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Abstract

Barycentric coordinates for triangles are commonly used in computer graphics,
geometric modelling, and other computational sciences for various purposes. In
this paper, we extend this well-known concept and propose a generalization to sets
of arbitrary polygons in the plane. Besides many other important properties, our
coordinate functions are local and smooth and allow an efficient and robust im-
plementation. These coordinates are particularly useful for interpolating data that
is given at the vertices of the polygons and we present several examples of their
application to common problems in computer graphics and geometric modelling.

1 Introduction

It follows from Ceva’s Theorem1 (Ceva, 1678) that for any pointv inside a planar
triangle [v1, v2, v3] there exist three massesw1, w2, andw3, such that, if placed at
the corresponding vertices of the triangle, their centre of mass (or barycentre2) will
coincide withv, i.e.,

w1v1 + w2v2 + w3v3

w1 + w2 + w3
= v. (1)

Möbius3 was the first to study suchmass pointsand he definedw1, w2, andw3 as the
barycentric coordinatesof v (Möbius, 1827). Evidently, these barycentric coordinates
are only unique up to multiplication by a common non-zero scalar and they are usually
normalizedto sum to one.

These normalized triangular barycentric coordinates are linear inv and have the ad-
ditional property that thei-th coordinate has value 1 atvi and 0 at the othervj . This
is why they are commonly used to linearly interpolate values given at the vertices of
a triangle and have applications in computer graphics (e.g. Gouraud and Phong shad-
ing, texture mapping, ray-triangle-intersection), geometric modelling (e.g. triangular
Bézier patches, splines over triangulations), and many other fields (e.g. the finite ele-
ment method, terrain modelling).

1Giovanni Ceva, 1647–1734
2from greek:βα̃ρύς (barys) = heavy, deep, dense
3August Ferdinand M̈obius, 1790–1868
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2 K. Hormann

In many applications it would be useful to have a generalization of barycentric coor-
dinates to arbitraryn-sided polygons or even sets of polygons in the plane with vertices
v1, . . . , vn. One would then like to have smoothhomogeneous barycentric coordinates
wi : IR2 → IR that generalize Equation (1),

n∑
i=1

wi(v)(vi − v) = 0, (2)

and associatednormalized barycentric coordinates,

λi(v) =
wi(v)∑n

j=1 wj(v)
, (3)

so that any pointv in the plane can be written as anaffine combinationof v1, . . . , vn

with weightsλ1(v), . . . , λn(v). Furthermore, these coordinates should satisfy theLa-
grange property

λi(vj) = δij =

{
1 if i = j,

0 if i 6= j.
(4)

As we will show in Section 3 there are many ways of defining homogeneous barycen-
tric coordinates, but for most choices the normalized coordinates in (3) either are not
well-defined everywhere inIR2, or do not meet the constraints in (4). Nevertheless,
we present a particular choice that fulfills all properties. Our generalized barycentric
coordinates have a number of other important properties and enable a very efficient and
robust implementation as shown in Section 4.

The main application of these coordinates is interpolation and in Section 5 we show
several examples from computer graphics and geometric modelling that can be seen as
interpolation problems and hence can be solved with our approach. In particular, we
propose an improved Phong shading method for non-triangular faces, a simple image
warping technique, and interpolation of data that is specified on planar curves.

2 Related Work

2.1 Barycentric Coordinates

Most of the previous work on barycentric coordinates discusses the extension toconvex
polygons. The first such generalization appears in the pioneering work of Wachspress
(1975) who was interested in extending the finite element method. TheseWachspress
coordinatesare rational polynomials and were later generalized to convex polytopes by
Warren (1996) who also showed that they have minimal degree (Warren, 2003). They
can be computed with simple and local formulas in the plane (Meyer et al., 2002) as well
as in higher dimensions (Warren et al., 2003) and have many other nice properties like
affine invariance. An extension of Wachspress coordinates toweakly convexpolygons
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BARYCENTRIC COORDINATES FOR ARBITRARY POLYGONS 3

has been suggested by Malsch and Dasgupta (2004b) but their construction is iterative
and the resulting coordinate functions cannot be expressed in a local form.

