
EUROGRAPHICS 2004 STAR – State of The Art Report

Collision Detection for Deformable Objects

M. Teschner1, S. Kimmerle2, B. Heidelberger1, G. Zachmann5, L. Raghupathi4, A. Fuhrmann6,

M.-P. Cani4, F. Faure4, N. Magnenat-Thalmann3, W. Strasser2, P. Volino3

1 ETH Zurich, Switzerland 2 WSI/GRIS, Universität Tübingen, Germany 3 Miralab, University of Geneva, Switzerland

4 GRAVIR/IMAG, INRIA Grenoble, France 5 Universität Bonn, Germany 6 Fraunhofer Institut, Darmstadt, Germany

Abstract

Interactive environments for dynamically deforming objects play an important role in surgery simulation and
entertainment technology. These environments require fast deformable models and very efficient collision han-
dling techniques. While collision detection for rigid bodies is well-investigated, collision detection for deformable
objects introduces additional challenging problems. This paper focusses on these aspects and summarizes recent
research in the area of deformable collision detection. Various approaches based on bounding volume hierarchies,
distance fields, and spatial partitioning are discussed. Further, image-space techniques and stochastic methods
are considered. Applications in cloth modeling and surgical simulation are presented.

1. Introduction

For many years, collision detection has been of major inter-
est in computer graphics. Numerous approaches have been
investigated to detect interfering objects in applications such
as robotics, computational biology, games, surgery simula-
tion, and cloth simulation. While many of the original col-
lision detection methods especially address the problem of
rigid bodies, recent approaches have started focusing on de-
formable objects.

Deformable collision detection is an essential compo-
nent in interactive physically-based simulation and anima-
tion which is a rapidly growing research area with an in-
creasing number of interesting applications. Fig. 1 illustrates
one of the major applications for deformable collision de-
tection, namely cloth simulation. In cloth simulation, ap-
proaches to dynamically deforming clothes have to be com-
bined with efficient algorithms that handle self-collisions
of cloth as well as the interaction of cloth with animated
avatars. Such applications require collision detection algo-
rithms that are especially appropriate for deformable and an-
imated objects.

Surgery simulation illustrated in Fig. 2 is a second major
application area for deformable collision detection. In such

Figure 1: In interactive cloth simulation, efficient de-
formable collision detection is a key component.

environments, collisions among deformable organs have to
be detected and resolved. Further, collisions between surgi-
cal tools and deformable tissue have to be processed. In the
case of topological changes due to cutting, self-collisions of
tissue can occur and have to be handled. Since interactive

c© The Eurographics Association 2004.



Teschner et al. / Collision Detection for Deformable Objects

behavior of surgery simulation environments is essential, ef-
ficient algorithms for deformable collision detection are re-
quired.

Figure 2: Interactive environments for surgery simulation
are one of the major application areas for deformable colli-
sion detection.

In addition to cloth and surgery simulation, deformable
collision detection methods are useful in environments with
animated objects. Fig. 3 illustrates a sequence of two ani-
mated objects. In this example, specific collision detection
algorithms for deformable objects can be used to detect in-
terferences of both objects at interactive rates. Further, the
intersection volume of both objects can be computed if their
surfaces are closed.

Figure 3: A sequence of two animated objects: Santa and
Rabbit. Specific deformable collision detection algorithms
can be used to compute the intersection volume of both ob-
jects at interactive rates. The intersection volume is shown
in red.

If compared to collision detection approaches for rigid
bodies, there are various aspects that complicate the prob-
lem for deformable objects.

Collisions and Self-collisions: In order to realistically
simulate interactions between deformable objects, all con-
tact points including those due to self-collisions have to be
considered. This is in contrast to rigid body collision de-
tection, where self-collisions are commonly neglected. De-
pending on the applications, rigid-body approaches can fur-
ther be accelerated by only detecting one contact point.

Pre-processing: Efficient collision detection algorithms
are accelerated by spatial data structures including
bounding-box hierarchies, distance fields, or other ways of

spatial partitioning. Such object representations are com-
monly built in a pre-processing stage, and once they are
created, perform very well for rigid objects. However, in
the case of deforming objects these pre-processed data
structures have to be updated frequently. Therefore, pre-
processed data structures are less efficient for deforming ob-
jects and their practicability has to be examined very care-
fully.

Collision Information: Collision detection algorithms
for deformable objects have to consider, that a realistic col-
lision response requires appropriate information. Therefore,
it is not sufficient to just detect the interference of objects.
Instead, precise information such as penetration depth of ob-
jects is desired.

Performance: In interactive applications, such as surgery
simulation, games, and cloth simulation, the efficiency of
collision detection algorithms for deformable modeling en-
vironments is especially important. Interactivity is a key
characteristics in these applications, resulting in high de-
mands for computing efficiency of collision detection algo-
rithms.

In this paper, we discuss collision detection approaches
that especially address the above-mentioned problems in or-
der to meet the requirements of animation and simulation en-
vironments with dynamically deforming objects. Although
all discussed algorithms are especially appropriate for de-
formable objects, they are not restricted to deformable ob-
jects, but also work with rigid bodies.

The remainder of the paper is organized as follows. Sec. 2
discusses bounding volume hierarchies. Special emphasis is
placed on generating and updating the hierarchy. These as-
pects have to be optimized for deforming objects which re-
quire frequent hierarchy updates. In Sec. 3, stochastic meth-
ods are presented. These approaches are especially appropri-
ate for interactive simulation environments, since they allow
for balancing accuracy and performance. Sec. 4 describes
the usage of distance fields for deformable collision detec-
tion. These approaches inherently provide information on
the penetration depth of colliding objects which is impor-
tant to compute a realistic collision response in physically-
based simulations. Sec. 5 shows, how spatial subdivision can
be employed for deformable collision detection. In these ap-
proaches, efficient data structures for representing 3D grids
are especially important. Sec. 6 discusses recent image-
space approaches. Since these methods commonly process
projections of objects, they can be accelerated with graphics
hardware. Sec. 7 presents applications in cloth modeling and
surgery simulation. Finally, Sec. 8 summarizes advantages
and drawbacks of the presented algorithms for deformable
collision detection.

c© The Eurographics Association 2004.



Teschner et al. / Collision Detection for Deformable Objects

2. Bounding Volume Hierarchies

Bounding-volume hierarchies (BVHs) have proven to be
among the most efficient data structures for collision detec-
tion. Mostly, they have been applied to rigid body collision
detection.

Usually, a BVH is constructed for each object in a pre-
processing step. The idea of BVHs is to partition the set
of object primitives recursively until some leaf criterion is
met. Most often, each leaf contains a single primitive, but
one could as well stop when a node contains less than a
fixed number of primitives. Here, primitives are the entities
which make up the graphical objects, which can be poly-
gons, NURBS patches, etc.

In general, BVHs are defined as follows: Each node in the
tree is associated with a subset of the primitives of the object,
together with a BV that encloses this subset with a smallest
containing instance of some specified class of shapes. See
[ZL03] for a thorough discussion of BVHs in general.

One of the design choices with BV trees is the type of
BV. In the past, a wealth of BV types has been explored,
such as spheres [Hub96, PG95], OBBs [GLM96], DOPs
[KHM∗98, Zac98], Boxtrees [Zac02, AdG∗02], AABBs
[vdB97, LAM01], spherical shells [KGL∗98], and convex
hulls [EL01].

Although a variety of BVs has been proposed (see Fig. 4),
two types deserve special mention: OBBs and k-DOPs.
Note, that AABBs are a special case of k-DOPs with k = 6.
OBBs have the nice property that, under certain assump-
tions, their tightness increases linearly as the number of
polygons decreases [GLM96]. k-DOPs, on the other hand,
can be made to approximate the convex hull arbitrarily by
increasing k. Further, k-DOPs, especially with k = 6, can be
computed very efficiently. This is important, since deform-
ing objects require frequent updates of a hierarchy.

2.1. Hierarchy Traversal

For the collision test of two objects or the self collision test
of one object the BVHs are traversed top-down and pairs of
tree nodes are recursively tested for overlap. If the overlap-
ping nodes are leaves then the enclosed primitives are tested
for intersection. If one node is a leaf while the other one is a
internal node, the leaf node is tested against each of the chil-
dren of the internal node. If, however, both of the nodes are
internal nodes, it is tried to minimize the probability of inter-
section as fast as possible. Therefore, [vdB97] tests the node
with the smaller volume against the children of the node with
the larger volume (Fig. 6).

For two given objects with the BVHs A and B, most col-
lision detection algorithms implement the following general
algorithm scheme:

traverse(A,B)
if A and B do not overlap then

return
end if
if A and B are leaves then

return intersection of primitives
enclosed by A and B

else
for all children A[i] and B do

traverse(A[i],B)
end for

end if

This algorithm quickly “zooms in” on pairs of nearby poly-
gons. The characteristics of different hierarchical collision
detection algorithms lie in the type of BV used, the overlap
test for a pair of nodes, and the algorithm for construction of
the BV trees.

2.2. Construction of Bounding Volume Hierarchies

For rigid bodies, the goal is to construct BVHs such that any
subsequent collision detection query can be answered as fast
as possible. Such BVHs are called optimal or good in the
context of collision detection.

