
Space-Efficient FPGA-Accelerated Collision Detection for Virtual Prototyping

Andreas Raabe, Stefan Hochgürtel,
Joachim Anlauf

Technical Computer Science
Bonn University, Germany

{raabe, hochguer,anlauf}@cs.uni-bonn.de

Gabriel Zachmann
Computer Graphics

Clausthal University, Germany
zach@in.tu-clausthal.de

Abstract

We present a space-efficient, FPGA-optimized architec-
ture to detect collisions among virtual objects. The design
consists of two main modules, one for traversing a hierar-
chical acceleration data structure, and one for intersecting
triangles. This paper focuses on the former.

The design is based on a novel algorithm for testing dis-
cretely oriented polytopes for overlap in 3D space. In ad-
dition, we derive a new overlap test algorithm that can be
implemented using fixed-point arithmetic without produc-
ing false negatives and with bounded error.

SystemC simulation results on different levels of abstrac-
tion show that real-time collision detection of complex ob-
jects at rates required by force-feedback and physically-
based simulations can be obtained. In addition, synthesis
results show that the design can still be fitted into a six-
million gates FPGA. Furthermore, we compare our FPGA-
based design with a fully parallelized ASIC-targeted archi-
tecture and a software implementation.

1. Introduction

Detecting collisions between a pair of graphical objects is
a fundamental task in many areas such as physically-based
simulation, automatic path finding, or tolerance checking.
Applications are in games, animation systems, and virtual
reality, e.g., virtual assembly simulation, or medical train-
ing and planning systems.

In most of the applications in these areas, the goal is
to avoid collisions, or to enable real-time physically-based
simulation. Most approaches today are reactive, i.e., they
first place objects at a new trial position, check for colli-
sions, and then compute new forces or positions, based on
physical laws, so as to remove any collisions.

This approach demands very efficient collision detection,
because it must perform many collision checks per simula-
tion cycle. An emerging application area is the mobile de-
vices market (smart phones, portable games devices). Here,
the challenges, besides speed, are size and energy consump-
tion. Another particularly demanding application is force-
feedback, where updates of about 1000Hz must be done in
order to achieve stable force computations.

Since collision detection is such a fundamental yet chal-
lenging task, it is highly desirable to have hardware acceler-

ation available just like 3D graphics accelerators. The bene-
fit is two-fold: a) the system can process objects with higher
polygon counts, and b) the system’s CPU can be freed from
computing collisions.

In this paper, we present a novel, efficient architecture
for hierarchical collision detection of two rigid objects. It
is based on a novel algorithm for testing a pair of bound-
ing volumes for overlap, which can even be implemented
on fixed-point arithmetic. We present an implementation on
FPGA hardware along with simulation results concerning
its speed and synthesis results concerning its size. In addi-
tion, we compare these results with an earlier, parallelized
ASIC-targeted architecture, and with a software implemen-
tation.

2. Related Work

Considerable work has been done on hierarchical collision
detection in software [3, 4, 7, 11, 12]. Some of the bounding
volumes (BVs) utilized are spheres, axis-aligned bounding
boxes (AABB), oriented bounding boxes (OBB), and dis-
cretely oriented polytopes (DOP).

The first publications of work on dedicated hardware for
collision detection was presented in [13,14]. However, they
presented only a functional simulation, while we present a
RT level implementation along with synthesis results. [10]
presented a design that was targeted on ASICs, and was op-
timized for speed only, and, thus, utilize a total of over 4
million gates and a 756 bits wide bus to a DDR2-RAM.
Recently, a commerical hardware was announced that sup-
posedly can do collision detection, among other things [1].
However, no details have been published, in particular, no
performance results.

Most other hardware-related research has tried to uti-
lize existing graphics accelerator boards (GPU) [2,5,6,8,9].
While earlier approaches, such as [9], can basically handle
only convex objects, later algorithms, such as [2, 8], have
extended these to more general cases such as unions of con-
vex objects or closed objects. The general class of “poly-
gon soups” can be handled by [5], but they use a hybrid ap-
proach where the graphics hardware only identifies poten-
tially colliding sets.