Other generalizations of barycentric coordinates to convex polygons and even to
the kernel of a star-shaped polygon were presented in the context of triangle mesh
parameterization, for example thediscrete harmonic(Pinkall and Polthier, 1993; Eck
et al., 1995) and themean value coordinates(Floater, 2003). Also the natural neighbour
interpolants that were proposed by Sibson (1980, 1981) for the purpose of scattered
data interpolation provide barycentric coordinates for convex polygons, but like the
coordinates in (Farin, 1990) they are not more thanC1-continuous away from the data
points. Hiyoshi and Sugihara (2000) have recently extended Sibson’s approach and
presentedCk-continuous coordinates, but their computation is very costly and involves
numerical integration.

Except for the discrete harmonic coordinates, all these coordinates have in common
that they arepositiveover the interior of any convex polygon. In fact, this property has
often been used in the definition of barycentric coordinates instead of the weaker inter-
polation condition (4) which is in any case a consequence of positivity in the convex
case, as discussed by Floater et al. (2005). They also proved that for a convex polygon
the Wachspress and the mean value coordinates are the only positive coordinates with
uniform scaling invariance that can be computed with a local three-point-formula.

For non-convex polygons a usual approach is to triangulate the domain and apply
the standard barycentric coordinates on each triangle, but the result depends on the par-
ticular triangulation chosen and is onlyC0-continuous over the edges of the triangles.
To the best of our knowledge, the recent paper by Malsch and Dasgupta (2004a) is the
only one that addresses the construction of smooth coordinates for non-convex poly-
gons. Their coordinate functions are well-defined over the convex hull of any concave
polygon with possible holes.

Contributions. The barycentric coordinates that we present are more general as
they can be constructed for any set of non-intersecting polygons and are well-defined
everywhere in the plane. They are smooth (i.e.C∞) except at the vertices of the poly-
gons where they are onlyC0 and can be computed with a simple and local formula.
These properties make them an ideal tool for the interpolation of data that is given at
the vertices.

2.2 Interpolation

The interpolation of data that is given at the vertices of a set of polygons can be seen
as a scattered data interpolation (SDI) problem and many different approaches exist
to solve it, including radial basis functions (Beatson et al., 1999; Buhmann, 2000) and
bivariate splines (Lee et al., 1997; Nürnberger and Zeilfelder, 2000). Such interpolation
problems frequently occur in various fields of science and engineering (e.g. geology,
reverse engineering, numerical simulation) but also in computer graphics and geometric
modelling.
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4 K. Hormann

(a) (d)(c)(b) (e) (f)

Figure 1: We consider convex (a), star-shaped (b), simple (c), and sets of simple poly-
gons (d), but not polygons with intersecting edges (e) or multiple vertices (f).

One example isimage warping(see Wolberg (1990); Glasbey and Mardia (1998);
Milliron et al. (2002) for an overview of the state-of-the-art) and radial basis func-
tions (Arad et al., 1994; Ruprecht and Müller, 1995) as well as B-splines (Lee et al.,
1995, 1997) have been used in this context.

Another important problem is that oftransfinite interpolationwhere the data to be
interpolated is given as functions over a set or network of planar curves. There exist
a number of well-established methods for some special cases, like Coons’ or Gordon
surfaces (Farin, 2002) for triangular- or rectangular-shaped input curves, but very few
are known for the general case. The standard approach is to either sample the data and
apply an SDI method or to solve a partial differential equation (PDE) with the given data
as boundary conditions (Chai et al., 1998; Kounchev, 2001). But like the generalization
of Sibson’s interpolants that was suggested by Gross and Farin (1999), this is usually
very costly to compute.

Contributions. Due to the Lagrange property of our generalized barycentric coor-
dinates, interpolation of data that is given at the vertices of a set of polygons can be
done directly and efficiently without solving a linear system. In the context of transfi-
nite interpolation, the locality of our coordinate functions further enables a simple and
progressive update of the solution if the sampling density is increased. Interestingly,
our interpolating surfaces are often strikingly similar to interpolating thin plate splines,
even though our approach requires far less computational effort.

3 Definition and Properties

Let Ψ be an arbitrary polygon or a set of arbitrary polygons in the plane withn ≥ 3
distinct verticesv1, . . . , vn and non-intersecting (open) edgesei = (vi, vi+1) =
{(1− µ)vi + µvi+1 : 0 < µ < 1}; see Figure 1 for some examples. IfΨ is a set of
(possibly nested) polygons, we require the orientations of the polygons to alternate as
shown in Figure 14 (a) in Appendix B.