With deformable objects, the main goal is to develop al-
gorithms that can quickly update or refit the BVHs after a
deformation has taken place. At the beginning of a simula-
tion, a good BVH is constructed for the undeformed object
just like for rigid bodies. Then, during the simulation, often
times the structure of the tree is kept, and only the extents of
the BVs are updated. Due to the fact that DOPs are generally
faster to update for deformable objects, they are preferred to
OBBs.

Since the construction of a good initial BVH is important
for deformable collision detection, we will discuss some of
the issues in the following, while efficient ways of updating
the hierarchy are discussed in Sec. 2.3.

There exist three different strategies to build BVHs,
namely top-down, bottom-up [RL85], and insertion [GS87].
However, the top-down strategy is most commonly used for
collision detection.

The idea is to recursively split a set of object primitives
until a threshold is reached. The splitting is guided by a user-
specified criterion or heuristic that will yield good BVHs
with respect to the chosen criterion.

A very simple splitting heuristic is the following.
[GLM96] approximates each polygon by its center. Then,
for a given set B of such points, compute its principal compo-
nents (the eigenvectors of the covariance matrix); choose the
largest of them (i.e., the one exhibiting the largest variance);
place a plane orthogonal to that principal axis and through
the barycenter of all points in B; this splits B into two sub-
sets. Alternatively, the splitting plane can be placed through
the median of all points. This leads to a balanced tree. How-
ever, it is unclear, whether balanced trees provide improved
efficiency of collision queries.

c© The Eurographics Association 2004.



Teschner et al. / Collision Detection for Deformable Objects

convex hull

AABB sphere OBB spherical shell

prism cylinder intersection
of other BVs

DOP

Figure 4: A variety of bounding volumes has been proposed for hierarchy-based collision detection.

Fig. 5 shows two hierarchy levels for the 18-DOP-
hierarchy of an avatar, that was created top-down [MKE03].

For AABBs, it can be shown that any splitting heuristic
should try to minimize the volumes of the children [Zac02].
Using Minkowski sums of BVs, one can estimate the geo-
metric probability of a BV overlap during the traversal by

P(Ai,B j) ≈ Vol(A1)+Vol(B1)
Vol(A)+Vol(B)

(1)

in the case of AABBs. Since Vol(A) + Vol(B) has already
been committed by an earlier step in the recursive con-
struction, Equation 1 can be minimized only by minimizing
Vol(Ai)+Vol(B j).

(a) (b) (c) (d)

Figure 5: Two levels of an 18-DOP-hierarchy. (a) and (c)
illustrate the 18-DOPs, (b) and (d) show corresponding re-
gions on the surface.

Volino and Magnenat-Thalmann [VMT94, VMT95] as
well as Provot [Pro97] use a fairly different approach for
deformable objects. In this method, the hierarchy is strictly
oriented on the mesh topology of the object, assuming that

topology does not change during the simulation. Volino uses
a region-merge algorithm to build the hierarchy bottom-up,
while Provot uses a top-down algorithm that recursively di-
vides the object in zones imbricating each other. These ap-
proaches have the advantage, that they avoid grouping faces
close together in the hierarchy that are very close in the ini-
tial state, although they are not close at all based on the con-
nectivity. This connectivity-based approach also yields ad-
vantages in speeding-up self-collision detection as described
in subsection 2.4.

Another crucial point is the arity of the BVH. For rigid
objects, binary trees are commonly chosen. In contrast, 4-
ary trees or 8-ary trees have shown better performance for
deformable objects [LAM01, MKE03]. This is mainly due
to the fact that fewer nodes need to be updated and the to-
tal update costs are lower. Additionally, the recursion depth
during overlap tests is lower and therefore the memory re-
quirements on the stack are lower. Fig. 6 shows the reduc-
tion of recursion depth for detecting two overlapping leaves
by equivalent 4-ary trees instead of binary trees.

2.3. Hierarchy Update

In contrast to hierarchies for rigid objects, hierarchies for
deformable objects need to be updated in each time step.
Principally, there are two possibilities: updating or rebuild-
ing. Refitting is much faster than rebuilding, but for large
deformations, the BVs usually are less tight and have larger
overlap volumes. Nevertheless, van den Bergen [vdB97] has
found that refitting is about ten times faster compared to a
complete rebuild of an AABB hierarchy. Further, as long as
the topology of the object is conserved there is no significant
performance loss in the actual collision query compared to
rebuilding.

c© The Eurographics Association 2004.



Teschner et al. / Collision Detection for Deformable Objects

0

1 2

3 4 5 6

a

b c

d e f g

0a

1a 2a

2b 2c

5b 6b

6d 6e

Collision

(a)
0

3 4 5 6

a

d e f g

0a

3a 4a 5a 6a

6d 6e 6f 6g

Collision

(b)

Figure 6: Recursion using binary trees (a) and 4-ary trees
(b).

2.3.1. General Updating

Different strategies have been proposed not only for building
a hierarchy but also for the hierarchy update. Larsson and
Akenine-Möller [LAM01] compared bottom-up and top-
down strategies. They found that if in a collision detection
process many deep nodes are reached the bottom-up strategy
performs better, while if only some deep nodes are reached
the top-down approach is faster. Therefore they proposed a
hybrid method, that updates the top half of the tree bottom-
up and only if non-updated nodes are reached these are up-
dated top-down. Using this method they reduce the number
of unnecessarily updated nodes with the drawback of higher
memory requirement because they have to store the leaf in-
formation about vertices or faces also in the internal nodes.

Other approaches have been proposed by Mezger et al.
[MKE03] to further accelerate the hierarchy update by omit-
ting or simplifying the update process for several time steps.
For this purpose the bounding volumes can generally be in-
flated by a certain distance. Then the hierarchy update is not
needed as long as the enclosed primitives did not move far-
ther than that distance.

2.3.2. Refitting for Morphing Objects

An important case of deformation occurs in animation sys-
tems, where objects are deformed by morphing or blending.
Here, in-between objects are constructed by interpolating
between two or more morph targets. This usually requires
the target models to have the same number of vertices and
the same topology.

t1 t2

t2t2 t1t1

Figure 7: If the deformation is a predefined morph, then a
BVH for in-between objects can be constructed by morphing
the BVs.

The idea of [LAM03] is to construct one BVH for one
of the morph targets and fit this to the other morph targets,
such that corresponding nodes contain exactly the same ver-
tices. With each node of the BVH, all corresponding BVs are
stored, i. e. one from each morph target (see Fig. 7). During
runtime, a BVH can be constructed for the morphed object
just by considering the original BVH and interpolating the
BVs. Assume, n morph targets Oi are given, each with ver-
tices vi

j and weight vectors wi. Then, each vertex v̄ j of the
morphed object is an affine combination

v̄ j =
n

∑
i=1

wi
jv

i
j, with

n

∑
i=1

wi
j = 1. (2)

Let Di be the n BVs of the corresponding nodes in the
BVHs of the Oi (i.e., all Di contain the same vertices, al-
beit at different positions). A DOP is denoted by Di =
(Si

1, . . . ,Si
k), where Si

j = (s j,e j), s j ≤ e j, is one interval

of the DOP. Let bl , l = 1 . . .k, denote the set of orienta-
tions, over which all DOPs are defined. Now, a new DOP
D̄ = (S̄1, . . . , S̄k) with S̄ j = (s̄ j, ē j) can be interpolated from
these n DOPs by

s̄ j =
n

∑
i=1

wis
i
j, ē j =

n

∑
i=1

wie
i
j. (3)

This interpolated DOP D̄ will enclose all the interpolated
vertices beneath its node. This works just the same for
AABBs, since AABBs are a special case of DOPs. A similar
approach works for sphere trees.

Overall, we can utilize existing top-down BVH traver-
sal algorithms for collision detection. The only additional
work that must be done is the interpolation, i.e., morphing
of the BVs, just before they are checked for overlap. The ex-
act positions of the morphed vertices enclosed by a BV are
not needed. This deformable collision detection algorithm
seems to be faster in practical cases, and its performance de-
pends much less on the polygon count, than the more general
method presented in [LAM01].

The method does have a few drawbacks, though: one must
find a BVH that yields good performance for all in-between
models; and, it works only for morphing schemes which al-
low only one weight per morph target.

c© The Eurographics Association 2004.



Teschner et al. / Collision Detection for Deformable Objects

2.4. Self-Collision Detection

BVHs can be easily employed to accelerate self-collisions.
As already mentioned in Sec. 1, this is particularly impor-
tant for deformable objects, such as cloth. In general, col-
lisions and self-collisions are performed the same way us-
ing BVHs. If several objects are tested for collisions, the re-
spective BVHs are checked against each other. Analogously,
self-collisions of an object are detected by testing one BVH
against itself.

However, it has to be noted, that BVs of neighboring re-
gions can overlap, even though there are no self-collisions.
To eliminate such cases efficiently, different heuristics have
been presented. Volino and Magnenat-Thalmann [VMT94]
proposed an exact method to avoid unnecessary self-
intersection tests between certain BVs. Therefor, a vector
with positive dot product with all face normals of the re-
gion is searched. If such a vector exists and the projection
of the region onto a plane in direction of the vector does not
self-intersect, the region cannot self-intersect.

