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Abstract

Barycentric coordinates for triangles are commonly used in computer graphics,

geometric modelling, and other computational sciences for various purposes. In
this paper, we extend this well-known concept and propose a generalization to sets
of arbitrary polygons in the plane. Besides many other important properties, our

coordinate functions are local and smooth and allow an efficient and robust im-

plementation. These coordinates are particularly useful for interpolating data that
is given at the vertices of the polygons and we present several examples of their
application to common problems in computer graphics and geometric modelling.

1 Introduction

It follows from Ceva’s Theoref(Ceva, 1678) that for any point inside a planar
triangle [v1, v2, v3] there exist three masses, ws, andws, such that, if placed at
the corresponding vertices of the triangle, their centre of mass (or baryQewitie

coincide withwo, i.e.,
w1v1 + W2 + W3v3

w1 + wo + ws

=w. Q)

Mobius’ was the first to study suamass pointsind he defined,, w», andws as the
barycentric coordinatesf v (Mobius, 1827). Evidently, these barycentric coordinates
are only unique up to multiplication by a common non-zero scalar and they are usually
normalizedto sum to one.

These normalized triangular barycentric coordinates are lineaaird have the ad-
ditional property that the-th coordinate has value 1 at and O at the other;. This
is why they are commonly used to linearly interpolate values given at the vertices of
a triangle and have applications in computer graphics (e.g. Gouraud and Phong shad-
ing, texture mapping, ray-triangle-intersection), geometric modelling (e.g. triangular
Bézier patches, splines over triangulations), and many other fields (e.g. the finite ele-
ment method, terrain modelling).

1Giovanni Ceva, 1647-1734
2from greek:3apvs (barys) = heavy, deep, dense
3August Ferdinand Nbius, 1790-1868
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In many applications it would be useful to have a generalization of barycentric coor-
dinates to arbitrary.-sided polygons or even sets of polygons in the plane with vertices
vy, ..., Up. One would then like to have smodtlomogeneous barycentric coordinates
w; : R? — IR that generalize Equation (1),

> wi(v)(v; —v) =0, 2)

=1
and associatedormalized barycentric coordinates

w;(v)
)\Z(U) =< ./ (3)
Zj:l w;(v)

so that any point in the plane can be written as affine combinatiorof vy, ..., v,
with weightsA; (v), ..., A\, (v). Furthermore, these coordinates should satisfyLdre

grange property
1 ifi=jy,

Ailvg) = 0 = {0 if i £ j.

As we will show in Section 3 there are many ways of defining homogeneous barycen-
tric coordinates, but for most choices the normalized coordinates in (3) either are not
well-defined everywhere ifR?, or do not meet the constraints in (4). Nevertheless,
we present a particular choice that fulfills all properties. Our generalized barycentric
coordinates have a number of other important properties and enable a very efficient and
robust implementation as shown in Section 4.

The main application of these coordinates is interpolation and in Section 5 we show
several examples from computer graphics and geometric modelling that can be seen as
interpolation problems and hence can be solved with our approach. In particular, we
propose an improved Phong shading method for non-triangular faces, a simple image
warping technique, and interpolation of data that is specified on planar curves.

4

2 Related Work

2.1 Barycentric Coordinates

Most of the previous work on barycentric coordinates discusses the extensimmix
polygons. The first such generalization appears in the pioneering work of Wachspress
(1975) who was interested in extending the finite element method. Waskspress
coordinatesare rational polynomials and were later generalized to convex polytopes by
Warren (1996) who also showed that they have minimal degree (Warren, 2003). They
can be computed with simple and local formulas in the plane (Meyer et al., 2002) as well
as in higher dimensions (Warren et al., 2003) and have many other nice properties like
affine invariance. An extension of Wachspress coordinatestikly conveyolygons
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BARYCENTRIC COORDINATES FOR ARBITRARY POLYGONS 3

has been suggested by Malsch and Dasgupta (2004b) but their construction is iterative
and the resulting coordinate functions cannot be expressed in a local form.