We define for anyv ∈ IR2 the usual Euclidian distanceri(v) = ‖vi − v‖ to vi and
denote byαi(v) thesignedangle in the triangle[v, vi, vi+1] at the vertexv. Then

Ai(v) = ri(v)ri+1(v) sin(αi(v))/2 (5)
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Figure 2: Notation used for angles, areas, and distances.

and
Bi(v) = ri−1(v)ri+1(v) sin(αi−1(v) + αi(v))/2 (6)

are thesignedareas of the triangles[v, vi, vi+1] and[v, vi−1, vi+1], respectively4; see
Figure 2. It is well-known (Coxeter, 1969) that

Ai(v), −Bi(v), Ai−1(v)

are the homogeneous barycentric coordinates for anyv ∈ IR2 with respect to the trian-
gle4i = [vi−1, vi, vi+1], in other words,

Ai(v)(vi−1 − v)−Bi(v)(vi − v) + Ai−1(v)(vi+1 − v) = 0. (7)

Note that every vertexvi of Ψ has a corresponding coordinate in each of the three
triangles4i−1, 4i, and4i+1. We can now take for everyvi a weighted average of
these three coordinates and define

wi(v) = bi−1(v)Ai−2(v)− bi(v)Bi(v) + bi+1(v)Ai+1(v), (8)

where the weight functionsbi : IR2 → IR can be chosen arbitrarily. Then it follows
immediately from (7) that these functionswi are homogeneous barycentric coordinates
with respect toΨ, i.e. they satisfy Equation (2).

The critical part now is the normalization of these homogeneous coordinates, i.e. to
guarantee that the denominator in (3) is non-zero for everyv ∈ IR2.

For convex polygons this is relatively easy to achieve. Indeed, it can be derived
from (8) that

W (v) =
n∑

i=1

wi(v) =
n∑

i=1

bi(v)Ci, (9)

whereCi = Ai−1(v) + Ai(v) − Bi(v) is the signed area of4i; see Figure 2. Now, if
Ψ is convex then allCi have the same sign (which depends on the orientation ofΨ) and
so as long as all the weight functionsbi are positive (or negative) thenW (v) can never
be zero.

4Note that we always treat indices cyclically with respect to each of the components inΨ. Hence, if
Ψ is a set of two polygons withn1 andn2 vertices, thenen1 = (vn1 , v1) andBn1+1(v) is the area of
[v, vn1+n2 , vn1+2].
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Figure 3: Zero-set of the denominatorW (v) for the Wachspress (green) and the dis-
crete harmonic coordinates (red) for a concave polygon (black) and contour plots of the
normalized coordinate functionλi that corresponds to the topmost vertex.

But in the general case that we consider it is more difficult to avoid dividing by zero.
Consider, for example, theWachspressanddiscrete harmonic coordinatesthat can be
generated by the weight functions

bW
i (v) =

1
Ai−1(v)Ai(v)

and bD
i (v) =

ri(v)2

Ai−1(v)Ai(v)
.

Both coordinates are well-defined forv inside any convex polygon. However, inside
a non-convex polygon,W (v) can become zero, and the normalized coordinatesλi(v)
may have non-removable poles, as illustrated for a concave quadrilateral in Figure 3.

To avoid this problem, Equation (9) suggests taking weight functions likebi(v) =
1/Ci so thatW (v) = n. But although this particular choice gives well-defined (and
linear) normalized coordinatesλi as long as no three consecutive vertices ofΨ are
collinear, they unfortunately do not satisfy Equation (4).

However, we found that the weight functions

bi(v) =
ri(v)

Ai−1(v)Ai(v)

guaranteeW (v) 6= 0 for any v ∈ IR2 (see Appendix B), and at the same time, the
corresponding normalized coordinates have the Lagrange property (see Appendix C).
For this particular choice ofbi, Equation (8) becomes

wi(v) =
ri−1(v)Ai(v)− ri(v)Bi(v) + ri+1(v)Ai−1(v)

Ai−1(v)Ai(v)
, (10)

which we recognize as themean value coordinatesin the form given by Floater et al.
(2005). By using (5) and (6) and some trigonometric identities this formula simplifies
to

wi(v)
2

=
tan(αi−1(v)/2) + tan(αi(v)/2)

ri(v)
, (11)

which is the formula that originally appeared in (Floater, 2003).
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Let us now summarize the properties of the normalized barycentric coordinatesλi

that are defined by thesewi and Equation (3):

1. Affine precision. It follows from (2) and (3) that

n∑
i=1

λi(v)ϕ(vi) = ϕ(v)

for any affine functionϕ : IR2 → IRd andv ∈ IR2.