Another approach is proposed by Provot [Pro97]. In this
method, normal cones are introduced. The idea is based on
the fact, that regions with sufficiently low curvature can not
self-intersect, assuming they are convex. Therefore, a cone is
calculated for each region. These cones represents a superset
of the normal directions. They are built using the hierarchy
and updated during the hierarchy update. The apex angle α
of the cone represents the curvature, indicating possible in-
tersections if α ≥ π.

2.5. Continuous Collision Detection

BVHs are also used to accelerate continuous collision de-
tection, i. e. to detect the exact contact of dynamically sim-
ulated objects within two successive time steps. Therefore,
BVs do not only cover object primitives at a certain time
step. Instead, they enclose the volume described by the linear
movement of a primitive within two successive time steps
[BFA02, RKC02].

In multi-body systems, the number of collisions at a sin-
gle time step can increase significantly, causing simple sign
checking methods to fail. Therefore, [GK03] developed a re-
liable method that adjusts the step size of the integration by
including the event functions in the system of differential
equations, and by robust root detection.

Finding the first point of contact basically corresponds
to finding roots of polynomials that describe the distance
between the basic geometric entities, i. e. all face/vertex
and all edge/edge pairs. These polynomials are easier to
process if the motion of objects is a screw motion. Thus,
[KR03, RKC02] approximate the general motion by a se-
quence of screw motions.

In order to quickly eliminate possible collisions of groups
of polygons that are part of deformable objects, [MKE03]

construct so-called velocity cones throughout their BVHs.
Another technique sorts the vertices radially and checks the
outer ones first [FW99].

A simple way to augment traditional, static BVH traver-
sals is proposed in [ES99]. During the traversals, for each
node a new BV is computed that encloses the static BV of the
node at times t0 and t1 (and possibly several ti in-between).
Other approaches utilize quaternion calculus to formulate
the equations of motion [SSW95, Can86].

2.6. Conclusion

In BVH approaches, the efficiency of the basic BV has to
be investigated very carefully. This is due to the fact, that
deforming objects require frequent updates of the hierar-
chy. So far, it has been shown that AABBs should be pre-
ferred to other BVs, such as OBBs. Although OBBs approx-
imate objects tighter than AABBs, AABBs can be updated
or refit very efficiently. Additionally, 4-ary or 8-ary trees
have shown a better overall performance compared to binary
trees.

Although deformable modeling environments require fre-
quent updates of BVHs, BVHs are nevertheless well-suited
for animations or interactive applications, since updating
or refitting of these hierarchies can be done very effi-
ciently. Furthermore, BVHs can be employed to detect self-
collisions while applying additional heuristics to accelerate
this process. Also, BVHs work with triangles and tetrahe-
drons as object primitives, which allows for a more sophis-
ticated collision response compared to a pure vertex-based
response.

3. Stochastic Methods

Recently, “inexact” methods have become a focus in colli-
sion detection research. This idea is motivated by several
observations. First, polygonal models are just an approxi-
mation of the true geometry. Second, the perceived quality
of most interactive 3D applications does not depend on ex-
act simulation, but rather on real-time response to collisions
[US97]. At the same time, humans cannot distinguish be-
tween physically-correct and physically-plausible behavior
of objects [BHW96]. Therefore, it can be tolerated to im-
prove the performance of collision detection, while degrad-
ing its precision.

In the following, two of these “inexact” methods will be
presented in detail. The two methods use probabilistic prin-
ciples in fairly different ways. The first one uses probabilistic
methods to estimate the possibility of collision with respect
to a given quality criterion. With this method the “quality” of
the collision detection can be specified by the user directly
thus ensuring more control. The second method initially
“guesses” colliding pairs by a stochastic sampling within the

c© The Eurographics Association 2004.



Teschner et al. / Collision Detection for Deformable Objects

colliding bodies. The exact colliding regions are then nar-
rowed down by using this principle in conjunction with tem-
poral and spatial coherence. In this case, the user has a more
indirect control over the quality of collision detection.

3.1. An Average-Case Approach

Conceptually, the main idea of this algorithm is to consider
sets of polygons at inner nodes of the BVH. During traversal,
pairs of these sets of polygons are checked [KZ03]. How-
ever, pairs of polygons are never explicitly checked. There-
fore, there is no polygon information stored with the nodes
of the BVH. Instead, the probability of the existence of a pair
of intersecting polygons is estimated.

This has two advantages. First, the algorithm is truly time-
critical. The application can control the runtime of the algo-
rithm by specifying the desired quality of the collision de-
tection. Second, the probabilities can guide the algorithm to
those parts of the BV hierarchies that allow for faster con-
vergence of the estimate.

In contrast to traditional traversal schemes, the algorithm
is guided by the probability that a pair of BVs contains inter-
secting polygons. Omitting the details, the algorithm works
as follows:

traverse(A,B)
while q is not empty do

A,B← q.pop
for all children Ai and B j do

p← Pr(Ai,B j)
if Pr(Ai,B j) is large enough then

return “collision”
else if Pr(Ai,B j) > 0 then

q.insert(Ai,B j ,Pr(Ai,B j))
end if

end for
end while

where q is a priority queue, which is initialized with the top
BV pair (A,B). Pr(Ai,B j) denotes the probability of a col-
lision between polygons under nodes Ai and B j. Note, that
it is not possible to compute Pr(A,B) exactly. Instead, it is
estimated from the distribution of the polygons inside a grid,
and combinatorial reasoning about the probability that a cell
contains “many” polygons from both A and B (see Fig. 8).

Note, that this approach is a general framework that can be
applied to many BVHs utilizing different types of BVs. The
BVH has to be augmented by a single number: the number of
cells in each node that contain many polygons. In addition,
if one never wants to perform exact collision detection, then
the polygons do not even have to be stored in the BVH.

3.2. Stochastic Collision Detection Based on Randomly
Selected Primitives

A naïve approach to stochastic collision detection consists
of selecting random pairs of colliding features as an initial

A
B

Figure 8: Conceptually, the idea of the average-case ap-
proach is to determine the number of cells of a grid covering
A∩B that contain “many” polygons from both A and B.

guess of the potential intersecting regions. This method can
be further augmented by ensuring that the sampling covers
features from the entire body and that the features are al-
ready close enough. However, this is not sufficient to iden-
tify the colliding regions when the object moves or deforms.
The solution is to consider temporal coherence proposed by
Lin [LC92]. If a pair of features is close enough at a time
step, it may still be interesting in the next one. This enables
to follow these colliding regions over subsequent time steps
as the objects are animated. Further, these pairs are made to
converge to the local minima of the distance to efficiently
identify collisions.

In addition, spatial coherence is also applied by keeping
track of this local minimum over the neighborhood features.
Each pair is locally updated at a time step, in order to track
the local distance variations when the objects move or de-
form (see Fig. 10 (b)). These pairs are called active pairs.
When two initially distant active pairs converge to the same
local minimum, one of them is suppressed. A pair is also
suppressed if the associated distance is greater than a given
threshold. The above process tracks the existing regions of
interest but does not detect new ones. This is a serious prob-
lem for non-convex object deformations where even a small
motion can significantly alter the closest distance location.

Therefore, in addition to the update of the currently active
pairs, n additional random pairs are added to the list of active
pairs at a time step. The update of these extra active pairs is
again similar to the update of the existing ones. The com-
plexity of the detection process thus linearly varies with the
user-defined parameter n. At each time step, collision detec-
tion consists of selecting among the currently active pairs,
the pairs which are closer that the sum of their radii. Reac-
tion forces can then be generated between them.

The general, the stochastic approach described above can
be applied to several collision detection problems which are
explained in Sec. 3.2.1 and Sec. 3.2.2.

c© The Eurographics Association 2004.



Teschner et al. / Collision Detection for Deformable Objects

3.2.1. Volumetric Elastic Bodies

Multiresolution methods have proven to be efficient for the
real-time simulation of deformable bodies. In such an envi-
ronment, Debunne and Guy [GD02] applied a multiresolu-
tion, physically-based animation model [DDCB01] in con-
junction with the above-described approach to help acceler-
ate collision detection. Here, they start by tracking pairs of
features at a coarser level when they are initially far apart and
then refine to a finer level as they move closer. The switching
between resolutions is done by evaluating a distance metric
between pairs and applying spatial coherence between fea-
tures at different resolutions. Fig. 9 illustrates this concept. If
objects approach each other, the collision regions are tracked
at different resolutions before it converges to the exact ver-
tices of collisions.

(a)

(b)

(c)

Figure 9: Illustration of stochastic collision detection be-
tween two volumetric bodies: Pairs of features (depicted by
lines) across different resolutions (different colored points)
being tracked as the objects approach each other.

3.2.2. Thin Self-colliding Structures

As already mentioned, highly flexible structure, such as
strands and cloth, have the possibility of self-colliding at
multiple places (see Fig. 10 (a)). The general stochastic colli-
sion approach was adapted in [RCFC03] to detect collisions
and self-collisions for such objects. The proposed method
utilizes two optimizations. First, a two-step update method

for computing the local distance minima for surface struc-
tures is used. This reduces the complexity from O(n.m) to
O(n + m), where n and m are the number of neighboring
primitives. Second, in order to provide a robust collision re-
sponse, collisions are propagated from the collision point.
When a collision occurs, a recursive algorithm searches the
neighborhood for possible collisions and a unique response
can be applied.

regions

colliding

Multiple

(a) (b)

Figure 10: (a) Detecting collisions or self-collisions be-
tween different folds of thin objects. (b) Tracking the local
minima of the distance (shown by the dark dash line) by per-
forming distance computations between neighboring pairs
(shown by lighter dash line).