All of the approaches using graphics hardware have the
disadvantage that they either compete with the rendering
process for the same hardware resource, or an additional
graphics board must be spent for collision detection. The

1

former slows down the overall frame rate considerably,
while the latter would be a tremendous waste, since most
of the resources of the hardware would not be utilized at
all. Furthermore, most of these approaches work in image
space, which reduces precision significantly.

3. The Algorithm

In this section, we will first quickly recap the algorithm
of hierarchical collision detection, and of a special kind
of bounding volumes, the k-DOP. Then, we will derive a
new and efficient way to test DOPs for overlap, which is
the heart of hierarchical collision detection. Finally, we will
show how this can be done in fixed-point arithmetic such
that no false negatives occur.1

3.1. Basics

3.1.1. Hierarchical Collision Detection and Bounding
Volumes. In this paper we use hierarchical collision de-
tection. This avoids checking every triangle of an object O
for intersection with all triangles of object Q. The accelera-
tion data structure is a so-called bounding volume hierarchy
(BVH), where each leave corresponds to one triangle and
inner nodes correspond to groups of triangles. Each node
has a bounding volume (BV) attached that bounds all trian-
gles associated with it. In order to achieve a feasible hard-
ware design, we use a binary tree here, but n-ary trees could
be considered as well.

If two objects are checked for intersection, both hierar-
chies are traversed simultaneously. If their BVs intersect,
the next level of BVs is checked. Since two objects will usu-
ally intersect only in a very small number of primitives, this
yields a significant speed-up in the average case.

In this work, we use k-DOPs as BVs because they were
proven to yield very fast collision queries by extensive
benchmarking in software [12], and performed very well in
our hardware studies [10], too.

3.1.2. k-DOPs. All k-DOPs are defined over a fixed set
{D1, . . . ,Dk/2,Dk/2+1, . . . ,Dk} of vectors in R3. Each vec-
tor Di is antiparallel to Di+k/2.

An individual k-DOP is defined by k distances di, one
along each vector Di, thus defining a half-space. These DOP
coefficients (d1, . . . ,dk) are the distances of the associated
halfspaces to the origin.2 The k/2 pairs of DOP coefficients
(di,di+k/2) form a so-called slab [12].

The intersection of these slabs forms the BV:

DOP =
⋂

i=1,...,k

Hi, Hi : Dix−di ≤ 0 (1)

1 Here, false negatives are false reports of non-collision even though a colli-
sion does actually happening. Such false negatives would be fatal in most
applications of collision detection.

2 Note that the origin is not necessarily the center of the DOP nor even con-
tained in it.

origin A
origin B

V
max

B

V
min

A

bmin

bmax

amax
amin

p

a
j0

a
j1

b
j0

L i

diff

+k/2

b
j
1
+k/2

Figure 1. Two DOPs are projected onto test axis Li. Since
their images do not intersect Li is a separating axis.

The orientation matrix D, consisting of all the vectors Di, is
fixed and equal for all objects. This yields a very memory-
efficient description for every k-DOP: only the k coefficients
di need to be stored.

3.2. Testing DOPs For Intersection

In this subsection, we will first describe a well-known over-
lap test for convex objects. Then, we will transform this into
a much more efficient test for DOPs in DOP-trees. Finally,
we will transform this into an even more efficient algorithm
utilizing fixed-point arithmetic.

3.2.1. Separating Axis Test (SAT). In this paper we use
the so called Separating Axis Test (SAT) [4, 11] to check
DOP-pairs for intersection, yielding a highly space-efficient
collision test hardware. To our knowledge, we are the first
to apply this test to DOPs and to implement it in hardware.