Other generalizations of barycentric coordinates to convex polygons and even to
the kernel of a star-shaped polygon were presented in the context of triangle mesh
parameterization, for example tléscrete harmoni¢Pinkall and Polthier, 1993; Eck
etal., 1995) and thmean value coordinatd&loater, 2003). Also the natural neighbour
interpolants that were proposed by Sibson (1980, 1981) for the purpose of scattered
data interpolation provide barycentric coordinates for convex polygons, but like the
coordinates in (Farin, 1990) they are not more thdrcontinuous away from the data
points. Hiyoshi and Sugihara (2000) have recently extended Sibson’s approach and
presented’*-continuous coordinates, but their computation is very costly and involves
numerical integration.

Except for the discrete harmonic coordinates, all these coordinates have in common
that they argpositiveover the interior of any convex polygon. In fact, this property has
often been used in the definition of barycentric coordinates instead of the weaker inter-
polation condition (4) which is in any case a consequence of positivity in the convex
case, as discussed by Floater et al. (2005). They also proved that for a convex polygon
the Wachspress and the mean value coordinates are the only positive coordinates with
uniform scaling invariance that can be computed with a local three-point-formula.

For non-convex polygons a usual approach is to triangulate the domain and apply
the standard barycentric coordinates on each triangle, but the result depends on the par-
ticular triangulation chosen and is onfy’-continuous over the edges of the triangles.

To the best of our knowledge, the recent paper by Malsch and Dasgupta (2004a) is the
only one that addresses the construction of smooth coordinates for non-convex poly-
gons. Their coordinate functions are well-defined over the convex hull of any concave
polygon with possible holes.

Contributions. The barycentric coordinates that we present are more general as
they can be constructed for any set of non-intersecting polygons and are well-defined
everywhere in the plane. They are smooth (X&) except at the vertices of the poly-
gons where they are onlg® and can be computed with a simple and local formula.
These properties make them an ideal tool for the interpolation of data that is given at
the vertices.

2.2 Interpolation

The interpolation of data that is given at the vertices of a set of polygons can be seen
as a scattered data interpolation (SDI) problem and many different approaches exist
to solve it, including radial basis functions (Beatson et al., 1999; Buhmann, 2000) and
bivariate splines (Lee et al., 1997{inberger and Zeilfelder, 2000). Such interpolation
problems frequently occur in various fields of science and engineering (e.g. geology,
reverse engineering, numerical simulation) but also in computer graphics and geometric
modelling.

Technical Report No. 5
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Oy enoy

Figure 1: We consider convex (a), star-shaped (b), simple (c), and sets of simple poly-
gons (d), but not polygons with intersecting edges (e) or multiple vertices (f).

One example ismage warping(see Wolberg (1990); Glasbey and Mardia (1998);
Milliron et al. (2002) for an overview of the state-of-the-art) and radial basis func-
tions (Arad et al., 1994; Ruprecht andiler, 1995) as well as B-splines (Lee et al.,
1995, 1997) have been used in this context.

Another important problem is that efansfinite interpolationwhere the data to be
interpolated is given as functions over a set or network of planar curves. There exist
a number of well-established methods for some special cases, like Coons’ or Gordon
surfaces (Farin, 2002) for triangular- or rectangular-shaped input curves, but very few
are known for the general case. The standard approach is to either sample the data and
apply an SDI method or to solve a partial differential equation (PDE) with the given data
as boundary conditions (Chai et al., 1998; Kounchev, 2001). But like the generalization
of Sibson’s interpolants that was suggested by Gross and Farin (1999), this is usually
very costly to compute.

Contributions. Due to the Lagrange property of our generalized barycentric coor-
dinates, interpolation of data that is given at the vertices of a set of polygons can be
done directly and efficiently without solving a linear system. In the context of transfi-
nite interpolation, the locality of our coordinate functions further enables a simple and
progressive update of the solution if the sampling density is increased. Interestingly,
our interpolating surfaces are often strikingly similar to interpolating thin plate splines,
even though our approach requires far less computational effort.