3.3. Conclusions

Though the two discussed stochastic methods are principally
different, they both have common characteristics. The most
important one is the possibility to balance the quality of the
collision detection or the collision ratio against computation
time. It has been shown that stochastic approaches are appli-
cable for real-time applications. However, it has to be con-
sidered, that no exact or physically-correct simulation is pos-
sible.

The first approach works on BVHs and can therefore ex-
tend many of the methods described in section 2. The second
one is independent of any hierarchy and is directly employed
to pairs of primitives which simplifies the collision response
scheme.

4. Distance Fields

Distance fields specify the minimum distance to a closed sur-
face for all points in the field. The distance may be signed
in order to distinguish between inside and outside. Repre-
senting a closed surface by a distance field is advantageous
because there are no restrictions about topology. Further, the
evaluation of distances and normals needed for collision de-
tection and response is extremely fast and independent of the
complexity of the object.

Besides collision detection, distance fields have a
wide range of applications. They have been used for
morphing [BMWM01, COSL98], volumetric modeling
[FPRJ00, BPK∗02], motion planning [HKL∗99] and re-
cently for the animation of fire [ZWF∗03]. Distance fields

c© The Eurographics Association 2004.



Teschner et al. / Collision Detection for Deformable Objects

are sometimes called distance volumes [BMWM01] or dis-
tance functions [BMF03].

Figure 11: Happy Buddha and three color-mapped distance
field slices. Since the distance field is only valid within a
band near the surface, the mapping is faded out at larger dis-
tance. Blue maps to close distances, whereas red indicates
medium distances.

A distance field D : R
3 → R defines a surface as the

zero level set, i.e. S = {p|D(p) = 0}. In contrast to other
implicit representations, a simple function evaluation also
yields the Euclidean distance to the surface. Since a distance
field stores a lot of information about a surface, the efficient
computation of a distance field for a given surface represen-
tations is still a topic and some techniques are presented in
the following section. In section 4.2, we discuss how dis-
tance fields can be used for collision detection between de-
formable objects and between rigid and deformable objects.

4.1. Distance Field Generation

Different data structures for representing distance fields have
been proposed in the literature: Uniform 3D grids, Octrees
and BSP-trees. When using uniform grids, distance values
are computed for each grid point and intermediate values are
reconstructed by trilinear interpolation. This data structure
is easy to implement and distance queries can be computed
in constant time. The later is important for real-time appli-
cations. Also, smooth objects can be represented quite well
since a uniform grid provides C0 continuity between differ-
ent cells and the trilinear interpolation reconstructs smoothly
curved surfaces inside each cell with a small approximation
error. Most collision response schemes also need normals
which can be computed by normalizing the analytic gradi-
ent of the trilinear interpolation [FPRJ00]. The drawbacks
of uniform grids are the huge memory requirements and the
limited resolution when representing objects with sharp fea-
tures.

In order to overcome these problems, [FPRJ00] proposed
to use adaptively sampled distance fields (ADFs). The data is
stored in a hierarchy which is able to increase the sampling
rate in regions of fine detail. Although various spatial data
structures are suitable in general, ADFs are usually stored
in an Octree. During construction of an ADF, each cell is
subdivided as long as the result of the trilinear interpolation
does not properly approximate the original distance field.
This subdivision rule differs from standard 3-color Octrees
where each cell, which is not completely inside or outside,
is subdivided. This subdivision stops when a maximum tree
depth is reached. Compared to uniform grids ADFs provide
a good compression ratio. For collision detection purposes,
special care has to be taken in order to guarantee continu-
ity between different levels of the tree [BMF03]. Whenever
a cell is adjacent to a coarser cell, its corner values have to
be changed to match those of the interpolated values at the
coarser cell [WKE99].

When using a BSP-tree, memory consumption can be re-
duced even further [WK03]. This is achieved by using a
piecewise linear approximation of the distance field, which
is not necessarily continuous. In [WK03], several algorithms
for selecting appropriate splitting planes of the tree are pro-
vided and it is shown that the BSP representation is very
compact. Unfortunately, the construction of the BSP-tree is
computationally expensive. Another problem may arise from
discontinuities between cells since these cracks are not as
easily resolved as for ADFs.

In most applications, the surface of a collision object is
given as a triangular mesh, possibly deforming over time.
For collision detection, it is sufficient to compute distance
values only in small band near the surface. Clearly, this
reduces the computational effort considerably. Essentially,
there are three different approaches for the efficient com-
putation of a distance field: Methods based on Voronoi dia-
grams, propagation methods and methods using trees. When
distances of each grid point are evaluated independently, a
tree data structure can be used to cull away distant triangles
to speed up computations. An early work of [PT92] applies
BVHs. Later, Octrees have been used [JS01]. However, these
approaches have shown not to be competitive compared to
other methods since the computing times are in the order of
minutes.

Propagation methods start with a narrow band of distances
computed near the triangular surface. This initial informa-
tion is distributed over the whole volume. Fast marching
methods [Set96] and distance transforms are two examples
of propagation methods. In [JS01], different types of dis-
tance transforms are compared. However, fast distance trans-
forms are not very accurate.

In [HKL∗99], the usage of graphics hardware for comput-
ing generalized 2D and 3D Voronoi diagrams is proposed.
This technique builds distance meshes for each Voronoi site.
In 2D, a simple rendering of these meshes for all sites yields

c© The Eurographics Association 2004.



Teschner et al. / Collision Detection for Deformable Objects

an unsigned distance field in the depth buffer of the graphics
hardware. In 3D, the distance meshes are quite complex and
the algorithms has to proceed slice by slice. Thus, a huge
number of triangles has to be rendered, slowing down this
method considerably.

An algorithm with linear complexity is described in
[BMWM01]. This method utilizes the Voronoi diagram for
faces, edges and vertices of the mesh. Each Voronoi region is
represented by a bounding polyhedron. The polyhedrons are
cut into slices along grid rows and the resulting polygons
are scan-converted in order to determine which grid points
lie inside. The distance for inner grid points is easily com-
puted as the distance to the Voronoi site. The orientation of
the triangle mesh provides the correct sign for each region.
If a grid point is scan-converted several times, the smallest
distance is considered. Recently, [SPG03] improved on this
algorithm by using graphics hardware to scan-convert the
polyhedrons. Further, the authors show how to replace poly-
hedrons for faces, edges and vertices by constructing only
one polyhedron per face. This reduces the number of poly-
hedra which have to be scan-converted by a factor of three.
The authors demonstrated, that it is possible to compute the
distance field for the Stanford Bunny, consisting of 69K tri-
angles, within 3.7 seconds. The grid resolution was 2563 and
the band width was 10% of the model extent.

In some cases, triangular meshes are stored without any
adjacency information. Since these are needed for comput-
ing Voronoi regions, [FSG03] propose an algorithm which
computes distance values independently for each triangle.
Except for some sign errors, due to the lack of adjacency in-
formation, this technique is able to compute distance fields
for finely tessellated objects very fast. It is shown that it takes
only about 14 seconds to compute the distance field for the
Happy Buddha model (1.1M triangles) on a 167×167×400
grid.

4.2. Distance Field Collision Detection

Collision detection between different objects carried out
point-wise when using distance fields. If both deformable
objects are volumetric, vertices on the surface of one ob-
ject are compared against the distance field of the other ob-
ject and vice versa. A collision has occurred if D(p) < 0.
When animating deformable surfaces over more or less rigid
bodies, distance fields are in particular suitable. In this case,
only the vertices of the deformable surface have to be tested
for collisions. In order to avoid artifacts during collision re-
sponse, it is necessary to offset the vertices from the zero
isosurface by a predefined ε (see Fig. 12). In this case, a
vertex is marked as collided when D(p) < ε. This ε-offset
depends on the sampling density of the deformable objects.
Note, that distance fields do not only report collisions, but
also compute the penetration depth at the same. This is re-
quired for a proper collision response algorithm.

Deformed distance fields have been used to estimate the

ε

(a) (b)

Figure 12: (a) Without offsetting the vertices inter-
penetration artifacts may occur during collision detection.
(b) Introducing an ε-offset solves the problem.

penetration depth of elastic polyhedral objects [FL01]. In
this method, an internal distance field is created by a fast
marching level set method, propagating distance information
only inside the objects. In order to take deformations of the
objects into account, the distance fields are updated before
each time step. The actual collision detection is carried out
by a hierarchical method. During collision response the dis-
tance fields are deformed due to the geometry and used for
an approximation of the penetration depth. This method is
able to handle self-collisions and collisions. The approach is
well-suited for volumetric objects, because thin objects like
cloth are not well represented by internal distance fields. Al-
though the distance field is only partially updated in deform-
ing regions of the object, experiments show that this method
is not intended for real-time applications.

[BMF03] suggest to use ADFs for detecting collisions be-
tween clothing and animated characters. Since the surface
deforms over time due to skin and muscle simulation, the
authors propose to pre-calculate a distance field at each time
step using a fast marching method [Set96]. This can be used
for multiple cloth simulations. In order to handle cloth with
several intersecting character geometries, a distance field for
each body part is created. Thus, cloth vertices, which are
inside of two or more distance fields, can be detected and
handled properly. For a more thorough analysis of pinched
clothing see [BWK03]. No timings were given in the paper,
but the necessity of pre-calculation of the distance fields in-
dicates that the proposed approach is tailored for film mak-
ing.

