Experimental versus theoretical estimates:

- Interdependence between α and root BV overlap δ:

 $\alpha = 0.6$
 $\alpha = 0.7$
Application

- Time-critical collision detection
- Probabilistic collision detection:
 - Store average α at root of every sub-tree
 - Estimate # BV overlap tests using our model
 - Prioritize traversal based on this number

Conclusions

- Average-case analysis of simultaneous traversal of AABB trees
- New model to estimate the average running time
- Experiments to support correctness of our model
Future Work

- Improve model:
 - variable BV diminishing factor (probably easy)
 - integrate root BV overlap into model
- Consider other BV types (possibly hard)
- Utilize for probabilistic collision detection
- Derive method for average-case analysis of running time for concrete BVHs

Acknowledgements

- Jan Klein, MeVis, Bremen, Germany (formerly PhD student with Paderborn University, Germany)
- René Weller, PhD student, TU Clausthal
- DFG grant ZA 292/1-1 ("Aktionsplan Informatik")
- Anonymous reviewer