3 Definition and Properties

Let U be an arbitrary polygon or a set of arbitrary polygons in the plane with3
distinct verticesvy,...,v, and non-intersecting (open) edges = (v;,viy1) =
{(1 = p)v; + pviy1 : 0 < p < 1}; see Figure 1 for some examples. Ufis a set of
(possibly nested) polygons, we require the orientations of the polygons to alternate as
shown in Figure 14 (a) in Appendix B.

We define for any € R? the usual Euclidian distaneg(v) = ||v; — v|| to v; and
denote by, (v) thesignedangle in the trianglév, v;, v; 1] at the vertexw. Then

Ai(0) = ri(0)ris (v) sin(a (v)),/2 5)
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Figure 2: Notation used for angles, areas, and distances.

and
Bi(v) = ri—1(v)rig1(v) sin(ai—1 (v) + s (v)) /2 (6)

are thesignedareas of the trianglel®, v;, v;1 1] and[v, v;_1,v;11], respectivel§; see
Figure 2. It is well-known (Coxeter, 1969) that

A;(v), —B;(v), Ai—1(v)

are the homogeneous barycentric coordinates foramyR* with respect to the trian-
gle A; = [vi—1,v;,v;41], in other words,

Ai(’U)(’Ui,1 — U) - Bl(’U)(’Ul - 'U) + Aifl(’l))('l)zurl - U) = 0. (7)

Note that every vertex; of ¥ has a corresponding coordinate in each of the three
triangles/A;_1, A\;, andA,;;1. We can now take for every; a weighted average of
these three coordinates and define

w;(v) = bi—1(v) Ai—2(v) — bi(v) Bi(v) + bit1(v) it (v), (8)

where the weight functions; : IR*> — IR can be chosen arbitrarily. Then it follows
immediately from (7) that these functions are homogeneous barycentric coordinates
with respect tol, i.e. they satisfy Equation (2).

The critical part now is the normalization of these homogeneous coordinates, i.e. to
guarantee that the denominator in (3) is non-zero for everylR.

For convex polygons this is relatively easy to achieve. Indeed, it can be derived
from (8) that

W(v) = wi(v)=> bi(v)C;, 9)
i=1 i=1

whereC; = A;_1(v) + A;(v) — B;(v) is the signed area af;; see Figure 2. Now, if
¥ is convex then al’; have the same sign (which depends on the orientatidr) aind
so as long as all the weight functiohsare positive (or negative) théi (v) can never
be zero.

4Note that we always treat indices cyclically with respect to each of the componeiits Hence, if
V¥ is a set of two polygons with; andnq vertices, there,, = (vn,,v1) and By, +1(v) is the area of

[’U, Unqi+ng, 'Un1+2]-
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Figure 3: Zero-set of the denominati (v) for the Wachspress (green) and the dis-
crete harmonic coordinates (red) for a concave polygon (black) and contour plots of the
normalized coordinate functiok; that corresponds to the topmost vertex.

But in the general case that we consider it is more difficult to avoid dividing by zero.
Consider, for example, th&/achspresanddiscrete harmonic coordinatalat can be
generated by the weight functions

ri(v)?

1
Wy=————  and bP(v) = A1 (0)A;(v)

¢ V)= T A

Both coordinates are well-defined forinside any convex polygon. However, inside
a non-convex polygoriy/(v) can become zero, and the normalized coordinajés)
may have non-removable poles, as illustrated for a concave quadrilateral in Figure 3.

To avoid this problem, Equation (9) suggests taking weight functionsblike =
1/C; so thatW(v) = n. But although this particular choice gives well-defined (and
linear) normalized coordinatek; as long as no three consecutive verticesloare
collinear, they unfortunately do not satisfy Equation (4).

However, we found that the weight functions

ri(v)

biv) = A1 (0) A3 ()

guarantedV (v) # 0 for anyv € IR? (see Appendix B), and at the same time, the
corresponding normalized coordinates have the Lagrange property (see Appendix C).
For this particular choice df;, Equation (8) becomes

wi(v) = ri—1(v)A;(v) — (V) Bi(v) + 1101 (v) Ai—1 (V)
! Aifl(U)Ai(U) ’

(10)

which we recognize as thmean value coordinatea the form given by Floater et al.
(2005). By using (5) and (6) and some trigonometric identities this formula simplifies

to
wi(v)  tan(ag—1(v)/2) + tan(a;(v)/2)
2 ri(v) ’ (1)

which is the formula that originally appeared in (Floater, 2003).
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Let us now summarize the properties of the normalized barycentric coordikates
that are defined by these, and Equation (3):

1.