[4] have shown that two convex polytopes are disjoint if
and only if there exists a separating axis orthogonal to a face
of either polytope or orthogonal to an edge from each poly-
tope (Separating Axis Theorem). Hence for two k-DOPs
there are N = (k/2) + (k/2) + (3k− 6)2 potentially sepa-
rating axes. If only a subset of these axes are tested, false
positives might occur, i.e., the DOPs are disjoint while the
(incomplete) test yields an intersection. The complete SAT
is always correct.

To perform the test, both DOPs must be projected onto
each of the candidate separating axes. For each axis, a pair
of intervals on that axis results. If one of these pairs is dis-
joint, then the DOPs must be disjoint (see Fig.1).

Since with DOPs the set of vectors {D1, . . . ,Dk} is fixed,
we can exploit that all possible face orientations of the
DOPs within a DOP-tree are the same.

Assume object O is placed relatively to object Q by
rotation M and translation T. Let DT(O) and DT(Q) de-
note the DOP-trees of these objects. As described in Sec-
tion 3.1.2, let (A1, . . . ,Ak) be the orientations of the DOPs’
faces shared by all DOPs in DT(O) after applying rota-
tion M. Analogously, let (a1, . . . ,ak) denote the DOP co-

2

efficients for DOPs in DT(O), let (B1, . . . ,Bk) denote the
vectors shared by all DOPs in DT(Q), and let (b1, . . . ,bk)
denote the corresponding DOP coefficients.

3.2.2. Efficient SAT. Note that everything independent
of (a1, . . . ,ak) and (b1, . . . ,bk) is constant throughout the
whole DOP-trees. Hence it can be precalculated at startup
to initialize the algorithm (and, later-on, the hardware). Pre-
computing as much as possible significantly reduces the re-
sulting hardware costs. Since this is done only once per pair
of DOP-trees, it is not time-critical.

First, we can precompute the n test axes Li. All of the
following is done for each Li, so for the sake of readability
we omit the index i from now on.

Second, the projection p = L ·T is precomputed.
Third, for each L a DOP has two vertices vmin

A and vmax
A

whose projections onto L have maximum distance. Each of
those vertices is formed by the intersection of three faces of
the DOP. The correspondences (jA,0, jA,1, jA,2) of the orien-
tations whose faces meet in vmin

A are calculated.
Fourth, and most importantly, in the actual projection

amin = vmin
A ·L

=
(
a jA,0 a jA,1 a jA,2

)
·
(
A jA,0 A jA,1 A jA,2

)−1 ·L

we can precompute the last dot product

PA :=
(
A jA,0 A jA,1 A jA,2

)−1 ·L (2)

PB can be precomputed analogously. The mapping vec-
tors for vmax

A and vmax
B are −PA and −PB respectively. This

exploits that k/2 pairs of DOP orientations are anti-parallel.

3.2.3. Intersection Testing. Using these precomputa-
tions, we can project onto the test axes very efficiently:

amin =
(
a jA,0 a jA,1 a jA,2

)
·PA

amax =
(
a jA,0+k/2 a jA,1+k/2 a jA,2+k/2

)
· (−PA)

(3)

This is done for bmin and bmax analogously.
Now the condition for separation is straight-forward. Let

diff1 = (amin + p)−bmax
diff2 = bmin − (amax + p)

(4)

diff = max(diff1,diff2) (5)

then the intervals [amin,amax] and [bmin,bmax] are disjoint iff
diff > 0. And from the Separating Axis Theorem we know
that

(diff > 0)⇒ separation. (6)

Eqs. (3)–(6) show the computations that need to be done for
each DOP test (and hence cannot be precomputed).

origin A

a
j1

a'
j1

a
j0

a'
j0

a'max

a'min

e
rro

r c
a

u
se

d

b
y ro

u
n
d

in
g

 PA

projection by P

projection by P'

fix
e
d

-p
o
in

t
g

rid

fixed-point DOP
original DOP

Figure 2. A floating-point DOP and its enclosing fixed-point
equivalent. Both rounding the DOP to fixed-point numbers
and projecting it with P′ instead of P increases the DOP’s im-
age. When checked for intersection false positives can oc-
cur.