2. Partition of unity. With ϕ(v) = 1 it follows immediately from the previous
property that

∑n
i=1 λi(v) = 1 for anyv ∈ IR2.

3. Lagrange property. The functionsλi satisfyλi(vj) = δi,j (see Appendix C).

4. Linearity property. The functionsλi are linear along the edgesej of Ψ (see
Appendix C).

5. Linear independence. An immediate consequence of the previous property is
that if

∑n
i=1 ciλi(v) = 0 for all v ∈ IR2 then allci must be zero.

6. Smoothness. The functionsλi are C∞ everywhere except at the verticesvj

where they are onlyC0 (see Appendix C).

7. Similarity invariance. Since the homogeneous coordinateswi depend only on
areas and distances and since any uniform scale factor cancels out in the normal-
ization (3), it follows that ifϕ : IR2 → IR2 is a similarity transformation5 and
λ̂i are the normalized barycentric coordinates with respect toΨ̂ = ϕ(Ψ), then
λi(v) = λ̂i(ϕ(v)).

8. Locality. The homogeneous coordinate functionwi depends only on the vertices
vi−1, vi, andvi+1 of Ψ.

9. Refinability. If we refineΨ to Ψ̂ by adding the vertex̂v = (1 − µ)vj + µvj+1,
and denote bŷλi and λ̂ the normalized barycentric coordinates with respect to
Ψ̂ then we haveλj = λ̂j + (1 − µ)λ̂, λj+1 = λ̂j+1 + µλ̂, andλi = λ̂i for
i 6= j, j + 1 (see Appendix A).

10. Positivity. It follows from (11) that the functionsλi are positive inside the kernel
of a star-shaped polygon and in particular inside a convex polygon.

Figure 4 illustrates the typical behaviour of the functionsλi for a set of simple polygons.
The main application of these generalized barycentric coordinates is the interpolation

of values that are given at the verticesvi of Ψ. In other words, if a data valuefi ∈ IRd

is specified at eachvi, then we are interested in the functionF : IR2 → IRd that is
defined by

F (v) =
n∑

i=1

λi(v)fi =
n∑

i=1

wi(v)fi

/
W (v). (12)

5a translation, rotation, uniform scaling, or combination of these
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8 K. Hormann

Figure 4: In this example,Ψ is a set of four simple polygons and we show contour
plots of three of our generalized barycentric coordinate functionsλi. They equal 1 at
the vertexvi, equal 0 at all other vertices ofΨ, and are linear along edges.

Due to the Lagrange and linearity properties of the coordinates, this function interpo-
latesfi atvi and is linear along the edgesei of Ψ. An example where thefi are colour
values is shown in Figure 5.

4 Implementation

For the actual computation of the interpolation functionF we use Equation (11) to
determine the homogeneous coordinateswi(v) and their sumW (v), but we suggest
a slight modification that avoids the computation of the anglesαi(v) and enables an
efficient handling of the special cases that can occur. If we letsi(v) = vi − v and
denote the dot product ofsi(v) andsi+1(v) by Di(v), then we have

tan(αi(v)/2) =
1− cos(αi(v))

sin(αi(v))
=

ri(v)ri+1(v)−Di(v)
2Ai(v)

,

and we use this formula as long asAi(v) 6= 0. Otherwise,v lies on the line throughvi

andvi+1 and we distinguish three cases. Ifv = vi or v = vi+1, then we do not bother
to compute thewi(v) and simply setF (v) = fi or F (v) = fi+1. Likewise, ifv lies on
the edgeei, then we use the linearity ofF alongei to determineF (v) directly. Note
that we can easily identify this case because it impliesDi(v) < 0. Finally, if v is not
onΨ then we conclude thatαi(v) = 0 and thereforetan(αi(v)/2) = 0.