10.

Affine precision. It follows from (2) and (3) that

Z Ai(0)e(vs) = o(v)

for any affine functiony : R?> — IR? andv € R>.

. Partition of unity. With ¢(v) = 1 it follows immediately from the previous

property that """ | \;(v) = 1 for anyv € R*.

. Lagrange property. The functions\; satisfy;(v;) = ¢, ; (see Appendix C).
. Linearity property. The functions); are linear along the edges of ¥ (see

Appendix C).

. Linear independence. An immediate consequence of the previous property is

thatif > 1" | ¢;\i(v) =0forallv € IR? then allc; must be zero.

. Smoothness. The functions); are C* everywhere except at the vertices

where they are onlg® (see Appendix C).

. Similarity invariance. Since the homogeneous coordinatgsdepend only on

areas and distances and since any uniform scale factor cancels out in the normal-
ization (3), it follows that ife : R? — IR? is a similarity transformatio'hand
)\; are the normalized barycentric coordinates with respedt te »(), then

Ai(v) = Ai(p(v))-

Locality. The homogeneous coordinate functiondepends only on the vertices
Vi—1, Vi, andvﬂ_l of U,

Refinability. If we refine® to ¥ by adding the vertex = (1 — L)V + pvjita,

and denote by\; and \ the normalized barycentric coordinates with respect to

U then we have\;, = >\ +(1- )/\ Ajt1 = A]+1 +,u)\ and)\;, = \; for
i#j,7+1(see Appendlx A).

Positivity. It follows from (11) that the functions; are positive inside the kernel
of a star-shaped polygon and in particular inside a convex polygon.

Figure 4 illustrates the typical behaviour of the functidnor a set of simple polygons.

The main application of these generalized barycentric coordinates is the interpolation
of values that are given at the verticesof U. In other words, if a data valug € IR?
is specified at each;, then we are interested in the functién: R? — RY that is
defined by

D=3 N =Y wi), / W (v). (12)

5a translation, rotation, uniform scaling, or combination of these

Technical Report No. 5
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Figure 4: In this exampley is a set of four simple polygons and we show contour
plots of three of our generalized barycentric coordinate functionsrhey equal 1 at
the vertexv;, equal O at all other vertices df, and are linear along edges.

Due to the Lagrange and linearity properties of the coordinates, this function interpo-
latesf; atv; and is linear along the edgesof W. An example where thé; are colour
values is shown in Figure 5.

4 Implementation

For the actual computation of the interpolation functiBrwe use Equation (11) to
determine the homogeneous coordinatg&v) and their sumi¥ (v), but we suggest
a slight modification that avoids the computation of the anglgs) and enables an
efficient handling of the special cases that can occur. If wa;let) = v; — v and
denote the dot product @f(v) ands;+1(v) by D;(v), then we have

~ 1—cos(ai(v))  ri(v)rig1(v) — Ds(v)
tan(ai(0)/2) = = Ty T J;Ai(v) ’

and we use this formula as long 4s(v) # 0. Otherwiseyp lies on the line through;
andv; ., and we distinguish three caseswlt= v; orv = v;1, then we do not bother
to compute thev; (v) and simply sef’(v) = f; or F(v) = f;11. Likewise, ifv lies on
the edges;, then we use the linearity df alonge; to determineF'(v) directly. Note
that we can easily identify this case because it implie&v) < 0. Finally, if v is not
on ¥ then we conclude that;(v) = 0 and thereforean(«;(v)/2) = 0.
The pseudo-code for computig(v) is given in Figure 6. Note that we can also use

this approach to compute each single coordinate functjdsy simply settingf; = J;;.
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Figure 5: Colour interpolation with generalized barycentric coordinates for the poly-
gons from Figure 4.