3.2.4. Fixed-Point Arithmetic. Floating-point arithmetic
is very expensive with respect to size, especially in an
FPGA implementation. Hence it is desirable to do fixed-
point calculations.

Unfortunately, simply rounding the DOP coefficients to
fixed-point numbers would result in false negatives, because
the intervals on the test axes could become smaller than the
projection of the enclosed object. False negatives are inac-
ceptable, because we might miss collisions. Naı̈ve rounding
of the mapping vectors PA and PB would lead to even more
false negatives. Hence we need to round in a manner such
that each fixed-point DOP contains its floating-point DOP
(see Fig. 2).

First, it is necessary to cope with the bigger scale of
floating-point numbers compared with fixed-point numbers
by dividing all DOP coefficients of all DOPs by the largest
absolute value of the DOP coefficients in the scenario. This
way, 16 bit accuracy still allows for having DOPs the size
of a skyscraper and of a 6mm screw. 36 bit even allow for
DOPs the size of the sun and of a screw.

Let the rounding of the DOP coefficients to b bits to-
wards +∞ be denoted by a′i = daie. Clearly, the rounded
(i.e., fixed-point) DOP contains the original one. Then, εi =
a′i −ai is the resulting rounding error, with 0 ≤ εi < 2−b.

By ensuring that the dihedral angle between all pairs of
neighboring faces of a DOP is larger than π/2, all PA,i are
in the interval [−1,0]. 3 Rounding PA,i towards −∞ to c bit
accuracy results in a rounding error 0 ≤ ηi = PA,i −P′

A,i <

2−c.

3 This is not really a hard restriction since every well constructed DOP does
not have acute angles to improve tightness of fit.

3

 0

 5

 10

 15

 20

 25

 30

 8 12 16 20 24 28 32 36 40 44

tim
e

(m
se

c)

fixed point precision (bits)

32bit float
fixed point

Figure 3. Speed of fixed-point arithmetic for different bit
widths. Beyond 18 bits a second, and beyond 40 bits a third
memory burst is needed.

By simply truncating PA,i, the resulting image would
become too small in case of negative DOP coefficients,
whereas always rounding up would create the same prob-
lem with positive coefficients. Fortunately, we can solve this
during calculation simply by adding 2−c to bPA,ic before
multiplication with negative DOP coefficients.

Let a′ =(a′jA,0
a′jA,1

a′jA,2
), a′k =(a′jA,0+k/2a′jA,1+k/2a′jA,2+k/2),

and let sn(x) be the sum of all xi < 0.
Then, correct rounding of the images amounts to:

a′min = P′
A ·a′ +2−c sn(a′)

a′max =−(P′
A ·a′k +2−c sn(a′k))

(7)

Finally, when computing diff1, we can simply truncate p
to z bits (p′ = bpc). This can create only false positives, be-
cause a smaller p′ only decreases the apparent distance be-
tween the two DOP images. For diff2 we need to round p
up to dpe, which, again, can be done efficiently by adding
2−z to bpc.

Overall, calculating the distances of the fixed-point DOP
images amounts to

diff′1 = (a′min + p′)−b′max

diff′2 = b′min − (a′max +(p′ +2−z))
(8)

diff′ = max(diff′1,diff′2) (9)

Now the condition for separation can be given analo-
gously to Eq. 6:

((diff′1 > 0) or (diff′2 > 0))⇒ separation. (10)

It can be shown by simple arithmetic calculus that

(diff′−diff)≤ (
√

3 ·2−b+1 +6 ·2−c +2−z) (11)

Simulations done early in the design process used the tar-
get hardware described in Section 5 and showed that fixed-
point accuracy influences calculation time (Fig. 3). Below

18 bits accuracy, an increasing number of false positives oc-
curs and decreases calculation speed. Above 18 bits, a sec-
ond memory burst is needed to fetch DOP coefficients from
DDR-RAM.