The pseudo-code for computingF (v) is given in Figure 6. Note that we can also use
this approach to compute each single coordinate functionλj by simply settingfi = δij .
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Figure 5: Colour interpolation with generalized barycentric coordinates for the poly-
gons from Figure 4.

function F (v)
for i = 1 to n do

si := vi − v

for i = 1 to n do
ri := ‖si‖
Ai := det(si, si+1)/2
Di := 〈si, si+1〉
if ri = 0 then // v = vi

returnfi

if Ai = 0 andDi < 0 then // v ∈ ei

ri+1 = ‖si+1‖
return(ri+1fi + rifi+1)/(ri + ri+1)

f := 0
W := 0
for i = 1 to n do

w := 0
if Ai−1 6= 0 then

w := w + (ri−1 −Di−1/ri)/Ai−1

if Ai 6= 0 then
w := w + (ri+1 −Di/ri)/Ai

f := f + wfi

W := W + w

returnf/W

Figure 6: Pseudo-code for evaluating the interpolation function.
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(a) (b)

(c) (d)

Figure 7: Rendering of three pentagons with flat shading (a), Gouraud shading (b),
Phong shading (c), and generalized Phong shading (d).

5 Applications and Results

We now present three applications of our generalized barycentric coordinates that
demonstrate their potential impact on computer graphics and geometric modelling.

5.1 Phong Shading for Arbitrary Polygons

The standard approach to treating an arbitrary polygon in the rendering pipeline is to
first tessellate it into triangles and then process each triangle in turn. For example,
OpenGL automatically splits a pentagonal face into three triangles. This gives the ex-
pected result if flat shading is used, but the splits become visible as soon as Gouraud
shading or Phong shading is turned on; see Figure 7 (a–c).

Phong shading uses triangular barycentric coordinates to linearly interpolate the nor-
mals that are given at the vertices of the face over each generated triangle. This can
be seen for the two triangles that are marked by the green and blue spots in the Phong-
shaded result (c). Since the lower two vertices of both triangles have identical normals,
the interpolated normal as well as the resulting colour value vary linearly inside the
triangles. Instead, we can improve the idea of Phong shading and use the generalized
barycentric coordinates to smoothly interpolate the normals over the whole polygon,
giving a much more pleasant rendering result; see Figure 7 (d).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Flat (a), Gouraud (b), and Phong shading (c) of a simple triangle mesh. Gen-
eralized barycentric coordinates can be used to smoothly interpolate the vertices of the
exterior ring of triangles (d) and their normals. The interpolated normals can then be
used to shade the triangle mesh (e) or the interpolated geometry (f). This approach can
be extended to the interior triangle fan (g–i).

Another example is shown in Figure 8. We first took the flat
configuration on the right as a parameterization of the triangle
mesh in (a) and regarded the two rings of vertices as polygons
(thick lines). Then we smoothly interpolated the normals that were
specified at these vertices over the exterior ring of triangles (grey
area) with generalized barycentric coordinates and used the result
for a superior shading of the triangle mesh (e).

The generalized barycentric coordinates further allowed us to interpolate the vertex
positions instead of the normals and to create the smooth blend surface between the
two polygons that is shown in (d) with shading according to the surface normal and
in (f) with shading according to the interpolated normals. Of course, the interpolation of
normals and geometry is not limited to the grey region and can be extended to the whole
triangle mesh (g–i). Note that the interpolation surface in (g) is defined by all vertices
of the triangle mesh except for the central vertex and therefore does not necessarily pass
through it.
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(b)

(a) (c) (d)

Figure 9: The Leaning Tower of Pisa (a) can be straightened by our barycentric warp
function which maps the two source polygons (b) to the target polygons (c). The
Straight Tower of Pisa is shown in (d).

5.2 Image Warping

Another potential application of the generalized barycentric coordinates is image warp-
ing as they offer a particularly simple solution to this problem that can briefly be stated
as follows.

Given a rectangular regionΩ, a set ofsource polygonsΨ with verticesvi ∈ Ω, and a
topologically equivalent6 set oftarget polygonŝΨ with verticesv̂i ∈ Ω, we would like
to construct a smoothwarp functionf : Ω → Ω that maps eachvi to v̂i. This warp
function can then be used to deform asource imageI : Ω → C that mapsΩ to some
colour spaceC into a target imageÎ : Ω → C by simply settingÎ = I ◦ f−1. For
practical reasons, theinverse mappingg = f−1 is often constructed instead off .

Such an inverse warp function can easily be defined with the generalized barycen-
tric coordinateŝλi of Ψ̂. It follows immediately from the Lagrange property that the
functiong : IR2 → IR2 with

g(x) =
n∑

i=1

λ̂(x)vi (13)

maps eacĥvi to vi and thus defines a proper inverse warp function. The warped im-
age can now be generated by simply setting the colour of each target pixelx in Î to
the colour of the source pointg(x) in I. In our examples we used a simple bilinear
interpolation to determineI(g(x)) from the 2×2 grid of pixels surroundingg(x).