function F'(v)
fori =1tondo
S; ‘= V; — U
fori =1tondo
7= ||si|
A; = det(s;, 8541)/2
D; := (s;,8i41)

if r; = 0then v =wv;
return f;
if A; =0andD; < 0then v € e
Tig1 = [|Sis1ll
return(ry41 fi + rifiv1)/(ri + 1iv1)
f:=0
W:=0
fori =1tondo
w:=0

if A;_1 # 0then
wi=w+ (ri—1 — Dij_1/13)/Ai—1
if A; # 0then
w:=w+ (riy1 — Di/ri) [ A;
f=f+uwfi
W =W+uw
returnf/W

Figure 6: Pseudo-code for evaluating the interpolation function.
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(a) I (b) i
(c) ' (d) I

Figure 7: Rendering of three pentagons with flat shading (a), Gouraud shading (b),
Phong shading (c), and generalized Phong shading (d).

5 Applications and Results

We now present three applications of our generalized barycentric coordinates that
demonstrate their potential impact on computer graphics and geometric modelling.

5.1 Phong Shading for Arbitrary Polygons

The standard approach to treating an arbitrary polygon in the rendering pipeline is to
first tessellate it into triangles and then process each triangle in turn. For example,
OpenGL automatically splits a pentagonal face into three triangles. This gives the ex-
pected result if flat shading is used, but the splits become visible as soon as Gouraud
shading or Phong shading is turned on; see Figure 7 (a—c).

Phong shading uses triangular barycentric coordinates to linearly interpolate the nor-
mals that are given at the vertices of the face over each generated triangle. This can
be seen for the two triangles that are marked by the green and blue spots in the Phong-
shaded result (c). Since the lower two vertices of both triangles have identical normals,
the interpolated normal as well as the resulting colour value vary linearly inside the
triangles. Instead, we can improve the idea of Phong shading and use the generalized
barycentric coordinates to smoothly interpolate the normals over the whole polygon,
giving a much more pleasant rendering result; see Figure 7 (d).
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maaa
/\ 0 u
/\ 0 u

(@

Figure 8: Flat (a), Gouraud (b), and Phong shading (c) of a simple triangle mesh. Gen-
eralized barycentric coordinates can be used to smoothly interpolate the vertices of the
exterior ring of triangles (d) and their normals. The interpolated normals can then be
used to shade the triangle mesh (e) or the interpolated geometry (f). This approach can
be extended to the interior triangle fan (g—i).

Another example is shown in Figure 8. We first took the flat
configuration on the right as a parameterization of the triang
mesh in (a) and regarded the two rings of vertices as polygo
(thick lines). Then we smoothly interpolated the normals that we
specified at these vertices over the exterior ring of triangles (gr
area) with generalized barycentric coordinates and used the res
for a superior shading of the triangle mesh (e).

The generalized barycentric coordinates further allowed us to interpolate the vertex
positions instead of the normals and to create the smooth blend surface between the
two polygons that is shown in (d) with shading according to the surface normal and
in (f) with shading according to the interpolated normals. Of course, the interpolation of
normals and geometry is not limited to the grey region and can be extended to the whole
triangle mesh (g-i). Note that the interpolation surface in (g) is defined by all vertices
of the triangle mesh except for the central vertex and therefore does not necessarily pass
through it.
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(© (d)

Figure 9: The Leaning Tower of Pisa (a) can be straightened by our barycentric warp
function which maps the two source polygons (b) to the target polygons (c). The
Straight Tower of Pisa is shown in (d).

5.2 Image Warping

Another potential application of the generalized barycentric coordinates is image warp-
ing as they offer a particularly simple solution to this problem that can briefly be stated
as follows.