3.3. Triangle Intersection

Once the BVH traversal reaches two leaves, we need to test
the enclosed triangles for intersection. Here, we utilize the
same algorithm that was already proposed in [13] and im-
plemented in VHDL in [10]. It transforms both triangles so
that one of them becomes the “unit” triangle. That way, the
checks to be performed on the other triangle become very
simple and standardized. In this paper the triangle intersec-
tion test module remains unchanged, but it is still subject to
further investigation.

4. The Architecture

4.1. The Pipeline

Combining Eqs. (7)–(10) results in the overlap condition

(P′
A ·a′ +2−c sn(a′)+P′

B ·b′k +2−c sn(b′k)+ p′) > 0
or

(P′
B ·b′ +2−c sn(b′)+P′

A ·a′k +2−c sn(a′k)+ p′) > 0
⇒ separation

(12)

Note that using two’s complement numbers −(p′ + 2−z)
can be calculated efficiently by simple bitwise negation
p′ =−(p′ +2−z).

Eq. (12) is divided into seven stages to enable pipelining.

Selection: Stage one selects the 12 out of k DOP coeffi-
cients defining the outer (maximal) vertices for a given can-
didate separating axis based on the correspondences (jA, jB).

Scalar Products and Fixed-Point Correction: Stages two
to five implement the calculation of the scalar products and
the fixed-point correction term. So, DOP coefficients have
to be multiplied by P′-vector entries and summed up by an
adder tree. Additionally, p′ (p′ in case of diff′2) is added.
Concurrently, negative DOP coefficients are selected and
accumulated. Stage six adds the results of both summations.
Multiplying by 2−c is done implicitly by shifting.

Result: Testing max(diff′1,diff′2) > 0 is done by negating
the conjunction of the sign bits.

4.2. Overall Design

The overall architecture is shown in Fig. 4. The cal-
culation is initialized by the host system by sending
(P′

A,P′
B, p′, jA, jB) and the addresses of the DOP-trees

to the hardware. A controller keeps track of DOP over-
lap tests that must still be executed and requests the needed

4

P
ip

e
lin

e

Controller

B
V

-S
ta

c
k

P
ip

e
D

a
ta

(a
d

d
re

s
s
e

s
,

la
s
t)

BV-
control

GetData

a b

Host FPGA

Axis-
control

Tria
n
g

le
-U

n
it

bnewanew

DDR-RAM

A
P
I

control

Iast

Iast

addresses

addresses
result

(separation
on axis)

BV-para-
meters

test axis

Triangle-data

test
axes

Triangle-
intersections

control

Figure 4. The complete intersection test hardware.

DOP coefficients and triangle data. The module ”Get-
Data” reads them concurrently from memory to the cur-
rent calculation. As soon as the parameters are loaded
and the last calculation is finished, it feeds them into the
pipeline (or the triangle-unit respectively). The pipeline re-
ceives not only the DOP coefficients but (from the con-
troller) the data for the next axis test. For each DOP pair,
n axes are tested. A shift register (”PipeData”) holds addi-
tional bookkeeping information. For every pipeline stage
it contains the indices of the processed DOPs and whether
the contained calculation is the last axis test to be ex-
ecuted for the current DOP pair. If this last axis test
leaves the pipeline and none of the test axes is a sepa-
rating axis the controller schedules the child DOPs to be
tested. If a separating axis is found, the remaining calcu-
lations belonging to the same DOP-pair are obsolete. No
new axis tests are initiated and the results of the calcula-
tions that are still in the pipeline will be ignored; no new
DOP tests are scheduled.