In [FSG03], the problem of rapid distance computation
between rigid and deformable objects is addressed. Rigid
objects are represented by distance fields, which are stored
in a uniform grid to maximize query performance. Ver-
tices of a deformable object, which penetrate an object, are
quickly determined by evaluating the distance field. Addi-
tionally, the center of each edge in the deforming mesh is
tested in order to improve the precision of collision detec-
tion. Since updates of the distance field were considered to
costly, the authors also propose to combine multiple rigid
bodies for animation—similar to the method of [BMF03].
Experiments suggest, that this technique is able to animate
cloth at interactive rates (see Fig. 13). Collisions with a com-

c© The Eurographics Association 2004.



Teschner et al. / Collision Detection for Deformable Objects

plex non-convex objects are resolved accurately and also
self-collisions are treated by using a different approach.

Updates of a distance field are a common bottleneck of
all methods described above. To accelerate theses updates,
[VSC01] proposed an image-based approach for computing
distance values. Rendering hardware is used for construct-
ing two depth and normal maps of the object, one map for
the back of the object and one map for its front. These maps
are used for distance calculations and collision response.
This algorithm is restricted to convex shapes or appropri-
ate mapping directions in the case of animated characters.
In [IZLM01], another image-based approach is proposed
that uses the technique described in [HKL∗99] to create a
2D distance field using graphics hardware. This 2D distance
field is used for collision response. The authors report inter-
active frame rates for non-convex rigid bodies and also for
deformable bodies. The method is applicable to 2D prob-
lems.

Figure 13: Interactive animation of cloth in a complex col-
lision environment.

4.3. Conclusion

Distance fields have been employed to detect collisions
and even self-collisions in non-interactive applications. Al-
though efficient algorithms for computing distance fields
have been proposed recently, this generation is still not fast
enough for interactive applications, where distance fields
have to be updated during run-time due to deforming geom-
etry. However, distance fields provide a highly robust col-
lision detection, since they divide space strictly into inside
and outside.

For interactive applications, distance fields can be used
to represent all rigid objects contained within the environ-
ment. Since distance fields yield not only the penetration
depth but also normals needed for collision response at inter-
active rates, collision detection between deformable objects
and the rigid objects is carried out very efficiently. In or-
der to decrease storage requirements or generation time, it is
possibly to reduce the resolution of the distance field, which

results in lowered accuracy. Thus, distance field approaches
can balance performance and accuracy.

5. Spatial Subdivision

There exist various approaches that propose spatial subdivi-
sion for collision detection. These algorithms employ uni-
form grids [Tur90], [GDO00], [ZY00] or BSPs [Mel00]. In
[Tur90], spatial hashing for collision detection is mentioned
for the first time. In [Mir97], a hierarchical spatial hashing
approach is presented as part of a robot motion planning al-
gorithm, which is restricted to rigid bodies.

In [THM∗03], spatial hashing is employed for the detec-
tion of collisions and self-collisions for deformable tetrahe-
dral meshes. Tetrahedral meshes are commonly used in med-
ical simulations, but can also be employed in any physically-
based environment for deformable objects that are based on
FEM, mass-spring, or similar mesh-based approaches (see
Fig. 14 and 15). This algorithm implicitly subdivides R

3 into
small grid cells. Instead of using complex 3D data structures,
such as octrees or BSPs, the approach employs a hash func-
tion to map 3D grid cells to a hash table. This is not only
memory efficient, but also provides flexibility, since this al-
lows for handling potentially infinite regular spatial grids.
Information about the global bounding box of the environ-
ment is not required and 3D data structures are avoided.

Figure 14: Interactive environment with deformable ob-
jects which are represented with tetrahedral meshes. Spatial
hashing is employed to detect collisions and self-collisions.

The algorithm, presented in [THM∗03], proceeds in three
stages. In a first pass, the information on the implicit 3D grid
cells of all vertices are mapped to the hash table. The second
pass considers all tetrahedrons of the environment. It maps
information on all grid cells touched by a tetrahedron to the
hash table. Now, the third stage checks vertices and tetrahe-
drons within a hash table entry for intersections. If a vertex
penetrates a tetrahedron, a collision is detected. If both, the
vertex and the tetrahedron belong to the same object, a self-
intersection is detected.

Experiments with various setups of deformable objects
have been performed (see Tab. 1 and Tab. 2). Setups A, B

c© The Eurographics Association 2004.



Teschner et al. / Collision Detection for Deformable Objects

Figure 15: Interactive environment with dynamically de-
forming objects and collision handling. Surface with high
geometric complexity and the underlying tetrahedral mesh
are shown.

and D are illustrated in Fig. 16 and 17. Setup C and E use
the same deformable objects like B.

Table 1: The following setups with dynamically deforming
objects have been tested in [THM∗03].

setup objects tetras vertices

A 100 1000 1200
B 8 4000 1936
C 20 10000 4840
D 2 20514 5898
E 100 50000 24200

Experiments indicate, that the detection of all collisions
and self-collisions for dynamically deforming objects can be
performed at 15 Hz with up to 20k tetrahedrons and 6k ver-
tices on a standard PC. The performance is independent of
the number of objects. It only depends on the number of ob-
ject primitives. The performance varies slightly during sim-

Table 2: Performance of collision detection based on spatial
subdivision (see [THM∗03]). Setups are described in Tab. 1.
Average collision detection time, minimum, maximum, and
standard deviation for 1000 simulation step are given.

setup ave [ms] min [ms] max [ms] dev [ms]

A 4.3 4.1 6.5 0.24
B 12.6 11.3 15.0 0.59
C 30.4 28.9 34.4 1.25
D 70.0 68.5 72.1 0.86
E 172.5 170.5 174.6 1.08

ulations due to the changing number of hash collisions and
a varying distribution of hash table elements.

Figure 16: Test setup A (left) and B (right).

Figure 17: Test setup D (left) and tetrahedral mesh of setup
D.

5.1. Conclusion

Spatial subdivision is a simple and fast technique to accel-
erate collision detection in case of moving and deforming
objects. Spatial subdivision can be used to detect collisions
and self-collisions. Algorithms based on spatial subdivision
are independent of topology changes of objects. They are not
restricted to triangles as basic object primitive, but also work
with other object primitives if an appropriate intersection test
is implemented.

The main difficulty in spatial subdivision is the choice of
the data structure that is used to represent the 3D space. This
data structure has to be flexible and efficient with respect to
computational time and memory. In [THM∗03], a hash table

c© The Eurographics Association 2004.



Teschner et al. / Collision Detection for Deformable Objects

is used which has shown to be very efficient in physically-
based simulation environments.

6. Image-Space Techniques

Recently, several image-space techniques have been pro-
posed for collision detection [MOK95], [BWS99], [BW02],
[IZLM01], [KOLM02], [HTG03], [KP03], [GRLM03].
These approaches commonly process projections of objects
to accelerate collision queries. Since they do not require
any pre-processing , they are especially appropriate for envi-
ronments with dynamically deforming objects. Furthermore,
image-space techniques can commonly be implemented us-
ing graphics hardware.

An early approach to image-space collision detection of
convex objects has been outlined in [SF91]. In this method,
the two depth layers of convex objects are rendered into two
depth buffers. Now, the interval from the smaller depth value
to the larger depth value at each pixel approximately repre-
sents the object and is efficiently used for interference check-
ing. A similar approach has been presented in [BWS99].
Both methods are restricted to convex objects, do not con-
sider self-collisions, and have not explicitly been applied to
deforming objects.

In [MOK95], an image-space technique is presented
which detects collisions for arbitrarily-shaped objects. In
contrast to [SF91] and [BWS99], this approach can also pro-
cess concave objects. However, the maximum depth com-
plexity is still limited. Additionally, object primitives have
to be pre-sorted. Due to the required pre-processing, this
method cannot efficiently work with deforming objects.
Self-collisions are not detected.

A first application of image-space collision detection to
dynamic cloth simulation has been presented in [VSC01].
In this approach, an avatar is rendered from a front and a
back view to generate an approximate representation of its
volume. This volume is used to detect penetrating cloth par-
ticles. A first image-space approach to collision detection
in medical applications is presented in [LCN99], where in-
tersections of a surgical tool with deformable tissue are de-
tected by rendering the interior of the tool.

In [IZLM01], an image-space method is not only em-
ployed for collision detection, but also for proximity tests.
This method is restricted to 2D objects. In [KOLM02]
and [KmLD03], closest-point queries are performed us-
ing bounding-volume hierarchies along with a multipass-
rendering approach. In [KP03], edge intersections with sur-
faces can be detected in multi-body environments. This ap-
proach is very efficient. However, it is not robust in case of
occluded edges. In [GRLM03], several image-space meth-
ods are combined for object and sub-object pruning in colli-
sion detection. The approach can handle objects with chang-
ing topology. The setup is comparatively complex and self-
collisions are not considered.

In [HTG03], an image-space technique is used for col-
lision detection of arbitrarily-shaped, deformable objects.
This approach computes a Layered Depth Image LDI
[SGwHS98] for an object to approximately represent its vol-
ume. This approach is similar to [SF91], but not restricted to
convex objects. Still, a closed surface is required in order to
have a defined object volume.