Given a rectangular regidn, a set ofsource polygon® with verticesy; € €2, and a
topologically equivalefitset oftarget polygonsl with verticesd; € €2, we would like
to construct a smoottvarp functionf : Q — Q that maps each; to v;. This warp
function can then be used to deforns@urce imagd : 2 — C that mapd? to some
colour space into atarget imagel : Q — C by simply setting/ = I o f~1. For
practical reasons, thiaverse mapping = f~! is often constructed instead ¢f

Such an inverse warp function can easily be defined with the generalized barycen-
tric coordinates\; of U. It follows immediately from the Lagrange property that the
functiong : IR? — IR? with

n
g(z) = M), (13)
=1
maps eacly; to v; and thus defines a proper inverse warp function. The warped im-
age can now be generated by simply setting the colour of each targetzpixxel to
the colour of the source poigx) in I. In our examples we used a simple bilinear
interpolation to determiné(g(x)) from the 2<2 grid of pixels surrounding(z).
Like warping with B-splines and radial basis functions with linear precision, this
barycentric warpreproduces affine transformations. In other words; ifR? — IR?
is an affine transformation anél = o(¥) then/ = I o »~'. Indeed, since); =
o~ 1(%;) it follows from the affine precision property of the barycentric coordinates that

g(x) = ¢~ }(z) in (13).

Swith the same number of vertices and components
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Figure 10: Warping an image (a) with generalized barycentric coordinates (b) and radial
basis functions (c,d) by moving the vertices of two nested polygons (blue).

Another property of the barycentric warp is that it is linear along the edges of the
polygons. Figure 10 (b) shows the result of warping the image in (a) after moving the
vertices of two nested polygons. The exterior polygon with 14 vertices controls the
global shape of the warp, while the interior polygon with 10 vertices is used to deform
the star. The resultis smooth and the star is clearly mapped to a star with straight edges.

For comparison, we also generated thia plate splinewarp (c) using radial basis
interpolation with basis functios(r) = r2logr (see Arad et al. (1994) for details).
This warp does not reproduce the straight edges of the star, but a common trick to
overcome this drawback is to sample the edges with additional vertices. For example,
by taking 20 samples per edge, we obtained the result in (d). It is very similar to the
barycentric warp, but takes considerably longer to compute: 20 seconds foxk&@00
image on a 2.8 Ghz Pentium, while the barycentric warp took less than one second.
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This is due to the large linear system that needs to be solved and the large number
of basis functions that have to be evaluated. In generalisfthe number of vertices
in U andk is the number of samples per edge, then solving the linear system with a
standard method is an(k® - n®) operation and evaluating the pixels of I is of order
O(m-k-n). Of course there exist specialized solvers that can reduce the cost for solving
the linear system, but the advantage of the barycentric warp is that it does not require
any system to be solved and the whole computation is of ddder - n) only.

We conclude that the barycentric warp is particularly useful whenever straight edges
need to be preserved. For example, making the boundary of the rectangular image
one of the source and the target polygons guarantees that the warped image will be
rectangular too; see Figure 9.

5.3 Transfinite Interpolation

Our generalized barycentric coordinates also provide an efficient solution to the fol-
lowing interpolation problem. Given a set of closed planar curyesind some
d-dimensional data over these curvés: ¢; — IR we would like to have a func-
tion F : R? — R that interpolates the given data, ife(v) = d;(v) for anyv € c;.

The obvious approach is to approximate the given cutyesith a set of polygons
¥ whose vertices; lie on the curves:;. Then the function®” in Equation (12) with
fi = d;(v;) clearly is an approximate solution of the stated interpolation problem. And
as the polygong converge to the curves by increasing the sampling density, so does
the functionF’ converge to the desired solution.

The interesting fact now is that the structure of our generalized barycentric coor-
dinates allows an efficient update of the solution if the sampling density is increased.
Assume that we computdd(v) and alsdV (v) from Equation (9) for some polygo#
and then refina to ¥ by adding a vertex with data valuef = d;(0) betweery; and
vj+1. Then it follows from Appendix A that the refined interpolation funct@(v) can
be written as

F(v) = F(v) + W(f —p(v)F(v) —o(v)fj — 7(v) fj+1) (14)
with .
W(v) = W) + plv)i(v) (15)

wherew(v) is the new homogeneous coordinate functionifandp(v), o(v), andr(v)
are the normalized barycentric coordinate$ wfith respect to the triangle, v;, vj4+1].
Note thatp, o, andr can be computed from the same ingredients as