Like warping with B-splines and radial basis functions with linear precision, this
barycentric warpreproduces affine transformations. In other words, ifϕ : IR2 → IR2

is an affine transformation and̂Ψ = ϕ(Ψ) then Î = I ◦ ϕ−1. Indeed, sincevi =
ϕ−1(v̂i) it follows from the affine precision property of the barycentric coordinates that
g(x) = ϕ−1(x) in (13).

6with the same number of vertices and components
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(a) (b)

(c) (d)

Figure 10: Warping an image (a) with generalized barycentric coordinates (b) and radial
basis functions (c,d) by moving the vertices of two nested polygons (blue).

Another property of the barycentric warp is that it is linear along the edges of the
polygons. Figure 10 (b) shows the result of warping the image in (a) after moving the
vertices of two nested polygons. The exterior polygon with 14 vertices controls the
global shape of the warp, while the interior polygon with 10 vertices is used to deform
the star. The result is smooth and the star is clearly mapped to a star with straight edges.

For comparison, we also generated thethin plate splinewarp (c) using radial basis
interpolation with basis functionφ(r) = r2 log r (see Arad et al. (1994) for details).
This warp does not reproduce the straight edges of the star, but a common trick to
overcome this drawback is to sample the edges with additional vertices. For example,
by taking 20 samples per edge, we obtained the result in (d). It is very similar to the
barycentric warp, but takes considerably longer to compute: 20 seconds for a 600×600
image on a 2.8 Ghz Pentium, while the barycentric warp took less than one second.
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This is due to the large linear system that needs to be solved and the large number
of basis functions that have to be evaluated. In general, ifn is the number of vertices
in Ψ andk is the number of samples per edge, then solving the linear system with a
standard method is anO(k3 · n3) operation and evaluating them pixels of Î is of order
O(m·k ·n). Of course there exist specialized solvers that can reduce the cost for solving
the linear system, but the advantage of the barycentric warp is that it does not require
any system to be solved and the whole computation is of orderO(m · n) only.

We conclude that the barycentric warp is particularly useful whenever straight edges
need to be preserved. For example, making the boundary of the rectangular image
one of the source and the target polygons guarantees that the warped image will be
rectangular too; see Figure 9.

5.3 Transfinite Interpolation

Our generalized barycentric coordinates also provide an efficient solution to the fol-
lowing interpolation problem. Given a set of closed planar curvescj and some
d-dimensional data over these curvesdj : cj → IRd we would like to have a func-
tion F : IR2 → IRd that interpolates the given data, i.e.F (v) = dj(v) for anyv ∈ cj .

The obvious approach is to approximate the given curvescj with a set of polygons
Ψ whose verticesvi lie on the curvescj . Then the functionF in Equation (12) with
fi = dj(vi) clearly is an approximate solution of the stated interpolation problem. And
as the polygonsΨ converge to the curvescj by increasing the sampling density, so does
the functionF converge to the desired solution.

The interesting fact now is that the structure of our generalized barycentric coor-
dinates allows an efficient update of the solution if the sampling density is increased.
Assume that we computedF (v) and alsoW (v) from Equation (9) for some polygonΨ
and then refineΨ to Ψ̂ by adding a vertex̂v with data valuef̂ = dj(v̂) betweenvj and
vj+1. Then it follows from Appendix A that the refined interpolation functionF̂ (v) can
be written as

F̂ (v) = F (v) +
ŵ(v)

Ŵ (v)
(f̂ − ρ(v)F (v)− σ(v)fj − τ(v)fj+1) (14)

with
Ŵ (v) = W (v) + ρ(v)ŵ(v) (15)

whereŵ(v) is the new homogeneous coordinate function forv̂ andρ(v), σ(v), andτ(v)
are the normalized barycentric coordinates ofv̂ with respect to the triangle[v, vj , vj+1].
Note thatρ, σ, andτ can be computed from the same ingredients asŵ.