The algorithm presented in [HTG03] proceeds in three
stages. First, the intersection of axis-aligned bounding boxes
of pairs of objects is calculated. If an intersection is non-
empty, a second stage computes an LDI representation of
each object within the bounding-box intersection. Finally,
two volumetric collision queries can be applied. The first
query detects intersecting volumes of two objects, while the
second query detects vertices or other object primitives that
penetrate another object. Self-collisions cannot be found.
Fig. 21 illustrates the three stages of the algorithm.

(a) Stage 1. (b) Stage 2. (c) Stage 3a.

Figure 21: Image-space collision detection in 2-D and 3-D.
(a) AABB intersection. (b) LDI generation within the VoI. (c)
Computation of the intersection volume.

In [HTG04], an improved algorithm is presented. In
contrast to existing approaches that do not consider self-
collisions, this approach combines the image-space object
representation with information on face orientation to over-
come this limitation.

LDIs are the basic data structure in many image-space col-
lision detection approaches. Therefore, it is very important
to optimize their computation and [HTG04] provides a com-
parison of three different implementations for LDI genera-
tion. Two implementations based on graphics hardware and
one software solutions have been compared. Results suggest,
that graphics hardware accelerates image-space collision de-
tection in geometrically complex environments, while CPU-
based implementations provide more flexibility and better
performance in case of small environments.

In Fig. 18 and Fig. 19, collisions and self-collisions
are computed using a software implementation. Comput-
ing times are 8-11 ms using a standard PC. In this envi-
ronment with low geometric complexity, a CPU-based im-
plementation for LDI generation is more efficient compared

c© The Eurographics Association 2004.



Teschner et al. / Collision Detection for Deformable Objects

Figure 18: Dynamic animation of a hand with 4800 faces and a phone with 900 faces. Collisions (red) are detected.

Figure 19: Left: Collisions (red) and self-collisions (green) of the hand are detected. Middle: Self-collisions (green) are de-
tected. Right: LDI representation with a resolution of 64x64. Collisions and self-collisions are detected in 8-11 ms using a
standard PC.

Figure 20: Left: Dragon with 500k faces. Middle: LDI representation with a resolution of 64x64. Right: Particles penetrating
the volume of the dragon are detected. In this environment with 500k faces, 100k particles can be tested for penetration in 225
ms using a standard PC.

to a GPU-based implementation. In contrast, Fig. 20 illus-
trates an environment with 500k faces and 100k particles. In
this case, the GPU-based implementation for detecting pen-
etrating particles outperforms the CPU-based implementa-
tion. Thorough comparisons can be found in [HTG04].

6.1. Conclusion

In contrast to other collision detection methods, image-space
techniques do not require time-consuming pre-processing.

This makes them especially appropriate for dynamically de-
forming objects. They can be used to detect collisions and
self-collisions. Image-space techniques usually work with
triangulated surfaces. However, they could also be used for
other object primitives as long as these primitives can be ren-
dered. Topology changes of objects do not cause any prob-
lems.

Since image-space techniques work with discretized rep-
resentations of objects, they do not provide exact collision
information. The accuracy of the collision detection depends

c© The Eurographics Association 2004.



Teschner et al. / Collision Detection for Deformable Objects

on the discretization error. Thus, accuracy and performance
can be balanced in a certain range by changing the resolution
of the rendering process.

Image-space techniques can be accelerated with graph-
ics hardware. However, due to buffer read-back delays and
the limited flexibility of programmable graphics hardware,
it is not always guaranteed that implementations on graphics
hardware are faster than software solutions in all cases (see
[HTG04]). As a rule of thumb, graphics hardware should
only be used for geometrically complex environments.

While image-space techniques efficiently detect colli-
sions, they are limited in providing information that can be
used for collision response in physically-based simulation
environments. In many approaches, further post-processing
of the provided result is required to compute or to approxi-
mate information such as the penetration depth of colliding
objects.

7. Applications

This section summarizes various applications of deformable
collision detection algorithms in cloth modeling and surgery
simulation.

7.1. Cloth Simulation

For the simulation of cloth, Mezger et al. [MKE03] used a
BVH with a bottom-up update of the hierarchy. This was
combined with an approach called "lazy hierarchy update",
that omits the update process in the areas of the hierarchy
without significant motion (see Fig. 22). To accelerate self-
collision detection, a heuristic derived from Provot’s normal
cones is employed [Pro97].

Impressive results for virtual clothing have been presented
over the last decade by the MiraLab. Many algorithms for
versatile cloth simulations have been developed. (see Fig. 23
and 24).

As cloth simulation is a very popular field in computer
graphics, in recent years also major work has been published
on this topic not focussed on collision detection, but on the
physical model [CK02, BMF03], the integration schemes
[BW98, HE01] or collision response [BWK03, VT00].

Additionally work on real time simulation of cloth has
been published, that employs collision detection methods
presented in this report or tries to avoid complex collision
detection [CMT02].

7.2. Virtual Liver Surgery

Lombardo et al. [LCN99] developed a method to address the
detection of collisions between a rigid surgical tool and a de-
formable organ model in a surgical simulation environment.
It exploits GPU-based computation by using the OpenGL

Figure 22: Efficient collision and self-collision detection
and handling for cloth objects.

Figure 23: Catwalk scene showing a big variety of clothing.

clipping process for collision detection. A surgical tool such
as a grasper or cautery tool is simple enough to be mod-
eled as a orthographic or perspective viewing volume with
clipping planes. Thus, by rendering in feedback mode, they
identify the triangles of the organ that are “visible” to this
volume as the colliding ones. This simply provides a static
collision test when the tool is stationary. Hence, a dynamic
collision detection taking into account the volume covered
by the tool between consecutive time steps was proposed.
Though, this method is extremely fast, it is very specific to
be applicable only to simple object shapes such as cylinders.
Fig. 25 illustrates this method. Here, collision detection was
implemented in conjunction with a physically-based model

c© The Eurographics Association 2004.



Teschner et al. / Collision Detection for Deformable Objects

Figure 24: Well-known falling ribbon showing the power of
collision response algorithms.

of a liver. Collision response forces are considered in the dy-
namic simulation.

(a) (b)

(c) (d)

Figure 25: Illustration of a fast, OpenGL clipping-based
collision detection method in virtual liver surgery using a
standard PC. (a) Collision detected (the dark patch) at a
given time step when the tool is static. (b) Dynamic colli-
sion detection by sweeping the viewing volume over subse-
quent time steps as the tool probes the organ. (c) Dynamic
simulation with input from the collision response driving a
physically-based model. (d) Final textured image.

7.3. Collision Detection Between Virtual Organs

Debunne and Guy [GD02] applied their multiresolution
technique (section 3.2.1) to the collision detection between
two volumetric elastic organs (a liver and a prostate) ma-
nipulated by a rigid tool in a surgical simulation environ-
ment (see Fig. 26). Experiments show favorable perfor-
mances when compared with OBBs for rigid bodies and with
AABBs for deformable bodies.

Figure 26: Collision detection during virtual surgery be-
tween liver, prostate (shown as a dark-colored organ) and
a rigid tool.

7.4. Virtual Intestinal Surgery

Raghupathi et al. [RCFC03] adapted the stochastic tech-
nique to detect collisions and self-collisions occurring in the
intestinal region when the surgeon manipulates the small in-
testine before the removal of colon cancer. The intestine be-
ing a flexible organ can easily self-collide when moved or
deformed using a surgical tool. In addition, it also collides
with a thin membrane called the mesentery that connects the
colon with the main vessels. Here, the intestine is modeled as
a set of skeletal segments with a radius and the mesentery as
a thin triangulated mesh. The stochastic collision detection
approach (section 3.2.2) was applied between the segments
of intestine-intestine and intestine-mesentery while neglect-
ing mesentery-mesentery collisions. A response is applied
when a pair actually collides. The skeletal model used for
animation and collision processing was fed into a fast adap-
tive sampling and skinning algorithm for real-time rendering
(Fig. 27). For an intestine-mesentery model with 300 ani-
mated segments with the possibility of a few hundred colli-
sions, the system achieved real-time performances on a stan-
dard PC.

8. Conclusion

In this paper, a variety of deformable collision detection
approaches has been presented. The discussed approaches
are based on bounding volume hierarchies, distance fields,
or spatial partitioning. Further, image-space techniques and
stochastic methods have been described. All presented meth-
ods address problems which especially occur in deformable
simulation environments. While all approaches provide
promising solutions to certain aspects in deformable colli-
sion detection, there exist no general or optimal approach.

Approaches based on bounding volume hierarchies have

c© The Eurographics Association 2004.



Teschner et al. / Collision Detection for Deformable Objects

(a)

(b)

Figure 27: Real-time treatment of collisions between intes-
tine and mesentery (shown as a light-colored, thin mem-
brane beneath the intestine) and self-collisions in intestine
during virtual intestinal surgery in a standard PC. The or-
gans are manipulated using a virtual probe (shown as a tiny
red sphere) as in a real surgery.

shown to be very efficient. In these methods, the basic
bounding volume and the strategy for generating and updat-
ing the hierarchy have to be chosen very carefully in order to
handle frequent update requests in simulation environments
with deformable objects. Stochastic methods are a promis-
ing approach to time-critical applications, since they allow
for balancing performance and accuracy.