In the example in Figure 11, we exploited this recurrence relation as follows. We
first sampled the three given curves uniformly with 100 verticeand computed the
curve normalsy; atv;. Then we evaluated the interpolating functibras well ag¥ on
a regular 512512 grid, yielding valueg,; andW;,; with 0 < k,1 < 511. We finally
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(@) (b)

Figure 11: Three curves with normal vectors (a) and a LIC visualization of the inter-
polated vector field (b). The colour refers to the lengtsf the vectors (white? = 1,
blue:¢ > 1,red:? < 1).

refinedW successively by splitting the edge with the largest approximation error to the
curve and updatedl;,; andWW;; according to (14) and (15). We stopped the refinement
process as soon asaxy; || Fx — Fi|| < 0.001, i.e. when the maximum update went
below 1% of the length of the given vectors. The final polygon consisted of 357 vertices
and it took about 10 seconds to compute the final valties

Another example where we interpolated height data is shown in Figure 12. We first
used Shewchuk’siangle program (Shewchuk, 2002) to generate a regular triangulation
of the domain and the 2,500 vertices and edgeB.ofhen we evaluated the interpolat-
ing function at the 100,000 vertices of this constrained Delaunay triangulation, which
took about 25 seconds. We also computed the interpolating thin plate spline for com-
parison and found the height difference between both surfaces to be less than 10% of
the maximum value.

6 Conclusions

We have presented a natural generalization of triangular barycentric coordinates both
to arbitrary polygons and even to sets of polygons. Our generalized barycentric coor-
dinates have a number of important properties and are particularly useful for the inter-
polation of data that is given at the vertices of the polygons. As shown in Figures 10
and 12, the behaviour of the interpolant is strikingly similar to that of thin plate splines.
However, unlike thin plate splines, our interpolant is extremely fast to evaluate. In our
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g ;\
(b)

(©) (d)

Figure 12: Interpolation of height values (red) that are given as smooth functions over
the four curves in (a) with generalized barycentric coordinates (b) and with a thin plate
spline (c). The difference of both surfaces is shown in (d).

™

implementation we have typically seen around 10,000,000 evaluations of the coordi-
nates\; per second.

We note that, in contrast to Sibson’s coordinates for scattered data, our coordinates
have global support and are not everywhere positive in the case of arbitrary polygons.
On the other hand it is probably due to these properties that our interpolants behave so
nicely. In the context of image warping, this lack of positivity means that our barycen-
tric warp function is not guaranteed to be one-to-one, except if both the source and the
target polygon are convex. But nevertheless the method appears to work very well in
practice.
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7 Future Work

An interesting question for future research is whether our generalized barycentric coor-
dinates can be implemented in the graphics hardware to further speed up the computa-
tion. This would be useful for image warping and even more for our improved Phong
shading. The algorithm for evaluating the interpolation function seems to be simple
enough to be coded in the fragment shader of the GPU and could further be simplified
because the entities(v) and A;(v) are linear functions and destined to be generated

by the rasterizer through linear interpolation of the values computed at the vertices
However, as long as the graphics hardware does not provide loops and the code must
therefore be replicated times, and as long as the code length of programs on the GPU

is restricted, the implementation will be limited to work only for small

We also plan to investigate two very promising extensions of our coordinates. Firstly,
we are confident that they can be generalized to polyhedra of arbitrary genus in 3D,
leading to an analogous transfinite interpolation of data over closed surfaces. Secondly,
we believe that our barycentric coordinates can be generalized from polygons to smooth
closed curves or sets of curves in the plane. We will thoroughly analyse the mathemat-
ical and computational aspects of both of these generalizations.

Finally, we would like to be able to interpolate data over curves, where not only
height data are specified but also tangent data, and possibly higher order derivatives.
Our coordinates do not currently allow such Hermite interpolation, but we have some
ideas on how this might be achieved, and we will explore these in future work.
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Figure 13: Notation for refining a polygon by adding a vertex.