In the example in Figure 11, we exploited this recurrence relation as follows. We
first sampled the three given curves uniformly with 100 verticesvi and computed the
curve normalsni atvi. Then we evaluated the interpolating functionF as well asW on
a regular 512×512 grid, yielding valuesFkl andWkl with 0 ≤ k, l ≤ 511. We finally
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(a) (b)

Figure 11: Three curves with normal vectors (a) and a LIC visualization of the inter-
polated vector field (b). The colour refers to the length` of the vectors (white:̀ = 1,
blue: ` > 1, red:` < 1).

refinedΨ successively by splitting the edge with the largest approximation error to the
curve and updatedFkl andWkl according to (14) and (15). We stopped the refinement
process as soon asmaxk,l ‖F̂kl − Fkl‖ < 0.001, i.e. when the maximum update went
below 1‰ of the length of the given vectors. The final polygon consisted of 357 vertices
and it took about 10 seconds to compute the final valuesFkl.

Another example where we interpolated height data is shown in Figure 12. We first
used Shewchuk’striangle program (Shewchuk, 2002) to generate a regular triangulation
of the domain and the 2,500 vertices and edges ofΨ. Then we evaluated the interpolat-
ing function at the 100,000 vertices of this constrained Delaunay triangulation, which
took about 25 seconds. We also computed the interpolating thin plate spline for com-
parison and found the height difference between both surfaces to be less than 10% of
the maximum value.

6 Conclusions

We have presented a natural generalization of triangular barycentric coordinates both
to arbitrary polygons and even to sets of polygons. Our generalized barycentric coor-
dinates have a number of important properties and are particularly useful for the inter-
polation of data that is given at the vertices of the polygons. As shown in Figures 10
and 12, the behaviour of the interpolant is strikingly similar to that of thin plate splines.
However, unlike thin plate splines, our interpolant is extremely fast to evaluate. In our
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(a) (b)

(c) (d)

Figure 12: Interpolation of height values (red) that are given as smooth functions over
the four curves in (a) with generalized barycentric coordinates (b) and with a thin plate
spline (c). The difference of both surfaces is shown in (d).

implementation we have typically seen around 10,000,000 evaluations of the coordi-
natesλi per second.

We note that, in contrast to Sibson’s coordinates for scattered data, our coordinates
have global support and are not everywhere positive in the case of arbitrary polygons.
On the other hand it is probably due to these properties that our interpolants behave so
nicely. In the context of image warping, this lack of positivity means that our barycen-
tric warp function is not guaranteed to be one-to-one, except if both the source and the
target polygon are convex. But nevertheless the method appears to work very well in
practice.
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7 Future Work

An interesting question for future research is whether our generalized barycentric coor-
dinates can be implemented in the graphics hardware to further speed up the computa-
tion. This would be useful for image warping and even more for our improved Phong
shading. The algorithm for evaluating the interpolation function seems to be simple
enough to be coded in the fragment shader of the GPU and could further be simplified
because the entitiessi(v) andAi(v) are linear functions and destined to be generated
by the rasterizer through linear interpolation of the values computed at the verticesvi.
However, as long as the graphics hardware does not provide loops and the code must
therefore be replicatedn times, and as long as the code length of programs on the GPU
is restricted, the implementation will be limited to work only for smalln.

We also plan to investigate two very promising extensions of our coordinates. Firstly,
we are confident that they can be generalized to polyhedra of arbitrary genus in 3D,
leading to an analogous transfinite interpolation of data over closed surfaces. Secondly,
we believe that our barycentric coordinates can be generalized from polygons to smooth
closed curves or sets of curves in the plane. We will thoroughly analyse the mathemat-
ical and computational aspects of both of these generalizations.

Finally, we would like to be able to interpolate data over curves, where not only
height data are specified but also tangent data, and possibly higher order derivatives.
Our coordinates do not currently allow such Hermite interpolation, but we have some
ideas on how this might be achieved, and we will explore these in future work.
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Figure 13: Notation for refining a polygon by adding a vertex.

A Refinability

If we refine the polygonΨ to Ψ̂ by adding a vertex̂v betweenvj andvj+1 as in Fig-
ure 13, then it follows from the locality of the homogeneous coordinates thatŵi = wi

for i 6= j, j + 1. According to Equation (11), the other three homogeneous coordinates
are

ŵj(v) = 2
(
tan(αj−1(v)/2) + tan(α̂−(v)/2)

)
/rj(v),

ŵ(v) = 2
(
tan(α̂−(v)/2) + tan(α̂+(v)/2)

)
/r̂(v),

ŵj(v) = 2
(
tan(α̂+(v)/2) + tan(αj+1(v)/2)

)
/rj+1(v).