[10] showed that scheduling DOP tests in a stack is far
superior to queue control with regards to memory usage.
So, as soon as the stack, pipeline, and the GetData mod-
ule are empty, and no intersecting triangles were found, the
objects do not intersect and this is reported to the host ap-
plication. On the other hand, every intersecting pair of tri-
angles is reported to the host immediately.

4.3. Control

As mentioned in Section 3.2.1, it is not necessary to test all
axes Li whether they are separating axes. Even more, [11]
has shown that it is not efficient to test all axes for OBBs
since the probability that the BVs are disjoint decreases
rapidly with every non-separating test axis found so far.

On the other hand, we want to eliminate disjoint
branches of the DOP trees as early as possible to re-
duce expensive loading of DOP coefficients. Therefore,

 0

 5

 10

 15

 20

 25

 30

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

tim
e

(m
se

c)

number of test axes (n)
Figure 5. For a fixed k = 24 our design performs best using
n = 24 on the target architecture.

we determined which n ≤ N gives the best trade-off be-
tween axis-testing and parameter-loading. As Fig. 5 indi-
cates, n = 24 yields the optimum performance for 24-DOPs
and the given memory architecture. 24 axis-tests suf-
fice to test all candidate separating axes generated from
the 12 face-orientations of each DOP. Although this ex-
ceeds the time to load a complete set of DOP-coefficients
(only 20 clock-cycles) by 4 cycles, testing 24 axes seems to
reduce the number of false positives enough to yield a per-
formance gain.

5. Results

The target architecture is a Xilinx Virtex II (XC 2V6000,
speed grade -4) on an Alpha Data ADM-XRC-II board with
256 MB DDR-RAM at 100MHz. The FPGA features 144
18-bit multipliers and 6 million gate equivalents. CoCen-
tric from Synopsys was used to compile SystemC RTL to
VHDL code. Synthesis, Place, Route and Mapping were
done with Xilinx ISE 6.3.

5.1. Synthesis Results

Although 18-bit accuracy performs best on our test data
(Fig. 3), we decided to implement the pipeline for 35
bits fixed-point 24-DOPs to tolerate bigger differences in
DOP size (see Section 3.2.4). Since the target architecture
features 18-bit multipliers only, this results in two extra
pipeline stages to implement 35-bit pipelined multipliers.

Overall, a total of 7278 out of 33792 slices
(21% = 1,260,000 million gate equivalents) is uti-
lized by the pipeline. Maximum clock frequency is
111.117MHz.

5.2. Benchmarking

All results presented here were obtained with two identical
objects (a car headlight) with 5947 triangles ([10]). They
are placed at different distances from each other and with

5

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

tim
e

(m
se

c)

distance

software
FPGA-accelerated

Figure 6. The presented architecture is approximately 4 times
faster than a state-of-the-art software intersection test.

different rotations. For each constellation, the time to de-
tect all intersecting triangles is determined. Fig. 6 shows
the comparison of our new architecture with a state-of-the-
art software intersection test running on a 1 GHz Pentium
III with 512 MByte main memory. The presented accelera-
tion hardware yields a speed up of about factor 4.

6. Conclusion and Future Work

We have presented a novel algorithm for hierarchical colli-
sion detection of pairs of virtual objects. We have also pre-
sented a highly space-efficient, FPGA-optimized architec-
ture implementing this algorithm on an FPGA using fixed-
point arithmetic. The fixed-point calculations do not pro-
duce any false negatives, and we have given bounds on the
deviations from floating-point arithmetic.

Simulation results for collision queries using this archi-
tecture proved that a speed-up of 4 compared to state-of-
the-art software intersection tests on a standard CPU can
be obtained. Taking earlier ASIC-targeted results into ac-
count [10], we conclude that an ASIC implementation of
our novel algorithm and architecture will perform by one
or two orders of magnitude faster than a software imple-
mentation. Synthesis result proved the design to be highly
space-efficient.