A Refinability

If we refine the polygon? to T by adding a vertex; betweenv; andv;4, as in Fig-

ure 13, then it follows from the locality of the homogeneous coordinatesithat w;

fori # j,j + 1. According to Equation (11), the other three homogeneous coordinates
are

If we now write ¢ as an affine combination ef v;, andv, 14, i.e.,
0 = p(v)v + o (v)v; + T(V)vj4
with barycentric coordinates

_ 7(v)sinat(v)
ov) = rj(v)sina;(v)’

and

pv) =1—0(v) =7(v),
then some elementary transformations show that the homogeneous coordinates
w;+1 can be expressed as

wj(v) = (V) + o)D),  wjt1(v) = @j41(v) +7(V)D(V),

and that the sum of the refined homogeneous coordinates satisfies

o~

W(v) = W(v) + p(v)w(v).

It further follows thatW(v) = W {(v) in the special case thatlies on the edge; =
(vj,vj41) since therp(v) = 0.
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(a) (b)

Figure 14: Interior and orientation of a set of polygons (a) and partitioning into sectors
(b) with exit (solid) and entry edges (dashed).

B Normalization

The most important property of our homogeneous coordinates is that theifi&um
is never zero for any ¢ ¥ and therefore the normalization in (3) is well-defined. We
can even show thd¥/ (v) is positive in the interior oft and negative otherwise. For a
set of polygons like in Figure 14 (a) we define the grey region as the interior and further
assume the polygons to be orientated as indicated.

Now, letv be a vertex insidel. We first consider the rays from through the
verticesv; and add all intersection points t as shown in Figure 14 (b). According
to Appendix A this does not chand& (v). Next we consider for any of the radial
sectors between two neighbouring rays all edges inside the sector and classify them
asexit edgegsolid) orentry edgegdashed), depending on whether a traveller coming
from v exits or enters the interior of at the edge. If we then define for each edge
e; = (vi,vi+1) the value

1 1
i = | — t i/2).
Ki (Ti + Ti+1> an(«;/2)
then it follows from the orientation o¥ that x; is positive ife; is an exit edge and
negative ife; is an entry edge. And for edges that lie on one of the rays, we have
R; = 0.
Now lete; be one of the entry edges. Then there always exists an exitgdge¢he

same sector that is closer4psee Figure 14 (b). But as; = —«; and at least one of
the inequalities:; < r;1; andr;; < r; is strict, we have

wo= (L4 L Vean(a,2) > (L4
= ( ) tantas/2) >

i Ti41 Ty Titl

) tan(—a; /2) = —ki.

This means that the negativg of the entry edge; is counterbalanced by the positive
x; of the exit edgez;. As this holds for all entry edges (without using any exit edge
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twice) and also in the case thditis a set of (possibly nested) polygons, we conclude

that
Z Kk; > 0.
=1

But the sum of the:; can be rearranged, by a change of summation index, to be half the
sum of thew; (v) in the form of Equation (11) and therefovE (v) is positive for anyv
inside¥. Likewise one can show th&¥ (v) is negative over the exterior df.

C Lagrange and Linearity Property

From the representation of the homogeneous coordinates in Equation (11) it follows
thatw;(v) is C*° everywhere except at the vertices 1, v;, v;+1 and the edges;_1,

e;. As a consequence, the normalized coordinatés) areC> at allv ¢ ¥. To study

the behaviour of\; on one of the edges; of ¥, we consider the slightly modified
homogeneous coordinates

_ 1) (v)

r;(v)

wherez;(v) = tan(o;(v)/2) sin(e;(v))/2. Then we have for any € e; thatz;(v) =0
for i # j andz;(v) = 1 and thereforav;(v) = r;41(v), W41 (v) = r;(v), and
w;(v) = 0fori # 7,5 + 1. It follows that\;(v) = 0 forall i # j,5 + 1 and

(zi—1(v) + zi(v)),

R 251 C) oy = r;(v)
)\J( ) rj(U)+T7j+1(’U)’ )\]+1( ) rj(v)—&-rjﬂ(v)’

which are the standard barycentric coordinates on an edge, convergipgasu ap-
proaches;. Further it is clear that the functions areC*® overe; and so are the,;.
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