If we now write v̂ as an affine combination ofv, vj , andvj+1, i.e.,

v̂ = ρ(v)v + σ(v)vj + τ(v)vj+1

with barycentric coordinates

σ(v) =
r̂(v) sin α̂+(v)
rj(v) sinαj(v)

, τ(v) =
r̂(v) sin α̂−(v)

rj+1(v) sinαj(v)
,

and
ρ(v) = 1− σ(v)− τ(v),

then some elementary transformations show that the homogeneous coordinateswj and
wj+1 can be expressed as

wj(v) = ŵj(v) + σ(v)ŵ(v), wj+1(v) = ŵj+1(v) + τ(v)ŵ(v),

and that the sum of the refined homogeneous coordinates satisfies

Ŵ (v) = W (v) + ρ(v)ŵ(v).

It further follows thatŴ (v) = W (v) in the special case that̂v lies on the edgeej =
(vj , vj+1) since thenρ(v) = 0.
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Figure 14: Interior and orientation of a set of polygons (a) and partitioning into sectors
(b) with exit (solid) and entry edges (dashed).

B Normalization

The most important property of our homogeneous coordinates is that their sumW (v)
is never zero for anyv /∈ Ψ and therefore the normalization in (3) is well-defined. We
can even show thatW (v) is positive in the interior ofΨ and negative otherwise. For a
set of polygons like in Figure 14 (a) we define the grey region as the interior and further
assume the polygons to be orientated as indicated.

Now, let v be a vertex insideΨ. We first consider the rays fromv through the
verticesvi and add all intersection points toΨ as shown in Figure 14 (b). According
to Appendix A this does not changeW (v). Next we consider for any of the radial
sectors between two neighbouring rays all edges inside the sector and classify them
asexit edges(solid) orentry edges(dashed), depending on whether a traveller coming
from v exits or enters the interior ofΨ at the edge. If we then define for each edge
ei = (vi, vi+1) the value

κi =
(

1
ri

+
1

ri+1

)
tan(αi/2).

then it follows from the orientation ofΨ that κi is positive if ei is an exit edge and
negative ifei is an entry edge. And for edgesei that lie on one of the rays, we have
κi = 0.

Now letei be one of the entry edges. Then there always exists an exit edgeej in the
same sector that is closer tov; see Figure 14 (b). But asαi = −αj and at least one of
the inequalitiesrj ≤ ri+1 andrj+1 ≤ ri is strict, we have

κj =
(

1
rj

+
1

rj+1

)
tan(αj/2) >

(
1
ri

+
1

ri+1

)
tan(−αi/2) = −κi.

This means that the negativeκi of the entry edgeei is counterbalanced by the positive
κj of the exit edgeej . As this holds for all entry edges (without using any exit edge

Technical Report No. 5



22 K. Hormann

twice) and also in the case thatΨ is a set of (possibly nested) polygons, we conclude
that

n∑
i=1

κi > 0.

But the sum of theκi can be rearranged, by a change of summation index, to be half the
sum of thewi(v) in the form of Equation (11) and thereforeW (v) is positive for anyv
insideΨ. Likewise one can show thatW (v) is negative over the exterior ofΨ.

C Lagrange and Linearity Property

From the representation of the homogeneous coordinates in Equation (11) it follows
thatwi(v) is C∞ everywhere except at the verticesvi−1, vi, vi+1 and the edgesei−1,
ei. As a consequence, the normalized coordinatesλi(v) areC∞ at allv /∈ Ψ. To study
the behaviour ofλi on one of the edgesej of Ψ, we consider the slightly modified
homogeneous coordinates

ŵi(v) = wi(v)Aj(v) =
rj(v)rj+1(v)

ri(v)
(zi−1(v) + zi(v)),

wherezi(v) = tan(αi(v)/2) sin(αj(v))/2. Then we have for anyv ∈ ej thatzi(v) = 0
for i 6= j and zj(v) = 1 and thereforeŵj(v) = rj+1(v), ŵj+1(v) = rj(v), and
ŵi(v) = 0 for i 6= j, j + 1. It follows thatλi(v) = 0 for all i 6= j, j + 1 and

λj(v) =
rj+1(v)

rj(v) + rj+1(v)
, λj+1(v) =

rj(v)
rj(v) + rj+1(v)

,

which are the standard barycentric coordinates on an edge, converging toδij asv ap-
proachesvj . Further it is clear that the functionŝwi areC∞ overej and so are theλi.
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