In addition, our novel DOP overlap test algorithm lends
itself well to parallelization. Only a slight modification of
the controller is necessary to use multiple pipelines to test
multiple candidate separating axes in parallel. The pipeline
utilizes only 21% of the chip area so multiple instances
are possible. Here, memory bandwidth becomes the limit-
ing factor for speed of collision queries. Possible solutions
could be compression of DOP coefficients and the introduc-
tion of a cache.

Another important topic is fixed-point accuracy. Here, a
lot of different ways to get smaller projections are conceiv-
able.

Collision detection of deformable objects is another im-
portant issue. It remains an open problem, which algorithms
and data structures are best suited for hardware implementa-
tion. Furthermore, we will evaluate different kinds of prim-
itives like quadrangles and NURBS.

References
[1] Ageia. White paper, May 2005.
[2] G. Baciu, W. S.-K. Wong, and H. Sun. RECODE: an image-based

collision detection algorithm. The Journal of Visualization and Com-
puter Animation, 10(4):181–192, October - December 1999. ISSN
1049-8907.

[3] J. Eckstein and E. Schömer. Dynamic collision detection in virtual
reality applications. In WSCG’99, pages 71–78, Plzen, Czech Re-
public, Feb. 1999. University of West Bohemia.

[4] S. Gottschalk, M. Lin, and D. Manocha. OBB-Tree: A hierarchi-
cal structure for rapid interference detection. In H. Rushmeier, edi-
tor, SIGGRAPH 96 Conference Proceedings, pages 171–180. ACM
SIGGRAPH, Addison Wesley, Aug. 1996. held in New Orleans,
Louisiana, 04-09 August 1996.

[5] N. K. Govindaraju, S. Redon, M. C. Lin, and D. Manocha. CUL-
LIDE: Interactive collision detection between complex models in
large environments using graphics hardware. In Graphics Hardware
2003, pages 25–32, July 2003.

[6] A. Gress and G. Zachmann. Object-space interference detection on
programmable graphics hardware. In M. L. Lucian and M. Neamtu,
editors, SIAM Conf. on Geometric Design and Computing, pages
311–328, Seattle, Washington, Nov.13–17 2003. Nashboro Press.

[7] P. M. Hubbard. Collision detection for interactive graphics applica-
tions. IEEE Transactions on Visualization and Computer Graphics,
1(3):218–230, Sept. 1995. ISSN 1077-2626.

[8] D. Knott and D. K. Pai. CInDeR: Collision and interference detec-
tion in real-time using graphics hardware. In Proc. of Graphics In-
terface, Halifax, Nova Scotia,Canada, June11–13 2003.

[9] K. Myszkowski, O. G. Okunev, and T. L. Kunii. Fast collision de-
tection between complex solids using rasterizing graphics hardware.
The Visual Computer, 11(9):497–512, 1995. ISSN 0178-2789.

[10] A. Raabe, B. Bartyzel, J. K. Anlauf, and G. Zachmann. Hardware
accelerated collision detection — an architecture and simulation re-
sults. In Design Automation and Test (DATE), volume 3, pages 130–
135, Munich, Germany, Mar.7–11 2005.

[11] G. J. A. van den Bergen. Collision Detection in Interactive 3D Com-
puter Animation. PhD dissertation, Eindhoven University of Tech-
nology, 1999.

[12] G. Zachmann. Rapid collision detection by dynamically aligned
DOP-trees. In Proc. of IEEE Virtual Reality Annual International
Symposium; VRAIS ’98, pages 90–97, Atlanta, Georgia, Mar. 1998.

[13] G. Zachmann and G. Knittel. An architecture for hierarchical colli-
sion detection. In Journal of WSCG ’2003, pages 149–156, Univer-
sity of West Bohemia, Plzen, Czech Republic, Feb.3–7 2003.

[14] G. Zachmann and G. Knittel. High-performance collision detec-
tion hardware. Technical Report CG-2003-3, University Bonn, In-
formatik II, Bonn, Germany, Aug. 2003.

6