Distance fields are especially appropriate for collision de-
tection between rigid and deformable objects. In this case,
pre-computed distance fields do not only detect collisions,
but also provide the penetration depth which is essential for
a physically-correct collision response. Collision detection
based on spatial subdivision has also shown to be very ef-
ficient in deformable simulation environments. In these ap-
proaches, research is mainly focussed on efficient data struc-
tures.

Further interesting approaches to deformable collision de-
tection are based on image-space techniques. These algo-

rithms are commonly accelerated with graphics hardware.
This makes them especially appropriate for environments
with geometrically complex objects and promising results
have been presented.

References

[AdG∗02] AGARWAL P., DE BERG M., GUDMUNDS-
SON J., HAMMAR M., HAVERKORT H.: Box-
trees and r-trees with near-optimal query time.
Discrete and Computational Geometry 28, 3
(2002), 291–312. 3

[BFA02] BRIDSON R., FEDKIW R., ANDERSON J.:
Robust treatment of collisions, contact and
friction for cloth animation. In Proceedings
of ACM SIGGRAPH (2002), pp. 594–603. 6

[BHW96] BARZEL R., HUGHES J., WOOD D. N.: Plau-
sible motion simulation for computer graphics
animation. In Proceedings of the Eurograph-
ics Workshop Computer Animation and Sim-
ulation (1996), Boulic R., Hégron G., (Eds.),
Springer, pp. 183–197. 6

[BMF03] BRIDSON R., MARINO S., FEDKIW R.: Sim-
ulation of clothing with folds and wrinkles.
In Proc. ACM/Eurographics Symposium on
Computer Animation (2003), pp. 28–36. 9,
10, 15

[BMWM01] BREEN D. E., MAUCH S., WHITAKER R. T.,
MAO J.: 3d metamorphosis between differ-
ent types of geometric models. Eurographics
2001 Proceedings 20(3) (2001), 36–48. 8, 9,
10

[BPK∗02] BREMER P.-T., PORUMBESCU S., KUESTER

F., HAMANN B., JOY K. I., MA K.-L.: Vir-
tual clay modeling using adaptive distance
fields. In Proceedings of the 2002 Interna-
tional Conference on Imaging Science, Sys-
tems, and Technology (CISST 2002) (2002). 8

[BW98] BARAFF D., WITKIN A.: Large Steps in
Cloth Simulation. Computer Graphics 32, An-
nual Conference Series (1998), 43–54. 15

[BW02] BACIU G., WONG W. S.-K.: Hardware-
assisted self-collision for deformable surfaces.
In Proceedings of ACM Symposium on Vir-
tual Reality Software and Technology (VRST)
(2002), ACM Press, pp. 129–136. 13

[BWK03] BARAFF D., WITKIN A., KASS M.: Untan-
gling cloth. ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH 2003) 22, 3
(2003), 862–870. 10, 15

[BWS99] BACIU G., WONG W. S.-K., SUN H.:

c© The Eurographics Association 2004.



Teschner et al. / Collision Detection for Deformable Objects

RECODE: an image–based collision detection
algorithm. The Journal of Visualization and
Computer Animation 10 (1999), 181–192. 13

[Can86] CANNY J.: Collision detection for moving
polyhedra. IEEE Trans. Pattern Anal. Mach.
Intell. PAMI-8, 2 (1986), 200–209. 6

[CK02] CHOI K., KO H.: Stable but responsive cloth.
In Proceedings of ACM SIGGRAPH (2002),
pp. 604–611. 15

[CMT02] CORDIER F., MAGNENAT-THALMANN N.:
Real-time animation of dressed virtual hu-
mans. In Eurographics Conference Proceed-
ings (2002), pp. ?–? 15

[COSL98] COHEN-OR D., SOLOMOVIC A., LEVIN D.:
Three-dimensional distance field metamor-
phosis. ACM Transactions on Graphics 17, 2
(1998), 116–141. 8

[DDCB01] DEBUNNE G., DESBRUN M., CANI M.-P.,
BARR A.: Dynamic real-time deformations
using space and time adaptive sampling. In
Proc. SIGGRAPH ’01 (2001), ACM Press. 8

[EL01] EHMANN S. A., LIN M. C.: Accurate and fast
proximity queries between polyhedra using
convex surface decomposition. In Computer
Graphics Forum (2001), vol. 20, pp. 500–510.
ISSN 1067-7055. 3

[ES99] ECKSTEIN J., SCHÖMER E.: Dynamic colli-
sion detection in virtual reality applications. In
Proc. The 7-th Int’l Conf. in Central Europe on
Comp. Graphics, Vis. and Interactive Digital
Media ’99 (WSCG’99) (Plzen, Czech Repub-
lic, Feb. 1999), University of West Bohemia,
pp. 71–78. 6

[FL01] FISHER S., LIN M.: Deformed distance fields
for simulation of non-penetrating flexible bod-
ies. In Proc. of Eurographics Workshop on
Computer Animation and Simulation (2001).
10

[FPRJ00] FRISKEN S. F., PERRY R. N., ROCKWOOD

A. P., JONES T. R.: Adaptively sampled dis-
tance fields: A general representation of shape
for computer graphics. SIGGRAPH 2000,
Computer Graphics Proceedings (2000), 249–
254. 8, 9

[FSG03] FUHRMANN A., SOBOTKA G., GROSS C.:
Distance fields for rapid collision detection in
physically based modeling. In Proceedings of
GraphiCon 2003 (Sept. 2003), pp. 58–65. 10

[FW99] FAHN C.-S., WANG J.-L.: Efficient time-
interrupted and time-continuous collision de-
tection among polyhedral objects in arbitrary

motion. Journal of Information Science and
Engineering 15 (1999), 769–799. 6

[GD02] GUY S., DEBUNNE G.: Layered shells for fast
collision detection, 2002. Technical Report,
GRAVIR/IMAG, INRIA Grenoble, France. 8,
16

[GDO00] GANOVELLI F., DINGLIANA J.,
O’SULLIVAN C.: Buckettree: Improving
collision detection between deformable
objects. In Proc. of Spring Conference on
Computer Graphics SCCG ’00 (2000). 11

[GK03] GRABNER G., KECSKEMÉTHY A.: Reli-
able multibody collison detection using runge-
kutta integration polynomials. In Proceed-
ings of IDMEC/IST (Lisbon, Portugal, July1–
4 2003). 6

[GLM96] GOTTSCHALK S., LIN M., MANOCHA D.:
OBB-Tree: A hierarchical structure for rapid
interference detection. In SIGGRAPH 96 Con-
ference Proceedings (Aug. 1996), Rushmeier
H., (Ed.), ACM SIGGRAPH, Addison Wesley,
pp. 171–180. 3

[GRLM03] GOVINDARAJU N., REDON S., LIN M.,
MANOCHA D.: Cullide: Interactive collision
detection between complex models in large
environments using graphics hardware. In
Proc. of ACM Graphics Hardware (2003). 13

[GS87] GOLDSMITH J., SALMON J.: Automatic cre-
ation of object hierarchies for ray tracing.
IEEE Computer Graphics and Applications 7,
5 (May 1987), 14–20. 3

[HE01] HAUTH M., ETZMUSS O.: A high perfor-
mance solver for the animation of deformable
objects using advanced numerical methods.
In Proc. Eurographics 2001 (2001), Chalmers
A., Rhyne T.-M., (Eds.), vol. 20(3) of Com-
puter Graphics Forum, pp. 319–328. 15

[HKL∗99] HOFF III K. E., KEYSER J., LIN M.,
MANOCHA D., CULVER T.: Fast computation
of generalized Voronoi diagrams using graph-
ics hardware. In Proceedings of ACM SIG-
GRAPH 1999 (1999), pp. 277–286. 8, 9, 11

[HTG03] HEIDELBERGER B., TESCHNER M., GROSS

M.: Real-time volumetric intersections of de-
forming objects. In Proc. of Vision, Model-
ing, Visualization VMV’03 (2003), pp. 461–
468. 13

[HTG04] HEIDELBERGER B., TESCHNER M., GROSS

M.: Detection of collisions and self-collisions
using image-space techniques. In Proc. of
WSCG’04 (2004), p. to appear. 13, 14, 15

c© The Eurographics Association 2004.



Teschner et al. / Collision Detection for Deformable Objects

[Hub96] HUBBARD P. M.: Approximating polyhedra
with spheres for time-critical collision detec-
tion. ACM Transactions on Graphics 15, 3
(July 1996), 179–210. 3

[IZLM01] III K. E. H., ZAFERAKIS A., LIN M. C.,
MANOCHA D.: Fast and simple 2d geo-
metric proximity queries using graphics hard-
ware. In Symposium on Interactive 3D Graph-
ics (2001), pp. 145–148. 11, 13

[JS01] JONES M. W., SATHERLEY R.: Using dis-
tance fields for object representation and ren-
dering. In Proc. 19th Ann. Conf. of Eurograph-
ics (UK Chapter) (London, 2001), pp. 37–44.
9

[KGL∗98] KRISHNAN S., GOPI M., LIN M.,
MANOCHA D., PATTEKAR A.: Rapid
and accurate contact determination between
spline models using ShellTrees. Computer
Graphics Forum 17, 3 (Sept. 1998). 3

[KHM∗98] KLOSOWSKI J. T., HELD M., MITCHELL

J. S. B., SOWRIZAL H., ZIKAN K.: Effi-
cient collision detection using bounding vol-
ume hierarchies of k-DOPs. IEEE Transac-
tions on Visualization and Computer Graphics
4, 1 (Jan. 1998), 21–36. 3

[KmLD03] KIM Y. J., HOFF III K. E., LIN M. C.,
D.MANOCHA: Closest point query among the
union of convex polytopes using rasterization
hardware. Journal of Graphics Tools (2003).
13

[KOLM02] KIM Y., OTADUY M., LIN M., MANOCHA

D.: Fast penetration depth computation for
physically-based animation. In Proc. of SIG-
GRAPH Symposium on Computer Animation
’02 (2002), pp. 23–31. 13

[KP03] KNOTT D., PAI D.: Cinder: Collision and in-
terference detection in real–time using graph-
ics hardware. In Proc. of Graphics Interface
’03 (2003). 13

[KR03] KIM B., ROSSIGNAC J.: Collision prediction
for polyhedra under screw motions. In ACM
Symposium on Solid Modeling and Applica-
tions (Seattle, Washington, USA, June16–20
2003), pp. 4–10. 6

[KZ03] KLEIN J., ZACHMANN G.: Adb-trees: Con-
trolling the error of time-critical collision de-
tection. In 8th International Fall Workshop
Vision, Modeling, and Visualization (VMV)
(University München, Germany, Nov.19–21
2003). 7

[LAM01] LARSSON T., AKENINE-MÖLLER T.: Col-

lision detection for continuously deforming
bodies. In Eurographics (2001), pp. 325–333.
short presentation. 3, 4, 5

[LAM03] LARSSON T., AKENINE-MÖLLER T.: Effi-
cient collision detection for models deformed
by morphing. The Visual Computer 19, 2 (May
2003), 164–174. 5

[LC92] LIN M. C., CANNY J. F.: Efficient Collision
Detection for Animation. In Proc. 3rd Euro-
graphics Workshop on Animation and Simula-
tion (1992). 7

[LCN99] LOMBARDO J., CANI M.-P., NEYRET F.:
Real-time Collision Detection for Virtual
Surgery. In Proc. Comp. Anim. ’99 (1999),
IEEE CS Press, pp. 82–91. 13, 15

[Mel00] MELAX S.: Dynamic plane shifting bsp
traversal. In Proc. of Graphics Interface ’00
(2000), pp. 213–220. 11

[Mir97] MIRTICH B.: Efficient algorithms for two-
phase collision detection. Tech. Rep. TR-97-
23, Mitsubishi Electric Research Laboratory,
1997. 11

[MKE03] MEZGER J., KIMMERLE S., ETZMUSS O.:
Hierarchical Techniques in Collision Detec-
tion for Cloth Animation. Journal of WSCG
11, 2 (2003), 322–329. 4, 5, 6, 15

[MOK95] MYSZKOWSKI K., OKUNEV O., KUNII T.:
Fast collision detection between complex
solids using rasterizing graphics hardware.
The Visual Computer 11, 9 (1995), 497–512.
13

[PG95] PALMER I. J., GRIMSDALE R. L.: Col-
lision detection for animation using sphere-
trees. Computer Graphics Forum 14, 2 (June
1995), 105–116. 3

[Pro97] PROVOT X.: Collision and Self-Collision
Handling in Cloth Model Dedicated to Design
Garments. In Graphics Interface ’97 (May
1997), Canadian Information Processing So-
ciety, Canadian Human-Computer Communi-
cations Society, pp. 177–189. 4, 6, 15

[PT92] PAYNE B. A., TOGA A. W.: Distance field
manipulation of surface models. IEEE Com-
puter Graphics and Applications 12(1) (Jan-
uary 1992), 65–71. 9

[RCFC03] RAGHUPATHI L., CANTIN V., FAURE F.,
CANI M.-P.: Real-time Simulation of Self-
collisions for Virtual Intestinal Surgery. In
Surg. Sim. & Soft Tis. Model. (2003), Ayache
N., Delingette H., (Eds.), LNCS no. 2673,
Springer, Heidelberg, pp. 15–26. 8, 16

c© The Eurographics Association 2004.



Teschner et al. / Collision Detection for Deformable Objects

[RKC02] REDON S., KHEDDARY A., COQUILLART

S.: Fast continuous collision detection be-
tween rigid bodies. Computer Graphics Fo-
rum (Eurographics) 21, 3 (Sept. 2002), 279–
288. 6

[RL85] ROUSSOPOULOS N., LEIFKER D.: Direct
spatial search on pictorial databases using
packed R-trees. In Proceedings of ACM-
SIGMOD 1985 International Conference on
Management of Data (Austin, Texas, May28–
31 1985), pp. 17–31. 3

[Set96] SETHIAN J.: A fast marching level set method
for monotonically advancing fronts. Proceed-
ings of the National Academy of Science 93(4)
(1996), 1591–1595. 9, 10

[SF91] SHINYA M., FORGUE M.: Interference de-
tection through rasterization. Journal of Visu-
alization and Computer Animation 2 (1991),
132–134. 13

[SGwHS98] SHADE J., GORTLER S., WEI HE L.,
SZELISKI R.: Layered depth images. In Pro-
ceedings of SIGGRAPH ’98 (1998), pp. 231–
242. 13

[SPG03] SIGG C., PEIKERT R., GROSS M.: Signed
distance transform using graphics hardware.
In Proceedings of IEEE Visualization ’03 (Oc-
tober 2003), IEEE Computer Society Press.
10

[SSW95] SCHÖMER E., SELLEN J., WELSCH M.: Ex-
act geometric collision detection. In Proc.
7th Canad. Conf. Comput. Geom. (1995),
pp. 211–216. 6

[THM∗03] TESCHNER M., HEIDELBERGER B.,
MUELLER M., POMERANETS D., GROSS

M.: Optimized spatial hashing for collision
detection of deformable objects. In Pro-
ceedings of Vision, Modeling, Visualization
VMV’03 (2003), pp. 47–54. 11, 12

[Tur90] TURK G.: Interactive collision detection for
molecular graphics. Tech. Rep. TR90-014,
University of North Carolina at Chapel Hill,
1990. 11

[US97] UNO S., SLATER M.: The sensitivity of pres-
ence to collision response. In Proc. of IEEE
Virtual Reality Annual International Sympo-
sium (VRAIS) (Albuquerque, New Mexico,
Mar.01–05 1997), p. 95. 6

[vdB97] VAN DEN BERGEN G.: Efficient collision de-
tection of complex deformable models using
AABB trees. Journal of Graphics Tools 2, 4
(1997), 1–14. 3, 4

[VMT94] VOLINO P., MAGNENAT-THALMANN N.: Ef-
ficient Self-Collision Detection on Smoothly
Discretized Surface Animations using Geo-
metrical Shape Regularity. Computer Graph-
ics Forum 13, 3 (1994), 155–166. 4, 6

[VMT95] VOLINO P., MAGNENAT-THALMANN N.:
Collision and Self-Collision Detection: Ef-
ficient and Robust Solutions for Higly De-
formable Surfaces. In Comp. Animation and
Simulation (1995), Springer Verlag, pp. 55–
65. 4

[VSC01] VASSILEV T., SPANLANG B., CHRYSAN-
THOU Y.: Fast Cloth Animation on Walking
Avatars. In Computer Graphics Forum (Proc.
of Eurographics) (2001). 11, 13

[VT00] VOLINO P., THALMANN N. M.: Implement-
ing Fast Cloth Simulation with Collision Re-
sponse. Computer Graphics Interface (2000).
15

[WK03] WU J., KOBBELT L.: Piecewise linear ap-
proximation of signed distance fields. In Vi-
sion, Modeling and Visualization 2003 Pro-
ceedings (2003), pp. 513–520. 9

[WKE99] WESTERMANN R., KOBBELT L., ERTL T.:
Real-time exploration of regular volume data
by adaptive reconstruction of isosurfaces. The
Visual Computer 15, 2 (1999), 100–111. 9

[Zac98] ZACHMANN G.: Rapid collision detection
by dynamically aligned DOP-trees. In Proc.
of IEEE Virtual Reality Annual International
Symposium; VRAIS ’98 (Atlanta, Georgia,
Mar. 1998), pp. 90–97. 3

[Zac02] ZACHMANN G.: Minimal hierarchical col-
lision detection. In Proc. ACM Sympo-
sium on Virtual Reality Software and Technol-
ogy (VRST) (Hong Kong, China, Nov.11–13
2002), pp. 121–128. 3, 4

[ZL03] ZACHMANN G., LANGETEPE E.: Geomet-
ric data structures for computer graphics. In
Proc. of ACM SIGGRAPH. ACM Transactions
of Graphics, 27–31July 2003. 3

[ZWF∗03] ZHAO Y., WEI X., FAN Z., KAUFMAN A.,
QIN H.: Voxels on fire. In Proceedings of
IEEE Visualization (2003). 8

[ZY00] ZHANG D., YUEN M.: Collision detection for
clothed human animation. In Proceedings of
Pacific Graphics ’00 (2000), pp. 328–337. 11

c© The Eurographics Association 2004.


